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Abstract 
Web sites are often organized into several regions, each 

dedicated to a specific topic or serving a particular function. 
From a user’s perspective, these regions typically form 
coherent sets of pages characterized by a distinct navigation 
structure and page layout—we refer to them as subsites. In this 
paper we propose to characterize Web site structure as a 
collection of subsites and devise a method for detecting 
subsites and entry points for subsite navigation. In our 
approach we use a new model for representing Web site 
structure called Link Structure Graph (LSG). The LSG 
captures a complete hyperlink structure of a Web site and 
models link associations reflected in the page layout. We 
analyze a sample of Web sites and compare the LSG based 
approach to commonly used statistics for Web graph analysis. 
We demonstrate that LSG approach reveals site properties that 
are beyond the reach of standard site models. Furthermore, we 
devise a method for evaluating the performance of subsite 
detection algorithms and provide evaluation guidelines.  

1. Introduction 
The World Wide Web includes millions of Web sites 

and continues to grow in size and complexity [4,17]. 
Hyperlinks that connect Web pages enable users to 
access content within and across sites. When browsing 
through pages of a particular site, users rely upon search, 
navigation menus, A-Z index or a sitemap to find 
relevant information. However, despite such navigation 
aids many users have problems orienting themselves and 
completing their tasks [16].  

In this paper we explore a concept of a subsite as a 
subunit of a Web site content and structure that may 
offer alternative representations of the site organization. 
Web sites are often organized into coherent regions. 
Making such organization more transparent is expected 
to increase the efficiency of users’ search and navigation 
strategies. However, there are several challenges. First, 
we need to define a notion of a subsite that is sufficiently 
general, easily understood, useful to the users and, at the 
same time, feasible to compute. Second, we need to 
design algorithms for identifying subsites that are 
applicable to a wide range of Web sites. Finally, we need 

to devise a method for evaluating subsite detection 
algorithms. Our research attempts to address these three 
points.  

We start with a definition of a subsite that originates 
from user research [15] and investigate techniques for 
decomposing a site into a collection of subsites. Our 
unique contribution is a new Link Structure Graph 
(LSG) representation of a Web site. Similarly to [2,5,23], 
the LSG method uses a page layout analysis and 
identifies blocks of navigation and content links. It 
provides a model of site organization that captures the 
entire hyperlink structure and preserves information 
about associations of links such as navigation menus or 
lists of links referring to related content. The LSG 
representation enables us to design efficient algorithms 
for detecting subsites and identifying entry pages for 
subsite navigation.   

Currently, there is no easy way for Web site authors 
to designate organizational units such as subsites. 
Consequently, there is no data readily available to 
evaluate subsite detection algorithms or to apply 
machine learning algorithms that require training data. 
Therefore, it is essential to take the approach that enables 
us to collect the users’ assessments of subsite 
decompositions and define effective evaluation measures 
that help us improve the algorithms.  

Manually defining the scope of each subsite is 
potentially prohibitive even for medium size sites. Thus 
we suggest focusing first on identifying entry pages for 
subsite navigation. Led by the experience of the 
Information Retrieval (IR) community [26], we propose 
a pooling method to collect entry page candidates and 
then engage human assessors to manually evaluate 
which of the candidate pages indicate distinct subsites. 
We illustrate this method on a couple of Web sites and 
use the results of our analysis to assess the approach and 
propose guidelines for a larger scale evaluation.  

In the following sections we motivate the site 
structure analysis, introduce the Link Structure Graph 
(LSG) model, and propose a method for detecting 
subsites using the LSG (§§2-4). In (§5) we demonstrate 



the use of  LSG for analyzing a sample of Web sites. We 
follow by describing the evaluation procedure for subsite 
detection and illustrate its use on two distinct Web sites 
(§6). We conclude with the summary of our findings and 
suggestions for furthering research in subsite structure 
analysis (§7).    

2. Motivation and Background 
Over a decade ago, Nielsen pointed out the benefit of 

adopting a structured view of the site that consists of 
subsites [15]. He provided an informal definition and 
guidelines for designing subsites: 
“By subsite, I simply mean a collection of Web pages within a 
larger site that have been given a common style and a shared 
navigation mechanism. This collection […] should probably 
have a single page that can be designated the home page of the 
subsite”.  

