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Abstract

We survey recent advances obtained for the two-dimensional bin packing problem, with spe-
cial emphasis on exact algorithms and e1ective heuristic and metaheuristic approaches. ? 2002
Elsevier Science B.V. All rights reserved.

1. Introduction

In the two-dimensional bin packing problem (2BP) we are given a set of n rectan-
gular items j ∈ J = {1; : : : ; n}, each having width wj and height hj, and an unlimited
number of 8nite identical rectangular bins, having width W and height H . The prob-
lem is to allocate, without overlapping, all the items to the minimum number of bins,
with their edges parallel to those of the bins. It is assumed that the items have 8xed
orientation, i.e., they cannot be rotated.
Problem 2BP has many industrial applications, especially in cutting (wood and glass

industries) and packing (transportation and warehousing). Certain applications may
require additional constraints and=or assumptions, some of which are discussed in the
8nal section of this paper.
The special case where wj = W (j = 1; : : : ; n) is the famous one-dimensional bin

packing problem (1BP): partition n elements, each having an associated size hj, into
the minimum number of subsets so that the sum of the sizes in each subset does not
exceed a given capacity H . Since 1BP is known to be strongly NP-hard, the same
holds for 2BP.
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Gilmore and Gomory [26] proposed the 8rst model for two-dimensional packing
problems, by extending their column generation approach for 1BP (see [24,25]). Beasley
[5] considered a variant of 2BP (the cutting stock problem), and gave an Integer
Linear Programming formulation based on the use of discrete coordinates at which
items may be allocated. A similar model has been introduced by Hadjiconstantinou
and Christo8des [30]. Very recently, Fekete and Schepers [19] proposed a new model
based on a graph-theoretical characterization of the problem, while Lodi et al. [40]
presented, for the special case where the items have to be packed “by levels”
(see below) ILP models involving a polynomial number of variables and
constraints.
In this paper we survey recent advances obtained for the two-dimensional bin pack-

ing problem, with special emphasis on exact algorithms and e1ective heuristic and
metaheuristic approaches. Concerning heuristics, we will only consider o2-line algo-
rithms, for which it is assumed that the algorithm has full knowledge of the whole
input. (The reader is referred to [15], for a survey on on-line algorithms, which pack
each item as soon as it is encountered, without knowledge of the next items.)
Up to the mid-Nineties, almost all results in the literature concerned heuristic al-

gorithms. In the next section, we 8rst review some basic algorithms having relevant
implications on the topic of the present survey, and discuss more recent results. The
following sections are devoted to other results obtained in the last few years: lower
bounds (Section 3), exact algorithms (Section 4) and metaheuristic approaches (Section
5). We conclude by discussing some variants of the problem (Section 6) and future
directions of research (Section 7). For many of the above techniques we summarize the
results of computational experiments. For some upper and lower bounds, worst-case
results are also discussed.
Without loss of generality, we will assume throughout the paper that all input data

are positive integers, and that wj 6W and hj 6H (j = 1; : : : ; n).

2. Upper bounds

Most of the o1-line algorithms from the literature are of greedy type, and can be
classi8ed in two families:
• one-phase algorithms directly pack the items into the 8nite bins;
• two-phase algorithms start by packing the items into a single strip, i.e., a bin having

width W and in8nite height. In the second phase, the strip solution is used to
construct a packing into 8nite bins.
In addition, most of the approaches are level algorithms, i.e., the bin=strip packing is

obtained by placing the items, from left to right, in rows forming levels. The 8rst level
is the bottom of the bin=strip, and subsequent levels are produced by the horizontal line
coinciding with the top of the tallest item packed on the level below. Three classical
strategies for the level packing have been derived from famous algorithms for the
one-dimensional case. In each case, the items are initially sorted by non-decreasing
height and packed in the corresponding sequence. Let j denote the current item, and s



A. Lodi et al. / Discrete Applied Mathematics 123 (2002) 379–396 381

Fig. 1. Level packing strategies.

the last created level:
• Next-Fit Decreasing Height (NFDH) strategy: item j is packed left justi8ed on
level s, if it 8ts. Otherwise, a new level (s:=s + 1) is created, and j is packed left
justi8ed into it;

• First-Fit Decreasing Height (FFDH) strategy: item j is packed left justi8ed on
the 8rst level where it 8ts, if any. If no level can accommodate j, a new level is
initialized as in NFDH;

• Best-Fit Decreasing Height (BFDH) strategy: item j is packed left justi8ed on that
level, among those where it 8ts, for which the unused horizontal space is a minimum.
If no level can accommodate j, a new level is initialized as in NFDH.

