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Abstract— This paper presents the design and
implementation of a real-time real-world beat tracking
system which runs on a dancing robot. The main problem of
such a robot is that, while it is moving, ego noise is generated
due to its motors, and this directly degrades the quality of
the audio signal features used for beat tracking. Therefore, we
propose to incorporate ego noise reduction as a pre-processing
stage prior to our tempo induction and beat tracking system.
The beat tracking algorithm is based on an online strategy
of competing agents sequentially processing a continuous
musical input, while considering parallel hypotheses regarding
tempo and beats. This system is applied to a humanoid robot
processing the audio from its embedded microphones on-the-
fly, while performing simplistic dancing motions. A detailed
and multi-criteria based evaluation of the system across
different music genres and varying stationary/non-stationary
noise conditions is presented. It shows improved performance
and noise robustness, outperforming our conventional beat
tracker (i.e., without ego noise suppression) by 15.2 points in
tempo estimation and 15.0 points in beat-times prediction.

I. INTRODUCTION

In order to introduce the ability of music listening and
cognition into musical expressive robotic agents, which
simultaneously generate corporeal motor responses, robot
audition algorithms must consider causal and low-cost
computations. Besides, they must cope with the signal
distortions caused by environmental and robot’s ego noises
(i.e., motor noises generated during the robot’s motion),
since these degrade the performance of Music Information
Retrieval (MIR) algorithms at the audio signal level.

In this paper we address the problem of online audio beat
tracking for a dancing robot with embedded microphones in
the presence of ego noise, by integrating an online template-
based ego noise suppression scheme [1] with a real-time
beat tracking system [2]. To the knowledge of the authors,
this is the first study in musical robotics, which tackles non-
stationary ego-motion noise directly, instead of ignoring it or
circumventing the problem by increasing the volume of the
music drastically. In fact, the developed system was applied
to a dancing robot performing simplistic periodic movements
in natural (i.e., real-world) conditions under varying music
loudness. We evaluated our system in terms of Signal-to-
Noise Ratio (SNR) improvement and accuracies of tempo and
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beat tracking in response to eleven different musical genres
and noise conditions with increasing levels of difficulty.

II. RELATED WORK

Worldwide, artificial intelligence and robotics researchers
are trying to make robots dance to the sound of music [3],
and make them participate in ensemble musical performances
with humans [4]. These musical robots rely on various music-
based interaction schemes, which depend on perceptual
algorithms attending to musical qualities such as melody,
loudness, pitch, harmony, timbre, and rhythm. Given the
focus of this paper, this section describes how different
musical robotic agents interact with low-level rhythmic
aspects such as note onsets, tempo and beats, giving special
attention to the reported tempo and beat tracking algorithms,
and, if applied, their noise suppression strategies.

Focused on real-world scenarios, Michalowski et al. [5]
investigated the role of rhythm and synchronism in human-
robot interactions, and their application in pedagogical and
therapeutic scenes. Their robot, Keepon, acquired both
auditory and visual live rhythmic data from embedded
microphones and cameras, in the form of amplitude peaks
of the auditory signal or onsets of the optical flow of the
visual signal. These multi-modal onsets are used to generate,
on-the-fly, a stream of commands that cyclically moves
Keepon’s bobbing and rocking degrees-of-freedom.

In another study using a robot with embedded sensors,
Crick et. al [6] integrated live audio-visual sensory inputs
into synchronous ensemble drumming performances with
humans. Their rhythmic model fuses audio-visual beat
events, acquired in real-time from zero-crossings of the
human arm motion trajectory over the ictus line, and drum
onsets (drum-beats).