Nielsen emphasizes two aspects: (1) shared 
navigation mechanism and consistent page style and (2) 
importance of providing an entry point to a subsite. 
Without having an exhaustive set of attributes to 
compare different page designs it is difficult to take that 
aspect into account. Thus, we focus on the shared 
navigation mechanism as a defining property of a 
subsite. We take the same approach when identifying 
entry pages for subsites, looking for pages that facilitate 
navigation of the subsite.  

2.1. Web Graph 
The structure of the Web and individual sites is 

typically represented as a directed graph whose nodes 
are Web pages and edges are hyperlinks that connect 
them. Properties of such graphs have been extensively 
analyzed [4] and used in various applications such as 
improving the quality of search engine results [10,18], 
classifying Web pages and sites [1,9], and devising 
effective compression algorithms for storing the Web 
graph [21,24].  

However, the authors of Web pages organize links 
into groups, i.e., link blocks. Navigation menus, for 
example, are repeated across pages to provide a common 
browsing mechanism. Some link blocks provide access 
to a coherent set of pages and serve as a ‘hub’ to access 
related content. This diverse structure of hyperlinks is 
not reflected in the standard Web graph model while it 
could be exploited in the detection of subsites suggested 
by Nielson [15]. For that reason, we introduce a new 
method for representing link structure of Web sites, the 
Link Structure Graph (LSG).  

Kumar et al. [12] and Qin et al. [20] worked on a 
topical characterization of Web sites by using the 
hierarchy derived from the URL tree, i.e., the directory 
structure of a site. While this approach provides an 
effective way of analyzing the content of a site, it does 
capture the hyperlink structure that is essential for site 
browsing.  

3. Link Structure Graph 
The LSG of a Web site consists of nodes that 

correspond to distinct link blocks identified through page 
layout analysis. In order to cover a wide range of Web 
designs we define link blocks broadly as elements of the 
Web page layout that include multiple links and have 
distinct formatting characteristics and functions. 

The edges between LSG blocks are used to capture 
‘navigability’ from one block to another. Once the LSG 
of a site is constructed we define subsites as specific 
patterns in the LSG structure, as described in the 
following section.  

3.1. Concepts and Definitions 
The standard Web graph is a directed graph G=(V,E) 

where a vertex p∈V(G) represents a page and an edge 
e={p,q}∈E(G) represents a hyperlink from page p to 
page q. The in-degree of a vertex p is the number of 
edges in E that connect other graph vertices to p. Such 
vertices represent the in-neighborhood of p. The out-
degree of p is the number of edges in E that connect p to 
other vertices in V. Such vertices represent the out-
neighborhood of p.  

Extending the in-degree and out-degree notions to 
link blocks, we define the in-neighborhood of a link 
block as the collection of pages that contain that block. 
We also refer to them as container pages. Similarly, we 
define the out-neighborhood of a block as a collection of 
all pages pointed to by the links in the block. We also 
refer to them as target pages of the link block.  

For two link blocks g and h, we introduce a direct 
LSG edge from nodes g to h if at least one target page of 
block g contains the block h (Figure 1). More precisely,  

Definition 1. Let us denote the target pages of link 
block g as Pg⊆V(G) and the container pages of h as 
Qh⊆V(G). Then there is a directed edge from g to h if 
and only if |Pg∩Qh|>0. 
This definition does not imply that two connected link 
blocks co-occur on a page. Instead, it means that at least 
one link in the first block refers to a page that contains 
the second block.   

 
 

 
Figure 1. Edge between two LSG nodes. Pg designates target pages 
of the block g and Qh represent the container pages of the block h. 
 



The LSG model allows us to use alternative 
definitions of block linkage for different applications. 
We chose the definition that enables us to analyze 
navigation properties of a site. Besides blocks’ 
connectivity, the edges of the resulting LSG capture 
aggregate information about links between the target 
pages Pg of a block g and the target pages Ph of a block 
h. The edge weight between the blocks is defined as the 
total number of hyperlinks from Pg pages to Ph pages.  

3.2. Link Block Types 
The LSG captures the entire set of hyperlinks on the 

site, grouping them into three types of structures: 
structural link blocks, content links blocks, and isolated 
links sets. 

