
Humanoid Behaviors: From Simulation to a Real
Robot

Edgar Domingues1, Nuno Lau1, Bruno Pimentel1,2, Nima Shafii2, Lúıs Paulo
Reis2, and António J. R. Neves1

1 DETI/UA - Dep. of Electronics, Telecommunications and Informatics,
IEETA - Inst. of Electronics and Telematics Engineering of Un. of Aveiro,

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal,
{edgar.domingues,nunolau,brunopimentel,an}@ua.pt

2 DEI/FEUP - Dep. Informatics Engineering, Faculfy of Engineering of the
University of Porto,

LIACC - Artificial Intelligence And Computer Science Lab. of the University of Porto,
Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal,

nima.shafii@gmail.com,lpreis@fe.up.pt

Abstract. This paper presents the modifications needed to adapt a hu-
manoid agent architecture and behaviors from simulation to a real robot.
The experiments were conducted using the Aldebaran Nao robot model.
The agent architecture was adapted from the RoboCup 3D Simulation
League to the Standard Platform League with as few changes as possible.
The reasons for the modifications include small differences in the dimen-
sions and dynamics of the simulated and the real robot and the fact that
the simulator does not create an exact copy of a real environment. In
addition, the real robot API is different from the simulated robot API
and there are a few more restrictions on the allowed joint configurations.
The general approach for using behaviors developed for simulation in
the real robot was to: first, (if necessary) make the simulated behavior
compliant with the real robot restrictions, second, apply the simulated
behavior to the real robot reducing its velocity, and finally, increase the
velocity, while adapting the behavior parameters, until the behavior gets
unstable or inefficient. This paper also presents an algorithm to calculate
the three angles of the hip that produce the desired vertical hip rotation,
since the Nao robot does not have a vertical hip joint. All simulation
behaviors described in this paper were successfully adapted to the real
robot.

Keywords: humanoid robot, behaviors, simulation, real robot, Alde-
baran Nao

1 Introduction

Since the year 2004 the FC Portugal team [8, 13] participates in the RoboCup
3D Simulation League. This year, for the first time, following this collaboration
and also including members from CAMBADA [10] and 5DPO [3] teams, the
Portuguese Team will participate in the Standard Platform League (SPL).



2

In the RoboCup 3D Soccer Simulation League robotic soccer games are run
on a simulator. Each participating team programs an agent to control a hu-
manoid robot that models the Nao robot from Aldebaran. In the SPL all robots
are the same, being nowadays the Nao robot, the only difference being the soft-
ware which controls them. Since 2008 both the Simulation League and the SPL
use the same robot model: the Aldebaran Nao (Fig. 1 and 2). This would allow
to develop agents that can compete on both leagues, test the agent on a simu-
lated robot before running it on the real one, and use on the latter the results
of machine learning techniques ran in the simulation.

Fig. 1. The Nao robot. Fig. 2. Nao joints (adapted from [5]).

However, the simulator cannot reproduce reality with precision. The simula-
tor does not detect collisions between body parts of the same robot. The ground
friction is low compared to the official SPL field. The simulated robot model is
not an exact copy of the real one, since it has a few differences in the dimensions
and one more degree of freedom. Hence, some modifications must be made to
adapt the low level behaviors from simulation to a real robot. Once we have
stable low level behaviors on both the simulation and the real robot, the same
high level behaviors can be used on both, with little or no modifications.

This paper presents the modifications needed on the FC Portugal simulation
agent to run on the real Naos. All behaviors needed for the real robot are present
in the simulation agent. However, the get up behaviors were developed from
scratch, since those used in the simulation execute motions that are not possible
on a real robot. A kick to the side that did not exist in the simulation was also
created. The next two sections describe the simulation environment and the real
robot. Section 4 describes the architecture of our agent. Section 5 and Section 6
describes the behaviors we use in simulation and their adaptation to the SPL.
Section 7 shows the results achieved with real Naos. The last section presents
the conclusions.



3

2 RoboCup 3D Simulator

RoboCup 3D Soccer Simulation League uses SimSpark simulator [2] to simu-
late the games. This simulator uses the Open Dynamics Engine (ODE) [16] to
simulate the physical environment. The robot model used is based on the Alde-
baran Nao robot. However, it is not a precise replica of the real one, since it
has a few differences in the dimensions and 22 degrees of freedom (one more
than the real version). The joints are controlled specifying the desired angular
speed for each joint. The simulated robot, like the real robot, has a gyroscope
and an accelerometer on the torso and foot force sensors. Instead of cameras,
the vision information is given as spherical coordinates of the objects, but this
is not important for this paper, since we talk only about low level behaviors.

