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Abstract. Humanoid robots usually have a large number of degrees of
freedom which turns humanoid control into a very complex problem.
Humanoids are used in several RoboCup soccer leagues. In this work,
the SimSpark simulator of the Simulation 3D will be used. This pa-
per presents an automatic approach for developing humanoid behaviors
based on the development of a generic optimization system. The paper
describes the adopted architecture, main design choices and the results
achieved with the optimization of a side kick and a forward kick. For
both skills, the optimization approach allowed the creation of faster and
more powerful and stable behaviors.

Keywords: Humanoids, Soccer, Simulation3D, Optimization, NAO, SimSpark

1 Introduction

The advent of humanoid robots has brought new challenges in robotics and re-
lated fields. The development of behaviors with many degrees of freedom (DOF)
is one of these challenges. Within RoboCup [7], an international robotic com-
petition, researchers are challenged to many of these problems in order to have
robots, including humanoids, playing soccer and performing other complex tasks.

The RoboCup Simulation 3D League uses a model of the humanoid robot
NAO [4] and was created in order to promote research in techniques to make
humanoid robots play soccer. The FCPortugal Team project was conceived as an
effort to create intelligent players, capable of thinking like real soccer players and
behave like a real soccer team competing in the RoboCup Simulation Leagues.
The result of this kind of research may be extended to other domains, such as
the use of real humanoid robots to perform social tasks such as helping the blind
to cross streets or elderly people to perform tasks that became impossible for
them to do alone.

The use of simulated environments is very useful because it allows the de-
velopers to make arbitrary or complex tests in the simulator without using the
real robot thus avoiding expensive material getting damaged [8].



In order to have a humanoid robot playing soccer, it has to walk in many
directions, kick the ball, get up when necessary, etc. However, developing a be-
havior is not trivial as you have to control lot of DOF (NAO humanoid has 22)
in a complex body shape where most configurations are not stable [9][13]. This
makes the development of fast and stable behaviors a complex task. This paper
presents an automatic approach to improve the development of such behaviors
using generic optimization methods.

This paper starts by describing the problem in Section 2, then the designed
optimization system and its main features in Section 3. The results achieved are
presented in Section 4 and Section 5 presents the conclusion.

2 Problem Formulation

The official Robocup 3D simulation server is SimSpark [2], a generic physical
multi-agent simulator system for agents in 3D environments. It simulates the
physics dynamics of the real world in the context of a soccer game as well as the
robots (physical dimensions, sensors and joints).

2.1 Humanoid Robot Behaviors

A behavior or skill consists in a intentional, repeatable action executed by the
agent, such as getting up from a fall or kicking the ball. These can be specified
once and executed as many times as necessary. The FCPortugal’s agent has
these behaviors specified and stored in XML files, providing the parameters of
a behavior specification model. All behaviors are loaded when the agent starts.

A behavior defines the trajectories for all the humanoid joints. A joint tra-
jectory can be defined by a set of points over an interval of time. A behavior
specification model can be used to specify skills by computing different joint tra-
jectories. There are various models for specifying skills, some of those used by the
FCPortugal Team, including the StepBehavior model which uses step functions
to model the trajectories, SlotBehavior model which uses a Sine Interpolation
(SI) method [11] [12] [13], and the Central Pattern Generator model (CPG),
based on the work of Behnke [1].

3 The Optimizer

The optimizer was designed in a distributed architecture allowing a behavior to
be optimized using either a single computer or multiple computers connected
via a network. Figure 1 depicts the configuration of the optimizer.

Once started, the optimizer server starts the simulator, the monitor and the
agents using predefined shell scripts. It may start multiple simulators and their
respective monitors in different computers if specified. The agents connect to
the simulation server and to the optimization server. Then the optimization
server sends to the agents the behaviors to be executed and receives from them
information about their execution used to compute the behavior performance.
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Fig. 1: Possible setup for the optimizer, running in multiple machines.

The optimization server is the core of the system and it is multi-threaded.
There is one thread per agent that provides the agent with the behavior to op-
timize, waits for the agent to finish executing the behavior, receives the experi-
mental data sent by the agent and evaluates it, giving that generated behavior
a score according to a specified objective function.

