
Certifying Execution Time

Vı́tor Rodrigues2,3, João Pedro Pedroso2, Mário Florido2,3, Simão Melo de
Sousa1,3

1 RELiablE And SEcure Computation Group
Universidade da Beira Interior, Covilhã, Portugal

2 DCC-Faculty of Science, Universidade do Porto, Portugal
3 LIACC, Universidade do Porto, Portugal

Abstract. In this paper we present the framework Abstraction-Carrying
CodE Platform for Timing validation (ACCEPT), designed for timing
analysis of embedded real-time systems using the worst-case execution
time (WCET) as the safety parameter. In the context of real-time em-
bedded code safety, we describe in detail the component responsible for
generating and checking the WCET certificates. In particular, the check-
ing mechanism is efficiently designed so that code consumers can au-
tonomously verify that the received code meet theirs internal real-time
requirements. The certificate generation/checking mechanism is inspired
in the Abstraction-Carrying Code framework and implemented using
Abstract Interpretation and Linear Programming.

1 Introduction

Embedded systems, in particular real-time systems, often require adaptive con-
figuration mechanisms, where the actualization of available application services,
or even operating system services, may be required after their deployment. Tra-
ditionally this is done using a manual and heavyweight process specifically dedi-
cated to a particular modification. However, to achieve automatic adaptation of
real-time systems, the system design must abandon its traditional monolithic and
closed conception and allows itself to reconfigure. An example scenario would be
the upgrade of the control software in an automotive embedded system, where
the received patch code is dynamically linked in the system, but only after the
verification of some safety criteria so that security vulnerabilities or malicious
behaviors can be detected before integration.

The main safety criteria in embedded real-time systems is based on the
worst-case execution time (WCET) of an application. Given a set of concur-
rent application tasks, the timeliness of the system depends on its capability to
assure that execution deadlines are meet at all times. However, the dependency
of the WCET on the hardware mechanisms that increase instruction through-
put, such as cache memories and pipelining, will increase the cost and com-
plexity of the WCET computation. Considering that embedded systems typ-
ically have limited computing resources, the computational burden resulting
from the integration of the WCET analyzer into the trusted computing base

would be unacceptable. Existent solutions for this problem are, among oth-
ers, Proof-Carrying Code (PCC)[15], Typed-Assembly Languages (TAL)[14] and
Abstraction-Carrying Code (ACC)[2], which common ground is the use of some
sort of certificates that carry verifiable safety properties about a program and
avoid the re-computation of these properties on the consumer side.

The prime benefit of the certificate-based approach is separation of the roles
played by the code supplier and code consumer. The computational cost asso-
ciated to the determination of the safety properties is shifted to the supplier
side, where the certificate is generated. On the consumer side, the safety of the
program actualization is based on a verification process that checks whether the
received certificate, packed along with “untrusted” program, is compliant with
the safety policy. To be effective, the certificate checker should be an automatic
and stand-alone process and much more efficient than the certificate generator.
Besides the certificate checking time, also the size of the certificates will deter-
mine if the code actualization process can be performed in reasonable time. Put
simply, the main objective of the “certificate+code” setting is to reduce the part
of the trusted computing base which attests the compliance of the received code
with the safety policy.

However, the use of verifiable WCET estimations as safety properties im-
poses new challenges to the verification process because of the nature of the
techniques used to compute the WCET. In fact, since embedded microproces-
sors have many specialized features, the WCET cannot be estimated solely on
the basis of program flow. Along the lines of [23], state of the art tools for WCET
computation evaluate the WCET dependency on the program flow using Integer
Linear Programming (ILP), while the hardware dependency of the WCET is
evaluated using abstract interpretation. Nonetheless, while these tools are tai-
lored to compute tight and precise WCETs, the emphasis of the verification
process is more on highly efficient mechanisms for WCET checking. Therefore,
we propose an extension of the abstract interpretation-based framework ACC
with an efficient mechanism to check the solutions of the linear programming
problem.

The implementation of the ACCEPT’s static analyzer follows the guidelines
proposed by Cousot in [8] for the systematic derivation of abstract transfer func-
tions from the concrete programming language semantics. Fixpoints are defined
as the reflexive transitive closure of the set of transition relations ordered in
weak topological order [5]. In practice, fixpoints are computed using a chaotic
iteration strategy that recursively traverses the dependency graph until the fix-
point algorithm stabilizes. The abstract evaluation of a programs computes, by
successive approximations, an abstract context that associates to every program
point an abstract value. For WCET analysis, the abstract context used for micro-
architectural analysis is adjoined with an abstract context containing the upper
bounds for loops. After fixpoint stabilization, the abstract contexts constitute
the abstract interpretation part of the ACC certificate.

Novel contributions introduced by this paper are:

– Inclusion of the WCET checking phase inside the ACC framework using the
Linear Programming (LP) duality theory. The complexity of the LP problem
on the consumer side is reduced from NP-hard to polynomial time, by the
fact that LP checking is performed by simple linear algebra computations.

– The flow conservation constraints and capacity constraints of the LP prob-
lem are obtained as abstract interpretations of the assembly transition se-
mantics. The capacity constraints are automatically computed by the para-
metric static analyzer, which computes the program flow analysis as an in-
strumented value analysis.

– Definition of meta-language capable to express the semantics of different
programming languages in a unified fixpoint form by means of algebraic re-
lations. The same meta-program is parameterizable by different denotational
abstract transfer functions, which are defined for a given abstract domain.

