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Chapter 2 

AIRLINE OPERATIONS CONTROL: A NEW  

CONCEPT FOR OPERATIONS RECOVERY  

António J. M. Castro
 
and Eugénio Oliveira 

LIACC-NIAD&R, FEUP, DEI, University of Porto, Portugal 

ABSTRACT 

The Airline Operations Control Centre (AOCC) of an airline company is the 

organization responsible for monitoring and solving operational problems. It includes 

teams of human experts specialized in solving problems related with aircrafts, 

crewmembers and passengers, in a process called disruption management or operations 

recovery. In this chapter we propose a new concept for disruption management in this 

domain. The organization of the AOCC is represented by a multi-agent system (MAS), 

where the roles that correspond to the most repetitive tasks are performed by intelligent 

agents. The human experts, represented by agents that are able to interact with them, are 

part of this AOCC-MAS supervising the system and taking the final decision from the 

solutions proposed by the AOCC-MAS. We show the architecture of this AOCC-MAS, 

including the main costs involved and details about how the system takes decisions. We 

tested the concept, using several real airline crew related problems and using four 

methods: human experts (traditional way), the AOCC-MAS with and without using 

quality-costs and the integrated approach presented in this chapter. The results are 

presented and discussed. 

1. INTRODUCTION 

Control the operation is one of the most important tasks that an airline company has. It 

does not matter much to produce an optimal or near-optimal schedule of flights if, later, 

during the execution of the operational plan, the changes to that plan caused by disruptions 
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are too far from the original schedule. Unfortunately, the majority of the disruptions are 

difficult to predict (for example, those caused by meteorological conditions or by aircraft 

malfunctions). Airline companies developed a set of operations control mechanisms to 

monitor the flights (and crewmembers) to check the execution of the schedule. During this 

monitoring phase, several problems may appear related with aircrafts, crewmembers and 

passengers [1]. According to Kohl et al. [2], disruption management is the process of solving 

these problems. To be able to manage disruptions, airline companies have an entity called 

Airline Operations Control Centre (AOCC). This entity is composed of specialized human 

teams that work under the control of an operations supervisor. Although each team has a 

specific goal (for example, the crew team is responsible for having the right crew in each 

flight), they all contribute to the more general objective of minimizing the effects of 

disruption in the airline operational plan. 

In this chapter we propose a new concept for disruption management in this domain. We 

see the AOCC as an organization with local goals (for example, minimizing the costs with 

aircraft, crew and/or passengers when solving a specific disruption) but also with global goals 

like minimizing delays and costs in a given period of time. The objective is to make the 

AOCC more efficient, quicker when solving disruptions and with better global decisions and 

performance. We believe that human experts should be managers and not controllers. In our 

opinion, repetitive tasks are performed better by software agents and tasks with a high degree 

of uncertainty are performed better by humans. For that we propose to represent the AOCC as 

an organization of agents, a multi-agent system (MAS), where the roles that correspond to the 

most repetitive tasks are performed by intelligent agents. The human experts, represented by 

agents that are able to interact with them, are part of this AOCC-MAS supervising the system 

and taking the final decision from the solutions proposed by the AOCC-MAS. 

This chapter is organized as follows: In Section 2 we present a comparative summary of 

related work regarding operations recovery and a brief summary of the current use of 

software agents‘ technology in other domains. Section 3 introduces the Airline Operations 

Control Centre (AOCC), including typical organizations and problems, the current disruption 

management (DM) process and a description of the main costs involved. A classification of 

current tools and systems is also included. Section 4 is the main section of this chapter and 

presents our new concept for disruption management in AOCC, including details about how 

we built the agent-based approach to this problem. This section presents: (i) the reasons that 

made us adopt the software agents and multi-agent system (MAS) paradigm; (ii) the MAS 

architecture including the specific agents, roles and protocols as well as some relevant agent 

characteristics like autonomy and social-awareness; (iii) decision mechanisms, including 

costs criteria and negotiation protocols and (iv) examples of the problem solving algorithms 

used. In Section 5 we present the experimental setup and, in Section 6, we evaluate our 

approach, presenting and discussing the results. Finally, in Section 7, we conclude and give 

some insights on the future work. 

2. SUMMARY OF RELATED WORK 

We have divided this section in two parts. In section 2.1 we summarize the existing work 

regarding operations recovery. Most of the work in this area has been done using operation 
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research methods (OR). For the interested reader Barnhart et al., [3] gives an overview of OR 

air transport applications. In section 2.2 we give an incomplete and brief list of agents applied 

in other domains. 

2.1. Operations Recovery 

The goal of this section is to present a brief comparative summary of research regarding 

operations recovery. We also classify each work according to the dimensions they are able to 

deal with, that is, aircraft recovery, crew recovery or integrated recovery. We classify a work 

as integrated when it is able to deal with, at least, two of the dimensions (for example, aircraft 

and passenger or aircraft and crew). Table 1 presents a descendent chronological order of 

research regarding airline disruption management. Most of this information was collect from 

Clausen et al., [34] and from [32] and, for detailed information about each work, we 

recommend reading the above mentioned papers. 