A shell script is responsible of starting the FCPortugal agents. This allows
the agents to be started on the local or in a remote machine. Another shell
script terminates the agents. In the current implementation, for convenience,
the simulator script, that starts the simulator, is started from the agent script.

The scripts exist for both flexibility and to isolate the optimization server
from the details of running the other components. Recompiling the optimization
server each time we wanted to change the parameters of the agents, such as when
the host of the simulation server changes, would be a poor design choice [12].

3.1 The configuration file

In order to make this optimizer easier to use in different situations, a configu-
ration file is used to specify the characteristics of the optimization and how the
agent will execute the experiment. The main parameters are the following:

— behavior - Path to the XML specification file of the behavior to optimize.

— type - Type of behavior. It can be “StepBehavior”, “SlotBehavior”, “Expe-
diteSlotBehavior” or “CPGBehavior”.

— objectiveScript - Path to the LUA script that evaluates the executed ex-
periment and returns its fitness.

— objective - The evaluation method can be implemented directly in the
optimizer code, instead of in a LUA script. This is not recommended since
most of the fitness functions can be specified with a LUA script. However,
for a fitness function which handles more complex data this might be useful.

— script - Path to the script responsible for starting agent(s) and simulator(s).

— name - Name for the resulting optimized behavior.



— algorithm - Algorithm used for optimization. The available options are
"he” (Hill-Climbing), "her” (Random Hill-Climbing), ”sa” (Simulated An-
nealing), "ga” (Genetic Algorithm) and "tabu” (Tabu Search).

— numExp - Number of executions for the same experiment.

— nMax - The number of iterations for the algorithms main loop.

— numThread - If more than one agent can execute the experiments, the
optimization can be made in less time. This option specifies the number of
agents that will be executing.

— waitBefore - Time in seconds that the agent will wait before executing the
experiment. Ater a beam the agent loses some balance and this waiting time
may be used to stabilize or to perform other preparation taks.

— useGyroStabilization - Instead of using the waitBefore option, another
approach is possible. Using the data received from the agent’s gyroscope, it
is possible to know if the agent has enough stability to start the execution.
The value in this parameter is a boolean (true/false).

— waitAfter - Time in seconds, the agent waits before collecting data about
the experiment to be evaluated by the fitness function. This is useful, for
instance when optimizing a kick as we need to know the final ball position.

— beamBall - The position of the ball in the start of each execution. Again,
if when optimizing a kick we need to reset the ball position after each kick.

— algorithm parameters - the parameters of the algorithm such as the pop-
ulation size for genetic algorithms or the size of the tabu list for Tabu Search.

— behavior optimization parameters - specific parts of the behavior to be
optimized such as which slots or steps for SlotBehaviors or StepBehaviors,
respectively, which joints restrictions to enforce such as symmetries, etc.

— minChange - minimum value to change an optimization variable to obtain
a neighboring solution - does not apply to time intervals

— maxChange - maximum value to change an optimization variable to obtain
a neighboring solution - does not apply to time intervals

— minChangeDelta - minimum value to change an optimization variable that
represents a time interval to obtain a neighboring solution;

— maxChangeDelta - maximum value to change an optimization variable
that represents a time interval it to obtain a neighbouring solution.

— serverRestartTime - maximum amount of time the simulator can run
without being restarted (in seconds). Further details in section 3.5.

To process the configuration files libconfig! library is used. For this kind of
configuration it is more compact and readable than XML. Besides, it is type-
aware, which means that it is not necessary to do string parsing to the specified
values [10].

3.2 Gyroscope Initial Stabilization

The time the agent has to wait before starting the experiment can be statically
fixed in the configuration file or, alternatively, this time can be dinamically

! Further information in http://www.hyperrealm.com/libconfig/



determined using information from the gyroscope. When this option is set the
agent will wait until it receives from the gyroscope data values in the range of
| = 5.0,5.0[. Then, the agent is ready to execute the behaviour.

