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Abstract—Communities in social networks emerge from 

interactions among individuals and can be analyzed through a 

combination of clustering and graph layout algorithms. These 

approaches result in 2D or 3D visualizations of clustered 

graphs, with groups of vertices representing individuals that 

form a community. However, in many instances the vertices 

have attributes that divide individuals into distinct categories 

such as gender, profession, geographic location, and similar. It 

is often important to investigate what categories of individuals 

comprise each community and vice-versa, how the community 

structures associate the individuals from the same category. 

Currently, there are no effective methods for analyzing both 

the community structure and the category-based partitions of 

social graphs. We propose Group-In-a-Box (GIB), a meta-

layout for clustered graphs that enables multi-faceted analysis 

of networks. It uses the treemap space filling technique to 

display each graph cluster or category group within its own 

box, sized according to the number of vertices therein. GIB 

optimizes visualization of the network sub-graphs, providing a 

semantic substrate for category-based and cluster-based 

partitions of social graphs. We illustrate the application of GIB 

to multi-faceted analysis of real social networks and discuss 

desirable properties of GIB using synthetic datasets. 

Keywords—network visualization; group-in-a-box; layout; 

meta-layout; force-directed; communities; clustering; semantic 

substrates. 

I.  INTRODUCTION 

Network structures appear in many contexts, from 
biological systems to communications networks. With the 
recent proliferation of social media services such as Twitter 
and Facebook, public awareness and usage of social network 
data have increased. This led to a growing need for 
comprehensible visualizations of complex networks that 
enable exploratory analysis.  

One particularly important aspect of social network 
analysis is the detection of communities, i.e., sub-groups of 
individuals or entities that exhibit tight interconnectivity 
among the wider population. For example, Twitter users who 
regularly retweet each other’s messages may form cohesive 
groups within the Twitter social network. In a network 
visualization they would appear as clusters or sub-graphs, 
often colored distinctly or represented by a different vertex 
shape in order to convey their group identity.  

In addition to the clusters that emerge from the network 
structure, individuals in a social network are often divided 
into categories that reflect specific attributes. For example, 
members of the Twitter community may be categorized 
based on the number of followers they have, the location 
from which they tweet, or the date they joined Twitter. Such 
attributes may be useful to gain further insights about the 
community. Thus, in addition to detecting communities 
based on the network structure, it is important to enable 
analysis of the social graph along various attributes of the 
individuals. At the same time, none of the widely adopted 
layouts for visualizing clustered graphs accommodate such 
multi-faceted analysis.   

Our research fills that gap by extending the work on 
network visualization with semantic substrates [20]. We 
introduce Group-In-a-Box (GIB), a meta-layout for clustered 
graphs that enables multi-faceted analysis of networks. GIB 
uses the treemap space filling technique to create graphs for 
individual categories, thus providing a semantic substrate for 
laying out each group. Furthermore, we demonstrate the use 
of the method to analyze communities, i.e., graph clusters by 
assigning them specific spatial regions, applying layout 
algorithms to reveal the local cluster structure, and observing 
the categories that their members fall into. In both cases, we 
arrive at well separated sub-graphs that clearly reveal the 



intra-group network structures and the attributes of their 
members.  

Our experiments illustrate the application of the GIB 
multi-faceted analysis to a social network that arises from the 
voting activities of U.S. Senators. Additionally, we use 
synthetic networks, generated according to pseudo-random, 
small world and preferential attachment network models, to 
demonstrate that the GIB layout exhibits desirable properties 
for visualizing vertices that connected different clusters. In 
social networks such individuals are often referred to as 
boundary spanners and serve as connectors, forming 
communication pathways through which information can be 
exchanged across communities. Thus, GIB is equally useful 
for gaining insights about the role of boundary spanners 
within their own community. Based on our experiments, we 
recommend generalization of the GIB meta-layout to 
accommodate multi-faceted analysis involving hierarchical 
classification schema and hierarchical clustering algorithms.    

In the following sections, we introduce the graph 
clustering and layout algorithms used in our study and 
describe the GIB layout in detail. Through empirical 
observations of specific datasets and network visualization 
methods, we explore various aspects of the multi-faceted 
analysis. We conclude with the discussion of related work 
and guidelines for devising algorithms for multi-faceted 
analyses, including the need for readability criteria to 
optimize the utility of the GIB-like layouts. 

