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Resumo 

O processo de ouvir música consiste em transformações contínuas, em que diferentes 

agentes especializados monitorizam o sinal musical de entrada produzindo sinais variados à 

saída sobre a forma de respostas comportamentais. Estas respostas podem ser observáveis, 

sob a forma de movimentos de dança ou através do mero bater do pé; emocionais, através de 

reacções de tensão e relaxamento, ou totalmente intrínsecas, demonstradas no 

reconhecimento e classificação de instrumentos, estilos, e compositores. Estudos psicológicos 

e sociológicos sugerem que a corporização do ritmo, através de movimentos de dança, é um 

princípio organizacional elementar e predominante em interações sociais humanas. 

Nesta dissertação apresentamos o desenvolvimento dum sistema robótico que utiliza um 

robô humanoide, baseado no Lego Minstorms NXT, na tentativa de simular a percepção 

rítmica humana a partir de sinais audio complexos, e o seu comportamento reactivo sob a 

forma de dança. Para tal desenvolvemos um sistema decomposto em três modulos: Análise 

Musical, Controlo Humano, e Controlo Robótico, que são processados em paralelo numa 

arquitectura ―multithreading‖, de modo a induzir uma reacção de dança robótica sob uma 

abordagem reactiva-comportamental. 

O Módulo de Análise Musical implementa uma precepção rítmica de baixo-nível baseada 

na função de detecção de ―onsets‖ do Marsyas (um software open-source para processamento 

de audio), utilizando ―peak-picking‖ e um ―thresholding‖ adaptativo. O Módulo de Controlo 

Humano consiste numa interface gráfica interactiva para a definição de dança e dos 

parâmetros audio, que garante o papel determinístico do utilizador no comportamento do 

sistema, assegurando o seu dinamismo. O Módulo de Controlo Robótico incita o robô a reagir, 

em tempo-real, à recepção de eventos rítmicos e sensoriais (nomeadamente a cor do chão e a 

proximidade a um qualquer obstáculo), encorporando a dança previamente  estabelecida. 

 A dança resultante vai variando dum modo aparentemente autónomo, pela gesticulação 

de movimentos diversificados acoplados ao rítmo musical, que variam em consonância com a 

cor do chão do ambiente de dança, sem conhecimento musical prévio. Um comportamento 

dinâmico e interactivo, em compromisso com o sincronismo, assegura uma relação 

interessante, a longo termo, entre um humano e um agente artificial. 
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Abstract 

The process of music listening is one of continuous transformation, in which different 

agencies of musical expertise monitor the input signal and produce various output signals in 

the forms of behavioural responses. These responses may be overt, through dance 

movements or mere foot-tapping behaviour; emotional, as in tension and relaxation 

reactions; or entirely immanent, though recognition and classification of instruments, 

genres, and composers. Psychological and sociological research suggests that the embodiment 

of rhythm, through dance movements, is an elementary and pervasive organizing principle 

for social human interaction. 

In this dissertation we present the development of a robotic system using a humanoid 

robot, based on the Lego Mindstorms NXT, which tries to simulate the human rhythmic 

perception from complex audio signals and its reactive behaviour in the form of dance. To do 

so we developed a framework decomposed in three modules: Music Analysis, Human Control, 

and Robot Control, which are parallelly processed, through a multithreading architecture, to 

induce a robotic dance performance in a reactive behavioural-based approach. 

The Music Analysis Module performs a low-level rhythmic perception based on the 

Marsyas (an open source software framework for audio processing) onset detection function, 

with peak picking and adaptive thresholding. The Human Control Module consists on an 

interactive graphical interface for dance and audio parameters definitions, which grants the 

user deterministic role in the behaviour of this system, while assuring its dynamic reaction. 

The Robot Control Module incites the robot to react, in real-time, to the received rhythm 

and sensorial events (namely the colour stepped on the floor or the proximity to some kind 

of obstacle), embodying the previously defined dance. 

The resulting dance alternates in a seemingly autonomous manner between a diversity of 

motion styles coupled to the musical rhythm, and varying in consonance with the colour 

stepped on the dance environment, without any previous knowledge of music. A dynamic and 

interactive behaviour, in compromise with synchronism, assures an interesting relationship 

between a human and an artificial agent in the long-term.  
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Chapter 1 

 

Introduction 

More and more AI researchers are trying to make robots dance as they listen to music. 

And as the ideas and technologies develop, it‘s clear that dancing robots can be serious 

indeed. Recent generations of robots ever more resemble humans in shape and articulatory 

capacities. This progress has motivated researchers to design interactive dancing robots that 

can mimic the complexity and style of human choreographic dancing, and that even 

cooperate with musicians. 

Musical robots are increasingly present in multidisciplinary entertainment areas, even 

interacting with professional musicians, as when the ASIMO robot conducted the Detroit 

Symphony Orchestra in a performance of Mitch Leigh's ―The Impossible Dream‖ from the Man 

from La Mancha (on May 13th, 2008)1. They have even inspired the creation of worldwide 

robotic dancing contests, as RoboDance (one of RoboCup‘s competitions) where school teams, 

formed by children aged eight to nineteen, put their robots in action, performing dance to 

music in a display that emphasize creativity of costumes and movement. 

These public musical robotic applications lack however in perception, presenting mainly 

pre-programmed deaf robots with few human-adaptive behaviours. This is where we focused 

our efforts by designing an interactive framework for robot dancing applications based on 

automatic music signal analysis. 

This chapter aims to contextualize our research as a robot dancing framework, presenting 

our motivations toward robot dance through rhythmic perception embodiment, and our 

methodology, in consideration to the used tools and chosen architecture. As starting points to 

this dissertation we introduce some basic thoughts and definitions followed by the main 

objectives involved. 

                                                 

 
1 See http://www.autoblog.com/tag/asimo+orchestra/. 

http://www.autoblog.com/tag/asimo+orchestra/
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1.1 Motivations 

The motivations which supported the topic of this dissertation are induced by a 

convergence of several factors, represented by the steps involved in the embodiment of 

musical rhythm, from a computational (machine) point of view. 

To better define this topic and in order to motivate the reader to follow our approach 

through this report, in this section we summarize the preliminary overview, presenting the 

scientific and technological contextualization and introducing the hosting institutions and the 

author‘s trajectory behind the project. As one last point of interest we introduce some of the 

thoughts behalf the consummation of our vision. 

 

1.1.1 Scope 

More and more ―Dancing Robots‖ and ―Human-Robot Musical Interaction‖ are becoming 

very common terms. In an increasing number of research labs around the world (especially in 

Japan), researchers follow a quest to find the perfect solution to achieve a rhythmic 

perceptive and interactive dancing robot. 

Robot Dancing is an interdisciplinary entertainment area which increasingly enthusiasms 

fanciers worldwide, while assisting people‘s life, being further enjoyable. As the term points 

out, it embraces several disciplines: Musical Rhythm, Computational Rhythmic Perception, 

Autonomous Robotic Systems, Synchronous Reactive Behaviour, and Dance Embodiment. 

Human-Robot Interaction can be achieved through dance movements tuned to musical 

rhythm. This interaction depends on two essential factors: Entrainment through synchronism 

and Dynamism through flexibility.  

This dissertation addresses both of these topics towards the development of an 

interactive (flexible) framework for robot dancing applications.  

 

1.1.2 Research at LIACC and INESC Porto 

This research was carried out at LIACC, under the supervising of Prof. Dr. Luis Paulo Reis, 

in association with INESC Porto, under the supervising of Prof. Dr. Fabien Gouyon. 

LIACC (Laboratory of Artificial Intelligence and Computer Science of the University of 

Porto) was created in 1988 to promote the collaboration of researchers that were separately 

working in the fields of Computer Science and Artificial Intelligence in different Faculties. 

LIACC aims at helping to solve general computer science problems, from security to 

software reliability. These hard, real-world problems can only be solved in the long term by 

combining the power of formal methods with more technology-oriented approaches and were 

used as a frame of reference in defining the LIACC short-term goals. 
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Since June 2007 the LIACC activities are organized around four research groups: Advanced 

Programming Systems, Distributed Artificial Intelligence and Robotics, Formal Models of 

Computation, and Language, Complexity and Cryptography. 

INESC (Institute for Systems and Computer Engineering) of Porto is an institution created 

to act as an interface between the academic world, the world of industry and services, as 

well as the public administration, in the framework of the Information Technologies, 

Telecommunications and Electronics. Its activities range from research and development, to 

technology transfer, consulting and advanced training. Its main research areas of interest are 

Telecommunications and Multimedia, Power Systems, Manufacturing Systems Engineering, 

Information and Communication Systems, and Optoelectronics. 

Among the various areas of expertise within these institutions, our work was specially 

related to Autonomous Robotic Systems, covered by Distributed Artificial Intelligence and 

Robotics, in LIACC; and Automatic Rhythm Description, covered by Telecommunications and 

Multimedia, in INESC. 

 

1.1.3 Personal Trajectory 

This dissertation reports all the research and work developed in the last five months, as 

part of the final course of the 5th year of the Integrated Masters in Electrical and Computer 

Engineering at FEUP (Engineering Faculty of the University of Porto). It represents the final 

project in an academic five years‘ cycle that comes to an end. A cycle founded on the 

cultural accumulation of knowledge through which I cultivated the skills needed to the 

development of such work. 

Everything else came, since early years, from the natural dance performance in complex 

human interactive environments (e.g. discos and festivals). A performance that incited 

curiosity on all the processes involved in the rhythmic perception of music and its subsequent 

embodiment in the form of dance. 

 

1.1.4 Thoughts to Consummate a Vision 

“The goal of AI has been characterized as both the construction of useful intelligent 

systems and the understanding of human intelligence…trying to build truly intelligent 

autonomous robots.” [1 p. 1].  

 

“Intelligent systems are decomposed into independent and parallel activity producers 

which all interface directly to the world through perception and action…in a behavioural 

reactive manner.” [2 p. 1]. 

 

“The intelligence does not come from a set of rules that describe “how music works.” 

Rather, the intelligence comes from continuous transformations of the signal, and the way 
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that these transformations are manifested as musical behaviours (…) There is no function in 

which it is decided what is the “right thing to do” as the signal is being processed.” [3 p. 75]. 

 

“The computational model and the psychoacoustic experiment play overlapping and 

complementary roles in advancing our knowledge about the world.” [3 p. 66]. 

 

“A computational theory of music cognition indeed, any computational theory of 

perception or cognition in any modality must be validated through comparison to meaningful 

experimental data. (…) The model builder might have implemented a large lookup table and 

listed all the stimulus patterns and the appropriate responses.” [4 p. 5]. 

 

Resembling human perception and behaviour (as human intelligent capabilities), the 

research program we envisioned aims at developing a rhythmic perceptual robotic system 

that evaluates the relevance of embodied (behavioural-based) cognitive science. In the 

system, a humanoid robot reacts, autonomously, in real-time, to complex (real) auditory 

stimuli in the forms of behavioural responses, through dance movements. In this context we 

developed a flexible framework which addresses the issue of robot dancing, and grants human 

control through full but flexible dance definitions. 

The experiments were executed in a real world environment. The results were compared 

to the meaningful experimental data of human dance performance. 

1.2 Dissertation Aims and Outline 

―The fundamental slicing up of an intelligent system is in the orthogonal direction 

dividing it into activity producing subsystems. Each activity (pattern of interactions with the 

world), or behaviour producing system individually connects sensing to action... The 

advantage of this approach is that it gives an incremental path from very simple systems to 

complex autonomous intelligent systems.‖ [2]. 

 

Approaching this incremental intelligence we decomposed this dissertation‘s objectives in 

a series of ―activities‖, which we‘ll name modules, and that were developed subsequently: 

 

 Music Analysis Module: Module responsible for the musical rhythm analysis, through a 

low-level perception model based on onset detection. 

 

 Robot Control Module: Module responsible for robot control, by inciting its reaction 

in synchrony to the former detected rhythm. 
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 Human Control Module: Module responsible for the user interface (GUI) through 

which the user has a deterministic role by defining the onset function parameters and 

all the dance movements to be performed by the robot. 

The interconnection of these three modules constituted our framework, which aimed to 

control a humanoid robot to perform seemingly autonomous dance movements in synchrony 

to musical rhythm, without former knowledge of the music. 

Further objectives are analyzed in future work (see section 5.1). 

1.3 Methodology and Tools 

The realization of the presented objectives was only possible due to a conjunction of 

software applications, which worked together to develop, experiment and ultimately control 

the hardware, formed by the robot. Following we present the main used tools and our 

methodology through their application. 

 

1.3.1 Marsyas 

Marsyas (Music Analysis, Retrieval and Synthesis for Audio Signals)2 is an open source 

software framework for rapid prototyping and experimentation with audio analysis and 

synthesis with specific emphasis to music signals and Music Information Retrieval. Its basic 

goal is to provide a general, extensible and flexible architecture that allows easy 

experimentation with algorithms and provides fast performance that is useful in developing 

real time audio analysis and synthesis tools. A variety of existing building blocks that form the 

basis of most published algorithms in Computer Audition are already available as part of the 

framework and extending the framework with new components/building blocks is 

straightforward.  

It has been designed and written by George Tzanetakis with help from students and 

researchers from around the world. Marsyas has been used for a variety of projects in both 

academia and industry. 

Our Music Analysis Module was essentially founded on Marsyas (v0.23), combining the 

required blocks to develop an onset detection function. 

 

1.3.2 Microsoft Visual Studio – Visual C++ 

Microsoft Visual Studio3 is the main Integrated Development Environment (IDE) from 

Microsoft. It can be used to develop console and Graphical user interface applications along 

                                                 

 
2 Consult http://marsyas.sness.net/. 
3 Check Microsoft Visual Studio Developer Center at  http://msdn.microsoft.com/en-
us/vstudio/default.aspx 

http://marsyas.sness.net/
http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://msdn.microsoft.com/en-us/vstudio/default.aspx
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with Windows Forms applications, web sites, web applications, and web services in both 

native code as well as managed code for all platforms supported by Microsoft. 

Visual C++ is Microsoft's implementation of the C and C++ compiler and associated 

languages services and specific tools for integration with the Visual Studio IDE. It can compile 

either in C mode or C++ mode. 

Visual Studio (2008) was the foremost used software of our work. Through this IDE we‘ve 

integrated all the existing algorithms, namely Marsyas onset detection function and NXT 

Remote API, and programmed all the remnant code to develop our framework. Our 

framework‘s user interface (GUI) was also designed through this IDE with Microsoft 

Foundation Class (MFC) library. 

 

1.3.3 MATLAB 

MATLAB4 is a numerical computing environment and programming language. Created by 

The MathWorks, MATLAB allows easy matrix manipulation, plotting of functions and data, 

implementation of algorithms, creation of user interfaces, and interfacing with programs in 

other languages. 

In this project MATLAB (R2008a), acting as a simulative output (through plotting), was 

responsible for all the experimentation made in order to properly ―calibrate‖ our Music 

Analysis Module. 