3.3 Objective Function

In order to evaluate the experiment, the agent collects data and sends it to the
server. The collected data includes: The time taken to execute the behaviour; A
boolean indicating whether the agent fell; The agent’s initial and final position;
The distance travelled by the agent in each axis; The final agent’s orientation;
The ball’s initial and final position; The distance travelled by the ball in each
axis; The simulation time.

After receiving this data, the server evaluates the experiment. This is made
calling the objective function (or fitness function). There are two ways to spec-
ify an objective function (or fitness function). The first is by implementing a
C function and include it in the source code of the optimizer. The drawback
of this approach is that whenever it is needed to create an objective function,
some changes have to be made in the code. This requires some knowledge about
the implementation code. Furthermore, it is necessary to recompile the opti-
mizer. To handle this drawback, we used a scripting language known as Lua [5,
6]. Lua is an embeddable scripting language with a simple C API and it has
been widely used as a tool to customize applications. It has the usual control
structures (whiles, ifs, etc.), function definitions with parameters and local vari-
ables, it also provides functions as first order values, closures, and dynamically
created associative arrays (called tables) as a single, unifying data-structuring
mechanism [3]. Using the Lua API, the objective function for the optimization
can be implemented as a script in a separated file and it is only necessary to
specify the path to it.

3.4 Optimization Algorithms

Several problems consist in finding the best configuration of a set of variable
values to minimize (or maximize) some quantity known as the objective function,
f. The independent variables that can change while searching for an optimum
are known as decision variables. For some problems, the values that decision
variables can take are specified by their domains and also through a number of
conditions known as constraints.

The search space of a problem is defined as the set of all candidate solutions.
A candidate solution is an instantiation of the decision variables, if it satisfies all
the constraints of the problem it is called a feasible solution or just a solution.
The solution space is the set of all (feasible) solutions. An optimal solution is
a solution where the objective function evaluates to a minimum (or maximum).
Computer algorithms that traverse the search space with the purpose of finding
optimal solutions are called automatic optimization algorithms.



3.5 Adaptations made in the simulator

Whenever an experiment is made, the agent and ball positions change. In order
to have the same conditions for every execution, it is necessary to undo these
changes. It is necessary to have an automated way of controlling the agent and
ball positions. So, a few changes were made in the simulation server.

The simulator has a feature that allows the creation of plugins. These plugins
can be actions that make some changes in the simulation environment and they
are triggered when the server receives some specific messages. The simulator had
already a plugin that allowed the repositioning of the agent — the Beam plugin.
However, this could only be done in the beginning of the games. As the optimizer
needs to do this in every game states, a few changes were made in the Beam
plugin. To reposition the ball, a similar plugin was created.

Another modification was to allow the game to automatically start. Origi-
nally the server only allowed manual starts. The duration of the game was also
modified. In the original simulator, the server had to be reinitialized after less
than 600 seconds of simulation, and each reinitialization took approximately 20
seconds. This is acceptable, but in order to speed up the optimization, this value
was changed to a larger number.

4 Experimental Results

4.1 Side Kick Optimization

A good approach for developing new behaviors for the FCPortugal agent, is to
start by creating a version of the behavior by hand. After that, the optimizer
can be used to enhance it. In this experience, a side kick was developed using
the Slot Behaviour model. The execution of the non optimized behaviour can be
seen in figure 2. In a side kick the main objective is to get higher ball distances
in less time and also not to have the ball going front or back. So, the fitness
function awards solutions with these characteristics.

bdist? * bell(bdist,,)
_ y

(x

Fig. 2: Sequence of images showing the execution of the side kick skill.



Table 1: Side kick optimization parameters.

Parameter Value
Number of experiments 5
Number of threads 1
Minimum Change for Angles -5.0
Maximum Change for Angles 5.0
Minimum Change for Deltas -0.3
Maximum Change for Deltas 0.3
Number of Iterations 500
Tabu List Size (Tabu Search) 1000
Wait for Gyroscope Stabilization True
Time to Wait After the Experiment (sec) 3.0
Beam Ball Position (0.0, 0.0)

Table 2: Side kick optimization results.