2.2. Other Application Domains 

The agent and multi-agent paradigm has been used in several application domains, 

including in other air transportation problems. To the best of our knowledge and regarding the 

use of this paradigm to represent the AOCC as an organization of agents, we believe that we 

were the first to do it [12, 14]. 

Regarding the use of agents in other domains a very brief list follows: Jonker et al., [17] 

propose a multi-agent system for ATC Tower operations. In the aviation domain but in a 

different context, Tumer and Agogino [15] present a multi-agent system for traffic flow 

management. Another use of agents in the context of collaborative traffic flow management is 

reported by Wolfe et al., [16]. Here, agents are used to compare routing selection strategies. 

As a last example and in completely different domain, Quelhadj [18, 19] developed an 

integrated dynamic scheduling system of steel production based on the multi-agent paradigm. 

As we said in the beginning of this section, the examples above are an incomplete and 

very brief list of the use of the multi-agent system paradigm, just to give an idea that this 

technology is able to deal with very complex and critical problems. 

3. AIRLINE OPERATIONS CONTROL 

In this section we introduce the airline operations control problem – AOCP (also known 

as airline disruption management problem). To contextualize, we start by briefly introducing 

the AOCP preceding problem known as the Airline Scheduling Problem (ASP). Then we 

explain what an airline operational control centre (AOCC) is and we present some typical 

AOCC organizations. The typical problems, the current disruption management process as 

well as the main costs involved are also introduced. At the end of this section we present a 

classification of current tools and systems. 



 

Table 1. Comparative summary of research regarding operations recovery 

Author(s) Year Main 

Strategies/Objectives 

Main 

Model/Solver 

Airc. 

Rec. 

Crew 

Rec. 

Integ. 

Rec. 

Abdelghany et al. [35] 2008 Resource reschedule; Flight Cancelations; 

Departure delays. 

Mixed integer --- --- Yes 

Zhang & Hansen [71] 2008 Ground transportation (pax) Integer with non-linear objective function --- --- Yes 

Mei Yang [5] 2007 Flight schedule modifications Tabu search Yes No No 

Zhao & Zhu [72] 2007 Surplus aircraft; Delay; Cancellations; Cost. Grey programming; Local search heuristic. Yes No No 

Eggenberg et al. [45] 2007 Recovery plans; Cancellations; Flight, delay, 

maintenance cost. 

Set partitioning; Resource constraint 

shortest path. 

Yes No No 

Zhao et al. [73] 2007 Flight schedule modifications; Crew, Flight 

delay cost; Individual roster 

Grey programming; Local search heuristic. No Yes No 

Castro & Oliveira [12] 2007 Crew and aircraft swap, reserve crew and 

aircraft; Crew cost; Individual roster. 

Multi-agent system; Hill Climbing and 

Simulated annealing. 

No Yes No 

Medard & Sawhney [74] 2007 Assumes recovery flight schedule first; Illegal 
crew, uncovered flights and affect crew; 

Individual roster. 

Set covering model; Depth-first search or 
reduced cost column generator. 

No Yes No 

Liu et al., [50,4] 2006/8 Flight connections and swaps; Total flight 

delay; Cancellations; Assignment. 

Multi-objective genetic algorithm (Meta-

heuristics) 

Yes No No 

Bratu & Barnhart [9] 2006 Delay, cancel, assign reserve crew and aircraft Flight schedule network --- --- Yes 

Andersson [37] 2006 Cancellations, swap and fleet swap. Tabu and Simulated Annealing (Meta-

heuristics) 

Yes No No 

Nissen & Haase [55] 2006 Assumes recovery flight schedule first; Duty-

based formulation; Modifications original 
schedule; Individual roster 

Branch-and-price; Set covering; Resource 

constrained shortest path. 

No Yes No 

Stojkovic & Soumis [58] 2005 Departure delays; Reserve pilots; 

Modifications, uncovered flights, flight delays; 
Individual roster 

Multi-commodity network flow; Column 

generation. 

No Yes No 

Love et al. [51] 2005 Cancellations; Revenue minus costs Meta-heuristics Yes No No 

Andersson & Varbrand [38] 2004 Cancellations, swap and fleet swap Set packing problem with generalized upper 

bound (GUB) constraints; Lagrangian 

relaxation-based heuristic and Dantzig-
Wolfe decomposition. 

Yes No No 

Abdelgahny et al., [8] 2004 Deadheading, stand-by, swap, flight delay 
costs; Individual roster 

Mixed-integer program;  No Yes No 

 

 



 

Author(s) Year Main 

Strategies/Objectives 

Main 

Model/Solver 

Airc. 

Rec. 

Crew 

Rec. 

Integ. 

Rec. 

Guo [46] 2004 Assumes recovery flight schedule first; Stand-

by, modifications, operating costs; Individual 
roster 

Set partitioning problem; Column 

generation with LP relaxation or Hybrid 
heuristic based in a genetic algorithm with a 

local search. 

No Yes No 

Kohl et al., [2] 2004 Flight swaps, cancellations, crew swaps, stand-

by, up/downgrading crew; Passenger delay 

costs at destination, value of passenger based 

on the booked fare class and frequent flyer 
information. 