The above strategies are illustrated through an example in Fig. 1.
In what follows we assume, unless otherwise speci8ed, that the items are initially

sorted by non-increasing height.

2.1. Strip packing

Co1man et al. [12] analyzed NFDH and FFDH for the solution of the two-
dimensional strip packing problem, in which one is required to pack all the items
into a strip of minimum height, and determined their asymptotic worst-case behav-
ior. Given a minimization problem P and an approximation algorithm A, let A(I) and
OPT (I) denote the value produced by A and the optimal solution value, respectively,
for an instance I of P. Co1man et al. [12] proved that, if the heights are normalized
so that maxj{hj}= 1, then

NFDH (I)6 2 · OPT (I) + 1 (1)

and

FFDH (I)6 17
10 · OPT (I) + 1 (2)

Both bounds are tight (meaning that the multiplicative constants are as small as pos-
sible) and, if the hj’s are not normalized, only the additive term is a1ected. Observe
the similarity of (1) and (2) with famous results on the one-dimensional counterparts
of NFDH and FFDH (algorithms Next-Fit and First-Fit, respectively, see [34]).
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Fig. 2. First and second phase of algorithm HFF.

Any algorithm requiring item sorting is obviously �(n log n). Both NFDH and FFDH
can be implemented so as to require O(n log n) time, by using the appropriate data
structures adopted for the one-dimensional case (see [33]).
Several other papers on the strip packing problem can be found in the literature: see,

e.g., [3,45,8,28,2,4,32,46]. The algorithm of Baker et al. [3] is considered in Section
2.4, while the other results, which have not been directly used for the 8nite bin case,
are beyond the scope of this survey, and will not be discussed here.

2.2. Bin packing: two-phase algorithms

A two-phase algorithm for the 8nite bin packing problem, called Hybrid First-Fit
(HFF), was proposed by Chung et al. [11]. In the 8rst phase, a strip packing is ob-
tained through the FFDH strategy. Let H1; H2; : : : be the heights of the resulting levels,
and observe that H1¿H2¿ : : : . A 8nite bin packing solution is then obtained by
heuristically solving a one-dimensional bin packing problem (with item sizes Hi and
bin capacity H) through the First-Fit Decreasing algorithm: initialize bin 1 to pack
level 1, and, for increasing i = 2; : : : ; pack the current level i into the lowest indexed
bin where it 8ts, if any; if no bin can accommodate i, initialize a new bin. An example
is shown in Fig. 2. Chung et al. [11] proved that, if the heights are normalized to one,
then

HFF(I)6 17
8 · OPT (I) + 5: (3)

The bound is not proved to be tight: the worst example gives HFF(I)=91
45 ·(OPT (I)−1).

Both phases can be implemented so as to require O(n log n) time.
Berkey and Wang [7] proposed and experimentally evaluated a two-phase algorithm,

called Finite Best-Strip (FBS), which is a variation of HFF. The 8rst phase is per-
formed by using the BFDH strategy. In the second phase, the one-dimensional bin
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Fig. 3. Algorithm FC.