Despite the real-time concepts of [5]–[8], none of the
approaches regarded the effects of noise, of different natures,
in their music processing modules. By taking noise into
account, Yoshii, Mizumoto, Murata et al. [9]–[11] proposed
a set of beat-synchronous experiments with a human-size
humanoid, by means of different real-time beat tracking
systems, processing live auditory signals. These included
stamping the robot’s feet in time with the estimated musical
beats [9]; a beat-counting robot that can count musical
beats aloud from live music [10]; and a robot that can
simultaneously step, scat and sing also according to the
musical beats [11]. The [9] and [10] studies made use
of Goto’s [12] real-time beat tracker, which manages a
competing multi-agent system with different autocorrelation
and cross-correlation strategies for beat prediction, based
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on note-onsets and drum-sounds components. In order to
improve the beat tracker’s robustness against self-voice
noises, Mizumoto [10] additionally proposed to integrate
an Independent Component Analysis (ICA)-based adaptive
filter [13] for suppressing the robot’s own counting voice,
by using the waveform of the counting voice as a
prior knowledge. Later, Murata proposed a more efficient
beat tracking scheme based on Spectro-Temporal Pattern
Matching (STPM) [11]. Similarly to the former, the authors
also applied a two-channel version of the same semi-blind
ICA to suppress the captured auditory signal from the
robot’s self-voice (i.e., from the robot’s scatting and singing).
Stepping noise, however, was ignored. They considered that
the beats are not affected by the ego-motion noise because
they made the highly-restrictive assumption that the beats
and the motion cycles are synchronized (i.e., in phase).

Ultimately, in order to improve the interactivity of
humanoid musicians in live environments, Grunberg et al.
[14] integrated a simplified version of Klapuri’s real-time
beat tracker [15] with a noise adaptive filter based on
separate attenuation thresholds for each spectral frequency
bin. This noise-robust beat tracker was tested on humanoid
Hubo while performing random motions synchronized and
unsynchronized to live music stimuli. The results suggested
overall improvements in the beat tracking performance when
applying the adaptive filter under different conditions.

In the line of the former research and envisioning the
application of our system in a real-time robotic system freely
dancing in a real environment, we propose:

1) The use of a real-time beat tracking system on a robot
with embedded microphones to cope with the online
requirements of our system, at low-cost computations;

2) The use of a sequentially-driven causal beat tracking
algorithm to adapt faster to expressive musical changes
of different natures;

3) The basis on a continuous onset detection function for
intrinsically improving the noise robustness of our beat
tracking system against stationary noise;

4) The integration of an online ego-noise suppression
scheme to eliminate the non-stationary motor noise;

5) A thorough, multi-criteria based evaluation across a
wide variety of music genres and different SNR levels.

III. EGO NOISE ROBUST REAL-TIME BEAT TRACKING
SYSTEM

As illustrated in Fig. 1, the proposed system architecture
is composed of two functional blocks: (1) a pre-processing
block of online ego noise suppression [1], and (2) the
actual real-time beat tracking algorithm – IBT (INESC Beat
Tracker) [2].

A. Ego Noise Suppression

Parameterized template estimation [1] is a noise estimation
method, which associates joint (motor) status data with
ego noise data. In this approach, the robot predicts an
arbitrary sequence of audio data from a large dataset of audio
templates recorded in advance, based on the observations
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Fig. 1. Block diagram of the proposed ego noise robust real-time beat
tracking system.

on the current motion. The underlying justification, why a
template-based approach is suitable for ego noise, is that
both the spectrum of the noise and the joint states do not
change significantly when the same motion in the training
session is performed again in the estimation session. This
method has been already effective to suppress ego noise for
various robot audition applications, such as automatic speech
recognition [1] and sound source localization [16].

Technically, this method utilizes encoders attached to the
motors of the robot, which measure the angular position of
each joint. During the motion of the robot, actual position of
each motor, θ(n), is acquired regularly at each audio frame
n. Using the difference between consecutive sensor outputs,
velocities, θ̇(n), are calculated. Considering that J joints are
active, 2J attributes are generated. Each feature is normalized
to [0 1] so that all features have the same contribution on
the prediction. The resulting feature vector has the form
of

−→
F (n) = [θ1(n), θ̇1(n), . . . ,θJ(n), θ̇J(n)]. In the template

generation (database creation) phase, one feature vector is
assigned to the current noise spectrum

−→
N (n) and used to

label the instantaneous noise fragment; this data block
−→
T n =

[
−→
F (n) :

−→
N (n)] is called a parameterized template.