Dedicated aircraft solver (Extension Local 

Search Heuristic [51]); Dedicated crew 

solver (Differential column-

generation/constraint integer problem); 
Dedicated passenger solver (multi-

commodity flow problem); Integrated 

recovery layer (Intelligent messaging 
system). 

--- --- Yes 

Yu et al. [70] 2003 Cancellations; Deadheading, modifications, 
uncovered flight costs 

Depth-first search; CrewSolver 
optimization. 

No Yes No 

Rosenberger et al., [6] 2003 Delay and cancellation Set partitioning model; Pre-processing 

heuristic; CPLEX 6.0. 

Yes No No 

Andersson [36] 2001 Delay, cancel, assign reserve crew and aircraft Flight schedule network --- --- Yes 

Bard et al. [40] 2001 Delay and cancellation Integer minimum cost flow model with 
additional constraints. 

Yes No No 

Thengvall et al. [65,66] 2001/3 Cancellations; Multi-fleet; Revenue minus cost Three mixed-integer program models. Yes No No 

Stojkovic & Soumis [57] 2001 Modifications, uncovered flights, flight 

departure delays; Individual roster 

Multi-commodity network flow with 

additional constraints; Column generation. 

No Yes No 

Lettovsky et al. [49] 2000 Cancellation; Pairing, cancel flight costs. Set covering with decision variables; LP 

Relaxation and Branch-and-Bound 

No Yes No 

Thengvall et al. [64] 2000 Cancellations, swaps, delays; Revenue minus 

costs 

Integer programming; LP relaxation with 

heuristic 

Yes No No 

Luo & Yu [53] 1998 Delayed flights Assignment problem with side constraints; 
Heuristic 

Yes No No 

Stojkovic et al. [59] 1998 Assumes recovery flight schedule first; Pairing, 

Deadheading, undercovering costs; Individual 

roster 

Integer non-linear multi-commodity flow 

network problem; Columns generation, 

branch-and-bound. 

No Yes No 

Lettovsky [10] 1997 Cancellation, delays, equipment assignment; 
Maximizes total profit. 

Linear mixed-integer mathematical problem; 
Benders decomposition. 

--- --- Yes 

Wei et al. [67] 1997 Assumes recovery flight schedule first; Pairing 
cost 

Integer multi-commodity network flow 
problem; Depth-first search 

No Yes No 

 

 



 

Table 1. (Continued) 

 
Author(s) Year Main 

Strategies/Objectives 
Main 

Model/Solver 
Airc. 
Rec. 

Crew 
Rec. 

Integ. 
Rec. 

Arguello et al. [39] 1997 Cancellations; Multi-fleet; Flight route 

augmentation, partial route exchange; Route 

cost and cancellation cost 

Meta-heuristics (GRASP – Greedy 

Randomized Adaptative Search Procedure) 

Yes No No 

Luo & Yu [52] 1997 Number delayed flights under GDP (Ground 
Delay Program) 

Assignment problem with side constraints; 
Heuristic 

Yes No No 

Cao & Kanafani [41,42] 1997 Cancellations; Revenue minus costs Minimum cost network flow; Network flow 

algorithms. 

Yes No No 

Yan & Tu [68] 1997 Cancellations; Multi-fleet; Costs minus 

revenues 

Network flow model with side constraints; 

Lagragian relaxation with subgradient 
method, Lagragian heuristic. 

Yes No No 

Clarke [43,44] 1997 Cancellations; Multi-fleet; Costs minus 

revenues 

Set partioning, Column generation, extra 

constraints; Tree-search heuristic and a set 
packing-based optimal solution. 

Yes No No 

Yan & Yang [69] 1996 Cancellations; Costs minus revenues Minimum cost network flow; Network flow 

algorithms. 

Yes No No 

Talluri [60] 1996 Multi-fleet; Swaps when exchanging aircraft 
type. 

Classifies swap opportunities; Polynomial 
time algorithm. 

Yes No No 

Mathaisel [54] 1996 Cancellations; Revenue loss, operating cost Minimum cost network flow; Network flow 

algorithms. 

Yes No No 

Teodorovic & Stojkovic [63] 1995 Cancellation and delay minutes; Crew 

considerations; Minimize total passenger 
delays. 

Heuristic. Yes No No 

Johnson et al. [48] 1994 Pairing, stand-by, deadheading costs; 

Cancellations. 

Set covering problem with decision 

variables; MINTO [75] (mixed integer 
optimizer) 

No Yes No 

Jarrah et al. [47] 1993/6 Cancellations; Delay, swap and ferrying. Minimum cost network flow; Network flow 

algorithms. 

Yes No No 

Rakshit et al. [56] 1993/6 Cancellations; Delay, swap and ferrying. Minimum cost network flow; Network flow 

algorithms. 

Yes No No 

Teodorovic & Stojkovic [62] 1990 Cancellation and delay minutes Heuristic Yes No No 

Teodorovic & Guberinic 
[61] 

1984 Delay minutes Heuristic Yes No No 
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3.1. Airline Scheduling Problem 

According to Kohl et al., [2] the scheduling process of an airline company is composed 

by the long and short-term phases presented in Figure 1. The scheduling process has three 

main dimensions or views: (1) passenger view; (2) aircraft view and (3) crew view. The first 

one represents the seats available to be sold to the airline customers. The other two views, 

represents resources that will be allocated. 