3 Nao Hardware and Software

The real Nao robot has been developed by the French company Aldebaran
Robotics [4]. It is a humanoid robot with 21 degrees of freedom, one less than
the simulation because the two hip yaw pitch joints are controlled by the same
motor. Joint control is based on providing angle targets. Each joint has an in-
ternal PID controller which then acts autonomously to achieve its target. This
means that the joint control on the real robot is higher level than the used on
simulation. Also unlike in simulation, the real robot provides stiffness control
for each joint, which can be useful to save energy and improve the behavior
robustness and speed [7].

Like the simulated robot, the real robot has a gyroscope and an accelerom-
eter in the torso. Aldebaran provides a programming interface that delivers the
filtered angles of the torso position relative to the vertical. Each foot has 4 force
sensitive resistors and there are two cameras in the head.

The Nao robot runs NaoQi [4] which is a framework that manages the execu-
tion of modules. These modules are programming libraries that can be created
and executed on the robot. Aldebaran made available some modules with the
robot: modules to control motions, LEDs, text-to-speech, etc. One of these mod-
ules is Device Communication Manager (DCM), that allows low level access to
the actuators and sensors of the robot. Modules can only communicate between
each other, so it is necessary to create our own module in order to use any of
the modules provided.

4 Portuguese Team Agent Architecture

Our approach to allow the agent architecture access the robot hardware, like
many others SPL teams [14, 12, 9], was to create a simple NaoQi module to
communicate with the DCM. This module reads the actuators values from the
shared memory, sends them to be executed by the DCM, and copies the sensors
values from the DCM to the shared memory. By accessing the shared memory,
our agent becomes independent from the Aldebaran software.



4

The architecture of the agent that uses the shared memory is identical to
our agent in the simulation league. The only modifications made were in the low
level communications. In simulation, the agent communicates with the server to
send the actuator values and receive the sensor values. In the real robot, instead
of communicating with a server, the agent sends the actuator values and reads
the sensor values from the shared memory. As presented above, the real robot
has a PID controller for each joint as opposed to the simulated robot, whose
PID controllers must be implemented by the user. Therefore, it is unnecessary
to copy this software PID controller from simulation to the real robot.

The high level behaviors can be ported from the simulated robot to the real
robot with no modification, as long as the low level behaviors are developed for
both the simulated and the real robot.

5 Behavior models

5.1 Slot Behaviors

A Slot Behavior is defined by a sequence of slots. Each slot has a time duration
and a target angle for each joint to be controlled. When a slot is executed the
joints are moved with a sinusoidal trajectory, from the angle they have at the
beginning of the slot, to the target angle that is achieved at the end of the slot.
The sinusoidal trajectory is used since the initial and final speed are zero, and
it assures the lowest second derivative maximum, hence the acceleration will
be minimized [1]. This produces a smooth motion for the joints. Slot behaviors
are defined in Extensible Markup Language (XML) files, so they can be easily
manipulated without need to recompile the agent.

This was used to develop some behaviors, namely: kick the ball, get up,
among others.

5.2 CPG Behaviors

Central Pattern Generator (CPG) Behaviors execute, on each targeted joint, a
trajectory defined by a sum of sine waves [11]. Each sine has four parameters:
amplitude, period, phase, and offset. Like Slot Behaviors, CPG Behaviors are
defined using XML files, to be easily manipulated without the need to recompile
the agent.

This was used to create periodic behaviors: walk, turn in place, rotate around
the ball, etc.

5.3 OmnidirectionalWalk Behavior

This behavior was based on Sven Behnke’s work [1]. It is an open-loop omnidi-
rectional walk developed for the humanoid robot Jupp. It had to be adapted to
the simulated Nao, since the two robots are different.

This behavior uses a Leg Interface to control the leg movements. The Leg
Interface allows to specify leg positions using three parameters: leg angle, roll,



5

pitch, and yaw angles between the torso and the line connecting hip and ankle; leg
extension, the distance between the hip and the ankle; and foot angle, roll, and
pitch angles between the foot and the perpendicular of the torso. This behavior
uses this interface to generate a stable omnidirectional walk.

