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Abstract. Expressiveness and naturalness in robotic motions and be-
haviors can be replicated with the usage of captured human movements.
Considering dance as a complex and expressive type of motion, in this pa-
per we propose a method for generating humanoid dance motions trans-
ferred from human motion capture data. Motion data of samba dance
was synchronized to samba music manually annotated by experts in or-
der to build, spatiotemporal representation of the dance movement with
variability, in relation to the respective musical temporal structure, mu-
sical meter, this enabled the determination and generation of variable
dance key-poses according to a human body model. In order to retarget
these key-poses from the original human model into the considered hu-
manoid morphology, we propose methods for resizing and adapting the
original trajectories to the robot joints, overcoming its varied kinematic
constraints. Finally, a method for generating the angles for each robot
joint is presented, enabling the reproduction of the desired poses. The
achieved results validated our approach, suggesting that it is possible to
generate poses from motion capture and reproduce them on a humanoid
robot with a good degree of similarity.

Keywords: Humanoid Robot Motion Generation and Motion Retarget-
ing

1 Introduction

Robotics applications grow daily, and the creation of realistic motion for hu-
manoid robots increasingly plays a key role. Since motion can be regarded as
an form of interaction and expression, that allows to enrich communication and
interaction, improving humanoid robot motion expressiveness and realism is a
form to accomplish better and richer human-robot interaction. A form of achiev-
ing more humanized robotic motion is to feasibly reproduce, and imitate, the
motions performed by humans. This would allow not only more expressiveness,
diversity and realism in the humanoid robot motion, but also a simple, less time
consuming and automatic form of creating and converting diverse human motion
to robotics. Considering dance as a rich and expressive type of motion, constitut-
ing a form of non-verbal communication in social interactions, also transmitting
emotion, it imposes a good case study of clear humanized motion.
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This paper presents methods for generating humanoid robot dancing move-
ment from human motion capture data. Processes are based on [9], this method
was applied to motion data of samba dance style synchronized to samba mu-
sic (manually annotated by experts), for building spatiotemporal representation
of the original dance movement, with variability, in relation to the respective
music temporal structure (musical meter), allowing the determination of the
fundamental key-poses of the dance style. Using this representation as starting
point, we present methods for resizing the body segments and retargeting the
joint trajectories towards different humanoid body morphologies. As such, we
firstly synthesize stochastic variations of the determined key-poses, then resize
these according to the targeted segment lengths and finally process the neces-
sary adjustments to retarget the generated joint trajectories onto the considered
humanoid morphologies. The method is tested for robot NAO [1], using the
SimSpark simulation environment, in order to generate and reproduce the orig-
inal samba dance.

The remainder of this paper is structured as follows: Section 2 presents a
review of related work on the motion analysis and motion generation. Section 3,
presents the proposed methods and the developed work. In Section 4, the main
results are presented and discussed and a evaluation of the similarity between
the original human motion and the generated humanoid motion is done. Finally,
in Section 5 the conclusion and future work are presented.

2 Related Work

Nowadays many attempts have been made to achieve realistic humanoid motion
based on human motion. The referred techniques below use dance motion capture
data and synthesize new motion from it. The first step in the process consists
on determining the most important key-poses from the motion capture data.
This choice impacts the overall aspect of the final motion, and must be accurate
allowing to determined key-poses to present real valor, and constitute meaningful
representation of the dance, to the dance and so represent the dance. From this
key-poses, the motion is then transfered to the robot, trying to achieve the
greater similarity possible with the original motion capture data.