Everything starts with publishing the flights timetable for a specific period of time 

(usually six months). After publishing the timetable, the revenue management phase starts. 

Here the goal is to maximize the revenue obtained selling tickets. At the same time, the 

scheduling of the two most important resources starts: aircrafts and crew. Regarding the 

aircraft, the first step is the fleet assignment. Here, the goal is to assign the aircraft type or 

aircraft fleet that will perform the flights. It is an important step because the aircraft type/fleet 

will define the number of available seats in each flight. Near to the day of operations, the 

assignment of the specific aircraft to each flight is performed. This step is known as tail 

assignment. After the fleet assignment step, it is possible to start to schedule the crew. The 

first step is the crew pairing. The goal is to define the crew duty periods (pairings) that will 

be necessary to cover all the flights of the airline for a specific period of time (typical one 

month). Having the pairings, it is possible to start the crew rostering step that is, assign 

crewmembers to the pairings. The output of this step is an individual crew roster that is 

distributed or published in the crew web portal. Finally and until the day of operations, it is 

necessary to change/updated the crew roster (roster maintenance), to include any changes that 

might appear after publishing the roster. The airline scheduling problem (ASP) is composed 

of all the previous phases and steps and ends some hours or days (depends on the airline 

policy) before the day of operation. The global objective of the ASP is to maximize the airline 

operating profit. For more detailed information please consult [20] specially Section 2.1 to 

Section 2.4. 

 

Figure 1. The airline scheduling process  
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3.2. AOCC Organization 

The airline operations control problem (AOCP) starts where the airline scheduling 

problem stops. If everything goes as planned the airline just needs to monitor the execution of 

the plan. Unfortunately, several unexpected events appear during this phase that can disrupt 

the plan. To monitor those events and solve the problems that arise from these, it is necessary 

to define and follow a disruption management process. Airline companies have an entity 

called Airline Operations Control Centre (AOCC) that is responsible for the disruption 

management process. There are three main types of AOCC organizations [11]: 

 

 Decision Centre: The aircraft controllers share the same physical space. The other 

roles or support functions (crew control, maintenance service, etc.) are in a different 

physical space. In this type of Collective Organization all roles need to cooperate to 

achieve the common goal. 

 Integrated Centre: All roles share the same physical space and are hierarchically 

dependent of a supervisor. For small companies we have a Simple Hierarchy 

Organization. For bigger companies we have a Multidimensional Hierarchy 

Organization. Figure 2 shows an example of this kind of AOCC organization. 

 Hub Control Centre (HCC): Most of the roles are physically separated at the airports 

where the airline companies operate a hub. In this case, if the aircraft controller role 

stays physically outside the hub we have an organization called Decision Centre with 

a hub. If both the aircraft controller and crew controller roles are physically outside 

the hub we have an organization called Integrated Centre with a hub. The main 

advantage of this kind of organization is to have the roles that are related with airport 

operations (customer service, catering, cleaning, passengers transfer, etc.) physically 

closer to the operation. 

 

The organization adopted depends on several factors like airline size, airline network type 

(for example, hub-and-spoke) and geographic distribution of the operation, as well as, 

tradition and/or company culture. 

In Figure 2 we present the organization of a typical Integrated Operational Control 

Centre. It is important to point out the role of the supervisor, a characteristic that makes this 

organization hierarchical and, also, the operation time-window that marks the responsibility 

boundaries of the AOCC. This operation time-window is different from airline to airline but, 

usually, ranges from 72 to 24 hours before to 12 to 24 hours after the day of operation. 

The roles or support functions more common in an AOCC, according to Kohl et al., [2] 

and [11], are the following: 

 

 Flight Dispatch: Prepares the flight plans and requests new flight slots to the Air 

Traffic Control (ATC) entities (FAA in North America and EUROCONTROL in 

Europe, for example). 

 Aircraft Control: Manages the resource aircraft. It is the central coordination role in 

the operational control. In a disruptive situation, tries to minimize the delays by 

changing aircrafts and rerouting or joining flights, among other actions. Usually, uses 

some kind of computer system to monitor the operation that, in some cases, might 
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include some decision supports tools. Much more common is the use of rules-of-

thumb based on work experience (a kind of hidden knowledge). 

 Crew Control: Manages the resource crew. Monitors the crew check-in and check-

out, updates and changes the crew roster according to the disruptions that might 

appear during the operation. Like the previous role, it uses some kind of system with 

or without decision support tools. The experience and the use of rules-of-thumb are 

still the most common decision tools. To use reserve crew and exchange 

crewmembers from other flights, are among the possible actions used to solve crew 

problems. 

 Maintenance Services: Responsible for the unplanned maintenance services and for 

short-term maintenance scheduling. Changes on aircraft rotations may impact the 

short-term maintenance (maintenance cannot be done at all stations). 

 Passenger Services: Decisions taken on the AOCC will have an impact on the 

passengers. The responsibility of this role is to consider and minimize the impact of 

the decisions on passengers, trying to minimize the passenger trip time. Part of this 

role is performed on the airports and for bigger companies it is part of the HCC 

organization. 