 

1.3.4 Lego Mindstorms NXT 

Lego Mindstorms NXT5 is a programmable robotic kit designed by Lego (see Figure 1). It is 

composed by a brick-shaped computer, named NXT brick, containing a 32-bits 

microprocessor, flash and RAM memory, a 4 MHz 8-bit microcontroller and a 100x64 LCD 

monitor. This brick supports up to four sensorial inputs and can control up to three servo-

motors. It also has an interface displayed by the LCD and controlled with its four buttons, and 

a 16 kHz speaker. 

Lego NXT supports USB 2.0 connection to PC and presents a Bluetooth wireless 

communication system, for remote control and data exchange. It offers many sensor 

capabilities through its ad-hoc sensors. In the scope of this project we provided our robot 

with a colour sensor, to detect and distinguish visible colours, and an ultrasonic sensor, 

capable of obstacle detection, retrieving the robot‘s distance to it in inches or centimetres. 

Based on this technology we built a humanoid-like robot using two NXT bricks that 

controls six servo motors (one for each leg and each arm, one for a rotating hip and one for 

the head) and the two referred sensors. 

                                                 

 
4 Check MATLAB official web site at http://www.mathworks.com/.  
5 For more information consult http://mindstorms.lego.com/eng/default.aspx. 

http://en.wikipedia.org/wiki/Computer
http://www.mathworks.com/
http://mindstorms.lego.com/eng/default.aspx
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Figure 1 - Lego NXT brick and some of its sensors and servo-motors. 

 

1.3.5 NXT Remote API 

The NXT Remote API6 is a C++ library, designed by Anders Søborg, to remotely control the 

LEGO NXT brick over Bluetooth, using any C++ compiler on a Windows OS (the library can be 

also used with Pocket PCs running Windows Mobile using MS Visual Embedded C++). This API is 

decomposed in nine classes, which make it possible to: 

 

 Open and close Bluetooth connections with multiple NXT units; 

 Control the motors; 

 Send and receive messages from the NXT; 

 Read sensor values - both mode-dependent and raw; 

 Set Brick name, get battery level, read firmware version etc; 

 Control the NXT speaker; 

 Play sound files; 

 Start and stop on-brick programs; 

 Use compass and sonar sensors; 

 Communicate with I2C sensors; 

 Direct commands for the PCF8591 A/D converter; 

 Direct commands for the PCF8574 I/O Chip. 

 

This library (v0.3) was embedded in our Robot Control Module to remotely receive 

sensing (ultrasonic and colour sensors) information from the robot and send motor (actuators) 

outputs correspondent to the embodiment of proper dance movements. 

 

1.3.6 Methodology 

In this section we present our methodology as the interconnection between all the 

present tools, joint together to achieve an ultimate goal. 

                                                 

 
6 For more information and download consult http://www.norgesgade14.dk/index.php. 

http://www.norgesgade14.dk/index.php
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To clarify our method we present it through a representative diagram (see Figure 2).  

 

 

Figure 2 – Our methodology through a conjunction of tools. 

1.4 Dissertation Structure 

This dissertation is organized in five chapters, the first of which is this introduction to the 

thesis motivation, aims, outline, methodology and tools.  

In the following chapter (Chapter 2) we present the background work done on the areas 

of onset detection and dancing interactive robots, presenting all the first relevant definitions 

to a complete understanding on these topics, and a state-of-the-art overview. 

In Chapter 3 we define our project‘s approach, with focus on the designed system 

architecture. 

In Chapter 4 we present the main experiments and the achieved results, analyzing them 

in comparison to meaningful data (human dance) on a real world dance environment. 

Finally, Chapter 5 concludes this dissertation by summarizing general conclusions and 

proposing a path for future work. 
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Chapter 2 

State Of The Art 

This section presents the state of art related to all topics of interest to the development 

of this thesis. 

It is divided in two main distinct subsections: ―Audio Onset Detection‖ and ―Dancing and 

Rhythmic Interactive Robots‖. A third section presents ―A Turning Point‖, defining our 

approach in contrast to the former reviewed. 

2.1 Audio Onset Detection 

Many music signal analysis applications require the accurate detection of onsets of 

musical tones, and it is not surprising that several different methods have been proposed for 

performing onset detection. At first sight, onset detection is a well-defined task: the aim is to 

find the starting time of each musical note (where a musical note is not restricted to those 

having a clear pitch or harmonic partials), [5]. However, in polyphonic music, where 

nominally simultaneous notes (chords) might be spread over tens of milliseconds, the 

definition of onsets starts to become blurred. 

In order to clarify the concept of onset time and introduce the process of its detection in 

any application, based on [6] we define the concepts of transients, onsets and attacks. Due 

to the importance in distinguish the similarities and differences between these key concepts 

as the categorization of all related approaches, following we present some fundamental 

considerations. 
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Figure 3 - ―Attack‖, ―transient‖, ―decay‖, and ―onset‖ in the ideal case of a single note, [6]. 

 

Figure 3 shows, in the simple case of an isolated note, how one could differentiate these 

notions. The attack of the note is the time interval during which the amplitude envelope 

increases. Transients are short intervals during which the signal evolves quickly in a relatively 

unpredictable way. In acoustics, the transient often corresponds to the period during which 

the excitation is applied and then damped, leaving only the slow decay at the resonance 

frequencies of the body. This consideration shall take into account a time resolution of 10 ms 

due to the assumption that human ears cannot distinguish between two transients occurring 

in time intervals less than this. The onset of the note is a single instant chosen to mark the 

temporally extended transient. It will mostly coincide with the start of the transient, or the 

earliest time at which the transient can be reliably detected. 

 

Previously, in 2.1.1 Basic Definitions and General Scheme of Onset Detection Algorithms 

we review the basic concepts in onset detection and introduce a general categorization of 

onset detection algorithms. In 2.1.2 Audio Onset Detection Functions: A State-Of-The-Art 

Review, we present a review on some of the research made on this area. In 2.1.3 Results 

Comparison we conclude the state-of-the-art in this research area by presenting a result 

comparison upon some of the most prominent recent proposed models. 

 

2.1.1 Basic Definitions and General Scheme of Onset Detection Algorithms 

As observable in Figure 4, onset detection algorithms are normally split into three 

components: the pre-processing of the original audio signal to improve the performance of 

subsequent stages; the detection function, a signal representing the changing state of a 

musical signal, typically at a lower sampling rate; and a second stage of peak picking within 

the detection function to find onset times. However, frequently the pre-processing stage is 

ignored in order to simplify the algorithm. 

Following Bello et al. work I decomposed this overview in the three subsequent onset 

detection stages. 
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Figure 4 - Flowchart of a standard onset detection algorithm, [6]. 

 

2.1.1.1 Onset Detection: Pre-Processing 

The concept of pre-processing implies the transformation of the waveform to isolate 

different frequency bands in order to accentuate or attenuate various aspects of the signal 

according to their relevance to the task in hand. It is an optional step that derives its 

relevance from the process or processes to be subsequently performed [6]. 

Attending to the literature and [6], this review is decomposed in two processes that 

appear to be of particular relevance to onset detection schemes: Multiple Bands and 

Transient/Steady-State Separation. 

The pre-processing based on multi bands is normally used to satisfy the needs of specific 

applications that require detection in individual sub-bands to complement global estimates, 

as a way of increasing the robustness of a given onset detection method. This process involves 

the use of filter banks‘ conjugations, which might be fed into comb-filter resonators in order 

to estimate the tempo of the signal. 

The process of transient/steady-state separation is usually associated with the modelling 

of music signals. One can refer the sinusoidal models, such as ―additive synthesis‖, which 

represent an audio signal as a sum of sinusoids with slowly varying parameters, and the 

spectral modelling synthesis (SMS), which considers the residual of the synthesis method as a 

Gaussian white noise filtered with a slowly varying low-order filter. One should also refer the 
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transient modelling synthesis (an extension of SMS), and the discrete cosine transform of the 

residual (in a pseudo-temporal domain) in which transient signals are analyzed by a sinusoidal 

analysis/synthesis similar to SMS. Due to the irrelevance of this pre-processing scheme in the 

scope of this thesis, a state-of-the art review shall not be presented. 

 

2.1.1.2 Onset Detection: Reduction 

In this context, the concept of reduction refers to the process of transforming the audio 

signal into a highly sub-sampled detection function which manifests the occurrence of 

transients in the original signal, and enhances the bands (obtained with pre-processing) such 

that note onsets are more salient. This consists in the onset scheme basis promoting a wide 

class of onset detection methods, which will be the focus of most of our review (see 2.1.2). 

Based on [6], [5], [7], we decomposed this reduction analysis in six different method 

types, according to their basis (on signal features or statistics): Temporal Methods, Energy-

Based (Spectral Weighting) Methods, Phase-Based Methods, Complex Methods, Time-

Frequency and Time-Scale Methods (TFR), and Statistical Methods. 

 

 Temporal Methods: When observing the temporal evolution of simple musical signals, 

it is noticeable that the occurrence of an onset is usually accompanied by an increase 

of the signal‘s amplitude [6]. Early temporal methods of onset detection used a 

detection function which follows the amplitude envelope of the signal. Such an 

―envelope follower‖ can be constructed by low-pass filtering the signal: 

      (1.1) 

where ω(m) is an N-point window or smoothing kernel, centred at m=0. A variation on 

this is to follow the local energy, rather than the amplitude, by squaring, instead of 

rectifying, each sample: 

      (1.2) 

This reduced signal in its raw form is not usually suitable for reliable onset 

detection by peak picking. A further refinement, included in a number of standard 

onset detection algorithms, is to work with the time derivative of the energy so that 

sudden rises in energy are transformed into narrow peaks in the derivative. The 

energy and its derivative are commonly used in combination with pre-processing, both 

with filter-banks and transient/steady-state separation. 

 

 Energy-Based (Spectral Weighting) Methods: A new note will always lead to an 

increase in signal energy. In the case of strong percussive note attacks, such as drums, 

this increase in energy will be very sharp. For this reason, energy has proved to be a 

useful, straightforward, and efficient metric by which to detect percussive transients, 
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and therefore certain types of note onset. Considering the L2 norm squared energy of 

a frame of the signal, x(m): 

 

      (2.1) 

where h is the hop size, m the hop number and n is the integration variable. Taking 

the first derivative of E(m) it produces a detection function from which peaks may be 

picked to find onset locations. This is one of the simplest approaches to note onset 

detection. This idea can be extended to consider frames of an FFT (Fast Fourier 

Transform). Considering that all of these methods make use of a time-frequency 

representation of the signal based on a short time Fourier transform (STFT) using a 

Hamming window ω(m), and calculated at a frame rate of 100 Hz, if x(mh) is a time-

domain signal then:  

     (2.2) 

where k = 0, 1,…, N-1 is the frequency bin index, and n the frame number. It follows 

that the amplitude difference (spectral flux) measures the change in magnitude in 

each frequency bin, and if this is restricted to the positive changes and summed 

across all frequency bins, it gives the onset function SF, [8]: 

 

      (2.3) 

where  is the half-wave rectifier function. 

 

 Phase-Based Methods: Intuitively, Fourier analysis proposes that a signal can be 

represented by a group of sinusoidal oscillators with time-varying amplitudes, 

frequencies and phases. During the steady-state part of the signal these oscillators 

will tend to have stable amplitudes and frequencies. Therefore, the phase of the kth 

oscillator at a given time (frame) n could be easily predicted according to: 

     (3.1) 

where the φ operator denotes phase unwrapping (cf. Figure 5). This implies that the 

actual phase deviation (PD) between the target and the real phase values is given by 

the term [9]: 

   (3.2) 

where,    ,        (3.3) 

φk(n) is the kth frequency bin of the nth time frame from the STFT of the audio signal. 

The operator princarg maps the angle to the [−π, π] range, and dφ will tend to zero if 

the phase value is accurately predicted and will deviate from zero otherwise (the 

case for most oscillators during attack transients). By measuring the spread of the 

distribution an accurate onset detection function can be constructed. 
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Figure 5 – Phase diagram showing instantaneous frequencies as phase derivative over adjacent frames, 

[6]. For a stationary sinusoid this should stay constant (dotted line). 

 

 Complex Methods: There are a number of reasons that justify combining phase and 

energy information for onset detection: while energy-based approaches favour strong 

percussive onsets, phase-based approaches emphasize soft, ―tonal‖ onsets. The two 

methods are more reliable at opposite ends of the frequency axis. Let‘s consider a 

simpler measure of the spread of the distribution calculated as the mean absolute 

phase deviation: 

.       (4.1) 

This method, although showing some improvement for complex signals, is 

susceptible to phase distortion and to noise introduced by the phases of components 

with no significant energy. As an alternative we introduce an approach that works 

with Fourier coefficients in the complex domain, [10]: 

    (4.2) 

where the kth spectral bin is quantified by calculating the Euclidean distance Γk(n) 

between the observed Xk(n) and that predicted by the previous frames, k(n); both 

derived from complex considerations based on Figure 6: 

 

 ,          (4.3) 

               

where          .           (4.4) 

These distances are summed across the frequency-domain to generate a complex 

difference (CD) onset detection function: 

 .          (4.5) 

In a simpler equivalent way, Dixon [5] defined this function as: 
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     (4.6) 

 

where the target value XT(n, k) is estimated by assuming constant amplitude and rate 

of phase change: 

.     (4.7) 

 

 

Figure 6 - Phasor diagram in the complex domain showing the phase deviation between target 

and current vector, and the Euclidean distance between them [10]: (a) normal diagram and (b) 

rotated diagram. 

 

 Time-Frequency and Time-Scale Methods (TFR): An alternative to the analysis of 

the temporal envelope of the signal and of Fourier spectral coefficients is the use of 

time-scale or time frequency representations (TFR). The most notable algorithm 

implementing this scheme is the wavelet regularity modulus, which is a local 

measure of the regularity of the signal given by [11]: 

      (5.1) 

where dj,k are the wavelet coefficients, β[i] is the full branch leading to a given small-

scale coefficient d1,i, and s is a free parameter used to emphasize certain scales ( s=0 

is often used in practice). A more detailed review on this approach is presented in 

2.1.2. 

Since increases of WRM are related to the existence of large, transient-like 

coefficients in the branch β[i], the regularity modulus can effectively act as an onset 

detection function. 

 

 Statistical Methods: Statistical methods for onset detection are based on the 

assumption that the signal can be described by some probability model [6]. These 

schemes look for abrupt changes in the signal and register their likely times in a 

probabilistic manner. These can be quantified using likelihood measures or Bayesian 
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model selection criteria, and their success is intimately related to the proximity on 

the probability distribution described by the model to the ―true‖ distribution of the 

data. 

Based on [6], probabilistic schemes can be decomposed in model-based change 

point detection methods ( [12]), through which change points are detected when the 

given likelihood ratio surpasses a fixed threshold (looking for an instantaneous switch 

between two distinct models); and in approaches based on “surprise signals” ( [13]), 

which look for surprising moments relative to a single global model, through a 

detection function that  trace of the negative log-probability of the signal given its 

recent history, according to a global model. A more detailed review is presented in 

2.1.2. 