– Definition of transformation algebra based on the meta-language. Two trans-
formations are defined: the first takes advantage of the compositional design
of the static analyzer to compute the effect of a sequence of an arbitrary
number of instructions between two program points, therefore reducing the
size of certificates; the second transforms all possible programs to sequential
programs in order to minimize the checking time.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the meta-semantic formalism used to express the fixpoint semantics of our
approach. The program transformation rules are described in Section 3. The
verification mechamism of the ILP component is presented in Section 4. Finally,
we conclude after the discussion of related work in Section 5.

2 Fixpoint Semantics

For the purpose of static analysis, program semantics are expressed in fixpoint
form, where all the possible transitions allowed in the program are taken into
consideration. Two important design aspects of ACCEPT’s static analyzer are:
(1) the implementation of a parametric fixpoint algorithm that is able to com-
pute fixpoints at different levels of abstractions, provided with the corresponding
abstract semantics transformers, and (2) the support for the functional approach
to interprocedural static analysis [21]. To fulfill these requirements, we propose
a relational-algebraic treatment of program semantics, combined with denota-
tional definitions of programming language semantics [19]. The pragmatics of
this combination is that we specify the structure of programs using polymorphic
relational operators and then simulate this specification by providing denota-
tional definitions as arguments. To this end, we employ a modified version of the
two-level denotational meta-language defined in [16].

The two levels of the meta-language distinguish between high-level compile-
time (ct) entities and low-level run-time (rt) entities. At the higher-level, meta-
programs are compositionally expressed in relational terms by means of binary

relational operators. The main advantage of this approach is that new programs
can be obtained throughout the composition of smaller programs, in analogy to
graph-based languages. Implemented operators are the sequential composition
(∗), the parallel composition (||) and the recursive composition (⊕). At the lower
level, semantic denotational transformers of type rt1→ rt2 provide the desired
effects during the interpretation of the meta-program.

ct ::= ct1 ∗ ct2 | ct1 || ct2 | ct1 ⊕ ct2 | rt (1)
rt ::= A | [A,A] | rt1→ rt2 (2)

In this way, the same meta-program can be used to compute fixpoints parame-
terized by the abstract domain A, but leaving the syntactical objects of a partic-
ular interpretation hidden from the upper level. Therefore, the upper level of the
meta-language is independent from the programming language [20]. To compute
the fixpoint of some program P , we first obtain the nondeterministic transition
system 〈Σ, τ〉 of P , where Σ is a nonempty set of states and τ ⊆ Σ × Σ is a
binary transition relation between one state and its possible successors. After-
wards, we instantiate a set of semantic transformers of type Σ → Σ, defined
by λs •{s′ | ∃s′ ∈ Σ : sτs′}, which specify the effect of a particular transition
relation τ . Finally, the meta-program of type Σ → Σ is derived as a refinement
of the transition system and given as input to the trace-driven static analyzer.

As an illustrating example, consider the source code in Figure 1(a). At the top
is the global WCET (336 CPU cycles) annotated at the main procedure by the
back-annotation mechanism of ACCEPT [18]. The procedures factorial and foo
will be used throughout the paper to exemplify two different execution patterns,
the recursive and loop patterns, respectively. The state labeled transition system
of the compiled assembly code is given in Figure 1(b) and the meta-program
corresponding to the recursive pattern is given in Figure 1(d). For example,
the recursive call to factorial is defined by a trace which starts with [bne 16 ⊕

· · · , continues with · · · ∗ bl -56 ∗ · · · and ends with · · · cmp r3, #1] until fixpoint
stabilization.

The fixpoint algorithm evaluates the meta-program at trace level, but using
the program’s structural constructs defined at relational level and the program’s
functional behavior defined at denotational level. The soundness proof of this
semantics projection mechanism can be found in [7]. Additionally, the algebraic
properties of the upper level of the meta-language provide the means to the
transformation of programs, as will be described in Section 3. The interplay be-
tween the meta-semantic formalism with the projection mechanism, the program
transformation algebra and program verification is illustrated by Figure 2.

Fixpoint semantics is taken from the least fixed point (lfp) of the meta-
program. For the program state vector Σ = 〈si, s2, . . . , sn〉, defined for a partic-
ular program P , and the associated functional abstractions F = 〈f1, f2, . . . , fn〉
obtained from P ’s transition system, the state vector Σ is said to be a fixed-
point of F = 〈f1, f2, . . . , fn〉 if and only if fi(s1, . . . , sn) = si. The computational
method used to compute this form of fixpoint equations follows from the Kleene
first recursion theorem, where every continuous functional F : L → L, defined

1 /∗wcet=336.0 cpu cyc l e s ∗/
2 int main (void) {
3 int y = f a c t o r i a l (2) ;
4 return y ;
5 }
6

7 int f a c t o r i a l (int a) {
8 i f (a==1)
9 return 1 ;

10 else {
11 a = f a c t o r i a l (a−1);
12 return a ;
13 }
14 }
15

16 int f oo (int x) {
17 while (x>0) {
18 x−−;
19 }
20 return x ;
21 }

(a) Source code example

· · ·
x11{1}: bl 24 :x5{0} [d5]

· · ·
x12{1}: mov ip, sp :x11{1} [d11]

· · ·
x18{1}: cmp r3, #1 :x17{1} [d17]
x22{1}: bne 16 :x18{1} [d18]
x19{1}: bne 16 :x18{1} [d19]

· · ·
x30{1}: b 36 :n21{1} [d22]
x23{1}: ldr r3, [fp, #-16] :x22{1} [d23]
x24{1}: sub r3, r3, #1 :x23{1} [d24]

· · ·
x11{1}: bl -56 :x25{1} [d26]

· · ·
x31{1}: ldr r3, [fp, #-20] :x30{1} [d31]

· · ·
(b) Fragment of the assembly program

0 · · · 5 (11 12 (18 22 · · · 25 11 · · · 17) 18 19 · · ·
21 30 · · ·) · · ·

(c) Fragment of the weak topological order

· · · * (bl 24) * · · · (cmp r3, #1) * [bne 16 ⊕ (ldr r3, [fp, #-16]) * · · · * (bl -56)
· · · * (cmp r3, #1)] * (bne 16) * · · · (bne 36) * (ldr r3, [fp, #-20]) * · · ·

(d) The derived meta-program used as input to the static analyzer

Fig. 1. Illustrating Example

Fig. 2. Different Interactions of the Meta-Semantic Formalism

over the lattice 〈L,v,⊥,>,t,u〉, has a least fixed point given by
⊔
δ>0 F

δ, being
F δ an ultimately stationary increasing chain (δ < λ).

