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Abstract This paper describes the BiomedTK software
framework, created to perform massive explorations of
machine learning classifiers configurations for biomedical
data analysis over distributed Grid computing resources.
BiomedTK integrates ROC analysis throughout the
complete classifier construction process and enables
explorations of large parameter sweeps for training third
party classifiers such as artificial neural networks and
support vector machines, offering the capability to
harness the vast amount of computing power serviced
by Grid infrastructures. In addition, it includes classifiers
modified by the authors for ROC optimization and
functionality to build ensemble classifiers and manipulate
datasets (import/export, extract and transform data, etc.).
BiomedTK was experimentally validated by training
thousands of classifier configurations for representative

biomedical UCI datasets reaching in little time classifi-
cation levels comparable to those reported in existing
literature. The comprehensive method herewith presented
represents an improvement to biomedical data analysis in
both methodology and potential reach of machine
learning based experimentation.

Keywords Machine learning classifiers . Biomedical data
analysis . ROC analysis . Grid infrastructures

Introduction

The integration of biomedical information has become an
essential task for biology, biotechnology and health care
professionals. Current progress in Information Technolo-
gies allows for affordable huge data storages and
powerful computational possibilities; thus, they have
become quite common. Researchers are gradually be-
coming aware of the importance of keeping together
diverse data pertaining to a specific medical entity and
successful attempts to create and maintain such databases
are becoming known to the scientific community [1–4].
Data models specified by standards are often included in
databases, without taking into account inherent limitations
posed by the procedure of acquiring original data.
Integration is therefore much more than a plain collection
of digital biomedical data. Homogenization of data
description and storage, followed by normalization across
the various experimental conditions would be a prerequi-
site for facilitating procedures of knowledge extraction
and analysis [2].

Machine learning classifiers (MLC) are able to learn
from experience (observed examples) with respect to some
class of tasks and a performance measure. Due to this, they
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are suitable for biomedical data classification, based on
learning algorithms’ ability to construct classifiers that can
explain complex relationships in the data. MLC constitute
the backbone of biomedical data analysis on high dimen-
sional quantitative data provided by the state-of-the-art
medical imaging and high-throughput biology technologies.
The general strategy relies on expert-curated ground truth
datasets providing the categorical associations of all
available data samples. Ground truth datasets are then used
as the basis for statistical learning to construct classifiers
using one of a host of methods such as support vector
machines (SVM), artificial neural networks (ANN), nearest
neighbor classifiers, discriminant functions and so on [5].
Machine learning techniques have been successfully ap-
plied in various biomedical domains, for example the
detection of tumors, the diagnosis and prognosis of cancers
and other complex diseases [6–8].

From a computational point of view MLC are expensive
to train, and seamless access to computing power is key to
undertake successfully any comprehensive MLC based data
analysis endeavor. Grid infrastructures federate distributed
computing resources owned by different institutions to offer
one large computing and storage facility, bringing together
resources scattered throughout different data centers
through a middleware layer (such as Globus [9] or gLite
[10]) providing a homogeneous view and access model to
the final users. In the last years there has been great public
investment to build transnational Grid facilities providing
generalized access to large amounts of computing
resources for scientific communities to perform their
research (eScience). The European Grid Initiative (EGI,
[11]) is the major public European effort aggregating the
national Grids of virtually every EU country to conform a
pan-European federation of approximately 330 data
centers and 70,000 CPU cores [12]. However, in spite of
having been around for the last 10 years, Grids are still far
from achieving the initial expectations of penetration and
dissemination throughout scientific disciplines and busi-
ness domains, remaining mostly within specific academic
areas. Among others, one of the reasons behind this is the
difficulty of usage of the middleware, constituting a steep
learning curve and cost barrier for new communities not
having the tradition nor the resources to work with Grids
[13–16]. In fact, the lifecycle through which new
applications are adapted to use existing middleware is
long and slow and this has caused even the more
privileged scientific communities (such as High Energy
Physics, focused at CERN, the European Laboratory for
Particle Physics) to develop their own particular tools and
methods to reduce usage costs and facilitate their users’
research, such as, among others, DIRAC [17] and AliEn
[18] used respectively by the CERN LHCb and ALICE
experiments.