The leg angle, θLeg =
(
θrLeg, θ

p
Leg, θ

y
Leg

)
, is the angle between the torso and

the line connecting hip and ankle. θrLeg = 0 when the leg is parallel to the trunk,
on the coronal plane, and θrLeg > 0 when the leg is moved outwards to the side.
θpLeg = 0 when the leg is parallel to the trunk, in the sagittal plane, and θpLeg > 0

when the leg is moved to the front. θyLeg = 0 when the foot points to the front

and θyLeg > 0 when the leg is rotated vertically pointing the foot outward. The

foot angle, θFoot = (θrFoot, θ
p
Foot), controls the foot angle relative to the torso. If

θFoot = (0, 0) then the foot base is perpendicular to the torso. Hence, if the torso
is perpendicular to the ground, the foot base is parallel to the ground. The leg
extension, −1 ≤ γ ≤ 0, denotes that the leg is fully extended when γ = 0 and
is shortened when γ = −1. When shortened, the leg is ηmin of its fully extended
length. The relative leg length can be calculated as η = 1 + (1− ηmin)γ.

5.4 TFSWalk Behavior

The TFSWalk gait combines two approaches: a gait where the joints trajectory
is generated using Partial Fourier Series optimized with Genetic Algorithms [11];
and a gait using Truncated Fourier Series, which are imitated from human walk,
to generate the joints angles optimized with Particle Swarm Optimization [15].
This gait allows the robot to walk forward and backward (either straight or
turning) and to turn in place.

6 Adaptation to the Real Robot

When adapting the behaviors from simulation to a real robot we tried to keep
the architecture of the agent similar on both. Since all behaviors on simulation
produce joints angles which are then passed to a software PID controller, this
was replaced with some software to send these angles to the shared memory (as
explained on Section 4), and convert them to the angle range of the real robot
joints if needed.

6.1 Leg Interface

The Leg Interface calculates the angles of the 6 leg joints using: leg angle, θLeg =(
θrLeg, θ

p
Leg, θ

y
Leg

)
; foot angle, θFoot = (θrFoot, θ

p
Foot); and leg extension, γ. In the

Jupp robot the hip joints are in the following order, from up to down: roll,
pitch and yaw. But in the Nao robot the hip joints are in a different order: yaw
pitch, roll, pitch. This means that we cannot use all the formulas presented in
Sven Behnke’s paper [1]. So we have developed our own formulas. Given the leg
extension γ we calculate the relative leg length as η = 1 + (1 − ηmin)γ which



6

is then multiplied by the length of the fully extended leg to get the desired leg
length, l = η(lupperLeg + llowerLeg). Where lupperLeg and llowerLeg are the lengths
of the thigh and shank, respectively. Using the law of cosines (1), the knee joint
angle can be calculated by (2). It is subtracted by π because it is the outside
angle, contrary to the one used in the law of cosines which is the inside angle.
θKnee is 0 when the leg is stretched and negative when the leg is retracted. In
the same way, the law of cosines is used to calculate the angles of the hip (3)
and ankle (4) to compensate the knee angle. Therefore, when the leg extension
changes, θLeg and θFoot are not changed.

c2 = a2 + b2 − 2 · a · b · cos(θ) (1)

θKnee = arccos

(
l2upperLeg + l2lowerLeg − l2

2 · lupperLeg · llowerLeg

)
− π (2)

∆θpHip = arccos

(
l2upperLeg + l2 − l2lowerLeg

2 · lupperLeg · l

)
(3)

∆θpAnkle = arccos

(
l2lowerLeg + l2 − l2upperLeg

2 · llowerLeg · l

)
(4)

The remaining leg joint angles can be calculated by equations (5), where ls (leg
side) is -1 for the left leg and 1 for the right leg. The hip angles are the θLeg angles
with the compensation ∆θpHip. The ankle angles are the differences between θFoot
angles and the θLeg angles with the compensation ∆θpAnkle.

θHipYawPitch = θyLeg (5)

θHipRoll = −ls · θrLeg
θHipPitch = θpLeg +∆θpHip

θAnklePitch = θpFoot − θ
p
Leg +∆θpAnkle

θAnkleRoll = −ls ·
(
θrFoot − θrLeg

)
Note that in (5) the leg vertical rotation is applied directly in the hip yaw

pitch joint. The Nao robot, unlike Jupp, has no vertical hip joint. It has only
one joint rotated 45 degrees that can be used to obtain vertical rotation of the
leg. When we applied the leg yaw rotation directly to the hip yaw pitch joint,
the robot was stable but the torso oscillated forwards and backwards.