Definition 2. A link block comprising two or more links 
is a structural link block or s-node if every target page of 
the block contains the block itself, i.e., Ps ⊆Qs. 

Definition 3. A link block comprising two or more links 
is a content node or c-node if |Pc∩Qc|=0. Essentially, c-
nodes represent blocks that are not repeated across its target 
pages.   

Definition 4. A link on the page is an isolated link if it 
does not part of any link block. For the present research we 
collect all the isolated links into a bag-of-links, or i-node.   

3.3. LSG Algorithm 
Our algorithm for generating LSGs involves several 

steps. First, we identify candidate link blocks by parsing 
the structure of the HTML DOM of any given page. The 
literature reports on successful use of the DOM structure 
to identify HTML layout templates [2,8] and to partition 
Web pages into content-coherent page units [5,28]. We 
follow a similar approach to extract link blocks based on 
HTML DOM structure.  Our algorithm detects link 
blocks as a sequence of l or more hyperlinks that share 
the same common ancestor in the DOM tree structure. 
Here, we take a conservative approach and construct link 
blocks from sequences of hyperlinks only. If the list of 
hyperlinks is interrupted with text it is split across 
multiple link blocks. 

Once the blocks on a page are identified, we classify 
each block as either s-node or c-node depending on the 
properties of its target and container page sets (see 
Definitions 2 and 3). The algorithm checks for repetition 
of each block across multiple Web pages. Given that 
HTML layout inconsistencies may occur, we define a 
threshold for the minimum number of target pages that 
should contain that same block in order to qualify for an 
s-node. This makes the s-node classification more robust 
in situations where the link block is not fully replicated 
across the pages. Once the block repetition is verified, 
the set of container pages is updated accordingly. Blocks 
that do not qualify for s-nodes are designated as c-nodes.  

Isolated links that are extracted from individual 
pages are grouped as bags-of-links and classified as 

i-nodes without further processing. Finally, we create 
edges between blocks following Definition 1.  

4. Segmentation of Web Sites into Subsites 
In the past, researchers studied the connectivity and 

navigability of Web sites by analyzing connected 
components [19] and other connectivity properties [29] 
of the Web graph. However, no attempt so far has been 
made to incorporate navigation aspects of a Web site that 
are explicit in the design of Web pages and thus relevant 
for the user’s experience. Our approach, using the LSG 
representation, achieves that. The LSG model captures 
the presence of navigation menus through s-nodes. 
Moreover, the LSG edges indicate the navigability from 
one menu to another. Assuming that transitions between 
menus indicate presence of distinct subsites, the LSG 
provides a good basis for segmenting a Web site into 
subsites.  

4.1. Detecting Subsites and Entry Pages 
We apply Tarjan’s linear-time algorithm [25] to 

identify Strongly Connected Components (SCCs) of the 
LSG graph, i.e., maximal subsets S of LSG s-nodes such 
that any two nodes in S are reachable through directed 
LSG paths from one node to another. For each SCC, we 
define a subsite as the union of all the pages that contain 
the blocks of the SCC. This leads to regions of a Web 
site that are accessible through a sequence of navigation 
menus.  

Following Nielsen’s suggestion ([15], §2) we also 
attempt to identify suitable entry pages for subsite 
navigation. For that, we consider approaches that have 
been taken to identify quality pages on the Web.  

PageRank [18] is a core link analysis algorithm for 
Web search and mining, which models users’ navigation 
as a random surfing model. The rank of each page 
depends on the number of in-links that the page receives 
and the rank of the pages that contribute to the in-links. 
Typically, computation of the PageRank involves only 
in-links from external pages, assuming that they are less 
biased and thus a more reliable predictor of the page 
quality and importance. In our case we wish to combine 
the evidence for the entry page quality from both the 
LSG and the standard Web graph. Thus, for a given page 
we calculate three statistics:  
(1)  PageRank based on the Web graph—the probability 
that a user will navigate to a given page when randomly 
surfing the standard link graph G of a site: 
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From (1) it is clear that the PageRank PR(pi) depends on 
the page rank PR(pj) and the number of out-links d+(pj) 
from each page pj in the in-neighbourhood of pi . Here k 
is the damping factor and |V(G)| is the number of nodes 
in the graph. 