During the estimation phase, a nearest neighbor search
in the database is conducted for the best matching template
of motor noise for the current time instance (frame at that
moment) using its feature vector label. The estimated noise
is used to compute the gains of spectral subtraction and,
finally, to obtain the refined audio spectrum to which the
beat tracking is applied.

B. IBT Real-time Beat Tracking System

As depicted in Fig. 1, the actual beat tracking system [2]
follows a classic modular architecture which assent on: (1)
extraction of a midlevel rhythmic representation (i.e., feature)
from the refined audio signal; (2) a pre-tracking stage to
induce the main tempo and beat hypotheses; and (3) the
actual sequentially-driven causal beat tracking algorithm to
estimate the musical beats and tempo on-the-fly. The system
works in an online fashion by making beat predictions
without prior knowledge (i.e., without look-ahead) on the
incoming signal.

1) Audio Feature Extraction: We selected the continuous
spectral flux onset detection function as the midlevel
representation over which all further processing is done.
This feature was calculated as proposed in [17] over the
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consecutive frames of the refined audio spectrum. In order
to smooth the onset detection function and reduce false
detections, a low-pass Butterworth filter is sequentially
applied on the extracted spectral flux values.

2) Pre-Tracking: The system is initialized on an induction
window, with a predefined fixed length. At the end of that
pre-processing step, hypotheses regarding periods, phases
and scores (Pi,φi,Si) of a set of M initial beat agents
(indexed by i) are passed along to the beat tracking algorithm.
The first step in the pre-tracking stage is to compute a
continuous periodicity function, based on the spectral flux
autocorrelation, along time-lags. This periodicity function is
parsed by an adaptive peak-picking algorithm to retrieve M
global maxima, whose time-lags constitute the initial set of
period hypotheses Pi. For each one of the period hypothesis
Pi, a number of phase hypotheses φ j

i (where j is the index
of the alternative hypotheses for the i-th period hypothesis)
are considered among detected onsets (also computed as
proposed in [17], over the induction window). Finally, a raw
score Sraw

i is given to each (Pi,φi) hypothesis, corresponding
to the sum of time deviations between elements of the chosen
beat train template and local maxima in the spectral flux.

3) Beat Tracking: Following the pre-tracking stage, the
process of online beat tracking consists of the supervision
of the incoming spectral flux values by a set of beat
agents representing alternative hypotheses regarding beat
positions and tempo. These agents propagate predictions with
respect to their goodness-of-fit on incoming data, this way
handling tempo and timing variations while keeping a good
balance between reactiveness (speed of response to rhythmic
changes) and inertia (stability of the system).

All agents are mediated by a central referee which
incrementally evaluates their predictions with respect to
their deviation (i.e., error) to the local maximum in the
observed data, within a two-level tolerance window: an
inner tolerance window TWin, for handling short period and
phase deviations; and an outer window TWout to cope with
eventual sudden expressive rhythmic changes. Consequently,
if the considered local maximum m is found inside the
inner tolerance window, the agent’s period and phase are
compensated by a fraction of that error.

If, on the other hand, the local maximum m is found in
the outer tolerance window, the agent under analysis keeps
its period and phase, but in order to cope for potential
sudden variations of tempo and/or timing, it generates three
children {C1,C2,C3}. These children follow three alternative
hypotheses, considering alternative possible deviations of
their father’s current hypothesis: timing (phase), tempo
(period), or timing and tempo.