To correct this oscillation we used a formula that, given the desired yaw hip
rotation, calculates the correct angles to apply on the three hip joints of the Nao
robot. We start by calculating the rotation matrix of the thigh in relation to the
hip, aligned with the hip yaw pitch joint axis, using (6).



7

RotHip = Rotx

(
ls · π

4

)
·Rotz(θyLeg) (6)

=

1 0 0

0
√
2
2 −ls ·

√
2
2

0 ls ·
√
2
2

√
2
2

 ·
 cos(θyLeg) − sin(θyLeg) 0

sin(θyLeg) cos(θyLeg) 0

0 0 1



=

 cos(θyLeg) − sin(θyLeg) 0
√
2
2 · sin(θyLeg)

√
2
2 · cos(θyLeg) −ls ·

√
2
2

ls ·
√
2
2 · sin(θyLeg) ls ·

√
2
2 · cos(θyLeg)

√
2
2


Then, part of the B-Human inverse kinematics [6] can be used to calculate the
angles of the three hip joints that produce the desired rotation. First, the rotation
matrix produced by the three hip joints is constructed (the matrix is abbreviated,
e.g. cx means cos(δx)) (7).

RotHip = Rotz(δz) ·Rotx(δx) ·Roty(δy) (7)

=

 cxcz − sxsysz −cxsz czsy + cysxsz
czsxsy + cysz cxcz −cyczsx + sysz
−cxsy sx cxcy


It is now clear that the angle of the hip roll (x axis) can be calculated using sx,
as shown in (8). This angle has to be rotated 45 degrees, because the hip roll
joint space is rotated according to the hip yaw pitch axis.

δx = arcsin(sx)− ls · π
4

= arcsin(ls ·
√

2

2
· cos(θyLeg))− ls · π

4
(8)

Calculating each of the other two hip joints requires 2 matrix entries. Equation
(9) shows how we can obtain the rotation along the z axis by combining 2 entries
of the rotation matrix. With this, the remaining two hip joints can be calculated
using (10) and (11).

cx · sz
cx · cz

=
cos(δx) · sin(δz)

cos(δx) · cos(δz)
=

sin(δz)

cos(δz)
= tan(δz) (9)

δz = atan2(cx · sz, cx · cz) = atan2(sin(θyLeg),

√
2

2
· cos(θyLeg)) (10)

δy = atan2(cx · sy, cx · cy) = atan2(−ls ·
√

2

2
· sin(θyLeg),

√
2

2
) (11)

These three angles (δx, δy and δz) are added to the calculated joints angles of
(5) producing the final angles of the three hip joints:



8

θHipYawPitch = δz (12)

θHipRoll = −ls · θrLeg + δx

θHipPitch = θpLeg +∆θpHip − δy

This method can be used whenever a Nao robot’s leg must rotate around
its vertical axis. After this the differences between the Nao robot and other
humanoid robots are less significant. Most humanoid robots have a joint to
rotate each leg vertically, but the Nao robot does not. This means that code
developed for a generic humanoid robot could not be applied to the Nao robot.
With this algorithm, we obtain a virtual joint on the hip that rotates around
the vertical axis, permitting to easily adapt code from other humanoid robots
to this one.

6.2 Slot Behaviors

Adapting the Slot Behavior algorithm was easy, since it only generates joint
trajectories based on XML files. Only the behaviors themselves needed to be
adapted.

The get up behaviors (after falling forward and backward) were developed
from scratch because the get up behaviors used on the simulation execute mo-
tions that are not possible on a real robot. The sequence of poses of our get up
behaviors were based on Aaron Tay’s thesis [17] and on the B-Human 2010 Code
Release [14].

The kick forward behavior was adapted from simulation and had to be
changed to be stable on the real robot. Some slot durations were increased to
make the behavior slower. Compared to the simulation, the slot durations were
increased an average of 23%. The angles of the joints that move on the coronal
plane (hip roll and ankle roll) were also increased from 11 to 20 degrees, so the
center of mass is better shifted to the support foot.

Was also created a kick to the side that did not exist on the simulation.