2.1 Motion Analysis

One of the traditional methods to generate dance motion in computer anima-
tion and in robotics, its to interpolate transition motion between key-poses. So
key-poses most show representative instances of the motion. The techniques to
analyze and determine the appropriate key-poses are based on the analysis of the
body motion [4] [3] or by analyzing the dance music [9], and in some cases a si-
multaneous analysis of both aspects [15] [16] [14] [8]. Working on Latin dances
[4], uses information about the main characteristics of Merengue dance style, fo-
cusing only on components of the rotation of shoulders and hips. By analyzing
Japanese folk dance, [6] and [5], segmented the dance, in key-poses, in terms of
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minimum velocity of the end-effectors’ (hands and feet). Then these key-poses
were clustered and interpolated to generate the original dance. [3] extracts rapid
directional changes in motion. A combination of music and motion analysis is
applied in [15] [16] [14] [8]. [15] identifies key-points of the motion rhythm as
local minimums of the *weight effort’ (linear sum of rotation of each body joint),
indicating stop motions and recognized as key-poses, and motion intensity points
as the average of instant motion from the previous key pose. Its music analysis
focus on the music intensity (sound whose spectral power is strongest between
the neighboring frequency sound) and music rhythm, that is found by analyzing
the repetition of several phrases and patterns present in the music structure. In
[16], stop frames of the hand motion are considered as key-frames, and motion
intensity is determined as the difference in the velocity of the hands between
frames. Musical analysis is similar to [15], extracting the music beat and degree
of chord change for the beat structure analysis, and music intensity for mood
analysis. There are also works based on temporal scaling techniques [14] (for
upper-body motion) and [8] (for leg motion). In [14] dance motion is captured
at different speeds and the comparison of the variance in the motion, allows
to observe that some poses stay preserved. This poses are considered key-poses
since they tend to represent important moments to the music. The analysis in
[8] is similar to [14] , but focusing on the analysis of the step motion. The deter-
mination of the key-poses is made using the indication that the original timings
for tasks around key-poses are maintained and that stride length is also close
to the original, even at different speeds. In [9], spatiotemporal dance analysis
model is presented, based on the Topological Gesture Analysis (TGA) [7], that
conveys a discrete point-cloud representation of the dance. The model describes
the spatiotemporal variability of the dance gestural trajectories in spherical dis-
tributions, according to the music metrical classes. This method describes the
space that the dancer occupies at each musical class (1 beat, half-beat, 2 beats,
etc) in terms of point-clouds, and generated a spatiotemporal representation of
the occupied points, by projecting musical cues onto spatial trajectories. We fol-
lowed the [9] method of dance motion analysis since it conveys a parameterizable
representation of the original dance, incorporating its intrinsic variability.

2.2 Dance Motion Generation

Dance Motion Generation techniques typically aim at generating motion from
the key-poses extracted in the Motion Analysis phase. [11], [12], [2], [8] and
[6] apply inverse kinematics to transform the markers position from the motion
capture data into robot joint angles. In [2] the inverse kinematics is only ap-
plied to the upper-body, while the pelvis, leg and feet motion is generated by
optimization based on the Zero Motion Point (ZMP) trajectory and dynamic
mapping. [8] checks the intervals between steps to keep a stable ZMP and then
applies inverse kinematics to map the leg joint positions to robot joint angles.
[11] applies optimization to ensure the physical restrictions of the robot, ensuring
that limits of angles, velocities and acceleration are met. [12] applies sequential
motion restrictions by optimization, limiting angles first, then solves collision
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avoidance and overcomes velocity and dynamic force constraints. Solving colli-
sion avoidance by increasing the critical distances for the periods that present
collisions, [17] uses kinematics mapping to translate the motion capture data to
the humanoid, using similarity functions based on the value of the angles of the
original data. For improving the balance, an algorithm based on the number of
feet in contact with the ground is used, modifying the hip trajectory to satisfy
a constraint based on ZMP criterion. [6] also limits angles and the angular ve-
locity and finally modifies the ZMP trajectory in order to keep balance. [3] and
[15] use motion graphs to represent the motion. [3] aimed to generate motion on
the fly, using a library of motion graphs, matching then the motion represented
by the graph with the input sound signal. On its hand, [15], traces the motion
graph based on the correlation between the music and motion features. Finally,
[15] determines the better graph path by choosing the highest value from the
correlation between the music and motion intensity and a correlation between
music beats and motion key-frames. In terms of motion retargeting, [3] uses a
real-time algorithm to adapt the motion to the target character. [14] applies
optimization to overcome the joint angles limitations of the target character.
[13] presents a way to extract the joint angles from the three-dimensional point
representation of a pose. This method can be applied not only for computer
animation but also for robotics. After generating the motion, [11] applies a
phase of motion refinement to detect trajectory errors and correct them. On its
hand, [8] makes a final refinement of the generated movement in order to keep
the robot’s balance and avoid self-collisions. To generate the robot joint angles
from the pose point representation obtained from the previous dance movement
representation [9] we will base our approach in [13], extracting Euler angles in
the 3 dimensions based on a body centered axis system.

