
Interfacing Dynamically Typed Languages and the Why Tool:
Reasoning about Lists and Tuples

Cláudio Amaral ∗

Chalmers University of Technology
LIACC, University of Porto

amaral@chalmers.se

Mário Florido

DCC-FC, University of Porto
LIACC, University of Porto

amf@ncc.up.pt

Patrik Jansson

Chalmers University of Technology
patrik.jansson@chalmers.se

Abstract

Formal software verification is currently contributing to new gener-
ations of software systems that are proved to follow a given speci-
fication. Unfortunately, most dynamically typed languages lack the
tools for such reasoning.

We present a tool used to help verify some user specified prop-
erties on a small language. The process is based on functional con-
tracts with annotations on the source code that later are transformed
into logic goals that need to be proved in order to conclude that the
program meets its specification. As part of the tool we also present
a term model for dynamically typed data structures.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Logics of programs; D.3.2 [Programming Languages]:
Language Classifications—Applicative (functional) languages

General Terms Languages, Verification

Keywords Erlang, Why tool, Verification Condition

1. Introduction

To abstract from programming language and provers, similarly to
compilers, Program Verification tools increasingly rely on Interme-
diate (Verification) Languages. These languages are designed to be
closer to the logics of the theorem provers for an easier translation.
They are a great tool to avoid error prone effort duplication and
have good support for many programming language/logic features.
Dynamic typing is a key feature in many interesting and widely
used programming languages, such as Erlang [1].

However, reasoning about dynamically typed values is difficult
because it is harder to know their sorts than in statically typed
languages. This difficulty manifests by the lack of direct support
for dynamically typed languages. An example of this is the Why
tool [2], with front-ends for C and Java [3–5]. Why is a verification
condition generator (VCG) for a small intermediate language (let
us call it theWhy Language, WL for short) with annotations, which

∗ author is funded by FCT grant SFRH/BD/65371/2009; corresponding
author

Copyright is held by the author/owner(s).

Erlang’11, September 23, 2011, Tokyo, Japan.
ACM 978-1-4503-0859-5/11/09.

enable property specification, and type safety, through simple type
checking.

The general goal in this paper is to present a framework1 to
support verification of dynamically typed languages by defining
basic support in WL for dynamically typed structures, using logic
definitions and axioms, and to translate a small dynamically typed
functional language with Erlang-like syntax to WL. We can then
express and verify properties of functions and values in a small
pure and sequential subset of Erlang programs.

Section 2 presents some key aspects of our model for the trans-
lated values in WL. Section 3 shows with an example the frame-
work use. Finally, Section 4 gives an overview of the tool elements
and steps.

2. Modelling terms

In a dynamically typed language, a given program data value has a
set of possible types or kinds of values until the execution flow
reaches it. This set is usually a composition of known different
elements. Lets define the erl_term type as the type of all values
of our programs after translation to WL. It represents all kinds of
values, which in our case are lists, tuples, atoms and integers.

The sub-types of erl_term are represented in WL as first-
order logic functional symbols. They are available in the program
through an axiomatic semantics. For each sub-type type there are
wrapping/unwrapping dual functional symbols to/from erl_term,
with the exception of atoms which are represented as term con-
stants. We model lists by the type erl_list, together with the
logic functional symbols to wrap/unwrap lists, and necessary ax-
ioms.

type erl_list

logic term_list : erl_list -> erl_term

logic get_list : erl_term -> erl_list

The first is an abstract type declaration and the others are declara-
tions of logic functional symbols. In these last declarations there
is a type signature (after the ’:’), representing the type of the func-
tional symbol when applied to the specified number of arguments
with according type.

Lists are data structures that consist of a possibly empty se-
quence of data records, called elements or nodes. This implies the
existence of empty and non-empty lists. Non-empty lists have at
least one element, the first node or head, and the rest of the list is
called the tail.

(* list construction *)

logic nil : erl_list

logic cons : erl_term, erl_list -> erl_list

1Code is available from http://www.cse.chalmers.se/

~amaral/erl2why.html.

92

(* data access *)

logic head : erl_list -> erl_term

logic tail : erl_list -> erl_list

(* axioms... *)

To complete the basic support for lists we also provide some
test functions on lists’ structure and organisation, giving the pro-
grammer the means to differentiate list values. Among the tests are
the empty-list test, one of the most useful, and whether or not the
concrete value of a term is of type erl_list. Length and element
positioning are also part of the framework.

logic is_nil : erl_list -> bool

logic is_list : erl_term -> bool

(* axioms... *)

(* length *)

logic list_length: erl_list -> int

(* position access *)

logic nth : int, erl_list -> erl_term

(* axioms... *)

Although tuples differ conceptually from lists, their semantics
as an ordered sequence of elements is similar. Therefore, we have
used the list model to build the tuple model. As with lists, we
have defined the basic functionality for reasoning about and ma-
nipulating tuples, whose details are omitted here. The target for
the source language integers are WL integers, encapsulated by
the wrapper erl_term, in same way as list and tuple values are
(term_integer(42)).