In order to solve data flow equations like Σ = F (Σ), we apply the chaotic
iteration strategy [5]. During chaotic iterations, the data flow dependency in
the program is taken into consideration, so that the set of program points i ∈
C = [1, n] are ordered in weak topological order (w.t.o.) [5]. Figure 1(c) shows
the w.t.o equivalent to the state labeled transition system in Figure 1(b). For
sequential statements, the chaotic algorithm updates exactly one program state
per iteration and in the right order. In the case of loops, we apply the widening
technique pioneered by P. and R. Cousot [9], which consists in choosing a subset
of heads W ⊆ C, (e.g. the set including the underlined label 18 of Figure 1(c))

and replacing each equation i ∈W by the equation:

si = si O fi(s1, . . . , sn)

where “O” is a widening operator.
Then, the lfp(F) is computed by the upward abstract iteration sequence:

Σ0 = ⊥ (3)

Σi+1 =

Σi if Σi = F (Σi)
si+1
k = sik O fk(si1, . . . , s

i
n) ∀k = [1, n] : k ∈W

si+1
k = fk(si1, . . . , s

i
n) otherwise

(4)

The chaotic iteration strategy consists in recursively traversing the depen-
dency graph extracted from the transition system according to a weak topologi-
cal order. Therefore, chaotic fixpoint iterations mimic the execution order of the
program’s trace semantics by applying a particular interpretation of the meta-
program in some abstract domain. In this way, the execution of a meta-program
is in direct correspondence with its fixpoint. As pointed out in [4], widening op-
erators induce strong over-approximations and must be used as less as possible.
However, since our WCET analysis is based on the existence of Galois connec-
tions between the concrete and abstract domains, we can define the widening
(O) as the join (t) in the abstract domain and still be able to compute the least-
fixed point when all the program points inside a loop belong the set of widening
points W . The reader is referred to [9, Example 4.6] for a detailed explanation.

The design of the fixpoint algorithm in this way has the advantage to allow
the computation of path insensitive abstract properties about a program at every
program point, but also with the possibility to take into consideration the history
of computation as induced by the weak topological order. This is particularly
relevant for pipelining analysis, for which the fixpoint algorithm provides an
effective method for pipeline simulation (a detailed description of our micro-
architectural analysis for the ARM7 [17] target platform can be found at [20]).
For this reason, the ACCEPT’s static analyzer is able to compute the value
analysis of registers and memory location simultaneously with the analysis of
cache behavior and the analysis of the pipeline using a generic, parametric and
efficient algorithm [19]. When used in the ACC scenario, this feature is of great
utility since it provides a one-pass traversal algorithm to check if the certificates
behave as fixpoints.

3 Transformation Algebra

The design of the upper level of the meta-language by means of a relational alge-
bra provides a compositional framework to express programs as the composition
of elementary semantic building blocks. Each building block is represented by
a relation, with the unified functional type Σ → Σ, regarded as a subgraph.
The objective of program transformations is to take advantage of the algebraic
properties of the meta-language and reduce the number of connected subgraphs.

In practice, the goal is to reduce the number of program points so that the
abstract contexts computed by the static analyzer have a smaller number of en-
tries. However, the transformation must preserve the loop bounds computed for
the original program on every program point in order to keep the tightness and
soundness properties of the WCET. Thus, the derivation of the meta-program
cannot be made directly from the labeled relational semantics, but from an inter-
mediary representation of the control-flow graph, namely a syntax tree structure,
which contains the program points necessary to inspect the loops bounds of the
original meta-program. The abstract syntax tree of a control-flow graph CFG is:

CFG ::= Empty | Leaf Rel | Seq CFG CFG | Par CFG CFG | Rec CFG CFG

In direct correspondence with the upper level of the meta-language, the com-
position of basic graphical elements are: (1) the sequential composition Seq of
two subgraphs, (2) the recursive composition Rec of two subgraphs, and (3) the
parallel composition Par of two subgraphs. Apart from the Empty graph, the
basic element of the CFG is a Leaf containing a relation Rel. According to the
projection mechanism presented in Section 2, the functional abstraction of a
relation is defined by RelAbs.

ExecList ::= Exec Instruction | ExecList Instruction ExecList
Rel ::= Rel (Σ,ExecList , Σ)
RelAbs ::= Σ → Σ

The transformation algebra is based on the compositional properties of re-
lations. Generically, a relation Rel can specify an arbitrary number of program
transitions, each one defined by an Instruction, between any two program points
by composing them inside an ExecList. The advantage of the functional ab-
straction is that program effects resulting from the composition of relations are
equivalent to those obtained by the functional composition of their abstractions.