 

2.1.1.3 Onset Detection: Peak-Picking 

The onsets are selected from the detection function by a peak-picking algorithm which 

finds local maxima in the detection function, subject to various constraints. The thresholds 

and constraints used in peak-picking have a large impact on the results, specifically on the 

ratio of false positives (reported detections where no onset exists) to false negatives (missed 

detections) [6]. This procedure can be decomposed into two subsequent processes: 

thresholding followed by peak-picking. 

 

 Thresholding: The best values for thresholds are dependent on the application and 

the relative undesirability of false positives and false negatives. Therefore, it is 

necessary to define a threshold which effectively separates event-related and non-

event-related peaks. There are two main approaches to defining this threshold: fixed 

thresholding and adaptive thresholding. 

Fixed thresholding define onsets as peaks where the detection function, d(n),  

exceeds the threshold, δ (positive constant) (d(n)≥δ). However this approach is 

inefficient in the presence of dynamic music signals, tending to miss onsets, generally 

in quiet passages, while over-detecting during the loud ones. 

This invokes the use of a signal adaptive threshold δ[n], generally computed as a 

smoothed version of the detection function. This smoothing can be linear, e.g. using a 

low-pass FIR-filter: 

,       (6.1) 

with a0=1; or non-linear, e.g. using the square of the detection function: 

      (6.2) 

where λ is a positive constant and {ωi}i=-M…M is a (smooth) window. Alternatively, in 

order to reduce the fluctuations, due to the presence of large peaks, the thresholding 

can be defined in percentiles, based, for instance, in local median: 
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.     (6.3) 

Dixon [5] used an adaptive thresholding function defined by: 

.       (6.4) 

 

 Peak-Picking: peak-picking is reduced to identifying local maxima above the defined 

threshold. As a representative example I will define Dixon‘s [5] approach where each 

onset detection function d(n) is normalised to have a mean of 0 and standard 

deviation of 1. In his scheme a peak at time  is considered an onset if it fulfils 

the following three conditions: 

 

1)  

2)             (7.1) 

3)  

where ω=3 is the size of the window used to find a local maximum, m = 3 is a 

multiplier so that the mean is calculated over a larger range before the peak, δ is the 

threshold above the local mean which an onset must reach, and δ[n] is the used 

threshold function (6.4). 

For a review of a number of peak-picking algorithms for audio signals, see [14]. 

 

2.1.2 Audio Onset Detection Functions: A State-Of-The-Art Review 

Earlier algorithms developed for onset detection focused mainly on the variation of the 

signal energy envelope in the time domain. 

Based on the (instantaneous short-term) spectral structure of the signal, Masri [8] 

proposes a high frequency content (HFC) function with a linear frequency dependent 

weighting, which linearly weights each bin‘s contribution in proportion to its frequency. The 

HFC function produces sharp peaks during attack transients and is notably successful when 

faced with percussive onsets, where transients are well modelled as bursts of white noise. In 

a more general approach Masri, based on changes in the spectrum to formulate the detection 

function as a ―distance‖ between successive short-term Fourier spectra, treating them as 

points in an N-dimensional space, developed a spectral flux (SF) onset detection method 

which calculates the spectral difference using the L1-norm of the difference between 

magnitude spectra, (2.3). 

Later, Duxbury [15] used a pre-processing scheme based on a constant-Q conjugate 

quadrature filter bank to separate the signal into five sub-bands. Using this approach he 

developed a hybrid scheme that considers energy changes in high-frequency bands and 

spectral changes (spectral flux) in lower bands. In order to calculate this spectral flux, the 

author proposed the use of the L2-norm on the rectified difference: 
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      (8.1) 

where  , i.e., zero for negative arguments. This rectification has the effect 

of counting only those frequencies where there is an increase in energy, and is intended to 

emphasize onsets rather than offsets. By implementing a multiple-band scheme, the approach 

effectively avoids the constraints imposed by the use of a single reduction method, while 

having different time resolutions for different frequency bands. 

Scheirer [16] demonstrated that much information from the signal can be discarded while 

still retaining the rhythmical aspect. On a set of test musical pieces, Scheirer filtered out 

different frequency bands using a filter bank (pre-processing). He extracted the energy 

envelope for each of those bands, using rectification and smoothing. Finally, with the same 

filter bank, he modulated a noisy signal with each of those envelopes and merged everything 

by summation. With this approach, rhythmical information was retained. On the other hand, 

care must be taken when discarding information. In another experiment, he shows that if the 

envelopes are summed before modulating the noise, a significant amount of information 

about rhythmical structure is lost. 

Klapuri [17] used the psychoacoustical model developed by Scheirer to develop a robust 

onset detector, propounding the difference of the log spectral power in bands as a more 

psychoacoustically relevant feature related to the discrimination of intensity (simulating the 

ear‘s perception of loudness). Hence, to get better frequency resolution, he employed a pre-

processing consisting in a filter bank of 21 filters. The author points out that the smallest 

detectable change in intensity is proportional to the intensity of the signal. Thus ΔI/I is a 

constant, where I is the signal‘s intensity. Therefore, instead of using (d/dt)A where A is the 

amplitude of the envelope, he used 

.       (8.2) 

This provided more stable onset peaks and allowed lower intensity onsets to be detected. 

Later, Klapuri et al. [18] used the same kind of pre-processing and won the ISMIR7 

(International Symposium on Music Information Retrieval) 2004 tempo induction contest. 

Jehan [12], also motivated on psychoacoustically factors, forms an event detection 

function by taking power in Bark bands and applying a spectral masking correction based on 

spreading functions familiar from the perceptual coding of audio, and post masking with half 

cosine convolution. His applications are in event sensitive segmentation. 

In contrast to Scheirer‘s and Klapuri‘s works, Bello et al. [9] took advantage of phase 

information to track the onset of a note (phase deviation). They found that at steady state, 

oscillators tend to have predictable phase. This is not the case at onset time, allowing the 

decrease in predictability to be used as an indication of note onset. To measure this, they 

                                                 

 

7 For information consult http://www.ismir.net/ . 

http://www.ismir.net/
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collected statistics on the phase acceleration, as estimated by (3.2). To detect the onset, 

different statistics were calculated across the range of frequencies including mean, variance, 

and kurtosis. These provide an onset trace, which can be analyzed by standard peak-picking 

algorithms. The function considers all frequency bins k equally. 

Dixon [5], declaring that the energy of the signal is concentrated within the bins which 

contains the partials of the currently sounding tones, developed an improvement in this 

phase-based detection function, proposing weighting the frequency bins k by their magnitude. 

Based on this he built a new onset detection function, called the weighted phase deviation 

(WPD), and defined by: 

.       (8.3) 

This is similar to the complex functions (analysed below), in which the magnitude and 

phase are considered jointly, but with a different manner of combination. The author further 

proposed another option to define a weighted phase deviation function, but in a normalised 

way (NWPD), where the sum of the weights is factored out to give a weighted average phase 

deviation: 

 .        (8.4) 

Subsequently Bello et al. presented three studies, [10], [7], [19], on the combined use of 

energy and phase information for the detection of onsets in musical signals, in the form of 

complex domain methods, developing some complex difference (CD) algorithms. They showed 

that by combining phase and energy approaches it‘s possible to achieve a more robust onset 

detection scheme, enjoying from both performances: energy-based onset detection functions 

perform well for pitched and non-pitched music with significant percussive content, while 

phase-based approaches provide better results for strongly pitched signals and are less robust 

to distortions in the frequency content and to noise. This was corroborated by the 

experimental results achieved for a large range of audio signals. 

Dixon [5] has also proposed an improvement to these complex methods, trying to resolve 

their absence in distinguish increases from decreases in the amplitude of the signal (i.e. 

onsets from offsets). They formulated such resolution in the form of a rectified complex 

domain (RCD) function, by applying a half-wave rectification to a spectral flux-based 

function, which grants exclusive consideration to increases in energy in spectral bins. 

Therefore the RCD is basically the incorporation of this scheme in a CD method, being 

described as follows: 

        (8.5) 

 

where    .        (8.6) 
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Approaching a time-frequency/time-scale analysis, Daudet et al. [11] developed a 

transient detection based on a simple dyadic wavelet decomposition of the residual signal. 

This transform, using the Haar wavelet8, was chosen for its simplicity and its good time 

localization at small scales. The scheme takes advantage of the correlations across scales of 

the coefficients. The significance of full-size branches of coefficients, from the largest to the 

smallest scale, can be quantified by a regularity modulus, which is a local measure of the 

regularity of the signal, (5.1). 

Now considering the probability models I shall refer again the work of Jehan [12], which 

also developed a statistical scheme based on the comparison between two auto-regressive 

models of the signal, forming a model-based change point detection method. Like other 

similar approaches he uses two parametrical Gaussian statistical models, , ϐ, where their 

log-likelihood ratio s is defined as: 

,        (8.7) 

assuming that s will change sign, due to the signal convergence from model   to model ϐ, at 

some unknown time. In its approach both models parameters and the change point are then 

optimized to maximize the log-likelihood ratio between the probability of having a change at 

and the probability of not having an onset at all. Change points are detected when this 

likelihood ratio surpasses a fixed threshold. 

In a distinct statistic way, based on ―surprise signals‖, Abdallah and Plumbley [13] 

introduced the negative log-likelihood using an ICA (Independent Component Analysis) model 

scheme. Their approach was developed on the notion of an observer which builds a model of 

a certain class of signals, such that it is able to make predictions about the likely evolution of 

the signal as it unfolds in time. Such an observer will be relatively surprised at the onset of a 

note because of its uncertainty about when and what type of event will occur next. However, 

if the observer is in fact reasonably familiar with typical events (i.e., the model is accurate), 

that surprise will be localized to the transient region, during which the identity of the event 

is becoming established. Thus, a dynamically evolving measure of surprise, or onset (novelty), 

can be used as a detection function. 

Ultimately, some recent models, despite being rare, approach onset detection mixed to 

supervised (machine) learning. Davy and Godsill [20] also based on time-frequency and time-

scale analysis (TFR) developed an audio segmentation algorithm using a support vector 

machine9 (SVM). They classify spectrogram frames into being probable onsets or not. The SVM 

                                                 

 
8 The Haar wavelet is the first known wavelet and was proposed in 1909 by Alfréd Haar. It is the 
simplest possible wavelet, but has the advantage of not being continuous and therefore not 
differentiable. 
9 Support vector machines (SVMs) are a set of related supervised learning methods used for classification 
and regression. They belong to a family of generalized linear classifiers. A tutorial on SVMs has been 
produced by C.J.C Burges, http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf . 

http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
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was used to find a hypersurface delimiting the probable zone from the less probable one. 

Unfortunately, no clear test was made to outline the performance of the model. 

Kapanci and Pfeffer [21] also used SVM, on a set of frame features to estimate if there is 

an onset between two selected frames. Using this function in a hierarchical structure, they 

were able to find the position of onsets. Their approach mainly focuses on finding onsets in 

signals with slowly varying change over time such as solo singing. 

Marolt et al. [22] used a neural network approach for note onset detection. The model 

used the same kind of pre-processing as Scheirer‘s in [16], with a filter bank of 22 filters. An 

integrate-and-fire network was then applied separately to the 22 envelopes. Finally, a multi 

layer perception was applied on the output to accept or reject the onsets. Results were good 

but the model was only applied to mono-timbral piano music. 

In a similar approach, in its use of neural networks, Eck et al. [23], [24] most notably 

developed two onset detection algorithms that have participated to the MIREX 2005 onset 

detection contest, yielding the best and second best performance. Both proposed algorithms, 

first classify frames of a spectrogram into onset or non-onset, using a feed-forward neural 

network. From the classification of each frames, they extract the onset times, using a simple 

peak picking algorithm, based on a moving average. Distinctly the first version, SINGLE-NET 

(Figure 7a), is comprised of a time-space transform (spectrogram) which is in turn treated 

with a feed-forward neural network (FNN), and the resulting trace is fed into a peak-picking 

algorithm to find onset times (OSTs). The second one, MULTI-NET (Figure 7b), repeats the 

SINGLE-NET variant multiple times, applying different hyper-parameters. A tempo detection 

algorithm is run on each of the resulting feed-forward neural network (FNN) outputs, and the 

SINGLE-NET outputs and the tempo-detection outputs are then combined using a second 

neural network. 

With this work, they concluded that a supervised learning approach to note onset 

detection performs well and warrants further investigation. 
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Figure 7 – Algorithms description, [24]: a) SINGLE-NET flowchart: uses a single neural network classifier. 

b) MULTI-NET flowchart: combines the predictions of several networks, SINGLE-NETs, trained using 

different hyper-parameters. 

   

With so many possible algorithms for the detection of musical events in an audio signal 

now published, which some are referred above, research questions are turning to the 

comparative evaluation of such methods, [25]. Therefore, below I present some approaches 

on state-of-the-art comparative evaluation reviews addressing onset detection methods. 

 

Bello et al., in [6], presented a tutorial on onset detection in music signals, where they 

reviewed, categorized, and compared some of the most commonly used techniques for onset 

detection, also presenting possible enhancements, and providing some guidelines for choosing 

the appropriate method for a given application. The discussed methods were based on several 

predefined signal features, namely the signal‘s amplitude envelope (wavelet methods), 

spectral magnitudes and phases (spectral and phase-based methods), time-frequency 

representations (temporal methods); and methods based on probabilistic signal models 

(statistical methods). The achieved results are discussed in the following subsection, 2.1.3 

Results Analysis and Comparison. 

Based on Bello et al. work, Collins, in [25], and then Dixon, in [5], sought to extend their 

results and reviewed them, as a benchmark for comparison. 

Collins besides reviewing and extending their work he also explored the potential of 

psychoacoustically motivated models such as those of Klapuri [17] and Jehan [12], referred 
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above. In this research they investigated 16 detection functions, including a number of novel 

and recently published models. 

Dixon [5] complemented and extended Bello et al.‘s work by introducing new onset 

detection functions, already referred, and by testing the new methods alongside independent 

implementations of a subset of the published methods on the same data set and on a second 

data set which is two orders of magnitude larger. They restricted their comparison to 

methods based on short term spectral coefficients, which are the most widely used methods, 

and the most successful according to the 2005 MIREX audio onset detection evaluation. The 

achieved results are also discussed in the following subsection, in comparison to the previous 

ones. 

 

2.1.3 Results Analysis and Comparison 

In signal processing, onset detection is an active research area leading to worldwide 

contests as the Audio Onset Detection contest featured by the MIREX10  (Music Information 

Retrieval Evaluation eXchange) annual competition, an ISMIR member since 2005. These 

contests aim to find the more efficient onset detection function at retrieving the time 

locations at which all musical events in a recording begin. We begin this subsection by 

announcing the main difficulties on onset detection model‘s evaluation and then we introduce 

some methods to overcome this with the use of tools for building a set of reference onset 

times. Next, based on [6], [5], we present a comparison between some of the referred 

(above) reduction models, emphasizing the ones with best performance, depending both on 

its definition and on the nature of the signals to be analyzed. We finish this comparison by 

introducing some guidelines for choosing the right detection function. Ultimately, as a point 

of interest, we present the overall scores from the MIREX 2005 Audio Onset Detection 

Contest. 