6.3 CPG Behaviors

In the CPG Behaviors, like the Slot Behaviors, the algorithm itself was easily
adapted but the behaviors needed to be changed. The common modification
was to slowdown the behaviors and reduce the joint amplitudes. However, each
behavior needed to be independently adapted to the real robot. The forward
walk created as a CPG Behavior was adapted from the simulation to the real
robot by reducing the joint angle amplitudes 50% and slowing it down 67%. The
rotate around the ball was slowdown in 58% and the joint angle amplitudes had
an average reduction of 74%.



9

6.4 OmnidirectionalWalk Behavior

As said above, this behavior produces the desired motion calculating the trajec-
tories of three parameters for each leg, and then uses the Leg Interface to convert
these parameters into joint angles. To adapt this behavior from the simulation
to the real robot we modified the Leg Interface according to the dimensions of
the real robot.

A difference from the Nao robot to most humanoid robots (like the Jupp
robot for which Sven Behnke’s walk [1] was developed) is that the hip yaw pitch
joints in both legs are controlled by a single motor. This means that any rotation
is applied to both joints at the same time. In the simulation the two joints can
be controlled independently. So, when adapting this walk from simulation to
the real robot, we need to combine the two motions into one that produces the
desired stable gait. When, in the simulation, the two motions are equal, we can
apply them directly to the real robot. When these two motions are different, the
task is more difficult and each specific case must be analyzed.

For this walk the desired yaw motion of the legs is shown in Fig. 3. Each leg is
composed by two kinds of movements. A sinusoidal movement, when the leg is in
the air, and a linear movement, when it is on the ground. As presented in Fig. 3,
the two motions are significantly different and cannot be directly executed by
the common joint of the real Nao robot. We needed to combine the two motions
creating one that is a continuous function (so the joint can follow it smoothly)
and that produces a stable walk. Our choice was to follow a linear-like motion
which results from selecting the motion of the leg that is on the ground (Fig. 4).
To do this we switch between left and right leg yaw trajectory followed in the
intersection of the two motions when both legs follow linear movements.

Fig. 3. Yaw motions of the legs in the
OmnidirectionalWalk.

Fig. 4. Common joint motion, result
of the combination of the two motions
shown in Fig. 3.



10

6.5 TFSWalk Behavior

This gait was optimized on the simulator, resulting in the fastest gait we have.
However, the ground on the simulator has low friction and so the gait learned
to use this as an advantage, not lifting the feet too much and almost not using
coronal movement. When adapting this behavior to the real robot it only worked
on slippery ground. On the official SPL field, the carpet has more friction, making
the robot stumble and fall.

The first approach we took to solve this problem was to add coronal move-
ment, allowing the robot to better shift its Center of Mass (CoM), resulting in a
more stable gait. The coronal movement used is shown in Fig. 5 and was based
on [15]. It consists of rotating the hip roll joint of the support leg (the one on the
ground). This lifts the other leg (the swinging leg) from the ground. The ankle
roll joint of the swinging leg is rotated with the same angle as the support leg
hip, so the foot is always parallel to the ground.

The hip motion is defined using (13) and produces the trajectories shown in
Fig. 6. The left and right hips have a phase shift of π. θ is the amplitude and T
the period. The latter is the same for the sagittal and the coronal movements.
On the other hand, the coronal movement has a phase shift of π/2 relative to
the sagittal movement. The amplitude is empirically defined and depends on
the walking speed. When the latter increases, the coronal movement amplitude
decreases.

Fig. 5. Coronal movement.

0

θ

0 T/2 T

6

-0

θ

0 T/2 T

6

-

Fig. 6. Left and right hip roll joints trajectories.

f(t) =

{
θ sin

(
2π
T t
)

, if t < T
2

0 , otherwise
(13)



11

The other approach we took, instead of using coronal movement to shift the
CoM, lifts the feet higher and rapidly making use of the robot dynamics to
keep the robot balanced. In order to increase the height of the feet trajectories,
the knee, hip and ankle joints trajectories should be changed in a coordinated
way. However, the specification of TFSWalk, by defining each joint trajectory
independently of the others, does not provide a good model for controlling the
foot trajectory. To achieve a more controllable model, the TFSWalk specification
was converted to use the Leg Interface (Section 6.1). With this new model it is
easy to control foot height trajectory just changing the leg extension parameter.
In addition, the velocity of the robot, controlled by the leg angle amplitude,
becomes independent on the foot trajectory height. As an example, the feet
may be kept moving up and down in the same place by setting the leg angle
amplitude to zero while keeping the normal value of the leg extension. This up
and down movement is very useful to initiate and finish the walking behavior.
The increase in the foot height trajectory diminished foot collisions with the
ground and resulted in a stable walk without needing coronal movement.