packing problem is solved through the Best-Fit Decreasing algorithm: pack the current
level in that bin, among those where it 8ts (if any), for which the unused vertical
space is a minimum, or by initializing a new bin. (For the sake of uniformity, Hybrid
Best-Fit would be a more appropriate name for this algorithm.)
Let us consider now another variation of HFF, in which the NFDH strategy is

adopted in the 8rst phase, and the one-dimensional bin packing problem is solved
through the Next-Fit Decreasing algorithm: pack the current level in the current bin
if it 8ts, or initialize a new (current) bin otherwise. Due to the next-8t policy, this
algorithm is equivalent to a one-phase algorithm in which the current item is packed
on the current level of the current bin, if possible; otherwise, a new (current) level
is initialized either in the current bin (if enough vertical space is available), or in a
new (current) bin. Frenk and Galambos [23] analyzed the resulting algorithm, Hybrid
Next-Fit (HNF), by characterizing its asymptotic worst-case performance as a function
of maxj{wj} and maxj{hj}. By assuming that the heights and widths are normalized
to one, the worst performance occurs for maxj{wj}¿ 1

2 and maxj{hj}¿ 1
2 , and gives:

HNF(I)6 3:382 : : : · OPT (I) + 9 (4)

where 3:382 : : : is an approximation for a tight but irrational bound. The three algorithms
above can be implemented so as to require O(n log n) time. The next two algorithms
have higher worst-case time complexities, although they are, in practice, very fast and
e1ective.
Lodi et al. [37,39] presented an approach (Floor-Ceiling, FC) which extends the way

items are packed on the levels. Denote the horizontal line de8ned by the top (resp.
bottom) edge of the tallest item packed on a level as the ceiling (resp. 8oor) of the
level. The previous algorithms pack the items, from left to right, with their bottom edge
on the level Ooor. Algorithm FC may, in addition, pack them, from right to left, with
their top edge on the level ceiling. The 8rst item packed on a ceiling can only be one
which cannot be packed on the Ooor below. A possible Ooor-ceiling packing is shown
in Fig. 3. In the 8rst phase, the current item is packed, in order of preference: (i)
on a ceiling (provided that the requirement above is satis8ed), according to a best-8t
strategy; (ii) on a Ooor, according to a best-8t strategy; (iii) on the Ooor of a new
level. In the second phase, the levels are packed into 8nite bins, either through the
Best-Fit Decreasing algorithm or by using an exact algorithm for the one-dimensional
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Fig. 4. Algorithm FFF.

bin packing problem, halted after a pre8xed number of iterations. The implementation
of the 8rst phase given in [37] requires O(n3) time, while the complexity of the second
one obviously depends on the selected algorithm.
Another level packing strategy based on the exact solution of induced subproblems is

adopted in the Knapsack Packing (KP) algorithm proposed by Lodi et al. [39]. In the
(binary) knapsack problem one has to select a subset of n elements, each having an
associated pro8t and weight, so that the total weight does not exceed a given capacity
and the total pro8t is a maximum. The 8rst phase of algorithm KP packs one level at
a time as follows. The 8rst (tallest) unpacked item, say j∗, initializes the level, which
is then completed by solving an associated knapsack problem instance over all the un-
packed items, where: (i) the knapsack capacity is W −wj∗ ; (ii) the weight of an item j
is wj; (iii) the pro8t of an item j is its area wj hj. Finite bins are 8nally obtained as in
algorithm FC. Algorithm KP (as well as algorithm FC above) may require the solution
of NP-hard subproblems, producing a non-polynomial time complexity. In practice,
however, the execution of the codes for the NP-hard problems is always halted after a
pre8xed (small) number of iterations, and in almost all cases, the optimal solution is
obtained before the limit is reached (see the computational experiments in [39] and in
Section 2.5).

2.3. Bin packing: one-phase algorithms

Two one-phase algorithms were presented and experimentally evaluated by Berkey
and Wang [7].
Algorithm Finite Next-Fit (FNF) directly packs the items into 8nite bins exactly in

the way algorithm HNF of the previous section does. (Papers [7,23] appeared in the
same year.)
Algorithm Finite First-Fit (FFF) adopts instead the FFDH strategy. The current item

is packed on the lowest level of the 8rst bin where it 8ts; if no level can accommodate
it, a new level is created either in the 8rst suitable bin, or by initializing a new bin
(if no bin has enough vertical space available). An example of application of FFF is
given in Fig. 4.
Both algorithms can be implemented so as to require O(n log n) time.
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Fig. 5. Algorithm AD.