Ball Distance|Duration|Best Solution|Best Solution Time| Total Time
(m) (sec) (iteration) (simulation sec) |(simulation sec)
Original 1.42 1.14 - - -
Hill Climbing 2.75 0.89 266 9756 18042
Tabu Search 3.07 0.88 404 14553 17920

The function bell(z) is the probability density function of a normal (or Gaus-
sian) distribution. It is used in the fitness function with g = 0.0 (a.k.a. mean)
and 02 = 1.0 (a.k.a. variance) with the aim of giving better fitness values to
solutions in which the ball goes strictly to the side.

The optimization parameters used are shown in Table 1. The results achieved
can be seen in Table 2. The best result reaches 3.07 meters of ball distance,
executes in 0.88 seconds and was obtained with the Tabu Search algorithm.

The graphs of Figure 3 present the evolution of the fitness score of the best
and current solutions, for both Hill Climbing and Tabu Search methods. The
blue lines represent the current experiment fitness and the red lines are the best
fitness until that iteration. We can notice that the fitness of the solution that is
being evaluated varies greatly, despite the very slight differences. Even though
the Tabu Search only reached the best fitness at iteration 404, a solution with
the same fitness as the best solution in Hill Climbing, was achieved in less time
at iteration 63.

4.2 Forward Kick Optimization

Another behavior optimized was the forward kick. The behavior was already in
use prior to being optimized but we wanted to maximize the distance achieved
by the ball. The fitness function is represented in equation 2. Again, the function
bell(z) is used to ensure that the ball is kicked strictly forward.
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Fig.3: Graphs of the fitness over the iteration reported in the optimization of
the side kick skill for both Hill Climbing and Tabu Search algorithms.
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Table 3: Forward kick optimization parameters.

Parameter Value
Number of experiments 6
Number of threads 1
Minimum Change for Angles -5.0
Maximum Change for Angles 5.0
Minimum Change for Deltas -0.3
Maximum Change for Deltas 0.3
Number of Iterations 500
Tabu List Size (Tabu Search) 1000
Wait for Gyroscope Stabilization True
Time to Wait After the Experiment (sec) 4.0
Beam Ball Position (0.0, 0.0)

The table 3 shows the parameters used in the experience. The results of this
experiment are reported in the table 4. The best results were achieved with Hill
Climbing resulting in a kick that moves the ball 6.30 m. The skill duration was
reduced from 2.04 s to 1.78 s. The graphs of figure 5 show the convergence of
the optimization methods. The blue lines represent the fitness of the current
experiment and the red lines are the best fitness until that iteration.

5 Conclusion

Humanoid robots are currently not able to perform as well as humans do some
simple tasks, such as kicking a ball. This work offers an automated process of re-
ducing this difference by improving existing behaviors with automatic optimiza-
tion methods. The initial work was made to create an optimization framework



Fig.4: Sequence of images showing the execution of the front kick skill (not
optimized).

Table 4: Forward kick optimization results.

Ball Distance|Duration|Best Solution|Best Solution Time| Total Time
(m) (sec) (iteration) (simulation sec) [(simulation sec)
Original 5.15 2.04 - - -
Hill Climbing 6.30 1.78 495 27419 27637
Tabu Search 5.65 2.04 356 20159 28258

Fitness over Iteration with Hill Climbing Fitness over Iteration with Tabu Search
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Fig.5: Graphs of the fitness over the iteration for the longest distance kick op-
timization with the Hill Climbing and Tabu Search methods.
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for the behaviors of the FCPortugal Team 3D humanoid agent which inhabits
the simulated world of the RoboCup 3D simulation server. This required both
modifications to the agent, the simulation server and the creation of the opti-
mizer itself. The configuration of the optimizer was designed to be easily used
with different kinds of behaviors. Also, the use of scripts to implement the objec-
tive function, makes the optimization much more generic and easy to configure.
Two behaviors were optimized in this work: a side kick and a front kick. Both
were created using the SlotBehavior model and the results were very good.
The side kick reached the best results with the TS algorithm, having an
improvement of 91% with the ball distance being raised from 1.38m to 2.64m.
The forward kick optimization also achieved good results: from 5.15 meters of
ball distance now the kick can get 6.30 meters, which is an improvement of 22%.
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