II. BACKGROUND AND PROBLEM DEFINITION 

Community detection algorithms aim to identify 
cohesive, tightly connected sub-graphs within a network. 
These structural clusters can be analyzed by considering both 
intra-cluster and inter-cluster links. Next, we introduce the 
graph clustering and layout algorithms that we used in our 
experiments and analysis.  

A. Detecting Communities through Network Clustering 

The notion of a community refers to a subset of vertices 
among which the distribution of edges is denser than with 
other vertices in the network. There are numerous methods 
for detecting communities, including hierarchical clustering, 
graph partitioning by maximizing specific criteria such as 
network modularity, and similar.   

The Girvan–Newman algorithm [7] takes a divisive 
hierarchical approach. It uses edge betweenness as weights in 
the divisive process. Community boundaries are detected by 
progressively removing from the network the edges with the 
highest betweenness, re-calculating the betweenness of the 
remaining edges at each step. If a network contains loosely 
connected communities, e.g., linked by a few inter-cluster 
edges, then all shortest paths must pass through one of these 
few edges. Thus, such inter-cluster edges will have high 
betweenness and the associated vertices will have high vertex 
betweenness centrality [8], a useful measure of the vertex’ 
influence on the information flow, especially in networks 

where such flows primarily follow the shortest available 
path. 

 The Clauset-Newman-Moore (CNM) algorithm [3], on 
the other hand, is a hierarchical agglomeration algorithm for 
detecting community structure, which is computationally 
more efficient than Girvan-Newman and similar algorithms. 
Its running time for a network with n vertices and m edges is 
O(md log n), where d is the depth of the hierarchy. However, 
in practice, the application of CNM is limited to medium-
size networks, up to half a million vertices. Wakita and 
Tsurumi [23] show that this inefficiency is caused by 
merging communities in an unbalanced manner. They 
propose simple heuristics to achieve a balanced merge and 
scale up to social networks with millions of users. 

B. Graph Layouts 

A common approach to visualizing networks is to use 
force-directed layout of vertices and edges based on models 
of physical systems in order to arrive at optimal graph 
structures. The Fruchterman-Reingold (FR) layout [9] 
belongs to that class of algorithms. It treats vertices as steel 
rings and edges as springs between them, observing two 
forces: an attractive force that is analogous to a spring force 
abiding by Hooke’s law and a repulsive force that acts as an 
electrical force between charged particles, similar to 
Coulomb’s law. The algorithm minimizes the energy of the 
system by moving the vertices and changing the forces 
between them until the system reaches an equilibrium state. 
This layout algorithm is useful for visualizing large 
undirected networks and, generally, creates overall satisfying 
layouts, placing vertices of the same cluster in the proximity 
of each other. However, some local areas of the graph may 
still be sub-optimally laid out.  

Harel and Koren (HK) proposed a fast multi-level graph 
layout algorithm to achieve better visualizations [11]. Their 
approach involves a two-phase method that recursively 
coarsens the graph to arrive at its multi-level representation. 
First, the graph is embedded in a high dimensional space and 
then projected onto a 2-D plane using principal components 
analysis. 

C. Faceted Analysis of Communities  

In practice, social network analysis (SNA) is multi-
faceted. Often it is important to analyze the roles of 
individuals that arise from their interaction within and across 
communities. However, in order to gain further insights, 
SNA may explore additional, non-structural attributes that 
are not considered by the clustering algorithm. Indeed, the 
individuals may belong to different categories based on 
gender, profession, age, location, etc. It is often useful to 
observe the distribution of these attributes across the 
community structure. However, to support the analysis that 
takes into account both the detected community structure and 
the categories that individual belong to, we need to address 
two specific issues:  



1) There are no layouts that enable flexible visualizations of 

categories and links across categories that arise from the 

underlying network structure. 

2) Clustering and layout algorithms are typically applied 

separately. As a result, the graph layout does not take into 

account cluster membership of vertices and causes two 

effects: (i) occlusion of clusters within the graph layout and 

(ii) loss of information about the structure of individual 

clusters and inter-cluster connectivity.  