3 Methodology

3.1 Dance Movement Analysis

Our motion analysis stage is based on the approach presented in [9]. As such,
we recurred to the same dance sequences of Afro-Brazilian samba, which were
captured with a MoCap (Motion Capture) system, and synchronized to the
same genre of samba music (manually annotated by experts). Upon these, we
also applied the TGA (Topological Gesture Analysis) method [7] for building
a spatiotemporal representation of the original dance movement in relation to
the respective music temporal structure (musical meter). This method relies in
the projection of musical metric classes onto the motion joint trajectories, and
generates a spherical distribution of the three-dimensional space occupied by
each body joint according to every represented metric class. In such way, this
representation model offers a parameterizable spatiotemporal description of the
original dance, which translates both musical qualities and variability of the
considered movement.
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3.2 Dance Movement Generation

The actual dance movement generation is based on three steps: (a) key-poses
synthesis from the given representation model, (b) morphological adaption of
the key-poses to the used body model, in terms of segments length and number
of joints, and (c) the actual key-poses’ retargeting from the used character to
the simulated robot NAO.

Key-Poses Synthesis By following [10], the synthesis of key-poses consisted
on calculating a set of full-body joint positions, one for each considered metric
class. In order to translate the variability imposed in the original dance, for
every key-pose the joint positions were calculated by randomly choosing rotations
circumscribed by every joints’ TGA distributions without violating the fixed
geometry of the human body.

As described in [10], each key-pose is split into 5 kinematic chains. From
the anchor to the extremity of each kinematic chain, each joint position pi" is
calculated based on a random rotation circumscribed by the possible variations
of its rotation quaternion qusm (i.e. the 3d rotation of a target unity vector 7;;"

around its base unity vector 75?) between every two body segments:
p}” = p;’ll +lioi* 7’5m :p}" IS T]m7 (1)
- J

where pj" | is the former calculated joint position, ;1 ; is the current segment
length, and 77" is the current TGA spherical distribution.

Morphological Adaption In order to get a representation of the key-poses
in the target humanoid morphology the point cloud representation of the dance
must be adapted, maintaining the spatial relationship and expression of the
poses across all the represented metrical classes. To achieve this, we must look
at the target morphology in terms of size, joints’ degree of freedom and other
target kinematic physical constraints. Prior to the actual humanoid key-poses’
generation, the segment lengths of each body part length must be changed to
those of the target body model. For each joint j, I;_;; is the length of the
segment that connects j — 1 to j, and D" is the spherical distribution, with
radius 77" and center of". The distance from o7’ to 0" is considered as d, ;
and direction vector from o ; to o} is m’f_l ; - In order to change the segment
length from [;_, ; to l;‘—l,j:

redim = lg'fl,j/lj—l,j

, :mfl;”_u fredim )
it ="« redim

/'m m 'm m
o = oy iy % VO

where bd}”; ; is the new distance from o}" ; to of*, and r/™ the adapted radius

of the spherzlcal distribution D7" with 0;’” as new center point. The translation
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that happens from of" to 097” is then applied. To all the following joint cen-
ters in the considered kinematic chain. This method allows to resize any body
segment by manipulating the spherical distributions of the movement represen-
tation according th the target segment lengths. Only the anchor sphere of the
body model isn’t resized or moved. The relation between the segment length
and the radius was considered linear, as pointed by redim in eq. 2. The method
only performs a translation of the spherical distributions centers maintaining the
relation between the spherical distributions centers. The change in the spherical
distribution radius, is regarded as an adaption of the segment reach.

In order to have the correct body segment length, it may be necessary to
remove joints that the target humanoid body doesn’t have. In order to choose a
point in D7* and D7} ,, eliminating D" |, we calculate the interception, in the
form of the spherical cap C}", of the spherical distribution for the target joint,
D75, with a sphere ST centered in the position of the previous joint, pj*, and
with radius equal to lj ;41 + lj4+1,542. If C7" is a empty set, the center of DT,
will be translated in the direction of the vector from p" to o' ,, increasing
or decreasing the distance, from pj* to o} ,. Allowing to obtain interception
between D7\, and 57", finally a search for a point in C}", that connected to pJ*
will be closer to the sphere center of the eliminated joint, of’ ;. In the special
case where pi" is the anchor point of the model (and first point to be determined
in the model), we can also move P}, keeping it inside DJ", in the direction of
the vector from pj" to ofy5 to enable the interception, and then move pj*, in
order to approach him of to p7; to allow a better fit of the segment that will
be traced.