With the purpose to reduce the number of program points, we are particu-
larly interested in the simplification of those CFGs composed by two consecu-
tively relations according to the weak topological order. Therefore, candidates
for this transformation are instances of subgraphs with type Seq, as defined by
the function transfSeq below. Auxiliary functions are: (1) the function tail which
provides the last relation Rel inside a CFG ; (2) the function check which verifies
if the LoopBounds in the four points a, b, c, d ∈ Σ are equal so that no loss of
program flow information relevant for WCET calculation can occur; and (3) the
function append which composes two execution lists in one sequence.

transfSeq :: CFG → LoopBounds → CFG
transfSeq (Seq graph (Leaf r)) loops = case tail graph of

(graph ′, Just t) → let Rel (b, it , a) = t
Rel (d , ir , c) = r

in if check l (a, b, c, d)
then let s = Rel (d , append it ir , a)

in transfSeq (Seq graph ′ (Leaf s)) loops
else Seq (transfSeq graph loops) (Leaf r)

(graph ′,Nothing)→ Seq (transfSeq graph ′ loops) (Leaf r)
(Empty ,Nothing)→ Leaf r

Now considering the ACC scenario in which the static analyzer also runs
on consumer sites, a loop transformation can be applied to the control flow
graph so that the fixpoint checking is done within a single state traversal. The
ACC program transformation, defined by the function transfACC, is based on
two facts: (1) the meta-program unrolls the first loop iteration outside the loop
subgraph; (2) the static analyzer looks for fixpoint stabilization only at the head
of the loop. Therefore, all meta-programs on the consumer side are sequential
programs after removing the recursive building blocks:

transfACC :: CFG → CFG
transfACC (Rec (Leaf r) graph) = Empty

Using the intermediate representation CFG in combination with the alge-
braic properties of the meta-language, we now describe the control flow graph
transformations in Figure 3 for the example in Figure 1.

5

11

 bl 24

12
 mov ip, sp

13

 stmfd sp!, {fp,ip,lr,pc}

14

 sub fp, ip, #4

15

 sub sp, sp, #8

16

 str r0, [fp, #-16]

17

 ldr r3, [fp, #-16]

18
 cmp r3, #1

19

 bne 16

22

 bne 16

23

 ldr r3, [fp, #-16]

20
 mov r3, #1

24

 sub r3, r3, #1

25

 mov r0, r3

 bl -56

(a) Original CFG

11 5
 bl 24

18

 mov ip, sp *
 stmfd sp!, {fp,ip,lr,pc} *
 sub fp, ip, #4 *
 sub sp, sp, #8 *
 str r0, [fp, #-16] *
 ldr r3, [fp, #-16] *
 cmp r3, #1

19
 bne 16

22
 bne 16

20
 mov r3, #1

23
 ldr r3, [fp, #-16]

25

 sub r3, r3, #1 *
 mov r0, r3

 bl -56

(b) Reduced CFG

5 11
 bl 24

18

 mov ip, sp *
 stmfd sp!, {fp,ip,lr,pc} *
 sub fp, ip, #4 *
 sub sp, sp, #8 *
 str r0, [fp, #-16] *
 ldr r3, [fp, #-16] *
 cmp r3, #1

19
 bne 16

20

 mov r3, #1

(c) One-pass CFG

Fig. 3. Examples of Transformed Control-Flow Graphs

The main advantage of transforming the CFG in Figure 3(a) into the CFG
in Figure 3(b), using the function transfSeq, is the reduction of program points
considered during fixpoint computation and, consequently, so the size of the
generated certificate. Additionally, the design of a fixpoint algorithm employing
the chaotic fixpoint iteration strategy brings out the possibility to reduce signif-
icantly the size of the abstract contexts in some program points. In fact, when

applying the fully-sequential transformation of Figure 3(c), using the function
transfACC, the program points required for fixpoint checking of loops is simply
the entry program point of the loop. Therefore, for all the other program points
inside the loop, the abstract context consists solely the pipeline state containing
the maximal execution count for the corresponding instruction and ⊥ for the
rest of the elements of the abstract domain. For the source example in Figure
1(a), the reduction of the certificate size is shown in Table 1. The structure of
the certificates will be described in the next section.

Original Certificate Sequential Reduction ACC Reduction Compressed Certificate
Fig. 3(a) Fig. 3(b) Fig. 3(c) (Zip)

13.8 MBytes 5.7 MBytes 5 MBytes 84.2 KBytes

Table 1. Variation of the certificate size

4 Verification

The verification of the WCET is made in different ways on the supplier side
and the consumer side. On the supplier side, the verification of the WCET
estimates is made at source code level by means of an assertion language based on
preconditions and postconditions, which are expressed by our meta-language[20].
Instead of using a deductive system, assertions are evaluated by a relational
meta-program which encodes Hoare logic is the following way: “if all the pre-
conditions evaluate to True then if the program output asserts the set of post-
conditions, then the source code complies with the contract” (termination and
soundness is assured by the abstract interpretation framework). The availability
of the information about execution times at source level is provided by the
back-annotation mechanism of the ACCEPT platform [18]. The program being
verified and the preconditions (pre) and postconditions (post) meta-programs
are compositionally combined using the relational meta-language in order to
obtain the following verification program:

split ∗ (pre || (program ∗ post)) ∗ and)

where split is an interface adapter that, given the base type A, produces [A, A],
and and is a function that implements logical AND.

The structure ACC certificates generated on the supplier side consists on
the abstract contexts (a), computed during the program flow analysis and the
micro-architectural analysis, plus the ILP solutions (w) computed by the simplex
method on the supplier side. Together with the code (c), the certificate (a,w) is
sent to the consumer side as input to the verification mechanism.

On the consumer side, the verification of abstract contexts a is performed
by a single one-pass fixpoint iteration over the program c as described in [2],
while the ILP checking of w is based on the duality theory [12]. The idea is that

to every linear programming problem is associated another linear programming
problem called the dual. The relationships between the dual problem and the
original problem (called the primal) will be useful to determine if the received
ILP solutions on the consumer side are in fact the optimal ones, that is, the
solutions that maximize the WCET objective function on the supplier side.