The former is illustrated in Figures 1 (a) and Figure 6 (a) 
where the CNM clustering algorithm is combined with the 
HK layout. The clusters overlap, as indicated through ‘color 
bleeding’ throughout the network visualization. 

III. GIB LAYOUT ALGORITHM 

We propose to support multi-faceted network analysis by 
generalizing the approach of network visualization with 
semantic substrates [20]. We present the Group-In-a-Box 
(GIB) layout that simultaneously captures clustering and 
categorization of vertices in a network graph. The GIB 
algorithm, 

- Uses the treemap space filling technique [1], [15], [19] to 
partition the graph canvas into regions of varying sizes, 
in which individual clusters or category groups are 
displayed.  

- Allows a choice of layout algorithms for optimizing the 
layout of the sub-graphs within each region.  

- Enables assignment of visual properties to vertices and 
edges within and across clusters and category groups.   

We choose the treemap approach for the rich information 
it conveys about the relative size of individual clusters or 
categories (e.g., see Figure 1 (b)) and for its extensibility to 
hierarchical structures. Indeed, treemaps are designed to 

represent trees through nested rectangular regions. A 
rectangular area is subdivided into a set of rectangles that 
represent the top level vertices in the tree hierarchy. This 
process continues recursively, creating rectangles that 
represent each level in the tree through alternate vertical and 
horizontal subdivision of the rectangles.  

GIB was implemented as part of the NodeXL network 
analysis tool 1 . NodeXL supports computation of network 
metrics, such as closeness and betweenness centrality, and 
mapping of vertex properties onto visual characteristics, such 
as size, color, and shape of the vertices [10][21]. We use 
NodeXL to generate all the graphs presented in the paper. 

IV. GIB METHOD FOR MULTI-FACETED ANALYSIS 

In this section we demonstrate the use of GIB in multi-
faceted analysis of the U.S. Senate voting patterns in 20072.  

A. Dataset 

The U.S. Senate co-voting network was created from the 
data that connects senators to one another based on the 
number of times they voted the same way (i.e., both in favor 
or both against a bill). The network graph includes 98 
vertices and 9506 weighted edges, each representing the 
percentage of voting agreement between a pair of senators. 
The graph is complete, i.e., all the senators are connected to 
each other. In order to capture strong relationships among the 
senators, we focus on edges between senators whose level of 
agreement is above 50%. The dataset also includes attributes 
about the senators, such as name, party affiliation, the state 
they represent, and the number of votes. 

                                                           
1 NodeXL is freely available at http://nodexl.codeplex.com. 
2 Data originally provided by Chris Wilson of Slate magazine available in 

the NodeXL template format at http://casci.umd.edu/NodeXL_Teaching. 

(a)  (b) 

Figure 1. (a) Harel-Koren (HK) fast multi-scale layout of a clustered network of Twitter users, using color to differentiate among the vertices in different 

clusters. The layout produces a visualization with overlapping cluster positions. (b) Group-in-a-Box (GIB) layout of the same Twitter network: clusters are 

distributed in a treemap structure that partitions the drawing canvas based on the size of the clusters and the properties of the rendered layout. Inside each 

box, clusters are rendered with the HK layout. 



B. GIB Application to U.S. Senate Co-voting Network  

The FR layout of the U.S. Senate co-voting network 
yields the graph shown in Figure 2 (a). In this visualization, 
the vertices are colored according to the senators’ party 
affiliation and sized according to the vertex betweenness 
centrality. Further filtering of the edges, to retain those with 
weight above 90%, yields the graph shown in Figure 2 (b), 
showing a strong voting agreement among the senators of the 
Democratic party. 

Although this analysis already reveals interesting facts 
about the party cohesion and boundary spanners (represented 

by larger vertices), one may want to explore additional facets 
of the data to gain further insights about the voting patterns. 
We use GIB to perform such analysis. First, we group the 
States into five regions: Northeast, Midwest, South, 
Mountain, and Pacific. We then use these regions to divide 
senators into five groups, one group per region. Using the 
same edge filtering thresholds as before, the GIB layout 
results in Figure 3. GIB reveals further information about the 
cohesiveness of the two parties across different U.S. regions. 
For example, the Republican senators exhibit more voting 
cohesion in the southern states than the Democrats. Such 
observation was not possible in the full graph visualization. 