 

Figure 2. Integrated airline operational control centre 
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3.3. Typical Problems 

In the previous section we presented typical AOCC organizations and the roles that exist 

on those organizations. Now, it is important to understand the typical problems that appear 

during the execution of the airline operation. From our observations in a real AOCC, and 

from Kohl & Karisch [21], we found the typical problems presented in Figure 3. In this 

diagram we have also included the impact that each problem might have on flight arrival or 

departure delays as well as the relation that exist between them. The diagram also shows that 

the problems might propagate due to the relation between them and generate new problems 

on different flights. This propagation characteristic makes the problem more difficult to be 

solved optimally in a real time and dynamic environment, like the one we have on the AOCC. 

As we can see in Figure 3 there is an obvious relation between Flight Arrival Delays and 

Flight Departure Delays. Most of the flights are performed by aircrafts that are used in 

previous flights. If we have an arrival delay and the aircraft turn-around time at the airport is 

not enough, then, if the AOCC does not find an alternative solution, we will also have a 

departure delay. From the diagram we can also see that the main reasons for flight arrival 

delay (besides the delay on departure) are: En-route air traffic, en-route weather, en-route 

aircraft malfunction and flight diversion. In the previous cases and to minimize the arrival 

delay it is necessary a cooperation between the pilot, the AOCC and ATC. Regarding 

departure delays, the main reasons are: crew delays, cargo/baggage loading delays and 

passenger delays as a consequence of an arrival delay. Crewmembers that do not report for 

duty, air traffic control reasons, aircraft malfunctions and weather conditions (at departure or 

at arrival) are the other main reasons for departure delays. 

 

Figure 3. Typical AOCC problems and relations 
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Figure 4. AOCC disruption management process 

3.4. Current Disruption Management Process 

As we can see from the previous section, there are several problems that might cause 

flight delays. AOCCs have a process to monitor the events and solve the problems, so that 

flight delays are minimized with the minimum impact on passenger and, preferably, with the 

minimum operational cost. In Figure 4 we present the current disruption management process 

in use at most of the airlines. This process has five steps: 

 

1. Operation Monitoring: In this step the flights are monitored to see if anything is not 

going according the plan. The same happens in relation with crewmembers, 

passenger check-in and boarding, cargo and baggage loading, etc.  

2. Take Action: If an event happens, like for example, a crewmember is delayed or an 

aircraft malfunction, a quick assessment is performed to see if an action is required. 

If not, the monitoring continues. If an action is necessary than we have a problem 

that needs to be solved. 
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3. Generate and Evaluate Solutions: Having all the information regarding the problem 

the AOCC needs to find and evaluate the candidate solutions. Usually, a sequential 

approach is adopted when generating the solutions. First, the aircraft problem is 

solved. Then, the crew problem and finally, the passengers. It is understandable that 

the AOCC adopts this approach. Without good computer tools, it is difficult to take 

care of the problem, considering the three dimensions (aircraft, crew and passengers) 

simultaneously. Although there are several costs involved in this process, we found 

that the AOCC relies heavily on the experience of their controllers and in some rules-

of-thumb (a kind of hidden knowledge) that exist on the AOCC. 

4. Take Decision: Having the candidate solutions a decision needs to be taken. 

5. Apply Decision: After the decision the final solution needs to be applied in the 

environment, that is, the operational plan needs to be updated accordingly. 

 

In our opinion, this process can greatly benefit from an intelligent agent based approach 

to the problem, as we will explain in Section 4. 

3.5. Main Costs Involved 

In the step Generate and Evaluate Solutions of the disruption management process on the 

previous section, we should consider the main costs involved in generating and choosing 

from candidate solutions. According to our observations these are the main costs involved 

when generating and evaluating a solution for a specific disruption: 

 

1. Crew Costs: the average or real salary costs of the crewmembers, additional work 

hours and perdiem days to be paid, hotel costs and extra-crew travel costs.  

2. Flight Costs: airport costs (approach and taxing taxes, for example), service costs 

(cleaning services, handling services, line maintenance, etc.), and average 

maintenance costs for the type of aircraft, ATC en-route charges and fuel 

consumption. 

3. Passenger Costs: passenger airport meals, passenger hotel costs and passenger 

compensations. 

 

Finally, there is a less easily quantifiable cost that is also included: the cost of delaying or 

cancelling a flight from the passenger point of view. Most airlines use some kind of rule-of-

thumb when they are evaluating the impact of the decisions on passengers. Others just assign 

a monetary cost to each minute of delay and evaluate the solutions taking into consideration 

this value. In a previous work [31, 32] we propose a different way of calculating this cost 

component. Section 4.5 highlights the most important parts of this approach. 