In our previous works we proposed some approaches
related with the usage of distributed Grid infrastructures to
support large repositories of medical images (mostly
mammography) and preliminary explorations of machine
learning classifiers for breast cancer computer-aided diag-
nosis (CAD) [1, 3, 19–21]. Now, we set forth to take
advantage of Grid power in a systematic manner to discover
well performing machine learning classifiers for biomedical
data mining, aiming at reducing the cost and simplifying
development lifecycles of using Grid infrastructures for
biomedical applications. In particular, we are interested in
breast cancer diagnosis (CADx) applications, and test them
with the breast cancer digital repository currently being
gathered at Hospital São João - Faculty of Medicine of
Porto University, in Portugal, in the context of the current
collaboration project between our institutions.

This paper is structured as follows. Section 2 describes
the BiomedTK software framework and the MLC explora-
tion methods it supports. BiomedTK was developed to
harness Grid computing power for biomedical data analy-
sis. It also describes the experimental set up through which
the method was validated with different biomedical datasets
of the UCI machine learning repository [22, 23]. Section 3
shows the results obtained by the experiments carried out,
which are finally discussed in Section 4.

Materials and methods

Biomedical data analysis toolkit (BiomedTK)

BiomedTK is a Java software tool that uses distributed Grid
computing power to exploit third party libraries for data
analysis augmenting them with methods and metrics
commonly used in the biomedical field. It provides the
means to massively search, explore and combine different
configurations of machine learning classifiers provided by
underlying libraries to build robust biomedical data analysis
tools. BiomedTK trains Artificial Neural Networks (ANN)
and Support Vector Machines (SVM) based binary and
multiclass classifiers with many different configurations,
searches for best ensemble classifiers, generates different
types of ROC (Receiver Operating Characteristic) curve
analysis, etc. In addition, it is possible to manipulate
datasets, including export/import to/from data formats of
commonly used applications, allowing users to feed
BiomedTK with datasets preprocessed by other tools to,
for instance, filter, or transform the data, normalize it,
reduce its dimensionality, etc. For researchers, it offers a
command line interface to access its functionality (manage
datasets, launch MLC explorations, analyze results, etc.).
For programmers, it offers a simple API (Application
Programming Interface) so that new data analysis engines
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can be integrated in a modular manner with reasonable
effort.

Currently, BiomedTK integrates engines from the Encog
toolkit [24] (for ANNs), the libsvm toolkit [25] (for SVMs)
and the ANN Encog engines modified by the authors for
ROC optimization [23]. Table 1 lists the engines currently
integrated in BiomedTK along with the parameters each
one accepts. Particular values of those parameters for a
specific engine constitute a classifier configuration for
that engine. For a given data analysis task in hand,
classifier design amounts to finding configurations yield-
ing acceptable performance results and, therefore, the
researcher is often confronted with the need to explore and
evaluate several classifier configurations. As mentioned,
MLC are usually computationally expensive to train and
so are, in a higher degree, explorations of MLC config-
urations. For any engine, BiomedTK allows the evaluation
of binary classifiers through plotting ROC curves and
computing their area under the curve (ROC Az) [26, 27],
offering the bi-normal distribution method as provided by
JLABROC4 [28] and the Mann–Whitney statistic provid-
ed by WEKA [29]. It also includes the Encog ANN
engines modified by the authors [23], allowing optimiza-
tion of the ROC Az complementing the classical optimi-
zation tasks aimed at reducing some Root Mean Squared
Error measure to increase accuracy (percentage of dataset
elements correctly classified). Accuracy and ROC Az
measures are related, but it is known that optimization of
accuracy does not necessarily yield optimization of ROC
Az [30], fact that is specially relevant for biomedical data
analysis. The following summarizes the basic elements of
BiomedTK:

Dataset or training set Contains the data to analyze. A
dataset is made of a set of elements (or instances), each one
containing a set of features used as input values for
classifiers and, optionally, an ideal class to which it belongs

for supervised training (expected classifier output).
Depending on validation strategies, elements of a dataset
are usually split into two subsets, one for training and one
for testing. The training subset is used in training classifiers
built to distinguish automatically the classes to which each
element belongs. The test subset is used to measure the
generalization capabilities of classifiers when applied to
unseen data.