Another problem that we faced in the motion retargeting was related to the
necessity to ensure that certain body segments were collinear. In order to ensure
that the segment from j to j’ is collinear with the segment from j2 to 52,
firstly we generate, to the segment from j to j’, the random quaternion and its
corresponding direction vector T™, and try to apply it to the other segment

2,7
involved.
(P + T+ 1) € DI 3)
(" + T % L gr) € DI A+ T % Linjor) € D )

Condition 3 is the constraint applied to accept a generated point in [10], the
algorithm will try to ensure this condition while not reaching the maximum
number of tries. The condition 4 must be ensured instead, to use simetric vectors
in both segments. If the method can’t generate a vector that satisfies condition
4, then will generate a vector that can satisfies 3, and calculate a new point from
it:

I3 =05+ Uy % L g (5)
This new point will be outside the spherical distribution of 72/, D%, so the
translation from pfJ5, to the center of D75, and assumed as the translation that
must be applied to all the following spherical distribution center points in the
kinematic chain. The translation will ensure that the remaining centers still
maintain the spatial relation and until extreme of the chain the pose is still
similar to the original.
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Key-Poses Retargeting To generate the actual robot joint angles from the
representation obtained from the application of the previous methods we applied
a motion retargeting technique based on [13] for extracting the Euler angles of
each joint, in the 3 dimensions, based on a body-centered axis system.
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Fig. 1. Considered body models: (left) motion capture original; (rigth) humanoid robot
NAO.

The starting point of this method is to determine a local coordinate system
in the chest of the previously resized and adapted body model:

Y =PLSH — PRSH

Ztmp = PCSH — PSHIP

T =Y X Ztmp (6)
z=x XYy

Razis = [norm(z), norm(y), norm(z)],

where norm(X) = é—‘ and X is the cross product between two dimensions.

Now, for each vector in the global coordinate system, we calculate the corre-
spondent vector in the local coordinate system and calculate the angles in all the
axis that we need. This calculation is specific to each segment of the considered
humanoid morphology due to the presence of singularities of different natures.
For the left arm we start at the upper arm segment LELB by extracting the
angle in the y axis (which moves the arm front or back), and retarget it to the
pitch rotation of the robot’s left shoulder LShoulder Pitch:

Yo = PLELB — PLSH
T
U1 = Raris X Vo (7)

LShoulder Pitch = atan2(vy,,v14).
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The rotation of the left shoulder in z axis (moves the arm left or right), is
extracted in the same way by applying the previous calculated y rotation to the
previous vector vy:

ve = Ry (LShoulderPitch) x v (8)
LShoulderRoll = atan2(vay, v2y),

where R, (LShoulderPitch) is the rotation matrix in y by LShoulder Pitch de-
grees.
We then apply the same method to extract the angles for the left arm elbow:

U3t = PLHND — PLELB
vy = R,(LShoulderRoll) x R,(LShoulderPitch) x RL ;. x v

LElbowRoll = atan2(vs,, —vsy) 9)
v4 = Ry (LElbowRoll) X v3

LElbowY aw = atan2(vay, vag).

The extraction of the legs uses the same local coordinate system, Rg.;s, and
starting by the angles for the hip joints proceeding to the knee and feet joint.

Ust = PLHIP — PLKNEE
{U5 = Ri,is X Vst (10)
RHipRoll = atan2(vs,, —vs) (11)
vg = Ry (RHipRoll) x vs
RHipY awPitch = atan2(vey, Ves) (12)
vy = R, (RHipY awPitch) X vg

RHipPitch = atan2(vyg, —v7;)
U8t = PLKNEE — PLANK
vs = Ry(RHipPitch) x R.(RHipY awPitch) x Ry(RHipRoll)x  (13)

Rgzis X Vgt
RKneePitch = atan2(vrz, —v7,)

Vgt = PLANK — PLFOOT 14
vy = R, (RKneePitch) x R,(RHipPitch) x R,(RHipY awPitch) ~ (14)

X Ry(RHipRoll) x RY . x vy

RAnklePitch = atan2(—vz,, v7s) (15)

The angle RHipY awPitch isn’t a simple rotation over z axis, and it’s a
shared joint with the rigth side, so it doesn’t allow to easily give the desired
orientation to the legs. Since the calculated angle is in the z axis, and the joint
will move in z rotated by 457, there was made an option to use the value closest
to 0, between the calculated RHipY awPitch and LHipY awPitch. Ultimately,
the robot presents another joint, RAnkleRoll, that wans’t determined in the
calculations and was considered important only to the maintenance of balance,
which is outside the scope of this paper. The joint angles for the right arm and
leg are calculated in similar way.
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4 Evaluation and Results

4.1 Key-poses Comparison

The following images present a comparison between the poses generated and it’s
representation in the NAO humanoid (see figure 2 and figure 3).