 

2.1.3.1 Methodology and Tools for the Evaluation of Automatic Onset Detection Algorithms 

The main difficulty with the evaluation of onset detection algorithms is that of obtaining 

a significantly large and balanced set of recordings for which the onset times are known 

(ground truth data). Precise measurements of onset times are only available for a small 

fraction of music, such as piano music recorded on computer-monitored pianos, and music 

generated with a MIDI synthesizer. Other data must be labelled by hand, which is a laborious 

and error-prone task. 

A second methodological problem is determining how to report and compare results. Each 

onset detection function has parameters which can be tuned to alter the proportion of false 

                                                 

 
10 For additional information consult MIREX 2008 web page at  http://www.music-
ir.org/mirex/2008/index.php/Main_Page . 

http://www.music-ir.org/mirex/2008/index.php/Main_Page
http://www.music-ir.org/mirex/2008/index.php/Main_Page
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positives and false negatives. These proportions are often expressed in terms of precision and 

recall whose relationship is often shown graphically in a receiver operating characteristic 

(ROC) curve, and if a single scalar statistic is desired (to make comparisons simple), the 

precision and recall can be combined into a single value such as the area under the ROC curve 

or the F-measure, which represents the optimal point on this curve. 

A third problem is how to deal with situations where a number of onsets are very close 

together, for example when a chord is played on a guitar or piano. Depending on the time 

between the notes, one or more onsets might be perceived, but this is dependent on the 

instrument and presence of other simultaneous sounds. The MIREX10 [26] onset detection 

evaluation addressed this problem by counting the number of merged onsets (two onsets 

detected as a single onset) and double onsets (a single onset recognized as two) in addition to 

the standard counts of correct detections, false positives and false negatives. 

Addressing these issues we present two distinct frameworks to improve the performance 

of the evaluation of algorithms for the automatic note onset detection in music signals. 

Leveau et al. [27] developed a carefully designed software tool, called SOL (Sound Onset 

Labellizer, Figure 8), which combines the three most used hand-label methods (signal plot, 

spectrogram, listening to signal slices), to provide a methodology to construct the set of 

reference onset times and cross-validate it amongst different expert listeners. With this 

application they‘ve objected to build a common methodology and a common annotation tool, 

which in turn can be used to build a common database of onset-annotated files. In order to be 

shared by the widest community they disposed this software and files online11, freely 

available. 

In order to enable, coordinate and evaluate submissions to MIREX, a software framework 

was developed by J. Downie [26] in association with the IMIRSEL team. Their final solution is 

based in the Data-to-Knowledge (D2K) Toolkit and is included as part of the Music-to-

Knowledge (M2K) Toolkit12 (both implemented in JAVA). M2K modules are connected by an 

XML-based itinerary which describes the particular process flow for each evaluation task. 

These frameworks are extremely flexible and can be customized by participants to suit the 

specific topologies of their submissions. Figure 9 represents the Audio Onset Detection 

contest M2K MIREX evaluation itinerary. 

This represents a significant advance over traditional evaluation frameworks and supports 

the central evaluation paradigm necessitated by the unique challenges posed by MIR 

evaluation. 

 

                                                 

 
11 Available at http://perso.telecom-paristech.fr/~grichard/ISMIR04/ . 
12 M2K is an open-source initiative, and is freely available from http://music-ir.org/evaluation/m2k . 

http://perso.telecom-paristech.fr/~grichard/ISMIR04/
http://music-ir.org/evaluation/m2k
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Figure 8 - Sound Onset Labellizer interface, [27]. The screen of the GUI is divided into three parts: the 

upper one represents the spectrogram of the signal, the middle one its time domain waveform, and the 

lower the controls to manipulate sound files, labels and visualization windows. 

 

 

Figure 9 - MIREX evaluation framework implemented in M2K for the Audio Onset Detection contest, 

[26]. 

 

2.1.3.2 Onset Detection Function: Comparison of Performance Results 

Following the previous analysis, in this subsection we present Bello et al. [6] and Dixon‘s 

[5] experimental results comparing some of the onset detection approaches described. 

To test every relevant scheme, they have both used the same mono data set of 44.1KHz 

16 bit sound files, with reference onsets marked up by hand by a single expert. The tests 

were composed by 4 sets of short excerpts from a range of instruments, classed into the 

following groups: 
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 NP — non-pitched percussion, such as drums (119 onsets); 

 PP—pitched percussion, such as piano and guitar (577 onsets); 

 PN — pitched non-percussion, in this case solo violin (93 onsets); 

 CM — complex mixtures from popular and jazz music (271 onsets). 

 

 

Figure 10 - Comparison of different detection functions for 5 s of [6]: a) a solo violin recording. b) a 

piano violin recording c) a pop song. From top to bottom: time-domain signal, spectrogram, high-

frequency content, spectral difference, spread of the distribution of phase deviations, wavelet 

regularity modulus, and negative log-likelihood using an ICA model. All detection functions have been 

normalized to their maximum value. 

 

In [6] the onset labelling was done mostly by hand, which is a lengthy and inaccurate 

process, especially for complex recordings such as pop music: typically including voice, 

multiple instruments and post-production effects. A small subsection of the database 

corresponds to acoustic recordings of MIDI-generated piano music which removes the error 

introduced by hand-labelling. In a way to allow for its inaccuracy, the authors considered 

correct matches the ones which target and detected onsets were within a 50-ms window. 
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Peak-picking was accomplished using the moving-median adaptive threshold method13. Table 

1 present their achieved results depending on the characteristic of each method: Spectral 

Weighting Methods - Spectral Flux (SF) [8], High-Frequency Content (HFC) [8]; Phase-Based 

Methods - Phase Deviation (PD) [19]; Time-Frequency and Time-Scale Methods - Wavelet 

Regularity Modulus (WRM) [11]; Statistical Methods - Negative Log-Likelihood (NL) [13]. For 

the sake of a fair comparison between the detection functions, the authors opted to use a 

common post-processing and peak-picking technique. However, the performance for each 

detection function could be improved by fine tuning the peak-picking algorithm for specific 

tasks. 

A behavioural overview of every analysed methods when applied to different types of 

audio signals (violin, piano, and pop music) is presented in Figure 10. 

Figure 11, then, present the results achieved in Table 1 in the form of a ROC curve, 

comparing the performance of each tested scheme. To compose this curve, all peak-picking 

parameters (e.g., filter‘s cutoff frequency, λ) were held constant, except for the threshold δ 

which was varied to trace out the performance curve. Better performance is indicated by a 

shift of the curve upwards and to the left. The optimal point on a particular curve can be 

defined as the closest point to the top-left corner of the axes, where the error is at its 

minimum. 

 

Table 1 - Onset Detection Results from [6]. Columns show the percentage of True Positives (TP%) and 

percentage of False Positives (FP%) for each method: HFC, SF, PD, WRM, NL. 

 

   

 

 

                                                 

 

13 Based on X. Rodet and F. Jaillet, ―Detection and modeling of fast attack transients,‖ in Proc. Int. 

Computer Music Conf., Havana, Cuba, 2001, pp. 30–33. 
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Figure 11  - ROC curve comparison of the onset detection presented in Table 1, [6]: HFC, SF, PD, WRM, 

NL. 

 

Following [6] considerations, by reading the different optimal points we can retrieve the 

best set of results for each onset detection method. For the complete database, the negative 

log-likelihood (90.6%, 4.7%) performed the best, followed by the HFC (90%, 7%), spectral flux 

(83.0%, 4.1%), phase deviation (81.8%, 5.6%), and, finally, the wavelet regularity modulus 

(79.9%, 8.3%). 

By analysing the shape of each curve (as it contains useful information about the 

properties of each method): the negative log-likelihood shows appeal for a number of 

applications by remaining close to the top-left corner of the axes ([100% TP, 0% FP] point), 

and by successfully characterizing all types of onsets while producing little unrelated noise; 

the HFC is able to retrieve a large proportion of the existing onsets for relatively few false 

positives, reaching 95% true positives for 10% false positives; the wavelet regularity modulus 

present a similar performance, although the corresponding performance curve rises more 

slowly as the percentage of false positives increases; the spectral flux and the phase 

deviation (methods that take information from a number of temporal frames into 

consideration) present a smoother detection function profile, minimizing the amount of 

spurious detections. This was reflected in a ROC curve that manages relatively high correct 

onset detection rates for low numbers of false positives, while obtaining comparatively less 

good detections for high rates of false positives (more than 25%). 

According to Table 1, and quoting [6], we present a performance analysis depending on 

the type and quality of the input signal. The phase deviation performed successfully for 

pitched sounds (both PP and NP) where tonal information is the key to the detection of 

onsets, while returning poor results for purely percussive sounds and complex mixtures. On 
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the other hand, the HFC performed better for highly percussive sounds and complex mixtures 

(with drums) than for music with softer onsets. The spectral flux sits in the middle, slightly 

below phase deviation for pitched sounds and just under-performing HFC for more percussive 

and complex sounds. The wavelet regularity modulus performance was at its best when 

dealing with simple percussive sounds, otherwise performing poorly with respect to the other 

methods. Notably, the negative log-likelihood performed relatively well for almost all types 

of music. 

 

Following this results, I present Dixon‘s [5]. In each case, the results are shown for the 

point on the ROC curve (which gives the maximum value of the F-measure). The ground-truth 

data was then used to select optimal values of α (positive thresholding constant) and δ (the 

threshold above the local mean which an onset must reach). Similarly to [6] he considered an 

onset to be correctly matched if a detected onset is reported within 50 ms of the ground-

truth onset time. However he didn‘t penalize merged onsets considering that the analyzed 

data contained many simultaneous or almost simultaneous notes (and he wasn‘t attempting to 

recognize the notes). Contrarily to [6] he presented the achieved results, in Table 2, in 

function of their precision P, recall R and F-measure F (for the optimal parameter settings), 

which were given by: 

        (9.1) 

        (9.2) 

          (9.3) 

 

where c is the number of correct detections, f+ is the number of false positives and f− is the 

number of false negatives. Parameters were chosen to maximize F. 

In this context and in order to compare its results with [6], he re-tested the spectral flux 

(SF), the phase deviation (PD), and also tested his proposed models (WPD, NWPD, and RCD) in 

contrast to former similar ones (respectively, PD, PD, and CD). 

Therefore, tested on the 4 data sets used in [6], the Table 2 shows the results for 8 

different onset detection functions: Energy-Based Methods - Spectral Flux (SF* in [6] and SF in 

[5]) [8]; Phase-Based Methods - Phase Deviation (PD* in [6] and PD in [5]) [19], Weighted 

Phase Deviation (WPD) [5], Normalised Weighted Phase Deviation (NWPD) [5]; Complex 

Methods - Complex Domain (CD) [10], [7], Rectified Complex Domain (RCD) [5]. 
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Table 2 - Results of onset detection tests in [5], showing precision (P), recall(R) and F-measure (F) for 

the data sets pitched non-percussive (PN), pitched percussive (PP), non-pitched percussive (NP) and 

complex mixture (CM), for 8 different onset detection functions (presented above). The functions 

marked with asterisks are results in [6]. 

 

 

 

By analyzing Table 2 is observable that there are some large discrepancies between 

Bello‘s results (marked with * - SF* and PD*) and Dixon‘s own implementations of the same 

functions (SF and PD). 

Quoting [5] analysis, SF* performed particularly well with the data set PP in comparison 

with the PN and NP data sets, but his implementation (SF) showed much smaller performance 

differences across these 3 sets of excerpts. SF also achieved better performance across the 

entire range of data, presumably due to a better peak-picking function. Even greater 

differences are evident in the results of the phase deviation functions, where the author‘s PD 

function achieved much worse performance than Bello‘s PD* results. The closeness of the PD* 

results to the WPD and NWPD results raised the suspicion that perhaps some weighting 

scheme have been used in the PD* algorithm, and this was later confirmed by one of the 

authors from [6], who had mistakenly thought it was an unimportant detail. 

WPD and NWPD are both very significant improvements on the PD function, but the 

normalization was only an improvement on the WPD in two cases (PP and CM), while for the 

other two cases a slight degradation in performance resulted. Finally, the RCD method 

offered a small improvement on the CD on this data, but considering the small size of the 

data set, this difference might not be significant. 

Overall, these results showed that spectral flux, weighted phase deviation and complex 

domain methods can all achieve a similarly high level of performance on these data sets. 

Since the data sets are small and not sufficiently general, Dixon didn‘t draw further 

conclusions about the differences between these methods, except to state that spectral flux 

has the advantage of being the simplest and fastest algorithm. 

Summarizing, some of these results contradicted Bello‘s and suggest that a similarly high 

level of performance can be obtained with a magnitude-based (spectral flux), a phase-based 

(weighted phase deviation) or a complex domain (complex difference) onset detection 

function. 
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As conclusion one shall say that all the discussed results (from [6] and [5]), while 

depicting a general trend in the behaviour of these approaches, are not absolute, due to the 

method‘s signal dependencies and to the chosen peak-picking and post-processing algorithms. 

The hand-labelling of onsets, in the ground-truth definitions, can also be ambiguous and 

subjective, especially in complex mixes. 

 

2.1.3.3 Onset Detection Functions: Comparative Analysis and Methods Applications 

When picking the most accurate method to an application the general rule of thumb is 

that one should choose the method with minimal complexity that satisfies the requirements 

of that application, in a balance of complexity between pre-processing, construction of the 

detection function, and peak-picking [6]. 

What follows is a summary discussion of the merits of different reduction approaches and 

some guidelines to find the appropriate method for a specific application, with an emphasis 

on the ones that have been previously compared, founded mainly on [6] and [5] results. 

We decomposed this general discussion in six different methods, according to 2.1.1.2: 

 

 Temporal Methods ( [17]): these are simple and computationally efficient. Their 

functioning depends on the existence of clearly identifiable amplitude increases in 

the analysis signal, which is the case only for highly percussive events in simple 

sounds. Amplitude-based onset detection schemes decreases in robustness when 

facing amplitude modulations (i.e., vibrato, tremolo) or the overlapping of energy 

produced by simultaneous sounds. These methods present low precision in onsets time 

localization. 

Bello et al. consider these methods especially adequate to very percussive (PP – 

e.g., drums) music signals. 

 

 Energy-Based (Spectral Weighting) Methods ( [8], [15]): from these we shall refer 

the commonly used HFC (High Frequency Content, [8]). It is successful at emphasizing 

the percussiveness of the signal but less robust at detecting the onsets of low-pitched 

and non-percussive events, where energy changes are at low frequencies and hence 

de-emphasized by the weighting. In some signals, even broadband onsets are 

susceptible to masking by continuous high-frequency content such as that due to open 

cymbals in a pop recording. This problem can be overcome by using spectral 

difference (spectral flux) methods such as the L1-norm of the difference between 

magnitude spectra (2.3), [8], or the L2-norm of the rectified spectral difference (8.1), 

[15], as these can respond to changes in the distribution of spectral energy, as well as 

the total, in any part of the spectrum. However, the difference calculation only relies 

on magnitude information. 
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Bello et al. consider the SF, similarly to PD (below), especially adequate to 

strongly pitched transients. 