Binary dataset A dataset whose elements belong to only
two classes. As opposed to a Multiclass Dataset, whose
elements may belong to several (more than two) classes.
BiomedTK provides the tools to create multiple binary
training sets for a given multi-class training set, each one to
build a classifier specific for each class.

Engine Engines encapsulate third party classifiers (such as
ANNs from Encog or SVMs from libsvm). Each engine
accepts a different set of parameters for training (ANN
specification, learning parameters, etc.)

Engine or classifier configuration An engine configuration
specifies the parameters with which a particular engine is
used to train given a dataset. For instance, a configuration
of an ANN feedforward backpropagation engine might
specify an ANN with 3 layers having 10 neurons each,
using the sigmoid activation function, with 0.1 as learning
rate and 0.5 as momentum over 10,000 iterations.

Exploration An exploration over a dataset defines a set of
engine configurations to train in batch mode in order to find
the one (s) that best classify the dataset, or to later use them
to build ensemble classifiers.

Jobs Each exploration is split into a number of user defined
jobs. Each job will train a subset of the engine config-
urations defined in a given exploration. Jobs can be then

Table 1 Currently available engines in BiomedTK

engine name description accepted parameters source

ffbp feed forward ANN trained with backpropagation ANN structure, learn rate, momentum encog

ffbproc ffbp modified for ROC optimization ANN structure, learn rate, momentum modified encog

ffrp feed forward ANN trained with resilient propagation ANN structure (no more params) encog

ffrproc ffrp modified for ROC optimization ANN structure (no more params) modified encog

ffsa feed forward ANN trained with simulated annealing ANN structure, start temp, end temp, cycles encog

ffsaroc ffsa modified for ROC optimization ANN structure, start temp, end temp, cycles modified encog

ffga feed forward ANN trained with genetic algorithms ANN structure, population size, mating size, survival rate encog

ffgaroc ffga modified for ROC optimization ANN structure, population size, mating size, survival rate modified encog

csvc cost based Support Vector Machine kernel, cost, degree, gamma, coef0, weight,
shrink, probestimates

libsvm

nusvc v Support Vector Machine kernel, nu, degree, gamma, coef0, shrink, probestimates libsvm
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executed in sequentially over the same computer or in
parallel over a distributed computing infrastructure.

BiomedTK interfaces seamlessly with distributed
computing resources serviced by gLite Grid infrastruc-
tures (such as EGI) to train classifier configurations as
described in section 2.2. It offers researchers the
capability to exploit Grid computing power in an agile
manner, allowing them to gradually gain understanding
on what engine configurations better classify their
biomedical data. This constitutes the basis of the
exploration method described below.

Finally, it also offers different validation methods
when using any of the available engine configurations.
These are: fixed test/train dataset split, cross-validation
with user definable number of folds, bootstrapping [31,
32] and leave-one-out validation [33], referred to as one-
to-all in BiomedTK. One-to-all validation is in general
seldom used since it requires one full classifier training
process for each dataset element and engine configuration
which makes it extremely demanding computationally.
With BiomedTK one-to-all becomes a feasible and
manageable alternative provided the required computing
resources are available in the underlying Grid service
used.

Software architecture

Figure 1 shows the different components of the BiomedTK
architecture. The BiomedTK Engine coordinates all func-
tionality invoking the Exploration Generator to process
explorations and the JobSet Generator to effectively
execute the explorations. The JobSet Generator handles
jobs to a Local Job Launcher (on the user computer) or to a
gLite Job Launcher according to the user command.
Datasets and exploration results are stored in a common
database. Jobs, whether launched locally or over gLite, feed
the BiomedTK database with results so that they can be
later inspected through standard SQL tools. Any JDBC
compliant database can be used and, for convenience,
BiomedTK embeds the H2 database engine [34] which uses
the local file system for storage, so there is no need to
install another third party database if it is not desired.