Fig. 2. Comparison of pose 1 (two left images). Comparison of pose 3 (two right im-
ages). In each set the left image is the generated by the method and the right image
the reproduced in the robot.
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Fig. 3. Comparison of pose 5 (two left images). Comparison of pose 6 (two right im-
ages).

4.2 Level of Similarity

In order to compare the similarity we created a way to evaluate the similarity
of the poses based on the evaluation of distances. With this we can evaluate
the similarity of the generated pose points with the spatial position of the same
body parts in the robot. For this, we will use a comparison between the distance
of points in the pose and in the robot. For each pair of joint, j and i, we will
determine the distance between them in the robot, dmboti’j, and in the expected
distance of the pose, dyose, ;- Using this we will evaluate the similarity of the
pose presented by the robot versus the expected as the sum of the difference
between the two already calculated distances:
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Sima,b = Z Z ’dposeq;,j - drobotwv | (16)
Jjoi=j

Using this measure, we calculated the similarity between the poses with
morphological adaptation, without morphological adaptation, with resize of the
body, without resize and finally pose generated only using the centers of the
spherical distributions for each joint (see ??). Since the some of the poses have
different sizes the evaluation will have higher values, in order to have a mea-
sure of comparison, we considered the height, hy, and the wingspan, wy, of the
different bodies and created a adjustment factor:

f=(hy *wp)/(hy * wy) (17)

With this factor we aim to compare the similarity of the reproduction of the
poses from a resized body and from a normal human body. The factor tries to
determinate the linear relation between the max area covered by the different
morphologies. Using both the evaluation function and the adjustment factor, we
calculated the similarity between the generated key-poses and the reproduced
key-poses in the humanoid. The similarity was calculated for the upper-body,
arms mainly, and for the legs. This allows to demonstrate if the algorithm gen-
erates better angles for one part of the body. A third value considering all the
body values was also calculated (presented in the 1).

Table 1. With Resizing and Morphological Adaptation (left); No method applied
(rigth)

Pose Arm Leg  Total Pose Arml Leg Total

1 459.566 666.27 2742.05 1 2768.45 3716.05 21657.68
373.065 1038.88 2742.05 2 2808.8 3499.0 21019.6
175.81 1038.88 4645.39 3 2766.87 3529.73 21116.14
437.592 987.604 3887.03 4 2837.17 3723.22 21116.14
584.048 583.348 3093.91 5 2689.28 3633.93 21871.87

6

7

8

452.228 734.822 2974.51 2807.12 3423.22 22211.47
326.499 550.647 1904.72 2579.38 3756.02 20365.76
276.419 599.648 2093.8 2713.37 3766.74 205648.66

W O Utk WN

In order to compare the values in both tables the adjust factor was calculated
as 2.602 and all the values for the evaluation without any resizing were divided
by it.

4.3 Discussion

Both the figures presented and the numerical evaluation of the similarity show
good results for the arms posture, and a bit worst for the legs. This difference is
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mostly due to problems in the generation of the angles for the hip of the robot.
In this area, we have 3 different joints that work in 3 different angles, while
2 of them control the rotation in z and y respectively. The third controls the
movement in a z axis, rotated 45, and its shared by both legs, this makes the
determination of the rotation a problem. We tried to minimize the value given
to this joint, as explained, but in cases that both values are great, the joint will
induce to much error in the pose. The principal error in the poses is in that
section, leading to smaller but existent errors in the remaining joints of the leg.

The numerical evaluation of the similarity shows that there is a advantage
on performing the morphological adaptation, with better similarity results for
the poses that suffered the adaptation process. Either way, the results from this
evaluation have some error associated, since the comparison on the robot presents
variations on the positions even when the body is still. And the adaption factor
used may not present the best relation to perform a comparison between the
adapted poses and the non-adapted poses.

5 Conclusions and Future Work

In this study we proposed and evaluated methods for resizing a robot model and
retargeting the joint trajectories. The process starts from information extracted
from the dance motion analysis, and then generates random joint positions that
satisfies the desired model, finally the key-poses are extracted and reproduced
in the target humanoid. The overall results seem to show that the methods used
for the resizing and retargeting work, needing further evaluation with a different
method and appliance to other dance motions. In relation to the angle extraction
method, it seems to be valid and obtains good results to the upper-body, but
still only offers a approximate pose for the legs. The review of the extraction
of the hip angles may prove to be a improvement in the method. In a form to
improve the similarity the evaluation function may be used as the evaluation
function in a optimization process. Finally, in order to obtain stable movements,
motion refinement should be made, ensuring balance and avoiding collisions.
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