In order for the Agent Referee to determine the best agent
at each data frame, the following evaluation function ∆s
evaluates the distance between each beat prediction and the
respective local maximum m, inside either TWin or TWout :{

∆s =
(
1− |error|

TW r
out

)
· ( Pi

Pm
) ·SF(m),∃ m ∈ TWin

∆s =−
( |error|

TW r
out

)
· ( Pi

Pm
) ·SF(m),∃ m ∈ TWout ,

(1)

where Pm is the maximum admitted period, in frames, and
SF is the spectral flux function. Finally, the actual beats
outputted from the system are retrieved from the best agent
at each time-frame.

IV. EXPERIMENTS AND RESULTS

A. Experimental Settings

1) Hardware Specifications: The used robotic platform
is a humanoid robot from Honda Research Institute Japan
(HRI-JP), called HEARBO, with an 8 channel omni-
directional microphone array on top of its head, as illustrated
on Fig. 2. The audio signals were synchronously captured by
a RASP-24 bits unit, developed by System in Frontier Inc.
(8 ch and 16 ch A/D converter with wired/wireless LAN
connection) at a 44.1 kHz sampling rate, and transmitted at
≈ 86.0 Hz. The joint sensor data was acquired at ≈ 50.0 Hz.
All processes were handled by an Intel Core i5 quadcore
laptop PC at 2.53 GHz, with 8 GB of RAM.

(a) Moving joints

Mic #1

Mic #2

Mic #3Mic #4

Mic #5

Mic #6

Mic #7

Mic #8

(b) Close-up of the head

Fig. 2. HRI-JP humanoid robot HEARBO

2) Software Specifications: The audio spectrum was
calculated from a single microphone input using a Complex
window with 1024 samples (23.2 msec at a 44.1 kHz
sampling rate), and with a 50% overlap (i.e., hop size of
512 samples). We used an initial IBT’s induction window
of 5 sec in length, and limited the beat tracking workflow
to a maximum of 30 agents. Additionally, in order to avoid
metrical interchanges during the online processing of IBT
we constrained all beat estimates to an octave, with tempi
ranging from 80 to 160 Beats-Per-Minute (BPM). This falls
within the “preferred tempo-octave” fitting the majority of
tempi distributions [18]. For template subtraction, we used a
minor spectral floor of 0.1 [1].

IBT was implemented on MARSYAS (Music Analysis,
Retrieval and Synthesis for Audio Signals)1, an open source
software framework for MIR, and wrapped into HARK (HRI-
JP Audition for Robots with Kyoto University)2, an open-
source software with functional modules for robot audition.
The ego noise suppression modules and the integration of
the final blocks were also implemented on HARK. Finally,
the motion generation and recording processes, and the bi-
directional dataflow between HARK and the robotic platform
were handled by ROS (Robot Operating System)3.

1http://marsyas.info/
2http://winnie.kuis.kyoto-u.ac.jp/HARK/
3http://www.ros.org
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3) Recording Setup: For the recordings we used only
the frontal microphone #1 of the robot (see Fig. 2(b)). The
musical stimuli were played by a loudspeaker standing 2 m
away in front (i.e., 0 ◦) of the robot. Audio data were recorded
in a noisy room with the dimensions of 4.0 m×7.0 m×3.0 m
with a reverberation time (RT20) of 0.2 sec. In order to guide
the recording process and strictly trim the music from the
recorded audio stream, for offline evaluation purposes, we
appended a pilot signal to the beginning of each music file,
with a silence chunk in between (see Fig. 4).

Additionally, to better control the experimental conditions
among recordings, we generated a simplistic periodic
dancing motion, repeated until the end of each recorded
musical stimuli. For this purpose, and in order to maximize
the disturbing effects of the ego noise, we used the closest
(i.e., the loudest) joint to the robot’s microphone – the
shoulder pitch joint (see Fig. 2(a)) – and rotated it between
−30 ◦ and 30 ◦, back and forward. We assured the motion
started in advance to music by triggering the motion
performance at an arbitrary time-point, right after hearing
the pilot signal. To train our template database in advance,
we recorded data of 10 cycles of this ego-motion only (i.e.,
without music).