3.6. Current Tools and Systems 

In a previous work [11] we have classified the current tools (or systems that provide 

those tools) in use at AOCCs in one of these three categories: 
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1. Database Query Systems (DBQS) 

2. Decision Support Systems (DSS) 

3. Automatic or Semi-Automatic Systems (ASAS) 

 

The DBQS – Database Query Systems (the most common situation at airlines) allows the 

AOCC human operators to perform queries on the existing databases to monitor the airline 

operation and to obtain other data essential for decision-making. For example, the aircraft 

and/or crew roster, aircraft maintenance schedule, passenger reservations, and so on. These 

systems are useful and relatively easy to implement and/or acquire but they have some 

important disadvantages, for example, to find the best solution and to take the best decision is 

completely dependent on the human operator. As we have explained in [11] there are two 

problems when airline companies use only this type of systems: (1) the solution quality is 

dependent on knowledge and experience of the human operator and, (2) due to the usual 

difficulty of the human being in leading with large volumes of data simultaneously, they do 

not use all the necessary information (variables) to take the best decision.  

The DSS - Decision Support Systems, besides having the same characteristics of the 

DBQS, also include additional functionalities to support the human operators on the decision-

making. For example, after a request made by a human operator, these systems are able to 

recommend the best solution to solve a problem related with a delayed aircraft. Some of them 

may just recommend a flight re-scheduling but others are able to justify the candidate solution 

as well as to present the solution cost. DSS systems eliminate some of the disadvantages of 

the DBQS systems. Namely, they are able to analyse large volumes of data and, because of 

that, propose solutions that take into consideration more information (variables). The 

decision-making still is on the human operator side but, now, he is able to take better 

decisions. Unfortunately, one of the big problems with airline companies is the absence 

and/or complexity of the computerized information system keeping all the operational 

information. These are of paramount importance for the success of the decision support tools. 

This problem, referred in [2] as the Data Quality and System Accessibility Problem, gains 

more importance when we start to implement decision support tools and/or automatic or 

semi-automatic systems. 

The goal of the third type of systems, ASAS – Automatic or Semi-Automatic Systems, is to 

automate as much as possible the AOCC, replacing the functional part by computerized 

programs. Specifically, these systems try to automate the repetitive tasks and also the tasks 

related with searching for the best solution (problem solving). In a totally automatic system, 

decision-making is also taken by the system. In a semi-automatic system, the final decision is 

taken by the human operator. In ASAS type of systems, the AOCC does not need as much 

human operators as in the previous ones, to operate correctly. Usually, roles or functions 

related with operation monitoring, searching for solutions related with aircraft, crew or 

passenger problems and re-allocation of resources, are performed by specialists agents [12] 

replacing the human specialists. The final decision regarding the application of the solution 

found by these systems on the environment (for example, making the necessary changes on 

the airline operational plan database) depends on the human supervisor. According to [13] 

and [14] the agent and multi-agent systems paradigm is more appropriate to be used in this 

domain than any other paradigm. Our new concept for operations recovery fits in this type of 

systems. 
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4. A NEW CONCEPT FOR OPERATIONS RECOVERY 

In Section 3 we introduced the Airline Scheduling Problem and the Airline Operations 

Control Problem (or Disruption Management Problem). We have described the AOCC 

organization and roles as well as the typical problems that appear during the execution of the 

operational plan. The disruption management process used by airlines was presented as well 

as the main costs involved in generating and evaluating the solutions. We have also classified 

the current tools and systems in three categories. 

In this section we present our new concept for disruption management in the airline 

domain, including how we represent the AOCC using a multi-agent system (MAS), an 

organization of intelligent agents. To implement the MAS we have used Java1 and JADE 

[22]. These tools provide the necessary development framework and runtime environment for 

our agents. 

4.1. Introduction 

Looking at the current roles in the AOCC (Figure 2), we see that some of them 

correspond to very repetitive tasks. For example, the aircraft controller (a member of the 

aircraft team) is constantly checking the computer system (including, e-mail, datalink system, 

telex, etc.) to see if there is any problem that might affect the departure or arrival of a flight. 

A similar routine regarding monitoring crewmembers is performed by the crew controller (a 

member of the crew team). When a problem is detected, the process of solving it is also very 

repetitive. For example, if a flight is delayed, the possible and general actions than an aircraft 

controller has to solve the problem are (the applicability of each action depends on the 

specific problem at hand): 

 

1. Use an aircraft from a later flight (change aircrafts). 

2. Reroute the flight (helpful when the delay is related with slots). 

3. Join flights (use one aircraft to also perform the flight of the broken aircraft). 

4. Freight an aircraft and crew from another company, also known as ACMI – Aircraft, 

Crew, Maintenance and Insurance. 

5. Delay the flight. 

6. Cancel the flight. 

 

The crew controller also performs very repetitive tasks when trying to solve crew 

problems. For example, the general actions he can use to solve the problems are (the 

applicability of each action depends on the specific problem at hand): 

 

1. Use a reserve crew at the airport. 

2. Use a reserve crew that lives near the airport. 

3. Use another crew from another flight. 

4. Invite a day off crew. 

                                                           

1 http://www.java.com 
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5. Propose to change the aircraft to a different aircraft type. 

6. Proceed without the crewmember. 

7. Delay the flight. 

8. Cancel the flight. 

 

Taking into consideration the above as well as the characteristics of the agent and multi-

agent paradigm (see next section) we propose to represent the AOCC by a multi-agent 

system, replacing the monitoring, aircraft controller, crew controller and part of the passenger 

role, by intelligent agents as represented in Figure 5. 