(2)  Link block accessibility—the probability that the user 
will see a link block on a page considering the random 
surfing model on the Web graph. We calculate the Block 
PageRank for gi as the sum of page rank scores of its 
container pages Q(gi): 
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(3) Link block accessibility through LSG—the 
probability that the user will see a link block on a page if 
randomly surfing the pages using only the blocks that are 
included in the LSG. The rank of a block gi is calculated 
from the ranks of all the blocks that have an edge 
connecting to gi: 
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We combine the above measures to obtain the overall 
Entry Page Rank (EPR) of a page pi for a given subsite:   

 
δβα )()()()( isiteisubsiteisitei gBRpPRpPRpEPR ⋅⋅=  (4) 

where PRsite and PRsubsite are the PageRank scores 
calculated from the full Web site graph and the subsite 
graph, respectively. The BR(gi) is the Block Rank of the 
highest ranked s-node included in the page pi. The 
parameters α, β, and δ  are defined to control the 
contribution of PRsite, PRsubsite and BRsite to the overall 
score. They are to be determined empirically as a part of 
the algorithm evaluation process. Preliminary 
experiments suggest α=3, β=2, and δ=1.  

The EPR definition reflects our intuition that a good 
entry page should be easily accessible from pages of the 
whole Web site as well as from pages within a subsite. 
Furthermore, good entry pages are likely to belong to a 
navigation menu associated with the subsite and thus 
receive relatively high BR scores.    

5. Empirical Analysis of Site Structure 
In this section we illustrate the use of the LSG for 

analyzing the characteristics of individual Web site 
structure. For that we selected a sample of 20 Web sites1 
from 7 top-level topic categories of DMOZ [7]. The 
sample consists of 2 to 3 sites from each category, varied 
in size. Table 1 presents the details of the Web site 
crawls. For this discussion, we selected 3 interesting 
aspects of Web sites, specifically related to the LSG 
representation. 
A. Directory and hyperlink organization of sites.  

Two common strategies for analyzing Web site 
structure involves mapping the Web site graph onto a 
simpler hierarchical structure, for example the tree 
structure inherited from the crawling strategy (breadth 
first, depth first, etc.) or the directory structure of the 
Web site reflected in the URLs of the pages [12,20]. 
                                                        
1 These sites have been used before for analysis of Web evolution [17]. 

From the Table 1 we see that these two hierarchical 
structures are not necessarily correlated. For example, 
for www.sigmaxi.org the highest percentage of pages, 
36.6%, falls within depth 3 in the navigation hierarchy. 
At the same time, 86.9% of the pages are found within 
the top three levels in the directory structure. 

A recent study points out that links are the most 
prevalent navigation element for exploring Web content 
[27]. Direct access to URLs, by typing the URL and 
moving through the directory levels, is far less common. 
Given that the LSG model represents a complete set of 
navigation elements within a Web site, the analysis 
based on LSG provides benefits beyond the simplified 
navigation tree model or the directory tree model. 
B. Analysis of the LSG representation.   

The LSG representation enables us to study the 
composition of a Web site in terms of the navigation and 
content links used across pages. We define two LSG 
statistics for a link block:  
− Block reach: The percentage of site pages that are 

reached by the block, i.e., in the set of target pages.   
− Block spread: The percentage of site pages that 

contain the particular block. 
By definition, LSG s-nodes are key elements to the 

user’s navigation within the site while c-nodes provide 
access to content pages. The larger the reach, the broader 
the coverage of the Web site content through the blocks. 
The larger the spread, the broader the replication of the 
link blocks across pages. For sites designed using page 
templates, the s-node spread reveals how widespread the 
use of a particular template is across pages in the site. 

Table 1 shows that the reach and the spread of 
s-nodes and c-nodes vary significantly across sites. It is 
apparent that some sites have a wide spread of s-nodes 
and are likely to have a large number of pages sharing 
the same layout template. For example, menus of the 
www.pbs.org site target just 2.4% of site pages but are 
present in 98.8% of all the pages. The www.berkeley.edu 
site, on other hand, has various s-nodes blocks pointing 
to 23.1% of pages on the site. At the same time 78.8% of 
pages contain these blocks, indicating that most of the 
pages are well equipped with navigation menus. 