B. System Evaluation
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Fig. 3. Histograms of tempo variation in the dataset, per musical piece.

1) Evaluation Musical Stimuli: In order to evaluate our
system’s robustness against different audio signal conditions,
our experiments involved recordings on a musical dataset
consisting of 33 pieces, with 20 sec each, uniformly chosen
from 11 different genres: classical, dance, folk, greek,
hiphop, jazz, latin, poprock, rockmetal, samba, and soul. As
illustrated in Fig. 3, the dataset’s musical tempi are spread
from 83 to 158 BPM, with a mean of 110 BPM, and a
mean standard deviation (i.e., variation) of 4.0±1.2 BPM per
piece. These data were picked from a beat-labeled dataset,
comprising 1360 musical files used for the evaluation of beat
tracking [2]. In order to evaluate the noise robustness of
the system fairly, we selected our evaluation dataset from
the data where IBT performed well upon the clean signal,
i.e., over the music file itself. (For a thorough evaluation
on IBT’s performance refer to [2].) These musical stimuli

were played, and recorded, at three incremental SNRs of {-
3.8, 0.2, 4.2} dB labeled as low, moderate, high. Under these
conditions, the audio signals were recorded separately: 1) in
the presence of only BackGround Noise (BGN), and 2) in
the presence of both BGN and Ego Noise (EN).

2) Evaluation Measures: To evaluate the accuracy of
tempo estimation and beat tracking of our system with
respect to the different genres and SNR conditions, we used
ground-truth beat data, manually annotated by experts. For
this purpose, we propose the use of three quantitative metrics:

• SNR Improvement: This is a conventional metric that
measures the signal’s SNR before and after applying
ego noise suppression.

• Global Tempo Estimation: It measures the difference
between the estimated tempi te and ground-truth tempi
tgt , within a 4% tolerance window wt . As such, a tempo
estimation te is considered correct if:

te ∈ [tgt · (1−
wt

100
) tgt · (1+

wt

100
)]. (2)

Since IBT is restrained to the same tempo octave as
the dataset, we did not need to also consider tempo
estimation at metrical levels related to the ground-truth.

• Beat Tracking Accuracy: We used the AMLt (Allowed
Metrical Levels, continuity not required) as proposed
by [19], calculated as follows:

AMLt = maxm

(
∑S

s=1 Bs

G′
m

)
, (3)

where G′
m = 2G±π,G,2G, 1

2 G is the number of ground-
truth beat-times, at π-phase or the considered metrical
level (by resampling the ground-truth beat-times by
different m factors), and Bs is the number of estimated
beat-times bi in each continuously correct segment s.
Every estimated beat-time bi is considered correct if:

gi −wb ∗∆gi < bi < gi +wb ∗∆gi

gi−1 −wb ∗∆gi−1 < bi−1 < gi−1 +wb ∗∆gi−1

(1−wb)∗∆gi < ∆bi < gi +(1+wb)∗∆gi

, (4)

where ∆bi = bi − bi−1 and ∆gti = gti − gti−1 are,
respectively, the estimated and ground-truth current
Inter-Beat-Interval (IBI), and wb is a tolerance window
set to 17.5% of the considered IBI. The choice of
this particular measure relies on its invariance with
respect to beat estimations at double/half the annotated
tempo or at constant off-beat (the so called π-phase
error). This way we could better focus our evaluation
on the system’s noise robustness by discarding rhythmic
ambiguities in terms of phase and period that typically
affect beat trackers.