An Engine API allows the integration into BiomedTK of
new classifier engines. Java classifier engines must deliver
their implementation as a jar file containing the interface
classes implementing the BiomedTK Engine API and their
own classes (the actual engine). The following shows an
excerpt of the its main interface that each classifier engine
must implement:

It is a straight forward Java interface requiring mostly
implementations of methods to train and classify datasets,
to generate parameters sweeps from an exploration defini-
tion and create and restore a trained engine to/from a String
based representation, which allows BiomedTK to store and
reconstruct any third party trained engine. BiomedTK also
supports native implementations of classifier engines. In
this case, classifier engines must deliver a set of precom-
piled binaries for different hardware platforms so that
BiomedTK can find the required specific binary program

whenever needed and it will be able to use engines for as
many hardware platforms as precompiled binaries are
provided. This is the case of the already integrated libsvm C
library, for which binaries for Windows XP/7, MacOS and
different Ubuntu and Scientific Linux kernels were generated.
This allows researchers, for instance, to start using BiomedTK
to classify a given dataset on their desktop MacOS or
Windows machine and then send larger explorations to a
gLite Grid service, usually running on Scientific Linux
machines, in a completely transparent manner.
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As mentioned in section 1, Grid infrastructures are
difficult to use in an agile manner as required by the
diversity and complexity of biomedical datasets and
explorations of MLC configurations. BiomedTK compen-
sates this by hiding middleware complexities from the final
user and by using a fast communication mechanism with
gLite computing resources through a Job Agents based
mechanism (such as in [17] and [18]), providing the means
to make classifier explorations, analyze their results, define
finer grain explorations, etc. in an efficient way adapted to
the processes of analyzing biomedical data. In total,
BiomedTK is approximately made of 18,000 lines of code
and 200 Java classes.

A method to explore classifier configurations

The classifier exploration method based on BiomedTK and
herewith described, is aimed at addressing two issues: 1)
the need to manage, in a simple and unified way, many
classifier configurations integrating third party engine
implementations of different nature (implementing different
MLC models such as ANNs, SVMs, etc. on different
programming languages such as C, Java, etc.) and 2) the
need to efficiently exploit distributed resources required to
evaluate such a diversity of classifier configurations. In this
sense, efficiency denotes both an economy in the research-
er’s effort to setup and run experiments and a rational usage

of available computing resources. BiomedTK supports this
method through a series of configuration artifacts and tools
that jointly constitute the material means through which
researchers can efficiently use Grid computing resources to
perform complex MLC explorations.

Explorations of classifier configurations are the key
element of this method. Through them, researchers can
gradually build understanding on the search space of
possible classifiers (engine configurations) for a given
dataset. With BiomedTK explorations are defined in text
files with a specific format. Figure 2 shows an example
exploration file producing configurations to train classifiers
for two datasets derived from the original BREAST-
TISSUE one from the UCI repository [22] with the engine
using ffrp, ffsaroc, ffga and nusvc (see Table 1). For ANN
based engines, this exploration will generate configurations
with ANNs having three hidden layers with 18 or 36
neurons in the first hidden layer, 9 or 18 in the second one,
different neuron activation functions, etc. It also contains
classifier specific parameter sweeps. For instance this
exploration generates ffsaroc configurations with the
starttemp parameter set to 10 and 15, the endtemp
parameter set to 2 and 4, nusvc configurations with radial
basis and polynomial kernel functions, etc. This exploration
generates, for each dataset, 32 ANN based configurations
for the ffrp engine (it is an engine with no parameters, 32 is
the number of combinations of ANNs generated with the

gLite Computing resources

BiomedTK

BIOMEDTK ENGINE

EXPLORATION
GENERATOR
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Fig. 1 BiomedTK architecture
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specified layers, neurons and activation functions per
layer), 64 configurations for the ffga engine, 128 for
ffsaroc and 24 for nusvm (which does not use ANNs). In
total this exploration generates 496 engine configurations
(248 for each dataset) split into 50 jobs as specified in the
same exploration file. This way, 49 jobs will train 10
engine configurations, and one job that will train 6
configurations.