Considering the reach and the spread of content 
nodes, it is apparent that Web sites like www.nws.noaa. 
gov, www.worldbank.org and www.elib.cs.berkeley.edu 
are content sites, where content link blocks reach 
between 61% and 80% of all the pages on the site. For 
www.nws.noaa.gov these content blocks are spread 
across only 2% of pages. In the www.worldbank.org 
case, more than 30% of pages contain content links. 

It is also interesting to compare the PageRank of 
Web pages that include navigation menus, i.e., s-node 
containers, verse those that include content-type link 
blocks, i.e., c-node containers. We expect that many 
pages contain both s-nodes and c-nodes. Table 1 
presents, for each site, the average BPR (eq. (2), §4.1) of 



s-node blocks (sBPR) and c-node blocks (cBPR). We 
observe that for most sites the average sBPR is higher 
than the average cBPR. This is expected considering that 
navigation blocks are repeated across pages to facilitate 
navigation.  
C. LSG and subsite decomposition.   

In the following section we focus on the method for 
evaluating decomposition of Web sites into subsites. 
Here we observe characteristics that arise from subsites 
detected through SCCs of the LSG (see §4.1).   

The distribution of in-link degrees for the Web graph 
is known to approximate a power law [3,11]. Dill et al. 
[6] have shown that such property can be observed at 
different scales, suggesting that the Web structure has a 
fractal nature. We analyzed the in-degree distribution for 
the sample of 20 sites and observe similar long-tailed 
distribution (see Figure 2).  

Considering the decomposition of the sites into 
subsites, we also analyzed the distribution of in-links 
that a page receives from other pages of the same 
subsite. For each page and each subsite that the page 
belongs to, we compute two statistics: the number of in-
links from the subsite pages only and the number of in-
links from the rest of the site, i.e., external to the subsite. 
Figure 3 shows the two heavy-tailed distributions, one 
showing internal in-links and the other external in-links. 
While the distributions are similar in shape they are 
clearly separated. The frequency of in-link degrees from 
within subsites is consistently higher than that of outside 
subsite in-links. This suggests that the identified subsites 
are cohesive sub-regions with well linked pages.  

6. Evaluation Issues 
Evaluation of algorithms for detecting subsites and 

entry pages is difficult because we do not have the 
correct partition of subsites for a representative set of 
Web sites.  

 
Figure 2. Logarithmic display of in-link degree distribution for all 
Web sites. 
 

 
Figure 3. Logarithmic display of intra- and inter-subsite in-link 
degree distribution for all Web sites. 
 
Furthermore, the methods may need to be evaluated for 
large sites where manual inspection of all the pages is 
impractical. Thus we consider approaches that have been 
applied in other disciplines in similar situations.  

Table 1. Analysis of 20 sample Web sites. 

s-nodes c-nodes Site Crawl 
Size 

%Pages 
(depth) 