C. Results

Fig. 4 illustrates the process of ego noise estimation. The
upper panels show the actual robot joint states, i.e., joint
positions (Fig. 4(a-I)) and velocities (Fig. 4(a-II)) based on
the acquired sensory data, and the actual audio spectrum
(Fig. 4(b-I)) recorded in our experiment. As depicted in

406



0 5 10 15 20 25 30
0

0.5

1

0 5 10 15 20 25 30
0

0.5

1

0 5 10 15 20 25 30
0

0.5

1

0 5 10 15 20 25 30
0

0.5

1

 

 

Shoulders (y-axis)

Shoulders (x-axis)

Wrists Elbows

Forearms
(I) Actual positions

(III) Estimated positions

(II) Actual velocities

(IV) Estimated velocities

(a) Actual and estimated joint states

F
re

q
u

e
n

cy
 [

k
H

z]

0 5 10 15 20 25 30
0

5

10

15

20

F
re

q
u

e
n

cy
 [

k
H

z]

0 5 10 15 20 25 30
0

5

10

15

20

Time [sec]

Time [sec]

(I) Actual audio spectrum (Music + BGN + EN)

(II) Estimated audio spectrum (BGN + EN)

 Pilot 

signal

Music

 start

Music

  end

Unexpected

motion stop

Motion

 start

Jittering

   noise

(b) Actual recorded signal and estimated noise signal

Fig. 4. Ego noise suppression results

Fig. 4(a-III) and Fig. 4(a-IV), the estimation is performed
correctly from the template database, and as a consequence
we can subtract the estimated noise spectrum template
(Fig. 4(b-II)) from the captured audio spectrum (Fig. 4(b-I)),
respectively, to refine it. Using “parameterized templates”,
the system can still estimate the unexpected robot behaviors
(e.g., 20.5 sec-22 sec) correctly. On the other hand, the
robot’s mechanical system create a bursting shudder noise
similar to a high-pitched click sound, which is tackled by
a naive power thresholding to prevent incorrectly dominant
peaks. Fig. 5 presents our system’s online beat predictions (in
red vertical bars, after the 5 sec induction) against the ground-
truth (in green bars) for the same musical piece from Fig. 4,
in which we could completely recover the correct beat-times
even if there was a mechanical jittering noise (12 sec).

F
re

q
u

e
n

cy
 [

kH
z]

 

 

5 10 15 20

5

10

15

20 Estimated

Ground−truth

F
re

q
u

e
n

cy
 [

kH
z]

 

 

5 10 15 20

5

10

15

20 Estimated

Ground−truth

F
re

q
u

e
n

cy
 [

kH
z]

 

 

5 10 15 20

5

10

15

20 Estimated

Ground−truth

Time [sec]

Time [sec]

Time [sec]

(a) Clean signal with backgorund noise

(b) Noisy signal

(c) Re"ned signal

Fig. 5. Online predicted beat-times (red), against the ground-truth (green).

In terms of computational time, the system efficiently
fulfills the required real-time processing. It took ≈10% of the
length of music data to process the whole dataset without ego
noise suppression, and ≈11% when applying the ego noise
suppression as a pre-processing.

1) SNR Improvement: Table I shows the average SNR
rates before and after the template subtraction.

2) Global Tempo Estimation: Fig. 6 presents accuracies
obtained for our system’s global tempo estimation, given by
the median IBI of the final beat predictions, i.e. after tracking
the beats of the whole musical piece.

3) Beat Tracking Accuracy: Fig. 7 presents the AMLt
accuracy obtained for the beat-times estimated on-the-fly.

TABLE I
AVERAGE SNR RESULTS.

Label Signal-BGN-Ratio Signal-EN-Ratio Processed
[dB] [dB] SNR [dB]

Low 14.7 -3.8 3.3
Moderate 20.1 0.2 4.6

High 24.6 4.2 6.8
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Fig. 6. Average tempo estimation results under different noise conditions.

D. Discussion

1) SNR Improvement: As described in Table I, using
template subtraction, we achieved a 4.7±2.3 dB improvement
on the SNR of the refined signals across all SNR levels.
As in all single channel noise suppression methods, the
improvements tend to get higher as the initial SNR drops.