 

 Phase-Based Methods ( [9], [19], [5]): these were designed in order to compensate 

the former scheme shortcomings. We shall refer the spread of the distribution of 

phase deviations (PD) (3.2), [19], which are successful at detecting low and high-

frequency tonal changes regardless of their intensity. Yet they are especially 

susceptible to variations introduced by the phases of noisy low-energy components, 

and to phase distortions common to complex commercial music recordings. The WPD 

(8.3) and NWPD (8.4), proposed in [5], are both very significant improvements on the 

PD function, but the normalization is only an improvement on the WPD in the 

presence of pitched-percussive (PP) or complex mixture (CM), while for pitched non-

percussive (PN) and non-pitched percussive (NP) data a slight degradation in 

performance results. 

As referred, Bello et al. also consider the PD especially adequate to strongly 

pitched transients. 

 

 Complex Methods ( [10], [7], [5]): In the complex domain, both phase and amplitude 

information work together, offering a generally more robust onset detection scheme. 

This algorithm is both straightforward to implement, and computationally cheap. 

Despite this, it proves effective for a large range of audio signals. Some complex 

domain approaches, like the complex difference (CD) (4.5), [7], currently performing 

better on the lower frequency components of the spectrum, may be beneficial to 

incorporate them within a multi-resolution scheme. This has the advantage that high 

frequency noise bursts may be used to improve time localization of hard onsets. The 

RCD (8.5) method [5] has revealed to offer small performance improvement, 

presenting non-significant differences. 

Bello et al. consider the CD a good choice to any application in general, at the 

cost of a slight increase in computational complexity. 

 

 Time-Frequency and Time-Scale Methods (TFR) ( [20], [11]): As representation we 

shall refer the wavelet regularity modulus (WRM) (5.1), [11], being an example of an 

approach using an alternative time-scale representation that can be used to precisely 

localize events down to a theoretical resolution of as little as two samples of the 

original signal, which for typical audio sampling rates is considerably better than the 

ear‘s resolution in time. The price of this is a much less smooth detection function, 

therefore emphasizing the need for post-processing to remove spurious peaks. The 
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method provides an interesting alternative to other feature-based methods, but with 

an increase in algorithmic complexity. 

Bello et al. consider the WRM especially useful, possibly in combination with 

another method, to applications requiring precise onsets time localization. 

 

 Statistical Methods ( [13]): Approaches based on probabilistic models provide a more 

general theoretical view of the analysis of onsets. Previous reduction methods can be 

explained within the context of measuring surprise relative to a probabilistic model, 

while new methods can be proposed and evaluated by studying refinements or 

alternatives to existing models. An example is the surprise-based method using ICA to 

model the conditional probability of a short segment of the signal, calculated as the 

difference between two negative log-likelihoods [13]. If the model is adequate, then 

robust detection functions for a wide range of signals can be produced. However, for 

adaptive statistical models, such as ICA, these advantages accrue only after a 

potentially expensive and time-consuming training process during which the 

parameters of the model are fitted to a given training set. 

Bello et al. consider ICA the best option, due to their best overall scores and less 

dependence on a particular choice of parameters, if a high computational load is 

acceptable, and a suitable training set is available. 

 

Contesting some of [6] presented results and conclusions, Dixon [5] argued that the SF, 

PD, and the CD onset detection functions achieved higher level of performance, where SF has 

proved to be the best scheme, proving to be the most accurate with the lowest 

computational complexity. 

Based on Dixon‘s conclusions this was the implemented method in Marsyas, for onset 

detection, as a low-level rhythmic perception model. 

Either way, by using Marsyas in the development of my Music Analysis Module (see chapter 

3), this was necessarily the basis of my robot‘s rhythm perception. 

 

2.1.3.4 MIREX 2005 Audio Onset Detection Contest Overall Scores 

Following I preset the results obtained in the MIREX 2005 Audio Onset Detection Contest. 

On MIREX the results are given by comparing the detected onset times with the ground-

truth ones14: for a given ground-truth onset time, determined with the evaluation framework 

implemented in M2K [26] (see subsection 2.1.3.1), if there is a detection in a tolerance time-

window around it, it is considered as a correct detection (CD). If not, there is a false negative 

                                                 

 
14 The presented information in summarized from: http://www.music-ir.org/evaluation/mirex-
results/audio-onset/index.html  

http://www.music-ir.org/evaluation/mirex-results/audio-onset/index.html
http://www.music-ir.org/evaluation/mirex-results/audio-onset/index.html
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(FN). The detections outside all the tolerance windows are counted as false positives (FP). 

Doubled onsets (two detections for one ground-truth onset) and merged onsets (one detection 

for two ground-truth onsets) will be taken into account in the evaluation. Doubled onsets are 

a subset of the FP onsets, and merged onsets a subset of FN onsets. On MIREX 2005, the 

dataset consisted of 85 audio files (14.8 minutes total) from 9 classes: complex, poly-pitched, 

solo bars and bells, solo brass, solo drum, solo plucked strings, solo singing voice, solo 

sustained strings, and solo winds. 

 

Table 3 - Overall scores from the MIREX 2005 audio onset detection contest. Overall average F-measure, 

overall average precision, and overall average recall are weighted by number of files in each of nine 

classes (retrieved from [24]). 

 

 

 

Table 4 - F-measure percentages for all nine classes from the MIREX 2005 audio onset detection contest. 

Best performance for each class is shown in bold. The number of pieces for each class is shown in 

parentheses (retrieved from [24]). 

 

 

 

As observable in Table 3 and Table 4, on this dataset, the MULTI-NET and SINGLE-NET 

algorithms [24] yielded the best and second best performance, respectively, for the contest. 

The MUTI-NET, yielding an F-measure of 80.07% performed slightly better than the 

SINGLE-NET algorithm which achieved an F-measure of 78.35%. 
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2.2 Dancing and Rhythmic Interactive Robots 

This subsection presents the solutions achieved by some of the most notable current 

researchers on the area of robotic dancing and interactive robots. In order to clarify this 

overview, it is divided into three main topics: ―Dancing Robots‖, ―Human-Robot Rhythmic 

Interaction‖, and ―Robot Cross-Modal Rhythmic Perception‖. 

 

2.2.1 Dancing Robots 

Nakazawa, Nakaoka et al., [28], [29] presented an approach that lets a biped robot, HRP-

2 (see Figure 12) imitate the spatial trajectories of complex motions of a Japanese traditional 

folk dance by using a motion capture system. To do that they developed the learning-from-

observation (LFO) training method that enables a robot to acquire knowledge of what to do 

and how to do it from observating human demonstrations. Despite the flexibility of motion 

generation, a problem is that these robots cannot autonomously determine the appropriate 

timing of dancing movements while interacting with auditory environments, i.e., while 

listening to music. 

 

 

Figure 12 - Humanoid robot HRP-2 (retrieved from [30]). 

 

Tanaka et al. from Sony, developed the software that turns QRIO (see Figure 13) into a 

dancing robot which interacts with children through a posture mirroring dance mode [31], 

[32]. This interactive mode was developed using an Entrainment Ensemble Model which relies 

on the repetition of sympathy, between the robot and the child, and dynamism. To keep the 

synchronism they used a ―Rough but Robust Imitation‖ visual system through which QRIO 

mimics the detected human movements. 
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Figure 13 – Sony Entertainment Robot ‗QRIO‘ [32]. 

 

More recently, in 2007, Aucoutuier et al. [33] developed a robot designed by ZMP, called 

MIURO (see Figure 14), in which they built basic dynamics through a special type of chaos 

(specifically, chaotic itinerancy (CI)) to let the behaviour emerge in a seemingly autonomous 

manner. CI is a relatively common feature in high-dimensional chaotic systems where an orbit 

wanders through a succession of low-dimensional ordered states (or attractors), but transits 

from one attractor to the next by entering high-dimensional chaotic motion. The robot motor 

commands are generated in real time by converting the output from a neural network that 

processes a pulse sequence corresponding to the beats of the music. 

 

 

Figure 14 - The MIURO robotic platform manufactured by ZMP Inc. [33] is a two-wheeled musical player 

equipped with an IPod mp3 player interface and a set of loudspeakers. Wheel velocities can be 

controlled in real-time through wireless communication with a computer. 

 

Burger and Bresin [34] also used the Lego Mindstorms NXT to design a robot, named M[ε]X 

(see Figure 15), which expresses movements to display emotions embedded in the audio 

layer, in both live and recorded music performance. Their robot had constraints of sensors 

and motors, so the emotions (happiness, anger and sadness) were implemented taking into 

account only the main characteristics of musicians‘ movements. 
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Figure 15 – The M[ε]X emotionally expressive robot [34]. 

 

Yoshii et al. [35] used Honda‘s ASIMO, in Figure 16, to develop a biped humanoid robot 

that stamps its feet in time with musical beats like humans. They achieved this by building a 

computational mechanism that duplicates the natural human ability in terms of associating 

intelligent and physical functions. The former predicts the beat times in real time for 

polyphonic musical audio signals. The latter then synchronizes step motions with the beat 

times by gradually reducing the amount of errors in intervals and timing. Their robot 

represents the significant first step in creating an intelligent robot dancer that can generate 

rich and appropriate dancing movements that correspond to properties (e.g., genres and 

moods) of musical pieces, in a human-like behaviour. 

 

 

Figure 16 - Foot stamping of ASIMO robot while listening to music with its head-embedded microphone 

[35]. 

 

Takeda et al. [36] had proposed a dance partner robot referred to as MS DanceR, which 

has been developed as a platform for realizing effective human-robot coordination with 

physical interaction (see Figure 17). MS DanceR consists of an omni-directional mobile base to 

realize various dance steps in a ballroom dance and the force/torque sensor referred to as 

Body Force Sensor to realize compliant physical interaction between the robot and a human 
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based on the force/moment applied to the human. The dance partner focuses on an 

estimation method for dance steps, which estimates a next dance step intended by a human. 

 

 

Figure 17 - The Dance Partner Robot. A force-torque sensor between the robot‘s upper and lower body 

measures the human leading force-moment. An omnidirectional mobile base uses special wheels to 

move along dance-step trajectories. (retrieved from [30]). 

 

 

2.2.2 Human-Robot Rhythmic Interaction 

Michalowski et al. [37], [38], [39] investigated the role of rhythm and synchronism in 

human-robot interactions, considering that rhythmicity is a holistic property of social 

interaction. To do so they developed perceptive techniques and generated social rhythmic 

behaviours in non-verbal interactions through dance between Keepon [37], [38] (see Figure 

18a) or Roillo [39] (see Figure 18b) (a robotic virtual platform) and children. 

With this research they corroborated the fundamental role of rhythm in the establishment 

of social interactions. They‘ve however faced some rhythmic synchronism issues due to the 

delay involved in the whole process, from rhythm data reception to the correspondent action. 

To overcome this delay they proposed to investigate the application of prediction in their 

rhythm perception model. 
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Figure 18 – Rhythm and Synchrony in human-robot interactions. a) Keepon dancing with a child [38]. b) 

Roillo requesting the ball using a deictic gesture [39]. 

 

Weinberg et al. [40], [41], developed a humanoid robot, Haile, which plays percussion 

instruments in synchrony with a musician (percussionist) (see Figure 19). Their robot listen 

this percussionist, analyses musical cues in real-time, and uses the result of it to cooperate in 

a rhythmic and diversified manner. To perform that they used two Max/MSP objects, bonk~ to 

detect the music beat onsets and pitch~ to collect pitch and timbre information from it, 

granting synchronous and sequential rhythmic performance. 

 

 

Figure 19 - Human-robot interaction with Haile in a performance [41]. 

 

Their rhythmic interaction model is based on their rhythmic system for interdependent 

group collaboration, [42]. Interconnected Musical Networks (IMNs) are live performance 

systems that allow various individual players to form large-scale collaborative compositions by 

interdependently sharing and developing each other‘s motifs, in real-time. 

These systems, whereas they operate in the same physical space or through WANs, 

provide an interdependent framework which grants the creation of social musical 

experiences, motivating group collaboration. 
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Based on this architecture Weinberg et al created the Beatbugs (see Figure 20a) which are 

hand-held percussive instruments that allow the creation, manipulation, and sharing of 

rhythmic motifs through a simple interface. The IMN is formed by a network of players 

handling each individual Beatbug (see Figure 20b). Each player can decide whether to develop 

the motif further (by continuously manipulating pitch, timbre, and rhythmic elements using 

two bend sensor antennae) or to keep it in their personal instrument (by entering and sending 

their own new motifs to the group.) The tension between the system‘s stochastic routing 

scheme and the players‘ improvised real-time decisions leads to an interdependent, dynamic, 

and constantly evolving musical experience. 

 

 

Figure 20 – The BeatBug Network [42]. a) Three Beatbugs. b) Interaction between children and a 

percussionist from Deutsches Symphonie-Orchester Berlin. 

 

2.2.3 Robot Cross-Modal Rhythmic Perception 

In the cross-modal rhythmic perception research I refer the work developed by Arsenio 

and Fitzpatrick [43], [44] and, again, Michalowski et al. [37], [38]. 

Based on studies realized on children, Arsenio and Fitzpatrick developed a cross-modal 

rhythmic perception model (from visual and audio data) to teach a robot (an upper-torso 

humanoid named Cog15) to manipulate tools and toys through demonstration (in Figure 21). 

Their perception model relies on detecting, segmenting, and recognizing rhythmically moving 

objects that generate repeated sounds as they move, at frequencies relevant for human 

interaction, using both visual and acoustic information. 

Through the detection of visual periodic events, the robot has the ability to localize an 

object in its visual field and extract information concerning its trajectory over time, as well 

as to segment a visual representation of an object from an image – object segmentation. In 

addition, sound segmentation, the identification of the frequency bands that best 

characterize an object, was also possible from just acoustic information. At last they 

                                                 

 
15 For more information consult R. A. Brooks, C. Breazeal, M. Marjanovic, e B. Scassellati. The Cog 
Project: Building a Humanoid Robot. Lecture Notes in Comp. Sci., 1562:52-87, (1999). 
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discussed how to reliably bind the visual appearance of objects to the sound that they 

generate, and to achieve selectivity. 

This way they showed the necessity and advantages of using a cross-modal strategy as it 

manifested more robustness to disturbances either in sound or vision, and providing a better 

characterization of objects. 

 

 

Figure 21 – The humanoid robot Cog cross-modal perception model [44]. a) A human demonstrates some 

repetitive action to the robot, such as using a hammer, while the robot watches and listens. b) The 

recorded state (middle) of the robot during an event where a human actor jumps up and down in front 

of the robot (up). Recorded segmentations for these experiments are shown on the lower row. 