3. Example

To get a better understanding of our goal, consider the following
piece of annotated code. In this example we have an append-free
version of list reverse.

%@ requires:

% is_list(Arg1) = true

reverse(L) -> reverse_aux(L,[]).

%@ ensures:

% erl_list_length(get_list(Arg1))

% = erl_list_length(get_list(result))

% and (forall i:int.

% 1<=i<=erl_list_length(get_list(L)) ->

% nth(i,get_list(L))

% = nth(erl_list_length(get_list(L))+1-i,

% get_list(result)))

In order to specify the intended behaviour of this code, we need
to provide proper annotations referring to the properties we want
to reason about. They are identified by requires/ensures labels
in comments starting with the @ symbol, which is a conventional
notation used in some specification languages [6, 7].

This reverse implementation is only designed to receive a list.
This is specified by requiring that the first argument passes the
is_list test.

One of the expected outcomes is that the returned value is a list
of the same length. This is easy to describe for reverse, simple
equality between list lengths. It is important to see that, by using
the get_list logic function on the result, if the post-condition can
be proved correct it is implied that the result is a list because of its
type. The other expected property of the result is the reversed order
of the elements in the returned list, described by the forall formula
in the post condition.

To verify reversewe also need a specification of reverse_aux
behaviour with respect to the values of the calling arguments.

%@ requires:

% is_list(Arg1) = true

% and is_list(Arg2) = true

reverse_aux([], LAcc) ->

LAcc;

reverse_aux([H|RL], LAcc) ->

reverse_aux(RL,[H|LAcc]).

%@ ensures:

% erl_list_length(get_list(result)) =

% erl_list_length(get_list(Arg1))

% + erl_list_length(get_list(Arg2))

% and (forall i:int.

% (1<=i<=erl_list_length(get_list(Arg1))) ->

% (nth(i,get_list(Arg1)) =

% nth(erl_list_length(get_list(Arg1))+1-i,

% get_list(result))))

% and (forall j:int.

% (1<=j<=erl_list_length(get_list(Arg2))) ->

% (nth(j,get_list(Arg2)) =

% nth(erl_list_length(get_list(Arg1))+j,

% get_list(result))))

This behaviour will depend on both arguments, relating the
length of the result with the length of the arguments, as well as
positions of key elements of the lists in each call (invariant). With
this example, all but one of the verification conditions (VCs) gen-
erated by Why are possible to check automatically. Even with such
specifications, the most interesting property (reversed positioning
in the result list) had to be discharged using an interactive prover,
although it was relatively simple.

4. Tool overview

The tool is composed by a compiler to the WL language and some
WL libraries with the models for the translated values. The input
of the tool is a valid Erlang module. Only a small subset of the
language is actually supported (there is no concurrency nor module
system, for example). The output is a WL version of the input
module that is passed to the Why tool together with our libraries
to produce the VCs for the given program.

The input file will have contracts for the functions and possi-
bly some other specification elements, through dedicated attribute
forms. These elements are only for specification purposes, they do
not interfere with the program execution.

The properties, and formulas in general, in such specifications
are first-order logic formulas. The properties must be written ac-
cording to the models of the values in the tool’s WL libraries.

The resulting WL file may then be used in any way Why files
can and the generated VCs proved with any of the provers installed
and supported by Why, automatic or interactive.

The resulting WL file may then be used in the Why tool. The
generated VCs can be proved with any of the supported provers.

References

[1] J. Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007. ISBN 193435600X, 9781934356005.

[2] J.-C. Filliâtre. Why: A Multi-language Multi-prover Verification Tool.
Research Report 1366, LRI, Université Paris Sud, March 2003.

[3] J.-C. Filliâtre and C. Marché. Multi-Prover Verification of C Programs.
In Sixth International Conference on Formal Engineering Methods

(ICFEM), volume 3308 of Lecture Notes in Computer Science, pages
15–29, Seattle, Nov. 2004. Springer-Verlag.

[4] C. Marché, C. Paulin-Mohring, and X. Urbain. The KRAKATOA tool
for Certification of JAVA/JAVACARD programs annotated in JML. J.

Log. Algebr. Program., 58(1-2):89–106, 2004.

[5] L. Correnson, P. Cuoq, A. Puccetti, and J. Signoles. Frama-C User

Manual, boron edition, April 2010.

[6] G. T. Leavens, E. Poll, C. C. Y. Cheon, C. Ruby, D. Cok, P. MÃijller,
J. Kiniry, P. Chalin, D. M. Zimmerman, and W. Dietl. JML Reference

Manual, draft edition, June 2008.

[7] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and
V. Prevosto. ACSL: ANSI/ISO C Specification Language. CEA LIST
and INRIA, 2010.

93