2.4. Bin packing: non-level algorithms

We 8nally consider algorithms which do not pack the items by levels. All the algo-
rithms discussed in the following are one-phase.
The main non-level strategy is known as Bottom-Left (BL), and consists in packing

the current item in the lowest possible position, left justi8ed. Baker et al. [3] analyzed
the worst-case performance of the resulting algorithm for the strip packing problem,
and proved that: (i) if no item ordering is used, BL may be arbitrarily bad; (ii) if the
items are ordered by non-increasing width then BL(I)6 3 · OPT (I), and the bound is
tight.
Berkey and Wang [7] proposed the BL approach for the 8nite bin case. Their Fi-

nite Bottom-Left (FBL) algorithm initially sorts the items by non-increasing width.
The current item is then packed in the lowest position of any initialized bin, left
justi8ed; if no bin can allocate it, a new one is initialized. The computer implemen-
tation of algorithm BL was studied by Chazelle [9], who gave a method for pro-
ducing a packing in O(n2) time. The same approach was adopted by Berkey and
Wang [7].
Lodi et al. [39] proposed a di1erent non-level approach, called alternate direc-

tions (AD). The method is illustrated in Fig. 5. The algorithm initializes L bins
(L being a lower bound on the optimal solution value, see Section 3) by pack-
ing on their bottoms a subset of the items, following a best-8t decreasing policy
(items 1, 2, 3, 7 and 9 in Fig. 5, where it is assumed that L = 2). The remain-
ing items are packed, one bin at a time, into bands, alternatively from left to right
and from right to left. As soon as no item can be packed in either direction in the
current bin, the next initialized bin or a new empty bin (the third one in Fig. 5,
when item 11 is considered) becomes the current one. The algorithm has O(n3) time
complexity.

2.5. Computational experiments

Probabilistic analysis and experimental tests are two classical methods for evalu-
ating the expected behavior of approximation algorithms. The former technique is
fully illustrated in the book by Co1man and Lueker [13], where speci8c results on
two-dimensional bin packing and strip packing algorithms can be found in Chapter
7. More recent results are in [14]. In this section we summarize the outcome of a
series of computational experiments aimed at analyzing the typical behavior of the
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Fig. 6. Average percentage deviations from lower bound: (a) Martello and Vigo instance, Classes 1–4; (b)
Berkey and Wang instances, Classes 5–10.

main heuristic algorithms on some classes of instances. The benchmark consists of 500
random instances, with n∈{20; 40; 60; 80; 100}. Ten di1erent classes of instances were
used.
The 8rst four classes were proposed by Martello and Vigo [43], and are based on

the generation of items of four di1erent types:
Type 1: wj uniformly random in [ 23W; W ], hj uniformly random in [1; 12H ].
Type 2: wj uniformly random in [1; 12W ], hj uniformly random in [ 23H; H ].
Type 3: wj uniformly random in [ 12W; W ], hj uniformly random in [ 12H; H ].
Type 4: wj uniformly random in [1; 12W ], hj uniformly random in [1; 12H ].
Class k (k ∈{1,2,3,4}) is then obtained by generating an item of type k with prob-

ability 70%, and of the remaining types with probability 10% each. The bin size is
always W = H = 100.
The next six classes have been proposed by Berkey and Wang [7]:
Class 5: W = H = 10, wj and hj uniformly random in [1; 10].
Class 6: W = H = 30, wj and hj uniformly random in [1; 10].
Class 7: W = H = 40, wj and hj uniformly random in [1; 35].
Class 8: W = H = 100, wj and hj uniformly random in [1; 35].
Class 9: W = H = 100, wj and hj uniformly random in [1; 100].
Class 10: W = H = 300, wj and hj uniformly random in [1; 100].
For each class and value of n, ten instances have been generated. The 500 in-

stances, as well as the generator code, are available on the internet at
http://www.or.deis.unibo.it/ORinstances/2BP/.
Fig. 6 summarizes the results, by giving, for each algorithm, the average percent-

age deviation of the heuristic solution value from a lower bound value, computed
as max{L2; L3} (see Section 3), with respect to the 200 instances of Classes 1–4
(Fig. 6 (a)) and to the 300 instances of Classes 5–10 (Fig. 6 (b)). The results show
that algorithms FC, KP and AD have the best behavior, clearly superior to the classical
approaches.