%Pages  
(dir level) Reach Spread Reach Spread 

s-nodes 
BPR 

c-nodes 
BPR 

1. elib.cs.berkeley.edu 855 53.1% (4) 36.1% (2) 0.056 0.058 0.614 0.151 0.254 0.746 
2. eserver.org 247 36.9% (5) 59.5% (3) 0.051 0.445 0.207 0.039 0.675 0.325 
3. etext.lib.virginia.edu 1805 29.2% (6) 24.4% (4) 0.213 0.650 0.316 0.148 0.852 0.148 
4. nnlm.gov 4917 44.6% (6) 46.1% (5) 0.056 0.895 0.127 0.016 0.682 0.318 
5. www.acsh.org 40005 37.7% (6) 40.2% (5) 0.133 0.270 0.432 0.093 0.271 0.729 
6. www.artifice.com 9381 28.3% (6) 85.8% (2) 0.370 0.961 0.257 0.150 0.731 0.269 
7. www.berkeley.edu 10483 46.7% (5) 53.1% (5) 0.231 0.788 0.203 0.045 0.720 0.280 
8. www.biostat.wisc.edu 4251 40.0% (10) 49.4% (10) 0.006 0.024 0.529 0.197 0.514 0.486 
9. www.boston.com 10380 57.8% (6) 54.2% (2) 0.444 0.389 0.125 0.029 0.778 0.222 
10. www.cancerbacup.org.uk 5945 28.5% (6) 31.7% (7) 0.074 0.278 0.164 0.020 0.391 0.609 
11. www.eff.org 12363 73.2% (4) 42.6% (3) 0.008 0.046 0.334 0.026 0.556 0.444 
12. www.hopkins-aids.edu 18464 48.8% (5) 89.9% (2) 0.005 0.022 0.154 0.017 0.374 0.626 
13. www.irs.gov 25277 32.1% (6) 68.5% (3) 0.180 0.800 0.419 0.266 0.461 0.539 
14. www.nws.noaa.gov 7977 52.8% (7) 71.4% (4) 0.034 0.100 0.800 0.020 0.730 0.270 
15. www.osha.gov 10939 51.9% (10) 44.6% (3) 0.201 0.683 0.305 0.083 0.748 0.252 
16. www.pbs.org 3284 49.6% (10) 98% (3) 0.024 0.988 0.062 0.013 0.618 0.382 
17. www.sigmaxi.org 1635 36.6% (3) 86.9% (3) 0.264 0.772 0.471 0.064 0.650 0.350 
18. www.usgs.gov 770 28.7% (4) 35.8% (2) 0.115 0.394 0.466 0.184 0.527 0.473 
19. www.wdvl.com 5328 35.4% (6) 38.2% (4) 0.145 0.824 0.588 0.404 0.780 0.220 
20. www.worldbank.org 19607 43.7% (5) 76.0% (3) 0.098 0.424 0.655 0.306 0.519 0.481 

 



In this section we propose a method for algorithm 
evaluation and present results of a pilot study that 
involves manual assessment of entry pages for subsites. 

6.1. Pooling of Entry Pages 
The problem of identifying all the subsites within a 

site is similar to the problem of obtaining an exhaustive 
set of documents in a database that are relevant to a 
given search query. For large databases it is unfeasible 
for users to inspect each document and render relevance 
judgment. The IR community approached this challenge 
by taking advantage of the diversity of search systems 
[26]. It used the pooling method to obtain candidate 
relevant documents from multiple systems. The top N 
documents from each system are contributed to the pool 
of documents for human judges to evaluate. In TREC 
[26], for example, N was 100 to make sure that the pool 
of unique documents exceeded the expected number of 
relevant documents in the database.  

The problem of evaluating subsites differs from the 
search problem in two aspects. First, a subsite is 
determined by its scope, i.e., the set of pages that belong 
to the subsite, and by an entry page that serves as the 
‘home page’ of the subsite and facilitates access to other 
pages within its scope. Thus, there are two aspects to 
assess as opposed to search where only the relevance of 
retrieved documents needs to be verified.  

Second, evaluation of the candidate subsites and 
entry pages involves interaction with the site itself. This 
contrasts with search where each candidate document is 
assessed in isolation from others and without consulting 
the whole database. For that reason it is unlikely that an 
assessor of search results would identify a relevant 
document that is not in the pool.  

In order to understand the full spectrum of issues we 
conducted a pilot study of subsite detection and 
algorithm evaluation involving two Web sites. For the 
sake of clarity and simplicity, we decided to focus on the 
detection of subsite entry pages and to leave the scope of 
a subsite aside for now.  

Considering the unique characteristics of our 
problem, we modified the pooling method to collect 
candidate entry pages from a diverse set of algorithms 
and from at least one expert. We also allowed the 
assessors to contribute newly discovered subsites and 
entry pages to the final set. 

6.2. Evaluation Methodology 
The first step of our evaluation protocol involves 

browsing of the Web site by one or multiple experienced 
users to identify as many subsites and respective entry 
pages as possible. The definitions of subsite and entry 
page are provided to the users beforehand:  
Subsite—a collection of Web pages that have been given 
a common style and a shared navigation mechanism. It 
may include a page that can be designated the ‘home 

page’ of the subsite. A subsite can also be a collection of 
Web pages that focus on a particular topic or function. 

Entry page—a key page for accessing the content of the 
subsite. A subsite may have one or more entry pages. 