Exploration jobs are sent to computing resources for
training the MLC configurations they contain. Explorations
can be made as large or small as desired, depending their
feasibility on the capacity of the available computing
resources. Training times for different classifier engines
vary greatly depending on dataset size, parameters, ANN
complexities, etc. When confronted to a new dataset for
which one wants to explore classifier configurations, our
method proposes the following steps:

1. Start with small explorations launched locally to get a
sense on the computing times needed by each different
classifier and their initial performance.

2. Perform increasingly larger explorations, first locally
and then over a larger computing infrastructure, to
understand what classifier parameters might work
better with each classifier.

3. Devise very large explorations (either by number of
configurations and/or by computing time each config-
uration takes) and send them to a large computing
infrastructure.

For this method to be effective, an agile and fast
interaction between the researcher and the computing
infrastructure becomes essential, so that, if computing
resources are available, multiple explorations can be tested
in reasonable time. It is fundamentally this agile interaction
that allows researchers to efficiently build exploration

strategies and gain understanding on what classifiers suit
better a certain problem in hand.

This method is supported by BiomedTK which, for
performing explorations, offers the researcher two options:
(1) launch the jobs sequentially over his local machine, or
(2) submit them to a gLite Grid infrastructure to use in
parallel available distributed computing resources. Results
(accuracy and ROC Az measures for test and train data) of
each trained engine configuration are stored in a database
that can be later inspected through standard SQL sentences.
A command line tool exposes BiomedTK functionality to
researchers. There are commands to import and manipulate
datasets, to create a job set from an exploration file, to
launch locally and exploration, to launch and monitor
explorations to a gLite Grid service, to inspect and test
exploration results, to build ensemble classifiers, etc. In
practice, when faced with the task of exploring MLC
configurations for a given dataset, BiomedTK enables
researchers to carry out the method above by cycling
through the following steps

1. make initial exploration issuing BiomedTK commands
jobset + launch (local launch)

2. inspect database for results
3. refine and enlarge initial exploration by issuing

commands jobset + glite.prepare + glite.submit
4. inspect database for results
5. repeat from step 1 or step 3

Initially confronted with a large availability of Grid
resources, but suffering large job latency times hindering
our capability to cycle through these steps, we faced the
need to have an efficient cycle through which understand-
ing about explorations and classifiers was to be gained for a
particular dataset. Otherwise, available Grid resources
become very hard to be used with agility. This is what

Fig. 2 Sample BiomedTK
exploration file
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motivated the inclusion within BiomedTK of a Job Agents
mechanism as described previously.

Figure 3 shows a typical BiomedTK session, importing a
dataset and launching an exploration locally. This method
and its supporting tool are focused on providing the means
to exploit Grid resources for exploring MLC configura-
tions, regardless the sources and previous manipulations of
data. For this purpose, BiomedTK provides basic function-
ality for data normalization and tools for importing and
exporting data to commonly used formats (CSV, WEKA
arff, etc.), so that researchers can use their usual tools for
data preprocessing before feeding datasets to BiomedTK.

A method to build ensemble classifiers

Ensemble methods in machine learning [35] combine
existing classifiers as an attempt to improve the perfor-
mance of single classifiers either by compensating with
each other in cases where a single classifier outperforms
other, or by combining redundancy classification offered by
several single classifiers.

For their simplicity and generality we are interested in
Error Correcting Output Codes, a technique developed in
the context of digital signal processing theory [36, 37]

providing redundancy in communications to compensate
for noise and applied in machine learning since [38]. In
short, for a given multiclass classification problem with n
classes, an Error Correcting Output Code (ECOC) is
defined by a matrix of size m×n describing, for each of
the n possible final classes, how the m available binary
classifiers are combined. This matrix is referred to as the
codematrix, and Fig. 4 shows an example where 7 binary
classifiers are used to produce a 6 class ensemble classifier.
Each class is assigned a codeword that represents the
participation of each binary classifier in that class. When an
input vector is fed into each one of the 7 classifiers, a
binary codeword is produced combining the output of all
the binary classifiers. Then, a distance measure between
codewords is defined and the class with the closest
codeword to the one produced by the binary classifiers is
selected to be the one assigned to the initial input vector.
ECOCs are being used frequently in machine learning [39–
41] and also in biomedical contexts [42].