http://www.or.deis.unibo.it/ORinstances/2BP/
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3. Lower bounds

Good lower bounds on the optimal solution value are important both in the imple-
mentation of exact enumerative approaches and in the empirical evaluation of approx-
imate solutions. The simplest bound for 2BP is the Continuous Lower Bound

L0 =

⌈∑n
j=1 wj hj

WH

⌉

computable in linear time. Martello and Vigo [43] determined the absolute worst-case
behavior of L0:

L0(I)¿ 1
4 · OPT (I)

where L0(I) and OPT (I) denote the value produced by L0 and the optimal solution
value, respectively, for an instance I of problem P. The bound is tight, as shown by
the example in Fig. 7. The result holds even if rotation of the items (by any angle) is
allowed.
In many cases, the value provided by L0 can be inadequate (too small) for an

e1ective use within an exact algorithm. A better (tighter) bound was proposed by
Martello and Vigo [43]. Given any integer value q, 16 q6 1

2W , let

K1 = {j ∈ J : wj ¿ W − q}; (5)

K2 = {j ∈ J : W − q¿wj ¿ 1
2W}; (6)

K3 = {j ∈ J : 1
2W ¿wj ¿ q}: (7)

and observe that no two items of K1 ∪ K2 may be packed side by side into a bin.
Hence, a lower bound LW

1 for the sub-instance given by the items in K1 ∪ K2 can be
obtained by using any lower bound for the 1BP instance de8ned by element sizes hj

(j ∈K1 ∪ K2) and capacity H (see [42,17]). A lower bound for the complete instance
is then obtained by taking into account the items in K3, since none of them may be
packed besides an item of K1:

LW
2 (q) = LW

1 + max

{
0;

⌈∑
j∈K2∪K3

wjhj − (HLW
1 −∑

j∈K1
hj)W

WH

⌉}
: (8)

A symmetric bound LH
2 (q) is clearly obtained by interchanging widths and heights. By

observing that both bounds are valid for any q, we have an overall lower bound:

L2 = max


 max

16q6 1
2W

{LW
2 (q)}; max

16q6 1
2H

{LH
2 (q)}


 (9)

It is shown in [43] that, for any instance of 2BP, the value produced by L2 is no less
than that produced by L0, and that L2 can be computed in O(n2) time.
Martello and Vigo [43] also proposed a computationally more expensive lower

bound, which in some cases improves on L2. Given any pair of integers (p; q), with
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Fig. 7. Worst-case of the continuous lower bound.

Fig. 8. (a) Items in I1; I2 and I3; (b) relaxed instance with reduced items.

16p6 1
2H and 16 q6 1

2W , de8ne:

I1 = {j ∈ J : hj ¿ H − p and wj ¿ W − q}; (10)

I2 = {j ∈ J \ I1 : hj ¿ 1
2H and wj ¿ 1

2W}; (11)

I3 = {j ∈ J : 1
2H ¿ hj ¿p and 1

2W ¿wj ¿ q} (12)

(see Fig. 8(a)), and observe that: (i) I1 ∪ I2 is independent of (p; q); (ii) no two items
of I1∪ I2 may be packed into the same bin; (iii) no item of I3 8ts into a bin containing
an item of I1. A valid lower bound can thus be computed by adding to |I1 ∪ I2| the
minimum number of bins needed for those items of I3 that cannot be packed into the
bins used for the items of I2. Such a bound can be determined by considering a relaxed
instance where each item i∈ I3 has the minimum size, i.e., hi = p and wi = q. Given
a bin containing an item j, the maximum number of p × q items that can be packed
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into the bin is (see Fig. 8(b)):

m(j; p; q) =
⌊

H
p

⌋⌊
W − wj

q

⌋
+
⌊

W
q

⌋⌊
H − hj

p

⌋
−
⌊

H − hj

p

⌋⌊
W − wj

q

⌋
(13)

Hence, for any pair (p; q) a valid lower bound is

L3(p; q) = |I1 ∪ I2|+max

{
0;

⌈
|I3| −

∑
j∈I2 m(j; p; q)

�H
p ��W

q �

⌉}
(14)

so an overall bound is

L3 = max
16p6 1

2H; 16q6 1
2W

{L3(p; q)}: (15)

Lower bound L3 can be computed in O(n3) time. No dominance relation exists between
L2 and L3.
A general bounding technique for bin and strip packing problems in one or more

dimensions, based on the use of dual feasible functions, was recently proposed by
Fekete and Schepers [22,20].