In this new approach, the aircraft team will be replaced by a sub-organization of agents 

(represented as Aircraft Manager). The same will happen to the crew team (represented as 

Crew Manager). Regarding the passenger services, we propose to replace by software agents 

the task of finding the best solutions to the problems with passengers (usually a plan of 

alternative flights to each disrupted passenger) and keep the other tasks to be performed at the 

airports by human operators (represented as Passenger Manager in figure 5). The supervisor 

interacts with the software agents through an interface agent. 

 

Figure 5. New concept for integrated Airline Control Centre 
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4.2. Why an Agent and Multi-Agent System Paradigm? 

Before presenting the architecture of our multi-agent system, it is important to point out 

the characteristics of this paradigm, according to [13, 23], that make us adopt it to model this 

problem. Table 2 summarizes the characteristics. For the interested reader, more details are 

available in [32], section III. 

Table 2. Summary of the MAS paradigm characteristics 

Characteristic Main reason 

Autonomy Problems are modelled as autonomous interacting components. The 

Crew Manager, Pax Manager and A/CManager in figure 6 are 

example of that. They can choose to respond or not to the requests 

according to their own objectives. 

Natural 

Metaphor 

The AOCC modelled as an organization of cooperating agents is a 

natural metaphor. 

Reactivity Agents are able to perceive and react to the changes in their 

environment. The Monitor agent in figure 6 is an example of such an 

agent. 

Resource 

Distribution 

With a MAS we can distribute the computational resources and 

capabilities across a network of interconnected agents avoiding 

problems associated with centralized systems. Airline companies of 

some dimension have different operational bases. We use a MAS for 

each operational base, taking advantage of this important characteristic. 

Due to the social awareness characteristics of some of our agents (for 

example, Monitoring agent in Figure 6) they are able to distribute their 

tasks among other agents with similar behaviour.  

Scalability and 

Modularity 

A MAS is extensible, scalable, robust, maintainable, flexible and 

promotes reuse. These characteristics are very important in systems of 

this dimension and complexity. Our MAS is able to scale in terms of 

supporting more operational bases as well as in supporting different 

algorithms to solve specific problems. 

Parallelism/ 

Concurrency 

These characteristics are important if we want a fault-tolerant system 

and if we want to speed up computation. Our Specialist agents in figure 

6 are example of that. 

Agents are capable of reasoning and performing tasks in parallel. This 

provides flexibility and speeds up computation. Our Specialist agents 

in figure 6 are examples of concurrent agents. Additionally and 

according to Stone & Veloso [24] ―if control and responsibilities are 

sufficiently shared among agents, the system can tolerate failures by 

one or more agents‖. Our MAS can be totally or partially replicated in 

different computers. If one or more agents fail, the global objective is 

not affected. 

Legacy Systems Legacy systems can be wrapped in an agent layer to be able to interact 

with other systems. It the air transportation domain, most likely, we 

need to interact with older but functional systems. So, this 

characteristic is very important. 
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Figure 6. MAS architecture 

4.3. MAS Architecture 

To develop a software system it is important to follow a methodology. Multi-agent 

systems are not an exception. The architecture presented here is the result of following an 

agent-oriented methodology, specifically an adaptation of GAIA according to [25]. The base 

for this architecture was the service and agent model that resulted from following the 

methodology. 

Figure 6 shows the architecture of our multi-agent system approach. The boxes represent 

agents, the solid lines represent interactions between agents and the dash lines represent 

actions in the environment. The cloud represents the negotiation at the managers‘ level. In 

this figure we are representing only one instance of the system. All agents can be replicated 

with the exception of the Supervisor agent. Each agent performs one or more roles in the 

AOCC. The Monitor agent looks for events on the operational plan that may trigger any 

aircraft/flight, passenger and/or crew problem. This agent has social-awareness 

characteristics in the sense that it is able to recognize and interact with other agents with the 

same role, splitting the tasks. For example, if each monitor agent instance corresponds to a 

different hub, they will monitor the corresponding hub operational plan. This agent, like 

others in our system, is autonomous because it is able to consider an event as a problem only 

when specific conditions or characteristics are present. 

The CrewManager and A/CManager agents are responsible for crew and aircraft/flight 

problems, respectively. They manage a team of expert agents [12] with the role of finding 

solutions for the problems in their area of expertise. The expert or specialist agents implement 

different heterogeneous problem solving algorithms and are able to run in parallel. The 
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managers are autonomous because they only respond to requests related with their area of 

expertise. To find the best solution regarding passenger problems we have the PaxManager.  

The agent Supervisor and agent EventInformation are the only ones that interact with a 

human user of the AOCC. The solutions selected by the Supervisor are presented to the 

human. Includes solution details (and the rationale behind the solution) to help the human 

decide and are ranked according to the criteria of the airline company. After getting approval 

from the human supervisor, the Supervisor agent requests Applier agent to apply it on the 

environment. 

In figure 6, Data Sources represent the environment that all agents are able to observe 

and act upon. All the necessary information is included in the data sources. For example, 

company and airport information, flight schedule, aircraft and crew rosters, etc. 