BiomedTK supports the ECOC based method for
building ensemble classifiers. This includes (1) the defini-
tion of code matrices for a certain multiclass dataset, (2) the
generation of binary datasets for each column in the code
matrix and (3) assembling previously trained binary

command to import dataset

csv file being imported

dataset summary

command to prepare exploration

# of combinations generated
distributed into jobs

command to start training 
combinations locally

first combination to train

training progress

first combination result

Fig. 3 Sample BiomedTK session
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classifiers for each column into ensemble classifiers.
Figure 4 represents an actual codematrix definition file as
accepted by BiomedTK, where BREAST-TISSUE is a six-
class dataset (from the UCI repository, dataset with
electrical impedance measurements of freshly excised tissue
samples from the breast) and the codematrix specifies seven
binary classifiers (columns). The first six columns would be
used to train classifiers distinguishing each class from the rest.
The norm column will be used to train classifiers distinguish-
ing elements tagged as car (for carcinoma), fad (fibro-
adenoma) or mas (mastopathy) from the rest (representing
normal tissue tagged as glandular, connective or adipose).

The following summarizes the method supported by
BiomedTK for building ensemble MLC:

1. Start with a multiclass dataset with n classes and a code
matrix specification with n rows and m columns, such
as the one in Fig. 4. Then, create for each column in the
code matrix a new binary dataset according to the
column specification (for column c, each element is
labeled as “c” or “non-C” according to whether its ideal

class in the original dataset is marked as 1 or 0 in
column c). This generates m binary datasets.

2. Explore MLC configurations for each newly created
binary dataset. In fact, Fig. 2 shows an exploration file
to search binary classifier configurations for the car and
norm derived binary datasets as created in the previous
step starting from the code matrix shown in Fig. 4. This
generates, for each column, a set of MLC. BiomedTK
supports this step through the exploration method
explained in section 2.1.

3. Choose, one MLC for each column and ensemble them
through the ECOC method. This is done through the
ensembles command, which takes MLCs for each
column, ensembles them and measures the performance
on the ensemble classifier.

Observe that, for each column in a code matrix, one
might have generated several binary classifiers in step 2
above; hence, the researcher needs to decide which specific
classifier to use. BiomedTK supports this by interpreting
the ensemble.classifiers.select line in the codematrix in

ensemble.trainingset           = BREAST-TISSUE

ensemble.classifiers.validation = cvfolds 10
ensemble.classifiers.select     = bestPct any  bestAz 4035  bestPct bestPct any   
ensemble.classifiers.names      =  car    fad    gla   mas    con    adi   norm
ensemble.codematrix.car         =   1      0      0     0      0      0      0
ensemble.codematrix.fad         =   0      1      0     0      0      0      0
ensemble.codematrix.gla         =   0      0      1     0      0      0      1
ensemble.codematrix.mas         =   0      0      0     1      0      0      0
ensemble.codematrix.con         =   0      0      0     0      1      0      1
ensemble.codematrix.adi         =   0      0      0     0      0      1      1

Fig. 4 Sample BiomedTK clas-
sifier ensemble configuration
file

Table 2 Selected UCI datasets

dataset description number of elements number of
input features

bcw Cell-based metrics for breast cancer 699 9

bcwd Diagnostic breast cancer Wisconsin database 569 30

btcat Carcinoma in breast tissue 106 9

echocard Data for classifying if patients will survive for at least one year after a heart attack 131 8

haber Survival of patients who had undergone surgery for breast cancer 306 3

heartsl Patient indicators for presence of heart disease 270 13

hepat Patient indicators for presence of hepatitis 155 19

liver BUPA Medical Research Ltd. database on liver desease 345 6

mmass Benign/malignant mammographic masses based on BI-RADS attributes
and the patient’s age

961 5

park Oxford Parkinson’s Disease Detection Dataset 195 22

pgene E. Coli promoter gene sequences (DNA) with partial domain theory 106 57

pimadiab Patient indicators for presence of diabetes 768 8

spambase Classifying email as spam or not spam 4601 57

spectf Data on cardiac Single Proton Emission Computed Tomography (SPECT) images 267 44

tictac Binary classification task on possible configurations of tic-tac-toe game 958 9
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which, for each column, the researcher specifies what
criteria to follow to select binary classifiers. With bestPct,
the binary classifier for that column with best classification
rate for test data is used. With bestAz, the one with best area
under the ROC curve measure for test data is chosen. A
number (such as in the mas column) refers to the ID of a
specific binary classifier present in the database that the
researcher wants to use. With any, we instruct BiomedTK
to try all binary classifiers available for that column.