Figure 2. The 2007 U.S. Senate co-voting network graph, obtained with the Fruchterman-Reingold (FR) layout. Vertices colors represent the senators’ 

party affiliations (blue: Democrats; red: Republicans; orange: Independent) and their size is proportional to betweenness centrality. Edges represent 

percentage of agreement between senators: (a) above 50%; (b) above 90%. 
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Figure 3. The 2007 U.S. Senate co-voting network graph, visualized with the GIB layout. The group in each box represents senators from a given U.S. 

region (1: South; 2: Midwest; 3: Northeast; 4: Mountain; 5: Pacific) and individual groups are displayed using the FR layout. Vertices colors represent the 

senators’ party affiliations (blue: Democrats; red: Republicans; orange: Independent) and their size is proportional to betweenness centrality. Edges 

represent percentage of agreement between senators: (a) above 50%; (b) above 90%.. 

(a) (b) 

(a) (b) 



V. GIB APPLICATION TO COMMUNITY CLUSTERS  

The GIB layout can also be applied to gain further 
insights into clustered graphs, in particular about the 
boundary spanners whose position within the original graphs 
can be obscured due to cluster occlusion. By generating 
synthetic network datasets, with known structural properties, 
we illustrate the conditions under which the GIB layout leads 
to new insights. 

A. Datasets 

We used the CONTEST Matlab toolbox [22] to generate 
the following synthetic network datasets: 

- Small-world network with 500 vertices (avg. shortest-
path length = 10.349; clustering coefficient = 0.467), 
generated according to the Watts-Strogatz model [24].  

- Two pseudo-random graphs, each containing 5 clusters 
of different size (comprising 20, 40, 60, 80 and 100 
vertices), generated according to the Erdös-Rényi model 
[6], with intra-cluster edge probability of 0.15. The two 
graphs differ in the inter-cluster edge probability set to 
0.005 and 0.05, respectively. 

- Scale-free network comprising 500 vertices, generated 
using the Barabási and Albert preferential attachment 
model [2]. Each new vertex was given 3 edges on arrival, 
leading to a scale-free degree distribution. 

B. GIB Visualization of a Small-world Network 

Small-world networks are characterized by high clustering 
coefficients and small average shortest path between pairs of 
vertices. Vertices in such network are densely connected 
with only a small number of neighbors, but can be reached 
from any other vertex in the network through a short path. 
The HK layout of the clustered small world network shown 
in Figure 4 (a) while enabling the observation of some 
structural regularity, it obfuscates the details about the 
structure of individual clusters detected by the CNM 
algorithm. On the other hand, the GIB visualizations shown 
in Figures 4 (b) and (c) isolate each of the five clusters into 

its own box, increasing the visibility of intra-cluster (b) and 
inter-cluster (c) edge structures. GIB provides clarity 
regarding the regular clique structures of the local 
neighborhoods within each cluster. It also enables the 
identification of vertices with “long range” edges, 
responsible for shrinking the network diameter. 

C. GIB Visualization of Pseudo-random Graphs 

The pseudo-random graphs containing synthetic clusters 
do not exhibit any particularly interesting intra-cluster 
structure to analyze. However, they enable us to explore 
limitations regarding the visualization of clustered graphs for 
a range of inter-cluster edge probabilities. Additionally, they 
enable us to observe the positioning of boundary spanners 
both with and without GIB. 

The visualizations in Figure 5 show two pseudo-random 
networks with five clusters displayed using the HK fast 
multi-scale layout algorithm. GIB is used to isolate each of 
the five clusters into its own box. Figures 5 (a) and (b) 
illustrate the effect of increasing the inter-edge density on the 
occlusion of the clusters and the re-positioning of boundary 
spanners (i.e. the vertices with the largest size), which tend 
to gravitate towards the periphery of the clusters, when these 
are more separated. The GIB layouts, shown in Figures (c) 
and (d), display essentially the same intra-cluster structure 
for both graphs. This is expected since both have the same 
intra-cluster edge probability of 0.15. In this case, GIB 
enables a clear visualization of the centrality of boundary 
spanners within their own community. 