4.1 The ILP Verification Problem

The optimization problem is defined as the maximization of the objective func-
tion WCET subject to a set of linear constraints. The variables of the problem
are the node iteration variables, xk, which are defined in terms of the of edge
iteration variables, dIN

ki and dOUT
kj , which correspond to the incoming (i) and

outgoing (j) edges to/from a particular program point k contained in the weak
topological order L. These linear constraints are called flow conservation con-
straints. Additionally, a set of capacity constraints establish the upper bounds
(bki and bkj) for the edge iteration variables.

xk =
n∑
i=1

dIN
ki =

m∑
j=1

dOUT
kj (5)

dIN
ki 6 bki and dOUT

kj 6 bkj (6)

The objective function is a linear function corresponding to the number of
node iterations on each program point k ∈ L, weighted by a set of constants, ck,
which specify the execution cost associated to every program point.

WCET =
∑
k∈L

ck.xk (7)

The structure of this optimization problem is particular, in the sense that
its solution always assigns integer values to all the variables. This allow us to
omit integrality constrains, and furthermore opens the possibility of using linear
programming (LP) duality in our approach.

Here, our aim is to demonstrate that the above optimization model can be
formally obtained using the theory of abstract interpretation. Note, however,
that the WCET is not the result of an abstract fixpoint computation. Only the
correctness of the LP formulation is covered by abstract interpretation. To this
end, the possibility to parameterize the meta-program with different domains is
of great importance. The flow conservation constraints are extracted from the
program’s transition system as an abstraction. For this purpose, the domain of
interpretation simply consist on the labels contained in the weak topological
order L. Let T the set of program transitions. Then, the flow conservation con-
straints (Equation 5) are a set of equations of type ℘(℘(T) 7→ L). Therefore,
a Galois connection (αF , γF) can be established between the transition system
domain (R) and the flow conservation constraints domain (F) such that:

〈℘(L × T × L),6〉 −−−−→−→←←−−−−−
αF

γF 〈℘(℘(T) 7→ L),6〉

αF (R) ,{xk =
∑n
i=1d

IN
ki | ∀xk ∈ L : dIN

k = {e′ | ∃xl ∈ L : 〈xl, e′, xk〉 ∈ R}}∪
{xk =

∑m
j=1d

OUT
kj | ∀xk ∈ L : dOUT

k = {e′ | ∃xl ∈ L : 〈xk, e′, xl〉 ∈ R}}

γF (F) , {〈xk, dout, xl〉 | ∃s1 ∈ F,∃dout ∈ rhs(s1) : xk ∈ lhs(s1) ∧
∃s2 ∈ F,∃din ∈ rhs(s2) : xl ∈ lhs(s2) ∧ dout ≡ din}

The capacity constraints (C) are defined as semantic transformers providing
loop bound information. To obtain the loop bounds, we first define the domain of
interpretation as an instrumented value domain V with the loop bounds domain
B, and then run the static analyzer. Let program abstract states be S = (L ×
V × B). Then, the semantic transformer fc, of type S 7→ T 7→ ℘(S), is obtained
as an abstraction of the transition system using the Galois connection (αC , γC):

〈℘(S × T × S),6〉 −−−−→−→←←−−−−−
αC

γC 〈S 7→ T 7→ ℘(S),v〉

αC(R) , λ(xk, v, b) · {(xl, v′, b′) | ∃e ∈ T : 〈(xk, v, b), e, (xl, v′, b′)〉 ∈ R}
γC(fc) , {〈(xk, v, b), e, (xl, v′, b′)〉 | (xl, v′, b′) ∈ fc(xk, v, b)}

The semantic transformer fc is used by the static analyzer as a run-time en-
tity (see Equation (2) in Section 2). By definition, the transformer fc incre-
ments the loop iterations of a particular transition between the program points
xk, xl ∈ L, every time the static analyzer performs a fixpoint iteration over the
transition connecting those points. In this way, the static analyzer computes the
loop bounds on B, as a side effect of the value analysis on V. For every program
point, the last loop iteration computed before the fixpoint stabilization of the
value analysis is taken as the upper loop bound.

Verification Mechanism Both the objective function and the set of linear
constrains can be represented in matrix form. For this purpose, the node (x)
and edge (d) iterations variables are indexed to the variable vector x of non-
negative values. Additionally, the cost values associated to edge variables are
zero in the objective function and the edge iterations are zero for all linear
equations including a node variable.

The equation system of the primal problem is defined in terms of the matrix
A, with the coefficients of the constraints (5) and (6), the column vector x of
variables and the column vector b of capacity constraints. Then, given the row
vector c of cost coefficients, the objective of the primal problem is to maximize
the WCET = cx, subject to Ax 6 b. Conversely, the dual problem is also
defined in terms of the vectors c and b plus the matrix A, but the set of dual
variables are organized in a complementary column vector y. Then, the objective
of the dual problem is to minimize WCET DUAL = yb, subject to yA > c.

Using the simplex method [12], it is possible compute a feasible solution x
for the primal problem and a paired feasible solution y for the dual problem.

The strong duality property of the relationship between this pair of solutions for
the purpose of LP checking is: the vector x is the optimal solution for the primal
problem if and only if:

WCET = cx = yb = WCET DUAL

In the ACC setting, this property allows us to use simple linear algebra algo-
rithms to verify the LP solutions that were computed using the simplex method.
The verification mechanism is composed by three steps:

1. Use the static analyzer to verify the local execution times included the micro-
architectural abstract context. If valid, execution times are organized in the
cost row vector c’. Then, take the received primal solutions x’ and solve the
equation WCET’ = c’x’ to check if it is equal to the received WCET.