Experimental setup

A set of experiments was setup in order to show the
contribution of the proposed method to researchers’
efficiency and experimental reach. Our aim was to
demonstrate how (1) complex experiments consisting of
several datasets, engines and classifier configuration can be
managed with relative simplicity and (2) the Grid resources
required to execute the proposed experiments (about 16,000
CPU hours) could be exploited in an efficient manner.
Therefore, we set forth to use BiomedTK to find classifiers
to selected biomedical datasets from the UCI machine
learning repository [22] by exploiting Grid computing
resources, and aiming at reaching, in reasonable time,
accuracy levels comparable to the ones found in different
literature sources for the given datasets. By being able to
obtain efficiently these results, we are then positioned to
pursue research in a timely manner using the methods
herewith described. We selected the UCI datasets shown in
Table 2 and defined increasingly larger explorations for
each dataset including all engines supported by BiomedTK
(see Table 1). The Area under the ROC Curve (ROC Az)
measures the capability of a binary classifier to correctly
distinguish positive from negative instances, even if their
scores are away from the ideal ones. BiomedTK allows
evaluating classifier ROC Az and we use it to test our
own modifications to existing classifiers by allowing
them to optimize ROC Az and not only accuracy. This is
the reason behind choosing all datasets binary (with only
two classes). Explorations for each dataset included
many classifier configurations (see Table 3), each
configuration using different classifier parameters, ANN
layers, neurons per layer, etc. Each exploration was tuned
for each dataset to account for their different character-
istics. For instance, the input layer of any ANN must have
as many neurons as dataset features, datasets harder to
classify might require exploring more configurations,
larger datasets require more training time so explorations
cannot be as large, etc.

The selected UCI datasets were imported from a CSV
formatted file and basic data normalization was performed
by BiomedTK before the explorations. This consisted in
mapping each input feature to the [0,1] interval in theT
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following way: for each element of a dataset the value vi of
feature i was normalized to v

0
i ¼ vi

Maxi�Mini
where Mini and

Maxi are the minimum and maximum values of feature i in
all elements of the dataset.

The gLite infrastructure at CETA-CIEMAT with 200
CPU cores was used for this experiment. For each dataset, a
few explorations were made on a local machine before
sending larger explorations to gLite. This was done to
acquire a sense on how much computing time each
classifier configuration would take, what results could be
expected and how large explorations would need to be. For
instance, a dataset whose instances are easily separable
(such as the BCW dataset) would start giving good
classification results even with simple classifier configu-
rations and one would expect minor improvements from a
larger exploration.

Our results were compared mostly with those found
in [43–57]. We did not aim to make an exhaustive
literature review, but to sample referenced works and
reach comparable results to demonstrate the utility of the
MLC exploration method and its underlying tool (Bio-
medTK). Experimental conditions change between
authors in validation methods used, how results are
summarized, etc. so comparisons must be carefully
interpreted. To be as coherent as possible with the
different setups, we used 10-fold cross validation.
Furthermore, in some works it is not clear what specific
classifier configuration or validation method was used,
which somehow also constitutes a challenge in our
exploration endeavor.

Results

A total of about 16,000 CPU hours were consumed to train
8,842 different classifier configurations over 15 datasets.
Table 3 shows, for each dataset and engine: (1) how many
configurations were trained, (2) how many CPU hours took
to train them, (3) the best percentage of elements correctly
classified on the test part of the dataset (accuracy), and (4)
the best ROC Az obtained on the test part of the dataset.
Finally, the bottom lines in Table 3 show the best results
obtained overall in our exploration (accuracy and ROC Az)
and those found in our literature review (accuracy in all
datasets, except the mmass dataset, where reference [54]
gave their results in ROC Az). Figure 5 shows the two
ROC curves generated by BiomedTK for one classifier
configuration over the BCW dataset. The curve on the left
corresponds to the Mann–Whitney statistic and the curve on
the right is its smoothed version using the bi-normal
distribution method from JLABROC.