2) Global Tempo Estimation: As depicted in Fig. 6, our
system’s tempo estimation scored 100% on the original
music files. This is expected, since, as referred, we purposely
selected our evaluation dataset from the data on which IBT
performed well for the clean signals. Yet, although being
manually selected, these results evince the capability of IBT
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to handle different genres and tempo variations (see Sec. IV-
B.1). This is even supported by the still high lowest accuracy
of the IBT (69.7%), despite the difficult SNR conditions
of -3.8 dB (Low SNR) without ego noise suppression. In
the presence of background noise only (i.e., absence of
ego noise), we observe a decrease of 3.0 points in tempo
estimation, which is kept constant among all SNR conditions.
This clearly indicates that our system is not significantly
influenced by stationary noise (BGN), due to its intrinsic
noise robustness supported by the use of a continuous
onset detection function. On the contrary, the robustness of
IBT alone against ego noise proportionally decreases when
the SNR gets lower. Yet, it seems that, in some extent
(at least, for SNR=4.2 dB), the system can still cope with
non-stationary noises, keeping the same tempo estimation
performance as in the absence of ego noise. As a final
claim, we clearly see the improving effect of our ego noise
suppression scheme, increasing the tempo estimation results
in 8.2±7.7 points, across SNRs. Besides, and as desirable,
its effect is greater when the SNR gets lower, contributing
with a maximum 15.2 points improvement at Low SNR.

3) Beat Tracking Accuracy: Similarly to the tempo
estimation results, and as illustrated in Fig. 7, on the music
files IBT scored well (98.1%) in terms of online beat-
times prediction. This additionally confirms that, despite
the considerable extent of timing/tempo changes, at a
maximum of 7.6 BPM difference between two consecutive
IBIs from our data (see Sec. IV-B.1), IBT could still
correctly adapt supported by its sequentially-driven causal
beat tracking algorithm. Also identical to tempo estimation,
the beat tracking results in the BGN seem to be uniform
across all SNRs with a maximum 3.4 points variation, and
only diverging from the music file results by an average
8.4±1.8 points. Again, at 4.2 dB (High SNR) the system
could cope with ego noise also for beat prediction, diverging
from the beat tracking results in the absence of ego noise for
the same SNR conditions, by only 2.4 points, without ego
noise suppression. As expected, the ego noise suppression
scheme also improved the online beat prediction, and the
improvement is greater when lowering the signal’s SNR.
As observed in Fig. 7, when subtracting the estimated ego
noise template our system’s beat tracking results improved
by 10.3±7.3 points, across all SNRs, with a maximum of
15.0 points at -3.9 dB (Low SNR).

As final remarks, we must point out the limitations of
our approach. First of all, the training and test motions
should be the same. If this condition is met, the method
easily scales to a humanoid robot with more than 20
joints (see [1]). Secondly, our system is still susceptible to
instantaneous bursting noises. The presence of unexpected
transient noises (e.g., mechanical jittering and shuddering
sounds) is extremely problematic to beat tracking systems
in general, contributing as a powerful false-estimation which
bias the system from that point on. Transient noises during
the training session also cause incorrect template estimates
such as around t = 7.5 and t = 14 in Fig. 4(b-II). In order to
better tackle such bursting noises, a more advanced noise

suppression scheme, or a more intelligent beat tracking
algorithm (e.g., making beat estimations based on a running
SNR confidence) is required.

V. CONSLUSION

In this paper we presented an online audio beat tracking
system enhanced with high robustness against the ego-motion
noise of a dancing robot. The proposed system combined
a real-time beat tracking algorithm with a parameterized
template subtraction in a single framework. We evaluated our
proof-of-concept system in a real environment and showed
that our integration method achieves: 1) high performance
on ego noise suppression, 2) improved estimation of tempo,
and 3) more accurate beat tracking performance. In future
work, we plan to improve the robustness of our system and
apply it for the generation of beat-synchronous robot dancing
motions in real-time.
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