Feedback was also added to make the behavior more robust against external
disturbances, such as uneven ground and collisions with obstacles. The feedback
is calculated using a filtered value of the accelerometer in the x direction (front),
as shown in (14), and it is based on the rUNSWift Team Report 2010 [12]. This
value is summed to the two hip pitch joints, to balance the torso. This way, when
the robot is falling to the front, the accelerometer will have a positive value that
is added to the hip pitch joints, making the legs to move forward, to compensate.
The inverse is also true, when the robot is falling backwards.

filAccelX = 0.5 ∗ filAccelX + 0.5 ∗ accelX ∗ 0.2; (14)

7 Results

All the described behaviors were tested and are stable.
The get up behaviors developed as Slot Behaviors put the robot in the stand

position when the robot is lying down on the ground in 16.5 seconds, when lying
on the front, and 8.1 seconds, when lying on the back. The kick forward behavior
takes 3.2 seconds to hit the ball and then 2.2 seconds to return to the stand up
position. The distance traveled by the ball was measured for five kicks and the
average distance was 2.87± 0.46 meters. The kick to the side behavior hits the
ball in 3 seconds and returns to the stand position in 3.2 seconds. This kick
was executed five times and the ball traveled an average distance of 1.05± 0.17
meters.

The forward walk created using a CPG Behavior was executed five times in
the real robot and had an average velocity 6± 0.4 cm/s. The turn in place and
the rotate around the ball had an average velocity of 27 ◦/s. In the simulation,
the forward walk had a velocity of 7.33 cm/s, the turn in place had an average
velocity of 49.47±0.42 ◦/s, and the rotate around the ball had an average velocity
of 49.98± 1.24 ◦/s



12

The OmnidirectionalWalk achieved in the real robot a forward velocity of 5
cm/s, a side velocity of 1 cm/s, and rotates at 35 ◦/s. In the simulation this
behavior achieved a forward velocity of 10 cm/s, a side velocity of 3 cm/s, and
rotates at 12 ◦/s.

The TFSWalk was executed 10 times in the real robot and has an average
forward velocity of 22 ± 1 cm/s and rotates at 25 ◦/s. In the simulation the
TFSWalk behavior achieves a forward velocity of 51 cm/s and rotates at 42 ◦/s.

8 Conclusion

This paper described the adaption of behaviors from the simulation to a real
robot. All presented behaviors were successfully adapted and tested on a real
robot. It is harder to develop behaviors for a robot in a real environment in-
stead of simulated environment because of factors that make behaviors unstable,
namely: external disturbances; uneven ground; or motor strength that affects the
precision the joints follow the trajectories. We proved that it is possible to use the
behaviors of simulation in a real robot. The simulation environment can be used
to test the behaviors before executing them on a real robot, or to use machine
learning techniques to optimize them. Some modification were needed since the
simulated and the real robot are different. In the TFSWalk behavior, feedback
was added to increase stability and robustness, making the behavior adapt to
changes in the environment. The process of adapting behaviors from simulation
to a real robot allowed us to find and correct some bugs on the existing behaviors.

Was also presented in this paper an algorithm to calculate the angles of the
three hip joints that produce the desired vertical rotation of the hip, since the
Nao robot does not have a vertical hip joint. This algorithm was used with success
on the presented behaviors and can be used in the future for any behavior, either
in simulation or in a real robot, that needs to rotate the hip around the vertical
axis.

The agent architecture and the high level behaviors are the same on both sim-
ulation and real robot. This allows to use the same agent on both the RoboCup
3D Simulation League and the Standard Platform League.

Future work include the optimization of the adapted behaviors in the real
robot, making them more stable and faster.