2. Use the static analyzer to verify the loop bounds abstract context. If valid,
loop bounds are organized in the row capacities vector b’. Then, take the
received dual solutions y’ and verify the strong duality property by testing
the equality of the equation c’x’ = y’b’.

3. Extract the coefficients matrix A’ from the received code and check if the
received primal and dual solutions satisfy the equations A’x’ 6 b’ and
y’A’ > c’. In conjunction with the two previous steps, this allow us to
conclude that x’ and y’ are the optimal solutions of the primal and dual
problem and, therefore, conclude that the LP verification is successful.

A numeric example of the LP problem associated to the example in Figure
1 is given in Figure 4. The table in Figure 4(a) shows the primal values and
execution costs associates to the LP variables (columns in the matrix A). The
variables indexed to x and d are obtained from the labels in Figure 1(b). The
linear equation system, from which the coefficients matrix A are inferred, and
the dual values associated to the rows of A are shown Figure 4(b). Note that
the answer to the LP solver will assign to the variable names xk ∈ L the optimal
values for node iterations. The vector b contains the edge iteration upper bounds
which are obtained directly from the program flow certificate. Provided with this
information, the verification mechanism is able to check if the received WCET
is in fact the maximal solution of the LP problem, without the need to solve the
simplex method all over again.

4.2 Verification Time

The verification time of certificates is strongly reduced for the recursive parts of
programs, but not for the purely sequential parts of the program. The reason is
that chaotic iteration strategy used during fixpoint computation searches for the
least fixed point on the supplier side whereas, in the consumer side, the fixpoint
algorithm only verifies if the certificate is one post-fixed point [4].

For a purely sequential set of instructions, chaotic iterations are performed
using the third equation in (4), i.e., in the cases where the previous state value

Vars Primal Costs in
(x) (x*) CPU cycles (c)
· · · – –
x15 4 8
x16 4 7
x17 4 7
x18 4 9
x19 1 10
x20 1 5
x21 1 7
x22 3 10
x23 3 7
x24 3 7
· · · – –
d18 3 0
· · · – –

(a) Costs and primal values

Coefficients of Constants Dual
variables (matrix A) (b) (y*)

F
lo

w
C

o
n
se

rv
a
ti

o
n

· · · = – –
x16 − d16 = 0 0
x16 − d17 = 0 0
x17 − d17 = 0 0
x17 − d18 = 0 0
x18 − d17 = 0 0

x18 − d18 − d19 = 0 -9

C
a
p
a
c
it

ie
s

· · · 6 – –
d16 6 1 19
d17 6 2 -29
d18 6 2 29
d19 6 1 -37
d20 6 1 37
d21 6 1 -42
· · · 6 – –

(b) Linear equation system and dual values

Fig. 4. Numeric example of the LP problem in matrix form

in the certificate is equal to ⊥. In such cases, the transition function is com-
puted exactly once for each of the instructions. On the other hand, during the
verification of the certificate, the fixpoint stabilization condition will compare
the abstract values contained in the received certificate with the output of the
single fixpoint iteration running on the consumer side, in order to check if the
certificate is a valid post-fixed point. Consequently, the comparison with v be-
tween two states values different from ⊥ will take longer to compute than the
equality test of one state with ⊥.

For a recursively connected set of instructions, the verification time can be
strongly reduced by the fact that the state traversal inside the loop is performed
within a single one-pass fixpoint iteration. Two factors contribute for this reduc-
tion: (1) the time necessary to compute a valid post-fixed point is much shorter
than the time required to perform loop unrolling on the supplier side; (2) with
the chaotic iteration strategy, fixpoint iterations over loops are performed only
at the head of the loop.

Experimental results concerning the checking time of the example in Figure 1
are given in Table 2 (these results were obtained off-device using an Intel R©Core2
Duo Processor at 2.8 GHz). The first parcel is relative to the fixpoint algorithm
and the second parcel is relative to the LP equation system. The checking time
of the solutions of the LP linear system is close to zero in all cases due to the
reduction of the LP complexity to polynomial time on the consumer side. As
explained before, the performance of the static analyzer is actually worse when
the number of instructions outside a loop is significantly bigger compared to the
number of instructions inside loops. For the source code example in Figure 1(a),
when invoking the function factorial(4), this is specially noticed also due to
the sequence of instructions that constitute the epilogue of the recursive function
factorial. However, when invoking the function foo in the main procedure, we
observe greater reductions of checking time in relation to the generation time
for an increasing number of loop iterations.

Function Call Generation Time (sec) Verification Time (sec) Ratio (%)
factorial (4) 1.367 + 0.540 1.942 + 0.004 142.0
foo (3) 1.283 + 0.006 1.013 + 0.005 78.9
foo (7) 3.660 + 0.010 2.160 + 0.003 59.0
foo (15) 14.613 + 0.008 4.495 + 0.012 30.7

Table 2. Experimental Results

5 Related Work

Certifying and checker algorithms using linear programming duality to provide
a witness of optimality have been recently proposed by McConnell et. al. [13]. In
ACCEPT, we complement this approach with a formal definition of the certifying
algorithm, using induced abstract interpretations which are correct by construc-
tion, and with a formal method to derive the linear programming system of
equations by means of Galois connections. The resulting complete algorithm is a
strongly certifying algorithm for the reason that local execution times are com-
puted using static analysis methods, which always determine sound properties
about programs for any possible input values. The simplicity and checkability
of the verification is guaranteed by the fixpoint algorithm, which is exactly the
same algorithm on both supplier and consumer sides, plus the strongly duality
theory, which enables the checker to run in linear time on the consumer side.