4. Exact algorithms

An enumerative approach for the exact solution of 2BP was presented by Martello
and Vigo [43]. The items are initially sorted in non-increasing order of their area. A
reduction procedure tries to determine the optimal packing of some bins, thus reducing
the size of the instance. A 8rst incumbent solution, of value z∗, is then heuristically
obtained.
The algorithm is based on a two-level branching scheme:

• outer branch-decision tree: at each decision node, an item is assigned to a bin
without specifying its actual position;

• inner branch-decision tree: a feasible packing (if any) for the items currently as-
signed to a bin is determined, possibly through enumeration of all the possible
patterns.
The outer branch-decision tree is searched in a depth-8rst way, making use of the

lower bounds described in the previous section. Whenever it is possible to establish
that no more unassigned items can be assigned to a given initialized bin, such a bin
is closed: an initialized and not closed bin is called active. At level k (k = 1; : : : ; n),
item k is assigned, in turn, to all the active bins and, possibly, to a new one (if the
total number of active and closed bins is less than z∗ − 1).
The feasibility of the assignment of an item to a bin is 8rst heuristically checked.

A lower bound L(I) is computed for the instance I de8ned by the items currently
assigned to the bin: if L(I)¿ 1, a backtracking follows. Otherwise, heuristic algorithms
are applied to I : if a feasible single-bin packing is found, the outer enumeration is
resumed. If not, the inner branching scheme enumerates all the possible ways to pack
I into a bin through the left-most downward strategy (see [29]): at each level, the next
item is placed, in turn, into all positions where it has its left edge adjacent either to the
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Table 1
Number of instances, out of ten, solved to proved optimality

Class
n 1 2 3 4 5 6 7 8 9 10 Total

20 10 10 10 10 10 10 9 10 10 10 99
40 8 7 10 9 10 10 10 10 10 5 89
60 8 7 10 2 7 4 7 7 8 10 70
80 7 3 10 — 3 10 — 10 — 10 53
100 7 6 8 — 1 10 — 10 1 2 45

Total 40 33 48 21 31 44 26 47 29 37 356

right edge of another item or to the left edge of the bin, and its bottom edge adjacent
either to the top edge of another item or to the bottom edge of the bin. As soon as a
feasible packing is found for all the items of I , the outer enumeration is resumed. If
no such packing exists, an outer backtracking is performed.
Whenever the current assignment is feasible, the possibility of closing the bin is

checked through lower bound computations.
Table 1 gives the results of computational experiments performed, with a Fortran

77 implementation, on the 500 instances described in Section 2.5. The entries give,
for each class and value of n, the number of instances (out of ten) solved to proved
optimality within a time limit of 300 CPU seconds on a PC Pentium 200 MHz.
Fekete and Schepers [21] recently derived from their graph-theoretical model [19]

an alternative enumerative approach.

5. Metaheuristics

In recent years, metaheuristic techniques have become a popular tool for the approx-
imate solution of hard combinatorial optimization problems. (See [1,27] for general
introductions to the 8eld.) Lodi et al. [37–39] developed e1ective tabu search algo-
rithms for 2BP and for some of the variants discussed in the next section. We brieOy
describe here the uni8ed tabu search framework given in [39], whose main character-
istic is the adoption of a search scheme and a neighborhood which are independent
of the speci8c packing problem to be solved. The framework can thus be used for
virtually any variant of 2BP, by simply changing the speci8c deterministic algorithm
used for evaluating the moves within the neighborhood search.
Given a current solution, the moves modify it by changing the packing of a subset

S of items, trying to empty a speci8ed target bin. Let Si be the set of items cur-
rently packed into bin i: the target bin t is the one minimizing, over all bins i, the
function

’(Si) = "

∑
j∈Si

wjhj

WH
− |Si|

n
(16)
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Fig. 9. Average percentage deviations from lower bound: (a) Martello and Vigo instances, Classes 1–4; (b)
Berkey and Wang instances, Classes 5–10.