Note that for some datasets we made a larger exploration
than for others, as we had to make more exploration
refinement cycles until we found satisfactory results. A key
factor was acquiring a notion on the requirements of
computing time for each classifier and dataset so that
explorations can be adjusted to the available computing
resources. Observe in this sense how datasets with larger
number of elements or input features take longer time to
train with ANN engines and, were not for the possibility to
harness Grid computing resources, exploring even a few
classifier configurations for them would simply be impos-

Fig. 5 Binormal smoothed and Mann–Whitney ROC Curves as produced by BiomedTK for the ANN-genetic algorithm classifier configuration
with best ROC Az over the BCW dataset
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sible. Without an appropriate supporting tool, following the
method herewith proposed requiring such large explorations,
would imply, on one side, providing the logistics to manage
different output formats for the different underlying engines,
organize binaries for gLite infrastructure, etc. Then, it would
require preparing gLite jobs for each dataset and engine type,
monitor their execution, keeping accounting of failed jobs and
resubmitting them, gather different outputs for each job and
consolidate them in a single file or database, etc. It is the
reduction of the effort cost of taking care of all these logistics
that makes it possible to efficiently harness Grid resources for
machine learning in a systematic way.

In practical terms, for each dataset a single exploration
configuration file was defined, containing the specification
for all configurations for each engine used (very similar to
the one showed in Fig. 2). Each exploration file was first
used to make a few explorations in our desktop machines,
then parameters sets were fine tuned and enlarged and,
finally, sent to the Grid. From a researcher point of view, in
addition to the large amount of CPU hours managed with
reasonable effort, the proposed method is easily reproduc-
ible rendering classifier exploration requiring large com-
puting resources a systematic task. This allows researchers
to focus on their core research, devising exploration
strategies, evaluating dataset preprocessing algorithms,
new classification methods, etc. instead of sorting out the
logistics of access methods to Grid infrastructures, prepar-
ing datasets differently for each third party engine, etc. In
fact, this method has enabled the authors to validate the
modifications made to the Encog engines for ROC
optimization with satisfactory results [23].

Discussion

This paper described a method to efficiently harness
computing power serviced by different Grid infrastructures
for building biomedical machine learning classifiers, along
with its supporting tool, BiomedTK. Together, they
demonstrated be robust and efficient for exploring search
spaces of possible configurations of machine learning
classifiers provided by arbitrary third party toolkits, using
Grid computing resources in an agile manner. With this
method, exploring large sets of configurations of machine
learning classifiers with different data sources and third
party classifier toolkits becomes a task that can be
accomplished in reasonable and predictable time, opening
the way to systematic experimentation on many of the
issues around machine learning for biomedical data analysis
(classifier and algorithm design, data analysis, preprocess-
ing, etc.) In this sense, it has served the authors to validate
the introduction of ROC based optimization in existing
algorithms.

At present our work is centered in two aspects. First, we
want to use the BiomedTK framework to find good
performing classifiers in a real hospital environment where
a digital repository for breast cancer is currently being
gathered at Hospital São João - Faculty of Medicine of
Porto University, in Portugal, in the context of the current
collaboration between INEGI and CETA-CIEMAT through
which CAD methods are being built to assist on breast
cancer diagnosis [3, 21]. Second, tuning classifier param-
eters is mostly a heuristic task, not existing rules providing
knowledge about what parameters to choose when training
a classifier. Through BiomedTK we are gathering data
about performance of many classifiers, trained each one
with different parameters, ANNs, SVM, etc. This by itself
constitutes a dataset that can be data mined to understand
what set of parameters yield better classifiers for given
situations or even generally. Therefore, we intend to use
BiomedTK on this bulk of classifier data to gain insight on
classifier parameter tuning.
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