The application of ACC to mobile code safety has been proposed by Albert et
al. in [2] as an enabling technology for PCC, a first-order logic framework initially
proposed by Necula in [15]. One of the arguments posed by Pichardie et al. [4] in
favor of PCC was that despite its nice mathematical theory of program analysis
and solid algorithmic techniques, abstract interpretation methods show a gap
between the analysis that is proved correct on paper and the analyzer that actu-
ally runs on the machine, advocating that with PCC the implementation of the
analysis and the soundness proof are encoded into the same logic, fact that gives
rise to a certified static analysis. Another relevant research project aiming at the
certification of resource consumption in Java-enabled mobile devices is Mobil-
ity, Ubiquity and Security (MOBIUS) [3]. The logic-based verification paradigm
of PCC is complemented with a type-based verification, whose certificates are
derived from typing derivations or fixed-point solutions of abstract interpreta-
tions. The general applicability of these two enabling technologies depends on
the security property of interest.

In our case, the ACC’s certification mechanism based on abstract safety
properties is combined with the construction of abstract interpreters which are
“correct by construction”, as described in [8]. The essential idea is that one
abstract interpretation of a program is a formal specification per se, which can
be induced from the standard interpretation (see [9, Example 6.11] for an use
case on the denotational setting). The correctness of abstract interpretations is
given by the relation between abstract values in D] and concrete values in D,
often a Galois connection 〈℘(D), α, γ,D]〉, where α and γ are the abstraction
and concretization functions, respectively. Given the complete join morphism

F \ : ℘(D) 7→ ℘(D), a correct approximation F] = α ◦ F \ ◦ γ is obtained by
calculus. Then, the fixpoint of F] is an overapproximation of the fixpoint of F \.

Recently in [6], Pichardie et al. have presented a certified denotational inter-
preter which implements static analysis correct by constructions but satisfying
the soundness criteria only, leaving aside the problem of precision of the analysis
(determined by the abstraction function α). In fact, [9, Section 6] shows that even
when the best abstraction function is not available, the derivation of abstract
interpreters using the algebraic properties of Galois connections is still possible
by making α(d) =

⊔
{β(d) | d ∈ D}, using the representation function β as the

singleton set. Notwithstanding, widening operators may be necessary so that the
fixpoint in the abstract domain is efficiently computed. In this way, the precision
and efficiency of the analysis needs to be balanced in terms of the available α, but
that will not compromise the correct construction of abstract interpreters by cal-
culus. Finally, our choice to express concrete programming language semantics
in the denotational setting is intentionally associated to the highly declarative
programming language Haskell used to implement the ACCEPT static analyzer
[20]. Indeed, the induced abstract interpretations are in direct correspondence
with the Haskell code implementing them, fact that contributes to the elimina-
tion of the gap mentioned in [4].

In ACC [2], verification conditions are generated from the abstract semantics
and from a set of assertions in order to attest the compliance of a program
with respect to the safety policy. If an automatic verifier is able to validate the
verification conditions, then the abstract semantics constitute the certificate. The
consumer implements a defensive checking mechanism that not only checks the
validity of the certificate w.r.t. the program but also re-generates a trustworthy
verification conditions. Conversely, the abstract safety check in PCC is performed
by a first order predicate that checks in the abstract domain if a given safety
property is satisfied by the reachable states of the program. If the abstract check
succeeds then the program is provably safe, otherwise no answer can be given.

In ACCEPT, program safety is expressed in terms of the WCET and since
static analysis is not sufficient to compute the WCET, it is not possible to check
for WCET safety in the abstract domain. WCET verification in performed in
different ways on the supplier and consumer sides. On the supplier side, the
ACCEPT platform provides an assertion language to specify the timing behav-
ior at source level [20]. Besides the specification of the permitted WCET, are
supported assertions on abstract properties computed at assembly level which
are available to the source level by means of a back-annotation mechanism. On
the consumer side, WCET verification is performed only at machine code level.
Hence, the ACCEPT platform complements the analysis of source code provided
by ACC with the analysis at object level provided by PCC.

Another feature of ACCEPT is the possibility to use the meta-language and
the parameterizable fixpoint semantics to compute abstract invariants regardless
of the programming language, i.e. source or assembly, and then correlate them
using compiler debug information (DWARF) [22]. Other approaches combin-
ing cost models at source-level and analysis at machine-level to yield verifiable

guarantees of resource usage in the context of real-time embedded systems is
presented by Hammond et. al. in [11], where the static determination of the
WCET is performed using the AbsInt’s approach [10]. In ACCEPT, the strong
requirements concerning resource time and energy consumption of embedded
systems compelled us to devise a completely new static analyzer. Comparatively
with AbsInt’s aiT tool, the main feature is the possibility to compute fixpoints
at machine-level that simultaneously carry out the value analysis, the cache
analysis, the pipeline analysis and the program flow analysis.

Finally, Albert et al. present in [1] a fixpoint technique to reduce the size of
certificates. The idea is to take into account the data flow dependencies in the
program and actualize the fixpoint only at the program points that have their
predecessors states updated during the last iteration. In ACCEPT, the same
notion of certificate-size reduction is achieved by means of a program transfor-
mation algebra combined with loop unrolling and fixpoint chaotic iterations. The
chaotic iteration strategy allows the fixpoint algorithm to look for stabilization
at the entry-point of loops for the whole loop to be stable [5]. By the fact that
when using meta-language, the first loop iteration is unrolled outside the loop,
we apply a program transformation to loop structures that consists in trans-
forming programs with loops in purely sequential programs by keeping only the
entry-points of loops.