 

Michalowski et al., as referred above, presented two complementary approaches for a 

cross-modal rhythmic analysis applied to their robot, Keepon, in its social interaction with 

children. Both of them are implemented in Max/MSP through a couple of objects that use a 

metronome to produce a succession of beats separated by a given time interval (granting the 

desired beats per minute – BPM). The frequency of the master beat to which Keepon dances 

can be obtained either from auditory and visual [37] or auditory and spatial (through 

accelerators) [38] sensing. 

In [37] the movement data is, therefore, achieved by computing the average optical flow 

in a region of interest of an incoming video stream. In [38] they used a battery-powered 

three-axis accelerometer, with wireless Bluetooth data transfer, implanted in a toy, that 

detects rhythmic movements by finding magnitude16  peaks, after applying a zero-crossing or 

low-pass filter to the retrieved data. These peaks are then treated as ―beats‖ in the same 

way as musical beats or visual movement direction changes, as above. A Max/MSP object, 

                                                 

 
16 They consider the magnitude of the overall acceleration as the Euclidian norm of the vector defined 
by three axes of movement (x, y, z). 
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sync~, receives the stream of beats and produces an oscillator that is synchronized with the 

tempo. This oscillator drives a stream of commands that cyclically move Keepon‘s bobbing 

and rocking degrees of freedom 

At last a sequencer is used to record aligned streams of beats, sensor data, and motor 

commands for later playback and analysis. 

2.3 A Turning Point 

Most of these musical robotic applications lack however in flexibility and human control, 

presenting mainly reactive individual robots manifestly stiffed to their pre-programmed 

functions (i.e. through a fixed sequence of motor commands). Their perceptive systems are 

typically mere applications of existing models, with the dance movements‘ being rendered to 

a given piece of music by adapting the execution speed of the sequence to the musical tempo 

(automatically extracted from the audio signal). 

These approaches have merits, with a notable convincing effect of synchronisation, but 

typically fail at sustaining long-term interest, since the dance repertoire of the robotic is 

rapidly exhausted and frequent patterns begin to reoccur without any variation. 

Improving these absences, by developing a flexible interactive framework in which users 

have a deterministic role, by dynamically defining the robot choreography through selected 

individual dance movements, seems the perfect start to a new era on robot dancing 

applications. 
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Chapter 3 

 

System Architecture 

In this chapter we carefully described our approach by defining our system architecture. 

This definition is presented in three sections: Hardware – Robot Constitution and Movement 

Capabilities, Dance Environment, and Software – System Framework. 

3.1 Hardware – Robot Constitution and Movement Capabilities 

As already referred, we have built a humanoid-like robot using two Lego Mindstorms NXT 

bricks that controls six servo motors: one for each leg and each arm, one for a rotating hip 

and one for the head; and two sensors: a colour sensor and an ultrasonic sensor. The robot 

design and construction took about one week to produce, and involved the usage of almost 

two full Lego Mindstorms NXT base kits17 in Lego Technic pieces. 

Its final version is shown in Figure 22, and its correspondent degrees of freedom (DOFs), 

which shall embody a considerable diversity of dance movements, are represented in Figure 

23. 

                                                 

 
17 For the Lego Mindstorms NXT complete kit set constitution and overview (pieces and correspondent 
references), consult http://www.peeron.com/inv/sets/8527-1. 

http://www.peeron.com/inv/sets/8527-1
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Figure 22 – Our Lego-NXT-based humanoid robot and its components. 

 

Figure 23 – The robot‘s degrees of freedom (DOFs) to the embodiment of dance movements. 
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As observable, this robot design grants 16 distinct dance movements defined as 

―BodyPart-Movement” (to the Left - L, Right - R, or one part to each side - Alternate): Legs-

RRotate, Legs-LRotate, Legs-Forward, Legs-Backward, Head-RRotate, Head-LRotate, Body-

RRotate, Body-LRotate, RArm-RRotate, RArm-LRotate, LArm-RRotate, LArm-LRotate, 2Arms-

RRotate, 2Arms-LRotate, 2Arms-RAlternate, 2Arms-LAlternate. 

Attending to Figure 22 and Figure 23, bellow we present a table which addresses each 

movement to its correspondent motor (actuator), direction, and the number of rotations to 

its completion. 

 

Table 5 – Robot movement‘s description: correspondent motor(s), direction, and number of rotations to 

completion. 

 

Movement Motor Sign (Direction) Nr. Rotations 

Legs-RRotate 
RLeg + 30 

LLeg - 30 

Legs-LRotate 
RLeg - 30 

LLeg + 30 

Legs-Forward 
RLeg + 30 

LLeg + 30 

Legs-Backward 
RLeg - 30 

LLeg - 30 

Head-RRotate Head + 5 

Head-LRotate Head - 5 

Body-RRotate Body + 3 

Body-LRotate Body - 3 

RArm-RRotate RArm + 5 

RArm-LRotate RArm - 5 

LArm-RRotate LArm + 5 

LArm-LRotate LArm - 5 

2Arms-RRotate 
RArm + 5 

LArm + 5 

2Arms-LRotate 
RArm - 5 

LArm - 5 

2Arms-RAlternate 
RArm + 5 

LArm - 5 

2Arms-Lalternate 
RArm - 5 

LArm + 5 
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3.2 Dance Environment 

Our dance environment (see Figure 24) was designed in order to simulate a real world 

environment, incorporating a multi-colour floor, which shall induce dance variations 

dependent on the stepped colour, and a covering wall to delimit the dancing space. The 

dance floor was created with four paperboards (one red, one yellow, one green, and one 

blue) and it was surrounded with cardboards to fulfil the walls.  

 

 

Figure 24 – Representation of the designed real world dancing environment. 

 

This way we created a representative real world environment which interacts with the 

robot and grants a meaningful context to experiment the robot dancing, comparing its results 

with a real human performance. 

3.3 Software – System Framework 

Based on the presented objectives we decomposed our framework in three distinct 

modules, each one responsible for the treatment of specific events. All the modules are then 

interconnected to achieve the primary goal of robot dancing, in synchrony to the analyzed 

rhythm and with flexible human control. This interconnection was achieved through a 

multithreading processing architecture, which submits each thread (task – Module function) 

to a time-division multiplexing ("time slicing"), in very much the same way as the parallel 

execution of multiple tasks (computer multitasking), (see Figure 25). This structure grants the 

(illusion of) parallelism and synchronism between the three modules. The use of 

multithreading and its results shall be discussed in 4.2. 

The system architecture is then divided in the following parallel modules represented in 

Figure 26.  
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Figure 25 –Multithreading processing architecture between the three framework modules. 

 

 

Figure 26 - System Framework: all the processes involved, and their interaction, in the achievement of 

a common goal - embodiment of robotic dance movements, in synchrony to the analyzed rhythm, while 

allowing flexible human control. 

 

We shall now present each one of these modules: Music Analysis Module, Robot Control 

Module, and Human Control Module, in a separate sub-section. 

 

3.3.1 Music Analysis Module 

Music is generically an event-based phenomenon for both performer and listener, formed 

by a succession of sounds and silence organized in time. We nod our heads or tap our feet to 

the rhythm of a piece; the performer‘s attention is focused on each successive note [6]. In 

dance, body movements emerge as a natural response to music rhythmic events. 

To obtain these intended events we focused our analysis on the detection of the music 

onset times (starting time of each musical note) through an onset detection function (a 

function whose peaks are intended to coincide with the times of note onsets) representing 

the energy variation along time, on music data composed by digital polyphonic audio signals. 

This onset detection function is built through the conjunction of several specific Marsyas 

functional blocks/classes (MarSystems) (see Figure 27). 
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Figure 27 – Onset Detection Function represented through its Marsyas‘ block diagram. 

 

An explanation of every block and composite is presented below: 

 

 MarSystem: This composite represents the abstract base class for any type of system. 

Basically a MarSystem takes as input a vector of float numbers (entitled realvec) and 

produces a new vector (possibly with different dimensionality). Different types of 

computation can be used. 

MarSystems are the core processing blocks of Marsyas. All the used blocks, shown 

in Figure 27: SoundFileSource, Stereo2Mono, ShiftInput, Windowing, Spectrum, 

PowerSpectrum, Flux, Derivation, SendRobot, AudioSink; among others which involve 

some kind of signal transformation, are MarSystems. 

 

 Series: This structure combines a series of MarSystem objects to a single MarSystem 

corresponding to executing the system objects one after the other in sequence. 

 

 FlowThru: This composite combines a series of MarSystem objects to a single 

MarSystem corresponding to executing the system objects one after the other in 

sequence, but forwards the original composite input flow to the output. This 

structure grants that the sound file is both analyzed and reproduced, and that the 

SendoRobot (Robot Control Module input) and AudioSink (speakers input) occur at 

(almost) exactly the same time (marked as ―parallel‖ in Figure 27), to assure the 

synchrony of the performed dance to the reproduced audio. 
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 SoundFileSource: This MarSystem represents the first process, which consists on 

reading and loading the chosen audio (WAV) file input to be further analyzed.  

 

 Stereo2Mono: This class converts the stereo input file to a mono output, in order to 

simplify the signal processing. 

 

 ShiftInput: This block overlaps each consecutive frame of the signal in order to grant 

a smoother analysis. Its output emerges in the form of overlapped windows of the 

signal input, with their size adjusted by the defined WinSize (windows size). The 

analysis step is called hop size and equals the frame size minus the overlap (typically 

10 ms). The hop size (HopSize) defines the data granularity. In general, more overlap 

will give more analysis points and therefore smoother results across time, but the 

computational expense is proportionately greater. 

 

 Windowing (HW): Windowing of a simple waveform causes its Fourier transform to 

have non-zero values (commonly called leakage) at frequencies other than ω. It tends 

to be worst (highest) near ω and least at frequencies farthest from ω. Windowing in 

the time domain results in a ―smearing‖ or ―smoothing‖ in the frequency domain. 

In this scheme was used a Hamming window (HW), due to its moderation. This 

window is in the family known as "raised cosine". Its equation is described as follows: 

 

      (10.1) 

 

The Hamming does not have as much side-lobe suppression as other windowing 

functions (like e.g. Blackman), but its main lobe is narrower. Its side-lobes ―roll off‖ 

very quickly versus frequency. 

 

 Spectrum (S): A periodic signal can be defined either in the time domain, as a 

function, or in the frequency domain, as a spectrum. In order to transform the signal 

from time to frequency domain a Fourier Transform (FT) shall be applied. Its discrete 

version is defined as follows: 

      (10.2) 

where  represents the frequency, ω the angular frequency,  the 

sampling frequency, t the time domain and x[n] represents the samples of x(t), given 

by (the phase offset is given by ϕ): 

 

,     (10.3) 

 ,     (10.4) 
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 .       (10.5) 

 

Therefore this block applies the Fast Fourier Transform (FFT) to compute the 

complex spectrum (N/2+1 points) of each input window (given by the former block). 

Its output is a N-sized column vector (where N is the size of the input audio vector 

and N/2 the Nyquist bin), using the following format: 

 

[Re(0), Re(N/2), Re(1), Im(1), Re(2), Im(2), ..., Re(N/2-1), Im(N/2-1)] 

 

A signal‘s spectrum is then displayed by a plot of the Fourier coefficients as a 

function of the frequency index, where the FFT is defined as: 

 

     (10.6) 

 

where n is the frame number, k the frequency bin, h the hop size, and N the window 

size, which are parameters already defined in the former blocks. 

Any aspect of the signal can now be found from this given spectrum. 

 

 PowerSpectrum (PS): The power spectrum of a signal, also referred as the 

energy/power spectral density, represents the contribution of every frequency of the 

spectrum to the power of the overall signal. It is useful because many signal processing 

applications, such as onset detection, are based on frequency-specific modifications of 

signals. 

This class computes then the magnitude/power of the complex spectrum (in 

decibels - dBs), by taking N/2+1 complex spectrum bins and processing the 

corresponding N/2+1 decibel‘s real values. It function its described as follows: 

 

      (10.7) 

where E[n] is the energy/power of the signal, given by: 

 

                    (10.8) 

 

Therefore, the given output data in each frame represents the power spectrum, 

or contribution of every frequency to the power of the original signal, for a given 

window. 
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 (Spectral) Flux (SF): This block represents the actual onset detection function, which 

is given by (2.3). As observed, in section 2.1.1.2, the Spectral flux measures the 

change in magnitude in each frequency bin k, given by the PowerSpectrum, restricted 

to the positive changes and summed across all frequency bins. 

 

 Derivation (Drv): This functional block retrieves only the crescent Flux output, by 

subtracting the n frame to the n-1 one: 

.      (10.9) 

 

 SendRobot (SR): This last block acts as our Peak Picking function and TCP client. It 

applies peak picking with an adaptive thresholding algorithm to distinguish three 

rhythm events: Strong, Medium and Soft onsets, which are then sent to the Robot 

Control Module via TCP sockets. Our peak picking (PP) always look for the highest 

onset detected so far through the following function: 

 

,      (10.10) 

 

assigning the PP[n] value every 5 frames. Initially, in order to normalize this process 

due to potential inconsistency in the beginning of some music data, the function 

waits 35 frames (equal to 2.43s due to fsFlux = 14.36Hz) to initialize the onset 

detection, initializing with 

       (10.11) 

In order to distinguish the three referred rhythmic events, our adaptive 

thresholding algorithm is defined as follows: 

 

      (10.12) 

 

where,           (10.13) 

 

The values of thres1, thres2, and thres3, are constants which can be dynamically 

assigned through the user interface (see 3.3). 
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 AudioSink: This class consists on a real-time audio sink based on RtAudio, a Microsoft 

produced adaptive wide-band speech codec. It is responsible for sending its output to 

the speakers in order to reproduce the given (WAV) audio file, as music. 

Given this decomposition, some last considerations shall be presented: 

 

 Pre-Processing: The pre-processing (see 2.1.1.1 for clarification) of our onset 

detection scheme consists in the series composed by the following blocks: 

Stereo2Mono, ShiftInput, Windowing, Spectrum, and PowerSpectrum. These 

processes properly prepare the analyzed audio signal to be submitted to our Spectral 

Flux Onset Detection Function. 

 

 Onset Detection Function: This function (see 2.1.1.2 for clarification) is fully 

determined by the Flux functional block, which measure the variation of the energy 

between consecutive frames, in order to detect the required onsets. 

 

 Post-Processing: The post-processing (see 2.1.1.3 for clarification) is represented by 

the Derivation and SendRobot blocks, which are responsible for selecting the onsets 

from the detection function, by a peak-picking algorithm which finds local maxima in 

the detection function; and an adaptive thresholding algorithm, which defines the 

respective constraints (given by thres1, thres2, and thres3). 

 

All the parameter values, namely the WinSize, HopSize, thres1, thres2, and thres3, shall 

be discussed in the next chapter through some detailed experiments, presenting the 

respective results. These parameters can be loaded through a proper text file (.txt) for each 

music (WAV) file input (see next section). 

As conclusion, the use of this rhythmic perception model induces our human-like robot to 

reactively execute proper dance movements in a time-synchronous way, but individually 

spontaneous, trying to simulate the dynamic movement behaviour typical from human beings. 