D. GIB Visualization of a Scale-free Network 

The scale-free network shown in Figure 6 (a) models 
structural properties of real social networks with power-law 
degree distributions. The CNM algorithm identified 10 
clusters in this network. The color of the vertices reflects the 
cluster membership while the size corresponds to the vertex 
betweenness centrality. By removing the boundary edges and 
applying the HK layout algorithm we arrive at the graph (b), 
which renders separate clusters on top of each other. 

(a)       (b)      (c) 

Figure 4. Small-world network graph visualization obtained with the Harel-Koren layout, after clustering the graph with the Clauset-Newman-Moore 

community detection algorithm (5 clusters). (a) Full graph with 500 vertices colored according to the cluster membership. (b) GIB showing the structural 

properties of the individiual clusters. (c) GIB layout of the same 5 clusters showing inter-cluster edges. 



The GIB algorithm provides an improved and clearer 
view of the structure of individual clusters. It also shows that 
vertices with high betweenness play a central role within 
individual clusters and are pulled towards the center of the 
clusters. This is expected in networks generated through 
preferential attachments since such vertices also exhibit high 
closeness centrality. 

VI. DISCUSSION AND RELATED WORK 

A. Observations from the GIB Experiments 

Investigation of GIB across real and synthetic networks 
revealed several properties. First, GIB layout subsumes three 
important aspects in the visualization of networks: (1) it 
enables simultaneous filtering or grouping of vertices based 
on a single or multiple attributes, (2) it enables layout 
optimization of individual groups while maintaining visual 
awareness of other groups, and (3) it supports explicit 
connection among close and remote vertices across groups. 
While some of these aspects can be achieved by simple 
filtering, the unifying effect that GIB offers is unique and not 
easily achieved by other methods.  

Furthermore, with the focus on the local optimization of 
the group structure, GIB is robust and applicable across 
networks with different clusterability. Indeed, even in the 
case of graph visualizations without clearly discerned cluster 

boundaries, GIB adds value by showing the local, within-
group link structure and inter-linking of the groups.  

Our method of assessing the effectiveness of the GIB 
layout is based on observations how well GIB reveals prior 
knowledge about the networks. We also consider how well it 
abides by the design principle proposed by Krempel [17]: 
“constrain the solutions to simple patterns, patterns which 
are known to put relatively little demand on the perceptual 
skills of an audience.” In that vein we considered relatively 
standard notions and characteristics of networks that the 
users are likely to observe and interpret by themselves. 

Experiments with the synthetic networks show that GIB 
identifies and confirms known properties of specific graphs: 

- The layout of small world networks highlights the long-

range links between remote vertices. From inter-cluster 

links one can observe the cross-cluster effects of remote 

vertices (Figure 4). 
- The layout of random networks shows boundary spanners 

pulled centrally towards the direction of other clusters. 
Locally, within their own cluster, they are uniformly 
distributed, as expected. That is the case, both when the 
links across clusters are sparse and when they are dense 
(Figure 5).  

- In scale-free preferential attachment networks, the GIB 
local structure clearly highlights the presence of vertices 
with both high closeness and betweenness centrality. This  

(a)         (b) 

 

 

 

 

 

 

 
 

 

 

 

 

(c)         (d) 

Figure 5. Pseudo-random graphs with 5 clusters of different sizes (comprising 20, 40, 60, 80 and 100 vertices), with intra-cluster edge probability of 0.15: 

(a) inter-cluster edge probability of 0.005; (b) inter-cluster edge probability of 0.05. The graphs are visualized using the Harel-Koren fast multi-scale layout 

agorithm and vertices are sized by betweenness centrality. The visualizations in (c) and (d) are the corresponding GIB layout. 



is a defining property of such networks, giving advantage 
to vertices and groups that form earlier in the network 
lifecycle (Figure 6).  
Thus, for a range of analysis scenarios, from multi-

attribute characterization of networks to consistent insights 
about network properties, GIB appears as a promising tool 
for analyzing complex networks.  