6 Conclusions

This paper reports the application of a compositional static analyzer based on
abstract interpretation used to compute the WCET of a program in the context
of Abstract-Carrying Code (ACC). The novelty of the approach consists in using
the WCET as the safety parameter associated to a verification mechanism that
is able to check that the ACC certificates are valid within a one-pass fixpoint
iteration and then check if the WCET is correct using the duality theory applied
to linear programming. Experimental results show that, for highly sequential
programs, the computation of the least fixed point can be more efficient than
one single iteration over a post-fixed point. Therefore, the verification process is
only efficient when in presence of highly iterative programs.

Besides the reduction of verification times, the concept of ACC also requires
methods to reduce the size of certificates. We have presented a transformation
algebra that applies to control flow graphs in order to minimize the number
of program points considered during fixpoint computations. The simplicity of
the process relies on the algebraic properties of the meta-language and on the
compositional design of the chaotic fixpoint algorithm.

As prospective future work, we intend to extend the timing analysis and cer-
tification of concurrent applications running on multi-core environments. The
main challenge is to extend the usage of the meta-language to model architec-
tural flows as well as the application’s control flow. The type system of the
upper level of the meta-language will allow the integration of these two levels of
abstraction in a unified program representation. Therefore, the generic applica-

bility of the constructive fixpoint algorithm and, consequently, of the certification
mechanism, is guaranteed.

7 Acknowledgments

This work is partially funded by LIACC, through the Programa de Financia-
mento Plurianual, FCT, and by the FAVAS project, PTDC/EIA-CCO/105034/
2008, FCT.

References

1. Elvira Albert, Puri Arenas, Germán Puebla, and Manuel V. Hermenegildo. Cer-
tificate size reduction in abstraction-carrying code. CoRR, abs/1010.4533, 2010.

2. Elvira Albert, Germán Puebla, and Manuel Hermenegildo. An abstract
interpretation-based approach to mobile code safety. Electron. Notes Theor. Com-
put. Sci., 132(1):113–129, 2005.

3. Gilles Barthe, Lennart Beringer, Pierre Crégut, Benjamin Grégoire, Martin Hof-
mann, Peter Müller, Erik Poll, Germán Puebla, Ian Stark, and Eric Vétillard.
Mobius: Mobility, ubiquity, security. In TGC, pages 10–29, 2006.

4. Frédéric Besson, David Cachera, Thomas Jensen, and David Pichardie. Certified
static analysis by abstract interpretation. In Foundations of Security Analysis
and Design V: FOSAD 2007/2008/2009 Tutorial Lectures, pages 223–257, Berlin,
Heidelberg, 2009. Springer-Verlag.

5. François Bourdoncle. Efficient chaotic iteration strategies with widenings. In In
Proceedings of the International Conference on Formal Methods in Programming
and their Applications, pages 128–141. Springer-Verlag, 1993.

6. David Cachera and David Pichardie. A certified denotational abstract interpreter.
In Proc. of International Conference on Interactive Theorem Proving, volume 6172
of Lecture Notes in Computer Science, pages 9–24. Springer-Verlag, 2010.

7. P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Electronic Notes in Theoretical Computer Science, 6,
1997.

8. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

9. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2:511–547, 1992.

10. Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin,
Michael Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. Reli-
able and precise wcet determination for a real-life processor. In Proceedings of the
First International Workshop on Embedded Software, EMSOFT ’01, pages 469–
485, London, UK, 2001. Springer-Verlag.

11. Kevin Hammond, Christian Ferdinand, Reinhold Heckmann, Roy Dyckhoff, Martin
Hofmann, Steffen Jost, Hans-Wolfgang Loidl, Greg Michaelson, Robert F. Pointon,
Norman Scaife, Jocelyn Sérot, and Andy Wallace. Towards formally verifiable wcet
analysis for a functional programming language. In WCET, 2006.

12. Frederick S. Hillier and Gerald J. Lieberman. Introduction to operations research,
4th ed. Holden-Day, Inc., San Francisco, CA, USA, 1986.

13. Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certi-
fying algorithms. Computer Science Review, 5(2):119–161, 2011.

14. Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system f to typed
assembly language. ACM Trans. Program. Lang. Syst., 21:527–568, May 1999.

15. George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’97, pages
106–119, New York, NY, USA, 1997. ACM.

16. Hanne Riis Nielson and Flemming Nielson. Pragmatic aspects of two-level deno-
tational meta-languages. In Proceedings of the European Symposium on Program-
ming, ESOP ’86, pages 133–143, London, UK, 1986. Springer-Verlag.

17. Vishnu Patankar, Alok Jain, and Randal Bryant. Formal verification of an arm
processor. In 12th International Conference On VLSI Design, pages 282–287, 1999.

18. Vı́tor Rodrigues, Mário Florido, and Simão Melo de Sousa. Back annotation in
action: from wcet analysis to source code verification. In Actas of CoRTA 2011:
Compilers, Prog. Languages, Related Technologies and Applications, July 2011.

19. Vı́tor Rodrigues, Mário Florido, and Simão Melo de Sousa. A functional approach
to worst-case execution time analysis. In 20th International Workshop on Func-
tional and (Constraint) Logic Programming (WFLP), pages 86–103. Springer, 2011.

20. Vı́tor Rodrigues, Mário Florido, and Simão Melo de Sousa. Towards adaptive real-
time systems by worst-case execution time checking. Technical report, Artificial
Intelligence and Computer Science Laboratory (LIACC)- University of Porto, 2011.

21. Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural Data Flow
Analysis, pages 189–233. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

22. The DWARF Debugging Standard . http://www.dwarfstd.org/.
23. Reinhard Wilhelm. Why ai + ilp is good for wcet, but mc is not, nor ilp alone.

In Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking, and
Abstract Interpretation, volume 2937 of Lecture Notes in Computer Science, pages
309–322. Springer Berlin / Heidelberg, 2003.