 

3.3.2 Robot Control Module 

Rhythm is the key component that forms the symbiotic relationship between dance and 

music, dating back to prehistoric times; body movements and music are closely linked in a 

dynamic relationship between acting and listening, cause and effect [45]. 

In order to perform this reaction, our Robot Control Module, as referred, is responsible 

for controlling the robot in the proper embodiment of dance movements, synchronously to 

the rhythmic events input received from the Music Analysis Module, and dynamically due to 
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the received Sensorial Events (colour and ultrasonic sensing), and pre-defined dance (see 

3.3.3). 

Bellow, in Figure 28, we present a flow chart which carefully explains the entire 

algorithm showing all the processes involved in this module. 

As observable, the robot‘s body movement reacts to a conjunction of stimuli formed by 

three rhythmic events, namely: Low, Medium, Strong (Onsets), or Silence; and two sensorial 

event groups defined by the detected colour (Colour Sensing): Blue, Yellow, Green, Red; and 

by the proximity to an obstacle: Too Close, OK. 

All the dance movements, defined for each conjunction of rhythmic plus sensorial event, 

as the velocity of their independent performance, can be dynamically and flexibly assigned in 

the Human Control Module, through a proper user interface (see next section). Each full 

dance definition is saved in a proper XML file (see Appendix C for clarification). 

 

The bi-directional interaction between this module and the robot is achieved via 

Bluetooth, thanks to the NXT Remote API (see 1.3.3) through the following classes (see Figure 

29): 

 

 Serial Class: This class is responsible for the Bluetooth communication, ensuring the 

connection (through connect() function) between this module and each of the robot‘s 

NXT bricks through two defined serial COM ports. 

  

 Brick Class: Through this class we can retrieve and set any information related to a 

NXT brick (name, battery level, firmware version, and start or stop programs). This 

class was used to retrieve the battery level (battery_level() function) in order to 

check (and consequently assure) the correct connection to each brick, in every 

attempt. The Bluetooth connection state is visible through the user interface (see 

next section). 

 

 Motor Class: This class is responsible for controlling every robot motor (actuator). It 

sets the defined motor direction and speed (on(speed) function) and retrieves the 

number of rotations (with get_rotation()), in order to perform complete movements 

(with a beginning, when reacting to the occurrence of a specific conjunction of 

events; and an end, when it‘s reached the defined number of rotations). 

 

 Sonar Class: This class is the sensor class for 9 Volts sensors like the ones we used: 

colour sensor and ultrasonic sensor. It retrieves the values given by each sensor 

(distance() function) in the chosen scale (centimetres for the ultrasonic distance and 
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colour reference for the detected colour). The ultrasonic values are given from 0-255 

cm and the colour ones from 0-17 (see appendix B for the colour number chart). 

 

 

Figure 28 – Robot Control Module flow chart: processes and decisions involved in the robot control 

algorithm, inciting a different dance reaction to the occurrence of each rhythmic and sensorial event‘s 

conjunction. 
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Figure 29 – Bi-directional interaction between this module and the robot, through four NXT Remote API 

classes: Motor, Serial, Brick, Sonar. 

 

The presented architecture grants the aim of this module by controlling the robot in a 

behavioural reactive manner when submitted to a conjunction of rhythmic and sensorial 

events. 

 

3.3.3 Human Control Module 

To work with a system, users have to be able to control it and assess its state. A 

computational way to achieve this control is through a (graphical) user interface (GUI). The 

user interface (or human machine interface) is the aggregate of means by which people (the 

users) interact with the system: a particular machine, device, computer program or other 

complex tool. Hence, a user interface provides means of input, by allowing the users to 

manipulate a system; and output, by allowing the system to produce the effects of the users' 

manipulation. 

The design of a user interface affects the amount of effort the user must expend to 

provide input for the system and to interpret the its output, and how much effort it takes to 

learn how to do this. Usability18 is the degree to which the design of a particular user 

interface takes into account the human psychology and physiology of the users, and makes 

the process of using the system effective, efficient and satisfying. 

Approaching these usability principles, we seek to assure the user interactivity by 

granting a flexible human control through our interface. Our GUI, as its interaction with the 

former modules, are presented in the figures below (Figure 30, Figure 31 and Figure 32). In 

consideration to them, Table 6 briefly describes each marked control component. 

                                                 

 
18 Usability is mainly a characteristic of the user interface, but is also associated with the functionalities 
of the product and the process to design it. It describes how well a product can be used for its intended 
purpose by its target users with efficiency, effectiveness, and satisfaction, also taking into account the 
requirements from its context of use. 
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Figure 30 – Robot Control Panel GUI – this interface is responsible for all audio parameters and robot 

composition. 

 

Figure 31 - Dance Creation GUI – this interface enables a dynamic full dance definition offering 16 

distinct dance movements to be freely distributed through a conjunction of 12 rhythmic/sensorial 

events. 
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Table 6 - Human Control Module interface components description 

 

Nr. 
Control 

Component 
Description 

1 
Control Panel 

File Menu 

This menu is decomposed in three separators: Load Dance File, which 
opens the Windows explorer in order to choose and subsequently load 
a created XML dance file; Dance Creation…, which opens the Dance 
Creation interface; and Exit, to quit the application. 

2 
GUI Help 

Menu 
This menu contains the About… separator which presents some 
information about the author and the software version. 

3 Audio Port 

In this text box the user can define the TCP client socket port opened 
by the correspondent socket server (Music Analysis Module), in order 
to transmit the audio parameters and receive the given rhythmic 
events. By default it was defined as 3333; 

4 
Start/Stop 
Buttons 

These buttons are responsible for starting or stopping the robot 
control. The start button initializes the TCP connection with the Music 
Analysis Module and the Bluetooth connection with each checked NXT 
brick, loading every defined parameter. When ready the system then 
waits for simulation or performance (by pressing the respective button 
– see 6/7). The stop button stops the robot (if it was dancing), stop 
the connection with the Music Analysis Module, and clear all set 
parameters; 

5 
Audio 

Connection 
Status 

This text control shows the status of the TCP connection to the Music 
Analysis Module. 

6 
Graph Mode 
(Simulation) 

This button allows the simulation of the onset detection function, 
given the assigned parameters. This simulation is represented through 
a MATLAB plot (see chapter 4) which points out the peak-picking and 
each detected rhythmic event (soft, medium, or strong onset). 

7 
Musical Mode 

(Performance) 

This button activates the actual performance of the robot, through its 
pre-defined dance movements in reaction to each individual 
conjunction of rhythmic and sensorial events. 

8 
Audio (WAV) 
File Explorer 

This button opens the Windows explorer in order to choose the 
intended Audio WAV file, to be analyzed and parallelly reproduced. 

9 
Audio (WAV) 

File Path 
This text control shows the path of the chosen audio file. 

10 
Automatic 
Parameter 
Definition 

When checked this control grants that the audio parameters (thres1, 
thres2, thres3, WinSize, HopSize – see 3.2.1) are loaded from a 
properly defined parameter text (.txt) file. Each audio file shall have 
its own parameter file. 

11 
WinSize and 

HopSize 
Parameters 

If the Automatic Parameter Definition control is unchecked the values 
of WinSize and HopSize, to be sent to the Music Analysis Module, shall 
be manually defined through these text boxes. 

12 
Thresholding 
Parameters 

If the Automatic Parameter Definition control is unchecked the values 
of thres1, thres2, and thres3, to be sent to the Music Analysis Module, 
shall be manually defined through these text boxes. 

13 

Lego NXT 
Bricks (Check 

+ BT COM 
Port) 

In this area the user can check the NXT bricks to be controlled, and 
define each correspondent Bluetooth serial COM port. 
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14 
Sensors 

Control (Brick 
+ Port) 

In this area the user can define to each NXT brick and correspondent 
port the sensors are connected. 

15 

Motors 
Control Brick 
1 (Check + 

Ports) 

In this area the user can check which motors, from NXT brick 1, shall 
be controlled, and define the ports to which they are connected. 

16 

Motors 
Control Brick 
2 (Check + 

Ports) 

In this area the user can check which motors, from NXT brick 2, shall 
be controlled, and define the ports to which they are connected. 

17 

Lego NXT 
Bricks 

Connection 
Status 

These text controls show the current connection status to each 
defined NXT brick. 

18 
Colour Display 

Activation 
This checkbox control activates or deactivates the display of the 
colour sensorial events‘ input, received from the Colour sensor. 

19 
UltraSonic 

Display 
Activation 

This checkbox control activates or deactivates the display of the 
ultrasonic sensorial events‘ input, received from the UltraSonic 
sensor. 

20 
Rhythmic 
Display 

Activation 

This checkbox control activates or deactivates the display of the 
rhythmic events‘ input, received from the Music Analysis Module. 

21 
Rhythmic 
Display 

If the Rhythmic Display Activation checkbox is checked, this frame 
displays the received rhythmic events. 

22 
UltraSonic 

Display 
If the UltraSonic Display Activation checkbox is checked, this frame 
displays the received ultrasonic events. 

23 Colour Display 
If the Colour Display Activation checkbox is checked, this frame 
displays the received colour events. 

24 
Dance File 

Path 
This text control shows the path of the chosen XML dance file. 

25 
Dance 

Creation File 
Menu 

This menu is decomposed in three separators: New, which cleans the 
Dance Creation interface to the default values; Load Dance File…, 
which opens the Windows explorer in order to choose and 
subsequently load a created XML dance file to this interface, to be 
further analyzed or altered; Save and Save As…, to save the created 
dance in the opened dance file or in a new one. 

26 
Dance 

Movement 
ComboBox 

To choose the intended dance movement from the complete list (with 
16 distinct movements – see 3.1). 

27 
Movement 

Speed 
ComboBox 

To define the correspondent dance movement speed, from a three 
values‘ list: High, Medium, or Low speed. 
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Figure 32 – Human Control Module (GUI) bi-directional interaction with the Music Analysis Module and 

the Robot Control Module. 

 

By now analyzing Figure 32 we shall note the high-level position of this module in the 

(human) control of the whole framework. The user has then a deterministic role in the system 

behaviour, by dynamically defining the robot choreography through selected individual dance 

movements, and by defining the polyphonic audio data (WAV file) to be analyzed and the 

audio parameters which shall highly influence the resultant rhythmic perception. 

3.4 Conclusions 

This chapter described our robotic system, the involving dancing environment and 

presented an overview of the system framework decomposed in its constituent modules. 

Regarding this framework, it explained the role of every module in the final composition and 

their interconnection to the achievement of a common goal: robot dancing performance in a 

synchronous, dynamic and realistic manner. 

Given this system architecture, in the next chapter we present some experiments and its 

correspondent results, in order to find the audio parameters and dance movements which 

best represent a real human performance. 
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Chapter 4 

 

Experiments and Results 

Our experiments focused on efficiency and synchronism issues related to the music onset 

detection and to the robot performance with proper and clear dance movements. This two 

experiment factors are presented in this chapter through two distinct sections: Rhythmic 

Perception Regulation and Parameters Testing and Robot Dancing Performance. 

4.1 Rhythmic Perception Model Regulation 

In this section we expose the experimentation made on the rhythmic perception algorithm 

through the proposed onset detection model (see 3.3.1). We decomposed these experiments 

in two sub-sections: Onset Detection Scheme Adjustments and Parameters Testing and 

Definition. All testing was done via Simulation Mode (see 3.3.3), thanks to Marsyas‘ MATLAB 

engine capabilities. 

 

4.1.1 Onset Detection Scheme Adjustments 

In order to reduce the sensitivity of our onset function to the main onsets, we started to 

apply a Butterworth low-pass filter to the Flux output, using many different coefficient values 

(see Figure 33 – Filter block). 

Digital Butterworth are FIR (Finite Impulse Response) filters characterized by a magnitude 

response that is maximally flat in the pass-band and monotonic19 overall. These filters 

sacrifice roll-off steepness for monotonicity in the pass- and stop-bands, being essentially 

smooth. 

                                                 

 
19 Monotonicity is a property of certain types of digital-to-analog converter (DAC) circuits. In a 
monotonic DAC, the analog output always increases or remains constant as the digital input increases. 
Monotonicity is an important characteristic in many communications applications where DACs are used. 
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The gain G(ω) of an n-order Butterworth low pass filter is given in terms of the transfer 

function H(s) (output-input ratio ( ), where s=jω) as: 

 

      (11.1) 

where n is the order of the filter; ωc the cutoff frequency20, which must be a number between 

0 and 1 (1 corresponds to the Nyquist frequency, π radians per sample); and G0 the DC gain 

(gain at zero frequency). 

Marsyas processes this filtering through a generic filter transfer function defined by the 

coefficients in length n+1 row vectors b and a, with coefficients in descending powers of z, as 

follows: 

 .     (11.2) 

 

Figure 33 – Onset Detection Model with filtering (Filter block). 

In order to retrieve the correspondent Butterworth coefficients (ai, bi), to each chosen n 

and ωc values, we used the MATLAB butter(n,ωc) function. 

It can be seen, as shown in Figure 34a, that as n approaches infinity, the gain becomes a 

rectangle function and frequencies below ωc will be passed with gain G0, while frequencies 

above ωc will be suppressed. For smaller values of n, the cutoff will be less sharp. 

 

                                                 

 
20 Cutoff frequency is that frequency where the magnitude response of the filter is .  
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Figure 34 – Butterworth low-pass filter characteristics: a) plot of its gain for n = 1 to n = 5. Note that 

the slope is 20n dB/decade where n is the filter order [www.wikipedia.org]. b) group delay of the filter 

third order (n = 3) with ωc = 0.075. 

Considering these definitions, in Figure 35 we present the Filter block output results 

achieved for a different group of coefficient values, to the same music input. 

As observable by increasing n and decreasing the cutoff frequency, ωn, the signal became 

smoother, starting to isolate only the main onsets (signal peaks). This however incited a group 

delay21 (see Figure 34b) that increased with this smoothing. The minimum acceptable 

coefficient values (ωc = 0.075 and n =3 – Figure 35b), promulgated a delay of almost 12 

frames, which corresponds to approximately 0.8 seconds due to fsFlux = 14.36Hz, representing, 

in addition to the whole process natural time consumption, a considerably high delay, facing 

the requirements. 

In a way to bypass this issue we decided to substitute the filter with a slight increase of 

the window and hop size. 

By experimenting different pairs of values (to the same music), as shown in Figure 36, we 

agreed to set these to WinSize = 4096 and HopSize = 3072. These can however be changed 

manually through the user interface (see 3.3.3). 

This option granted a lower sensitivity in onset detection, focusing on the more relevant 

ones, with no delay imposed in the process. 

                                                 

 
21 The group delay is defined as the derivative of the phase with respect to angular frequency and is a 
measure of the distortion in the signal introduced by phase differences for different frequencies. It can 
be seen that there are no ripples in the gain curve in either the pass-band or the stop-band. 
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Figure 35 – Butterworth low-pass filter output for different coefficient values: a) ωc = 0.28 and n =2. b) 

ωc = 0.075 and n =3. c) ωc = 0.075 and n =4. d) ωc = 0.02 and n =4. 