(" is a pre-speci8ed positive weight), which gives a measure of the easiness of emp-
tying the bin. It favors, indeed, target bins packing a small area and a relatively large
number of items.
Once the target bin has been selected, subset S is de8ned so as to include one item,

j, from the target bin and the current contents of k other bins. The new packing for
S is obtained by executing an appropriate heuristic algorithm A on S. The value of
parameter k, which de8nes the size and the structure of the current neighborhood, is
automatically updated during the search.
If the move packs the items of S into k (or less) bins, i.e., item j has been removed

from the target bin, a new item is selected, a new set S is de8ned accordingly, and a
new move is performed. Otherwise S is changed by selecting a di1erent set of k bins,
or a di1erent item j from the target bin (if all possible con8gurations of k bins have
been attempted for the current j).
If the algorithm gets stuck, i.e., the target bin is not emptied, the neighborhood is

enlarged by increasing the value of k, up to a pre8xed upper limit. There are a tabu
list and a tabu tenure for each value of k.
An initial incumbent solution is obtained by executing algorithm A on the complete

instance, while the initial tabu search solution consists of packing one item per bin.
In special situations, a move is followed by a diversi8cation action. The execution is
halted as soon as a proven optimal solution is found, or a time limit is reached.
Fig. 9 shows the impact of tabu search for three of the heuristics described in Sec-

tion 2: notation TS(A) indicates that algorithm A is used within the tabu search. The
8gure gives the average percentage deviations of the heuristic solution value (with-
out and with tabu search) from the best known lower bound value, with respect to
the 200 instances of Classes 1–4 (Fig. 9(a)) and to the 300 instances of Classes 5
–10 (Fig. 9(b)), as described in Section 2.5. The tabu search was performed with
a time limit of 60 s on a Silicon Graphics INDY R10000sc (195 MHz). The re-
sults show that the use of tabu search considerably improves the performance of all
algorithms.
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6. Variants

Two-dimensional bin packing problems occur in several real-world contexts, espe-
cially in cutting and packing industries. As a consequence, a number of variants arises,
according to speci8c applications. In most cases the additional requirements concern
orientation and=or guillotine cutting.
In the bin and strip packing problems considered so far we have assumed that the

items have a 8xed orientation (i.e., they cannot be rotated), and that no restriction is
imposed on the cutting patterns. In certain real-world contexts, item rotation (usually by
90◦) may be allowed in order to produce better packings. In addition, many practical
cutting contexts may impose that the items are obtained through a sequence of guillotine
cuts, i.e., edge-to-edge cuts parallel to the edges of the bin. For example, rotation is
not allowed when the items are articles to be paged in newspapers or are pieces to
be cut from decorated or corrugated stock units, whereas it is allowed in the cutting
of plain materials and in most packing contexts. The guillotine constraint is usually
imposed by technological characteristics of the automated cutting machines, whereas it
is generally not present in packing applications.
Lodi et al. [39] proposed the following typology for the four possible cases produced

by the above two characterizations:
2BP|O|G: the items are oriented (O) and guillotine cutting (G) is required;
2BP|R|G: the items may be rotated by 90◦ (R) and guillotine cutting is required;
2BP|O|F: the items are oriented and cutting is free (F);
2BP|R|F: the items may be rotated by 90◦ and cutting is free.
(The problem considered so far is thus 2BP|O|F.) The following references are ex-
amples of industrial applications involving the above variants. A problem of trim-loss
minimization in a crepe-rubber mill, studied by Schneider [44], induces subproblems
of 2BP|O|G type; fuzzy two-dimensional cutting stock problems arising in the steel
industry, discussed by Vasko et al. [47], are related to 2BP|R|G; the problem of opti-
mally placing articles and advertisements in newspapers and yellow pages, studied by
Lagus et al. [36], falls into the 2BP|O|F case; 8nally, several applications of 2BP|R|F
are considered by Bengtsson [6].
An algorithm for one of the variants may obviously guarantee solutions which