For every identified entry page, the experts are asked 
to fill in a questionnaire about the proposed entry page 
and the subsite. These manually selected pages are added 
to the pool of pages nominated by alternative methods. 
Our final pool consisted of 5 types of entries:  

A. Entry pages manually selected by experts, 
B. Pages from the Web site included in DMOZ [7], 
C. Index pages such as ‘index.*’ or ‘default.*’, 
D. First target page of all s-node link blocks, and 
E. Top ranked page, according to the EPR score, for 

each subsite detected by the LSG decomposition 
into strongly connected components (see §4.1). 

The evaluation task consists of assessing whether the 
candidate pages are entry pages of subsites or not. The 
assessors are asked to respond yes or no, indicate the 
level of confidence in their assessment using the 7-point 
Likert scale, and optionally add comments. We created a 
simple GUI to aid evaluation—it loads each candidate 
page into a Web browser and collects the assessors’ 
judgment with the confidence level of their decision.  

6.3. Preliminary Evaluation Results  
In this section, we report on the study findings for 

two Web sites: www.artifice.com and www.sigmaxi.org. 
The set of manually selected entry pages consisted of 5 
pages for the first site and 6 pages for the second. 
Altogether, we had to evaluate 34 pages for the first site 
and 246 pages for the second site. Table 2 provides 
further details about the two pools of entry pages. 

All the pages were judged by each of the two 
assessors, J1 and J2. In Table 3 we show the frequency 
with which they agreed and disagreed in their judgments. 
The observed positive agreement (yes-yes) was 10% for 
the first site and 10.4% for the second site.  The 
observed negative agreement (no-no) was 72.7% and 
74.9%, respectively.  

  
Table 2. Number of entry pages detected by each method and 
overlap of pages by any pair of methods. 

 Site: www.artifice.com Site: www.sigmaxi.org 
 A B C D E A B C D E 

A 5 1 0 3 1 6 0 6 2 0 
B  2 0 0 0  2 2 0 0 
C   4 1 1   114 10 15 
D    24 6    125 41 
E     10     70 

 
Table 3. Agreement scores among assessors J1 and J2. 

  Assessor J1 
  Yes No Total Yes No Total 

Yes 1 4 5 7 17 24 
No 5 24 29 43 179 222 J2
Total 6 28 34 50 196 246 

  Site: www.artifice.com Site: www.sigmaxi.org 



 

 
Figure 4. Histograms of the confidence (1-not confident at all, 7-
very confident) on negative (left) and positive assessments (right) 
for www.artifice.com (top) and www.sigmaxi.org (bottom) sites. 

 
Figure 4 relates the number of negative and positive 

assessments to the confidence levels declared by the 
assessors. Here the lower score corresponds to the lower 
confidence level (1=’not confident at all’, 7=’very 
confident’).  The statistics shows that the assessors were 
quite confident about their negative judgments and less 
so about their positive judgments. 

6.3.1. Assessment of Entry Page Candidates 

We illustrate the use of assessors’ judgments by 
analyzing the quality of page types A-E (§6.2) that were 
included in the pool of candidate pages. Table 4 shows 
Set Precision and Recall statistics relative to the 
individual assessor’s judgments.  

Considering the precision statistics for manually 
added pages (type A), it is interesting to observe that the 
judges J1 and J2 agreed with the expert on 20% of 
suggested pages for the first site and 83% and 67%, 
respectively, for the second site. On this smaller set of 
pages, their level of agreement with the expert is higher 
than their mutual agreement (10%) on the full set of 
candidate pages. The recall statistics (R ≤17%) clearly 
shows that relying only on manual input would miss a 
significant portion of subsite entry pages.  

We observe that both assessors considered 2 DMOZ 
pages from each site to be subsite entry pages (P=100%), 
 

Table 4. Precision (P) and recall (R) for each input method. 