 

 

Figure 36 – Music Analysis Module output for different pairs of win size and hop size values: a) WinSize = 

2048and HopSize = 512. b) WinSize = 2048 and HopSize = 3072. c) WinSize = 4096 and HopSize = 1024. d) 

WinSize = 4096 and HopSize 3072. 
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4.1.2 Parameters Testing and Definition 

 

In this section we present our attempts to check the adequate thresholding parameters to 

a large set of music data. 

The set of tests were performed on diverse music styles, consisting of 4 sets of short excerpts 

(each with around 20s) from a range of instruments, classed into the following groups [6]: NP 

— non-pitched percussion, such as drums; PP—pitched percussion, such as guitar; PN — 

pitched non-percussion, in this case some violin; and CM — complex mixtures from popular 

and jazz music. Below we show some screenshots, in Figure 37, and a table (Table 7) with the 

correspondent results. 

 

 

 

Figure 37 - Music Analysis Module (Onset Detection model) output: a) PN excerpt using thres1 = 0.30; 

thres2 = 0.50; thres3 = 0.75. 
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b) PP excerpt using thres1 = 0.35; thres2 = 0.50; thres3 = 0.75. 

 

 

c) NP excerpt using thres1 = 0.30; thres2 = 0.40; thres3 = 0.75. 
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d) CM excerpt using thres1 = 0.25; thres2 = 0.45; thres3 = 0.60. 

 

Table 7 - Resultant onset counting for the performed tests (in Figure 37). 

 
Music Style Soft Onsets Medium Onsets Strong Onsets Total 

PN 12 9 2 23 

PP 19 18 7 44 

NP 15 10 10 35 

CM 18 19 13 50 

 

Due to the observable inconsistency among the different music styles we were compelled 

to define different parameters for each music data. To go around this issue we created a text 

(.txt) file to each music file containing the respective parameters (see 3.3.3), from where the 

application imports them. 

4.2 Robot Dancing Performance 

The analysis of the robot dancing performance was essentially based on live observation, 

in comparison to the meaningful data of human behaviour in a real world dance environment. 

We focused our analysis on synchronism, dynamism, and realism factors: 

 

 Synchronism: due to the complexity of the algorithm and the processing and 

Bluetooth limitative capabilities we‘ve verified some lacks in synchronism. This was 

essentially caused by the use of multithreading on a single processor (see Figure 25 

for this architecture composition). The use of this architecture granted the required 
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simultaneity between the modules‘ processing, but caused some synchrony flaws due 

to race condition (dependence in a certain sequence of threads processing in order to 

complete a certain function) issues instigated by the complex (highly time-

consumptive) task of dance movement decision and the robot Bluetooth 

communication overflow (as it can only receive/send data via BT in time-intervals of 

approximately 50-100ms and it takes around 30ms to transition from receive mode – 

motors, to transmit mode - sensors). In order to solve this problem we could use some 

multithreading synchronization objects (Critical Sections, Events, Semaphores, or 

Mutexes), which are used to protect memory from being modified by multiple threads 

at the same time (which might make the data incorrect); by assuring that each thread 

waits for the others‘ transmissions, respecting the data dependence. Yet this solution 

is impracticable due to the real-time requirements, which imposes that every action 

shall occur in a reactive manner, through a cause effect behaviour (so music can‘t 

wait for a dance decision, which on its hand cannot wait to communicate with the 

robot). 

In future work the threading (execution of each task - Module) shall be replaced 

by a multiprocessing architecture executed in a multiprocessor or multi-core system, 

wherein the three modules and their recurrent processes can run literally 

simultaneously without suffering from synchronization issues. This shall be better 

exposed in 5.2 – Future Work. 

 

 Dynamism: the dynamism of our work is granted by the enormous variety of possible 

dance style definitions (in a total of 1712-1), formed by 16 distinct individual dance 

movements (plus ―do nothing‖) distributed through 12 (3 rhythmic events x 4 colour 

events) different event‘s conjunctions (being possible to repeat the same movement 

in two or more conjunctions). This dynamic behaviour is, so, transposed to the 

versatility of human decision, which has the power to adapt the robot performance to 

its own image through an interactive conduction. 

Ultimately this dynamism and interactive behaviour, in compromise with 

synchronism, assures an interesting relationship between a human and an artificial 

agent in the long-term. 

Some considerations to enhance the dynamism of our robotic system are discussed 

in 5.2. 

 

 Realism: realism can be defined as the fidelity to nature or to real life through 

representation, in adherence to the actual facts.  

Representation is a cornerstone topic in traditional AI [1]. When intelligence is 

approached in an incremental manner, with strict reliance on interfacing to the real 
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world through perception and action, reliance on representation disappears…due to 

no clean division between perception (abstraction) and reasoning [2]. 

Our robotic system approached this incremental intelligence through the parallel 

processing of different modules in the production of a reactive behaviour-based 

performance, which tries to replicate the human behaviour. The robot, through its 

dance motion, experience the world (dance environment) directly (embodiment), and 

this world directly influences its behaviour, through sensation (colour and ultrasonic 

sensing) (situatedness). 

The resulting dance alternates in a seemingly autonomous manner between a 

diversity of motion styles coupled to the musical rhythm, and varying in consonance 

with the colour stepped on the dance environment. 

So, despite some synchrony issues, referred above, the robot seems to react 

dynamically in real-time, showing a notable sense of realism. 

To conclude this dissertation in the next chapter we substantiated these results in an 

overall review, finalizing it with some proposals to their enhancement. 
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Chapter 5 

 

Conclusions and Future Work 

Designing entertainment systems that exhibit such dynamic compromise between short-

term synchronization and long-term autonomous behaviour is the key to maintain an 

interesting relationship between a human and an artificial agent, while sustaining long-term 

interest. 

Being this the key of our work, we focused our efforts in the development of a human-

interactive dancing robotic system which essentially rely on synchronism, dynamism and 

realism factors, as described in 4.2. 

Giving so, in this chapter, in 5.1 – Work Revision and Summary of Contributions, we 

summarize our approach and its main results, presenting our contribution and a list of 

possible applications. Following, in 5.2 – Future Work we present our proposal to enhance this 

framework, and motivate further research by the interactive robot dancing community. 

5.1 Work Revision and Summary of Contributions 

It seemed a reasonable requirement that intelligence be reactive to dynamic aspects of 

the environment, that a mobile robot operate on time scales similar to those of animals and 

humans, and that intelligence be able to generate robust behaviour in the face of uncertain 

sensors, an unpredictable environment, and a changing world [1]. 

 

Our idea was then to let a reactive behaviour-based system take care of the real time 

issues involved with interacting with the world while a more traditional AI system sits on top, 

making longer term executive decisions that affect the policies executed by the lower level. 
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In order to summarize our approach and present some global contributions of our work in 

contrast to the existing applications in the area, we decomposed this section on the two 

following sub-sections. 

 

5.1.1 Work Summary 

 

In this research project, we have developed a framework to make a biped humanoid Lego 

NXT-based robot react to music in real-time, performing dance movements in synchronism to 

rhythm in a dynamic and seemingly realistic autonomous way, when situated in a real world 

dance environment. This was achieved with a proper system architecture constituted by three 

modules (Music Analysis, Human Control and Robot Control) that communicate with each 

other through a multithreading architecture or via TCP sockets. The Music Analysis Module 

performs a low-level rhythmic perception based on the Marsyas onset detection function, with 

peak picking and adaptive thresholding. The Human Control Module consists on an interactive 

graphical interface for dance and audio parameters definitions, which grants the user 

deterministic role in the behaviour of this system while assuring its dynamic reaction. 

The Robot Control Module incites the robot to react, in real-time, to the received rhythm 

and sensorial events, embodying the previously defined dance. 

This way our robot enforces a significant step in creating an intelligent robot dancer that 

can generate rich and appropriate dancing movements in correspondence to the rhythm of 

musical pieces, and supporting human-machine interaction through dynamic dance 

definitions. It can also act as the motivation for other robot dancing applications or even to 

real human performances. 

5.1.2 Summary of Contributions 

The proposed research and work is enforced by its various recurrent fields of application 

which can be decomposed in six main areas: 

 

 Robotic Entertainment: it‘s undeniable the increasing role of robotics in 

multidisciplinary entertainment areas and the great investment that is constantly 

done to improve the robots entertainment capabilities, due to their potential help in 

people‘s life, being further enjoyable. In this context we intended to enhance robot 

dancing to a new level of expressiveness and captivation by focusing on high-level 

human control and human-robot interaction. 

As an overall purpose we must refer some robot dancing events, namely Robot 

Dance contests (for example one of RoboCup‘s competitions), where the software can 

be applied as a plausible framework. 
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 Rhythmic Perception and Dance Definition: This work shall assist these study fields 

as a playground for professional dancers and choreographers in complete dance 

movement definitions and for researchers in the testing of embodied auditory 

perception theories. 

 

 Education: from an educational point of view our goal was to create an intuitive 

environment for learners and children being able to experiment the creation of 

perceptual dancing behaviours, by defining behavioural-based responses through 

dance movements. The proposed interdisciplinary pedagogy shall address aspects such 

as rhythm, beat, dance, embodied movements, programming, and interaction, among 

others.  We hope that through the medium of music and dance we can attract 

students from diverse backgrounds, who are not regularly drawn to fields such as 

mathematics, physics, computation, and robotics, allowing them to move across 

modalities and media, and between action and symbolic expression. 

 

 Research: In the research community our work can assume a starting point as an 

interactive framework for robot dancing applications, and motivate others to follow 

this step. Some thoughts on further work are presented in 5.2.  

 

 Open-Source: It‘s wise to publish our application as an open-source software to 

better support the referred above applications, and as a collaboration to the 

development of a more robust and efficient framework for robot dancing 

applications.  

5.2 Future Work 

By keeping the incremental intelligence, as approached, we presented our future work 

through six modules that should be achieved subsequently, while maintaining the reactive 

behavioural-based architecture. Each module should consist on an activity producing 

subsystem which incorporate its own perceptual, modelling, and planning requirements, 

individually connecting sensing to action, and parallelly processed, in a multi-processing (with 

one processor per model) architecture, in order to produce a global behaviour. 

These ideas shall enhance our actual framework to ultimately achieve a flexible 

framework which grants full human control through a cooperative multi-robot dancing system 

with multi-level cross-modal rhythmic perception capabilities. 
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 Module 1 - Individual Robot Dancing Using a Low-Level Rhythmic Audio Perception 

Model: This module corresponds to the development of a low-level rhythmic 

perception computational model, to detect fundamental musical aspects such as note 

onsets, beats, pitch, amplitude and timbre, from complex music data composed by 

polyphonic audio signals; and the correspondent actuators to the embodiment of 

synchronous dance movements. The perception model may consist on functions to 

perform onset feature detection, and ascertain pitch, timbre and volume 

information, as well as an intelligent function to perform beat prediction, based on 

beat induction and tracking algorithms. The robot motion actuators (motors) shall be 

directly coupled to this model (without recurring to a central system), consummating 

a local cognition module. 

This module constitutes the framework basis and it‘s a natural extent to the 

current developed work. 

 

 Module 2 - Implementation of a High-Level Rhythmic Audio Perception Model: This 

module is constituted by music analysis algorithms for high-level rhythmic aspects 

retrieval, such as similarity, genre and mood, and a correspondent increase in the 

robot movement capabilities. This high-level analysis correlates pre-detected (in 

Module 1) low-level rhythmic features. 

Besides improving the robot rhythmic perceptive capabilities, this module might 

grant automatic music style identification. 

 

 Module 3 - Implementation of a Spatial Rhythmic Perception Model: This module 

corresponds to the development of a rhythmic perception computational model for 

extracting rhythmic patterns from dance movement performances, through beat 

interval and pattern length retrieval, based on spatial and spectral algorithms. 

The extraction of these relevant motion (spatial) data can be obtained through 

visual or acceleration sensing. The second shall be the chosen approach as it presents 

both finer spatial granularity and higher temporal resolution. 

 

 Module 4 - Cross-Modulate Audio and Spatial Rhythmic Perception: The cross-

modulation of audio and spatial perception should enhance the robotic system‘s 

rhythmic perception, manifesting a human-like sensing to multi-modal stimuli present 

in a real world environment. 

 

 Module 5 - Implementation of Multi-Robot Cooperative Dancing: Cooperative 

dancing between robots fulfils the issue on robot dancing, replicating the human 

interaction through dance. This module may be developed using a proper entrainment 
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model, based on pattern and imitation principles, and founded on swarming AI 

methodologies and techniques. 

 

 Module 6 – Development of a Flexible Interactive User Interface: This module may 

consist on the development of a proper user interface (GUI), based on the one already 

developed, to allow human control in the robotic system through each dance 

definition. This shall be the application‘s highest level, managing all the implemented 

modules. 

In the following diagram (Figure 38) we can visualize the whole general idea, as a 

clarification of this proposed framework. It is observable the incremental capabilities of this 

system, achieved through the subsequent incorporation of each module and their 

interconnection, while keeping the parallel processing in a multi-processor architecture. 

 

 

Figure 38 – Future work global idea, incorporating all the proposed modules and their interconnection. 
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Appendix A 

 

Related Publications 

In this annex, we provide a list of publications of relevance to this dissertation in which 

the author has participated. Abstracts and electronic versions of these publications are 

available at http://paginas.fe.up.pt/~ee03123/  

 

[1] Oliveira, J. Gouyon, F. Reis, L. P. Robot Dance based on Online Automatic Rhythmic 

Perception : Submitted to Iberamia 2008, Lisbon, Portugal, 2008. 

 

[2] Oliveira, J. Gouyon, F. Reis, L. P. Towards an Interactive Framework for Robot Dancing 

Applications : Submitted to Artech 2008, Porto, Portugal, 2008. 
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Appendix B 

 

Colour Sensor 

 

The NXT Colour Sensor, designed by HiTechnic22, operates by using three different colour 

light emitting diodes (LED) to illuminate the target surface and measures the intensity of 

each colour reflected by the surface.  Using the relative intensity of each colour reflection, 

the colour sensor calculates a Colour Number that is returned to the NXT program. 

The Colour Sensor connects to an NXT sensor port using a standard NXT wire and uses the 

digital I2C communications protocol.  The Colour Number calculated by the sensor is 

refreshed approximately 100 times per second. 

Bellow we present the colour number chart which shows the relationship between the 

target colour and the colour number returned by the Colour Sensor. 

 

 

Figure 39 – HiTechnic Colour Sensor number chart. 

                                                 

 
22 For more information visit http://www.hitechnic.com/.  

http://www.hitechnic.com/
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Appendix C 

 

XML Dance File Structure 

In this annex we present the structure of our XML dance file, which saves the dance 

choreographies created by the user, through the Human Control Module: 

 

<?xml version="1.0" encoding="utf-8" ?> 

<Dance> 

    <Rhythmic_Event colour="Colour"> 

        <movement>dance_movement</movement> 

        <speed>speed</speed> 

    </Rhythmic_Event > 

</Dance> 
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