B. Related Work on Multi-facted Network Analysis 

In their work on semantic substrates, Shneiderman and 
Aris [20] promote two principles: (1) the use of semantic 
substrates that are user-defined and (2) the use of controls, 
such as sliders, to mediate the visibility and clutter in 
visualization and ensure comprehensibility of the network 
graphs. We extend this approach to semantic groupings of 
nodes that can be expressed by a single or multiple attributes, 
as in the U.S. Senate voting analysis (Figures 2 and 3). We 
show that with GIB the user can explore semantic substrates 
that are based on either structural clusters or attribute-based 
groupings of graph vertices. These, in turn, can be further 
overlaid with additional attributes associated with vertices. In 

this sense, GIB expands the range of scenarios in which 
semantic substrates can be applied.  

Harrer et al. [12] discuss various analyses of complex 
networks and illustrate how rich semantic underpinning, 
such as ontologies that support user interaction around the 
knowledge base, can lead to more complex network 
representations. In such cases, one is likely to see a shift in 
the network modeling, e.g., from a bi-partite graph analysis 
to multi-mode networks where more complex interactions 
need to be expressed. In this view, the GIB layout covers a 
limited set of scenarios, where attributes themselves do not 
induce additional structure that needs to be taken into 
account. Moving towards a hierarchical representation of 
categories would be the first step in that direction. 

C. Related Work on Layout of Clustered Graphs 

Clutter in network visualization may occur due 
positioning of the vertices or through interaction with the 
graph, e.g., by exposing labels on vertices or edges. This 
issue has been addressed by modifying the original layout to 
improve the readability. However, such transformations of 

Figure 6. Scale-free network with 10 clusters detected by the Clauset-Newman-Moore algorithm. Vertices are colored by cluster membership and sized by 

betweeness centrality. (a) Harel–Koren layout of the clustered graph. (b) Harel–Koren layout after removing inter-cluster edges. (c) Fruchterman-Reingold 

layout after removing inter-cluster edges. (d) GIB showing inter-cluster edges and (e) GIB showing intra-clsuter edges. 

(d) (e) 

(c) (a) (b) 



the graph layout need to be done cautiously to avoid 
distorting the structural aspects of a network. Eades and Feng 
[5], for example, address the issue of visualizing complex 
clustered structures by providing multiple levels of 
abstraction that preserve the mental map of the original 
graph. In another approach, Henry et al. [13] propose using 
vertex replication in order to emphasize the role of important 
actors in the community and reduce inter-cluster edge 
crossing [14]. However, while beneficial for a number of 
usage scenarios, this method does alter the network structure 
and may affect visual perception during analysis. 

Other approaches take into account readability criteria by 
adding layout optimization constraints to the force-directed 
algorithms. For example, Kamps et al. [16] add a “vertex-
vertex repulsion force" to the classical spring embedding 
model [4] in order to minimize the overlapping area of two 
vertices. Harel and Koren’s method [11] calculates a 
repulsive force by considering the variant of the distance 
between the boundaries of vertex pairs. For clustered graphs, 
Noack [18] proposes optimization of planar layouts through 
minimization of the LinLog energy which takes into account 
the clustering properties of the network.   

Within the multi-faceted network analysis, we apply a 
hybrid approach, promoting GIB in the contexts where the 
network structure and category groupings need to be jointly 
analyzed. The criteria for combining the two will evolve 
from the investigation of usage scenarios and developed user 
practices. 

VII. CONCLUDING REMARKS AND FUTURE WORK 

In this paper we address the issue of supporting multi-
faceted analysis of networks through an extension of the 
semantic substrate visualization approach. We introduce a 
novel graph layout algorithm, Group-in-a-Box (GIB), which 
enables simultaneous visualization of network clusters and 
categories of vertices in the network.  

We demonstrate the benefits of the unified approach 
through experimentation with real and synthetic networks 
with diverse network properties. We show that the GIB 
layout is consistently effective in revealing the expected 
network structure in simulated data.  

The current design of GIB will be further refined and 
expanded to support hierarchical clustering of networks and 
to incorporate support for taxonomy of categories. By 
observing how users apply GIB in different contexts, we 
expect to arrive at readability criteria for hybrid layouts like 
GIB. In multi-faceted analysis, the interconnection of two 
distinct groups, based on categories and clusters, needs to be 
supported in order to maximize the layout utility. 
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