 A 
(manual) 

B 
(DMOZ) 

C 
(index*) 

D 
 (s-node) 

E 
(EPR) 

 Site: www.artifice.com 
 

Assessor 
J1 

P: 20% 
R: 17% 

P: 100% 
R: 33% 

P: 25% 
R: 17%  

P: 4% 
R: 17% 

P: 20% 
R: 33% 

Assessor 
J2 

P: 20% 
R: 11% 

P: 100% 
R: 22% 

P: 25% 
R: 11% 

P: 21% 
R: 56% 

P: 20% 
R: 22% 

 Site: www.sigmaxi.org 
Assessor 

J1 
P: 83% 
R: 8% 

P: 100% 
R: 3% 

P: 49% 
R: 93% 

P: 10% 
R: 20% 

P: 20% 
R: 22% 

Assessor 
J2 

P: 67% 
R: 17% 

P: 100% 
R: 8% 

P: 19% 
R: 92% 

P: 4%  
R: 21% 

P: 13% 
R: 38% 

but, of course, these pages are only a fraction of all the 
subsite entry pages that were identified (R≤33%). 

We also point out the effectiveness of the simple 
heuristics used in C, i.e., pattern matching on ‘index’ or 
‘default’ in the URL of a page. Such pages are most 
likely to be home pages of subsites, which contributes to 
the high precision scores for this approach.  

Finally, we note a significant difference in the recall 
of entry pages between the two sites. The second site, 
www.sigmaxi.org is neatly organized into a hierarchy of 
subsites using a common template, with most of the 
branching nodes indicated by ‘index’ page. The first site, 
www.artifice.com does not have a unified ‘look and feel’ 
and a common template.  

In that instance the LSG method discovers subsites 
that would not have been retrieved by method C (33% 
vs. 17% and 22% vs. 11% recall) nor would have been 
found manually (input A). We expect this to be the main 
contribution of the LSG based method across a variety of 
Web sites. 

6.4. Evaluation Issues and Guidelines  
The objective of the assessment process is to arrive at 

a gold standard that could be used to refine automated 
subsite detection. Thus, it is in our interest to provide 
assessors with tools that would make them more 
effective and efficient. There are several ways in which 
we can help the assessors build a good mental model of 
the site organization: 
− Provide quick access to the pages in the vicinity of a 

given page, i.e., the parent, child and sibling nodes.  
− Provide visual clues such as page thumbnails of 

flexible size.   
− Make the relationship between the URL and the links 

on the parent page explicit. 
− Provide easy access to pages that have already been 

visited during evaluation. Present a navigation trail 
and the underlying hyperlink structure.    

− Enable the assessors to customize presentation of 
candidate entry pages, i.e., as a sorted list, graph, etc.  
In order to facilitate the comparison of assessments, 

it is important to record any ambiguity encountered by 
the assessors and the rationale for the rendered 
judgments. Furthermore, we should investigate methods 
for merging the multi-assessor judgments based on the 
self declared confidence levels of the assessment. 

We see an opportunity to engage with Web authors 
and administrators by providing tools for analysis of 
Web site structure. Major online search engines have 
already adopted the XML standard for describing 
sitemaps in order to facilitate crawling and index update 
[22]. Using and expanding the existing descriptors we 
can reduce the need for automatic detection of subsites 
and focus on the structure analysis and support for 
navigating large sites. 



7. Concluding Remarks  
In this paper we consider the need for improving 

support for Web site navigation, particularly for large 
sites with complex menu structure. Existing aids such as 
a sitemap and A-Z pages have had a limited impact since 
they are not context sensitive and do not represent the 
complete content and navigation structure of the site. 
The solution is to create an adaptable system that can 
reveal appropriate parts of the site as needed. However, 
the first step is to identify organizational units that 
comprise the site—we refer to them as subsites. 

The traditional Web link graph does not offer a 
sufficiently rich representation to support in depth 
analysis of the site structure. Thus we introduce the LSG 
representation that incorporates information about the 
menu structure and blocks of links referring to content 
pages on the site. LSG analysis enables us to decompose 
sites into subsites and identifying entry pages. We 
illustrate how LSG can be used to analyze properties of 
derived subsites and show that LSG subsites are 
‘coherent’, having a higher distribution of in-link degree 
from pages within the subsite than those from the rest of 
the site.   

Recognizing the importance of evaluating 
decomposition of Web sites, we devised a pooling 
method for gathering relevance assessments and 
conducted a pilot study to test the approach. The pilot 
study enabled us to reflect on the challenges and provide 
guidelines for organizing a large scale evaluation. We 
expect that the best strategy is to combine a community 
based assessment of Web site structures with the input 
from Web authors and administrators.  
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