are feasible for others. The complete set of compatibilities between algorithms and
problems is shown in Fig. 10, where AXY is an algorithm for 2BP|X |Y and an
edge (AXY ; 2BP|Q|T ) indicates that AXY produces solutions feasible for
2BP|Q|T .
It is easily seen that all the level algorithms described in Section 2 directly produce

guillotine packings, the only exception being FC. Adaptations of FC which modify the
way items are packed on the ceilings so as to preserve the guillotine constraint (with
or without rotation) were presented by Lodi et al. [37,39].
Most of the other heuristics of Section 2 can be modi8ed so as to handle rotation

and=or guillotine cutting. Lodi et al. [39] proposed the following new algorithms for
the considered variants.
For 2BP|O|G, algorithm KP of Section 2.2 (denoted as KPOG in [39]) directly pro-

duces guillotine packings.
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Fig. 10. Compatibilities between algorithms and problems.

For 2BP|R|G, algorithm KPRG modi8es KP as follows. The items are initially sorted
according to non-increasing value of their shortest edge, and horizontally oriented
(i.e., with their longest edge as the base): this orientation is always used for the level
initializations. For each level, say of height h∗, the knapsack instance includes each
unpacked item, either in vertical orientation, if its size does not exceed h∗, or in
horizontal orientation, otherwise. Once a feasible 8nite bin solution has been obtained
from the resulting levels, an alternative solution is derived by considering the set of the
items currently packed in each level as a pseudo-item, rotating it whenever possible,
and applying algorithm KP to the resulting instance.
For 2BP|R|F, algorithm TPRF sorts the items according to non-increasing area, hor-

izontally orients them and reserves L empty bins (L a lower bound on the optimal
solution value, see [16]). The algorithm packs one item at a time (either in an existing
bin, or by initializing a new one) in a so-called normal position (see Christo8des and
Whitlock [10]), i.e., with its bottom edge touching either the bottom of the bin or the
top edge of another item, and with its left edge touching either the left edge of the bin
or the right edge of another item. The choice of the bin and of the packing position
is done by evaluating a score, de8ned as the percentage of the item perimeter which
touches either the bin or other already packed items.
We 8nally mention that other variants of the two-dimensional bin packing prob-

lem can be found in the literature. For example, in guillotine cutting, an upper bound
(usually two or three) may be imposed on the number of stages (rounds of cuts hav-
ing the same direction) that are needed to obtain all the items: see, e.g., [31,40,41].
Note that all the level algorithms of Section 2 but FC produce two-stage packings
(with trimming). In certain practical applications a secondary objective can also be
of interest, namely the maximization of the unused area in one bin, so as to pro-
duce a possibly large trim to be used later: see, e.g., [6,18] for
2BP|R|F.
Note that the metaheuristic approach of Section 5 solves all of the above variants,

by appropriately changing the deterministic algorithm used for evaluating the moves
within the neighborhood search.
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7. Conclusions and directions of research

We surveyed recent advances on exact algorithms and e1ective o1-line heuristic and
metaheuristic approaches to the two-dimensional bin packing problem, and to some
variants typically arising in practical applications. The computational experiments show
that many instances of small to moderate size can be solved to optimality, while larger
instances can only be handled by approximation algorithms.
In order to increase the e1ectiveness of the exact approaches, especially those based

on implicit enumeration, tighter lower bounds should be devised, capable of fath-
oming a larger number of branch-decision nodes. In addition, other exact methods,
such as, for example, column generation techniques, may lead to interesting results.
As far as approximate solutions are concerned, an important open problem is to
8nd polynomial-time approximation schemes. A fully polynomial-time approximation
scheme was recently developed, for the two-dimensional strip packing problem, by
Kenyon and RTemila [35]. For 2BP, instead, to our knowledge, no polynomial-time
approximation scheme is known.
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