References

1. Behnke, S.: Online trajectory generation for omnidirectional biped walking. In:
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on. pp. 1597 –1603. Orlando, Florida, USA (May 2006)

2. Boedecker, J., Asada, M.: Simspark concepts and application in the Robocup 3D
Soccer Simulation League. In: Proceedings of SIMPAR-2008 Workshop on The
Universe of RoboCup simulators. pp. 174–181. Venice, Italy (Nov 2008)

3. Conceição, A., Moreira, A., Costa, P.: Design of a mobile robot for Robocup Middle
Size League. In: 6th Latin American Robotics Symposium (LARS-2009). pp. 1–6.
Chile (Oct 2009)



13

4. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J., Maisonnier, B.: The NAO humanoid: a combination of per-
formance and affordability. ArXiv e-prints (Jul 2008)

5. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. In:
Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on. pp.
769 –774. Kobe, Japan (May 2009)

6. Graf, C., Härtl, A., Röfer, T., Laue, T.: A robust closed-loop gait for the Standard
Platform League humanoid. In: Zhou, C., Pagello, E., Menegatti, E., Behnke, S.,
Röfer, T. (eds.) Proceedings of the Fourth Workshop on Humanoid Soccer Robots
in conjunction with the 2009 IEEE-RAS International Conference on Humanoid
Robots. pp. 30–37. Paris, France (Dec 2009)

7. Kulk, J.A., Welsh, J.S.: A low power walk for the NAO robot. Australasian Con-
ference on Robotics and Automation (ACRA) (Dec 2008)

8. Lau, N., Reis, L.P.: FC Portugal - high-level coordination methodologies in soccer
robotics. In: Lima, P. (ed.) Robotic Soccer, pp. 167–192. InTech (Dec 2007)

9. Liemhetcharat, S., Coltin, B., Çetin Meriçli, Tay, J., Veloso, M.: Cmurfs: Carnegie
mellon united robots for soccer (2010)

10. Neves, A.J.R., Azevedo, J.L., Cunha, B., Lau, N., Silva, J., Santos, F., Corrente, G.,
Martins, D.A., Figueiredo, N., Pereira, A., Almeida, L., Lopes, L.S., Pinho, A.J.,
Rodrigues, J., Pedreiras, P.: CAMBADA soccer team: from robot architecture to
multiagent coordination. In: Papić, V. (ed.) Robot Soccer, pp. 19–45. InTech (Jan
2010)

11. Picado, H., Gestal, M., Lau, N., Reis, L., Tom, A.: Automatic generation of biped
walk behavior using genetic algorithms. In: Cabestany, J., Sandoval, F., Prieto,
A., Corchado, J. (eds.) Bio-Inspired Systems: Computational and Ambient Intelli-
gence, Lecture Notes in Computer Science, vol. 5517, pp. 805–812. Springer Berlin
/ Heidelberg (Jun 2009)

12. Ratter, A., Hengst, B., Hall, B., White, B., Vance, B., Sammut, C., Claridge, D.,
Nguyen, H., Ashar, J., Pagnucco, M., Robinson, S., Zhu, Y.: rUNSWift team report
2010 Robocup Standard Platform League (Oct 2010)

13. Reis, L.P., Lau, N.: FC Portugal Team Description: RoboCup 2000 Simulation
League Champion. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup
2000: Robot Soccer World Cup IV. Lecture Notes in Computer Science, vol. 2019,
pp. 29–40. Springer-Verlag, London, UK (Jun 2001)

14. Röfer, T., Laue, T., Müller, J., Burchardt, A., Damrose, E., Fabisch, A., Feld-
pausch, F., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Honsel, D., Kast-
ner, P., Kastner, T., Markowsky, B., Mester, M., Peter, J., Riemann, O.J.L.,
Ring, M., Sauerland, W., Schreck, A., Sieverdingbeck, I., Wenk, F., Worch, J.H.:
B-Human team report and code release 2010 (Oct 2010), only available online:
http://www.b-human.de/file_download/33/bhuman10_coderelease.pdf

15. Shafii, N., Reis, L., Lau, N.: Biped walking using coronal and sagittal movements
based on truncated fourier series. In: Ruiz-del Solar, J., Chown, E., Plöger, P.
(eds.) RoboCup 2010: Robot Soccer World Cup XIV, Lecture Notes in Computer
Science, vol. 6556, pp. 324–335. Springer Berlin / Heidelberg (Jun 2011)

16. Smith, R.: Open dynamics engine. www.ode.org (Jul 2008)
17. Tay, A.J.S.B.: Walking Nao Omnidirectional Bipedal Locomotion (Aug 2009)