Additional information to support some characteristics of the MAS like learning is also 

included on the data sources. The Tracking agent supports the tracking characteristics of the 

system and the Data Visualization agent supports the visualization of the information (flight 

movements, delays, problems, etc.) showing what is happening at the AOCC. Figure 7 shows 

a partial GUI updated by the Data Visualization agent. 

There is also a Learning agent that will support the advanced learning characteristics of 

the system (not implemented yet). In Section 7, the interested reader can find more 

information about the way we expect to apply learning in our MAS. Finally, the protocols we 

use are the following (the first three are FIPA
2
 compliant ones): 

 

 Fipa-Request: This protocol allows one agent to request another to perform some 

action and the receiving agent to perform the action or reply, in some way, that it 

cannot perform it. Fipa-request is used in interactions between the Monitor and 

Crew, Pax and A/C Manager interactions.  

 Fipa-Query: This protocol allows one agent to request to perform some kind of 

action on another agent. It is used in the interactions that involve PaxManager, 

A/CManager, CrewManager and Supervisor agent; Supervisor, Applier and 

EventInformation agent and, finally, EventInformation and Monitoring agent. 

 Fipa-Contract.net [29]: A simplified version of this protocol is used in the 

interactions between the Managers and the expert/specialised agents. 

 GQ-Negotiation: This negotiation protocol is a generalization of the Q-Negotiation 

protocol as presented in [26]. We use it at the manager agents‘ level so that we can 

get the best integrated solution. The next section gives more information about this 

protocol. 

4.4. Decision Mechanisms 

We use two levels of negotiation. The Manager Agents Level, that is, between 

A/CManager, CrewManager and PaxManager. At this level they cooperate to find an 

integrated solution, that is, one that includes the impact on passengers, crew and aircraft. 

The Team Level (or Specialist Agents Level), that is, between each manager and the 

expert/specialist team agents. In the following sections we explain both decision mechanisms. 

                                                           
2
 http://www.fipa.org 
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Figure  7. User Interface (Partial) updated by the Data Visualization agent 

4.4.1. Manager agents level negotiation 

At this level we are using a generalization of the Q-Negotiation protocol present in Rocha 

& Oliveira [26, 27]. Rocha & Oliveira propose a negotiation mechanism in the context of 

agent-based Virtual Organisation (VO) formation process, which selects the optimal group of 

organisations that satisfies the VO needs. In this scenario, each organisation has the objective 

to maximize its own profit and, for that, the negotiation process takes into account the 

rationality and self-interestedness of the agents. The Q-Negotiation includes a multi-attribute 

negotiation with several rounds and qualitative feedback. Additionally, the agents are able to 

learn (adapt) their strategies during bid formulation, due to the inclusion of a Q-Learning 

algorithm. According to the authors ―(…) Q-Learning enables on-line learning, which is an 

important capability (…) where agents will learn in a continuous way during all the 

negotiation process, with information extracted from each one of the negotiation rounds, and 

not only in the end with the negotiation result‖. We believe that the Q-Negotiation protocol 

can be useful in our domain, given that we perform the necessary adaptation. 

Figure 8 shows a simplified version of the GQ-Negotiation protocol (Generic Q-

Negotiation) that results from the adaptation of Rocha & Oliveira protocol, applied to our 

domain. 

The Monitor agent sends the problem to the Supervisor agent, including information 

about the dimension affected (aircraft, crew or passenger) as well as the schedule time and 

costs (flight, crew and passenger). The agent Supervisor assumes the role of organizer and 

using the information about the problem, prepares an call-for-proposal (cfp) that includes the 

problem, a range of preferred values for delay, flight costs, crew costs, passenger costs, 
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Figure 8. GQ-Negotiation Protocol (simplified version) 

passenger trip time and a negotiation deadline. After the cfp, the first round of negotiation 

starts. The ACManager, CrewManager and PaxManager agents (respondent agents) present 

the proposal according to their interests. For example, the ACManager wants to minimize the 

flight costs and delay and the PaxManager wants to minimize the passengers trip time and 

cost. It is important to point out that the proposals presented by the respondent agents are 

based on the candidate solutions found by their specialist agents as explained in section 4.4.2 

and 4.6. The proposals are evaluated by the Supervisor and qualitative feedback is sent to the 

respondent agents. At this time we use a simple function to evaluate the proposals as 

indicated in Equation 1. 

 

  (1) 
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In this equation da, dc and tt, represents the aircraft delay, crew delay and passenger trip 

time; ac, cc and pc represents the aircraft cost, crew costs and passenger cost of a specific 

proposal. The set of aircraft delay from all proposals is represented by DA and a similar 

approach is followed for the other equation components. Each component has a weight 

represented by α, β, γ and δ with values between 0 and 1. 

Using the feedback, the respondent agents change their proposals. The bid formulation 

process uses a Q-Learning algorithm endowing the agent with the capability to learn on-line 

along the negotiation process. This loop of proposals and feedback ends when the Supervisor 

agent founds a proposal that satisfies its preferences. The respondent agents are informed of 

the result. After having the best solution, the Supervisor agent shows to the human supervisor 

the solution and the rationale behind it. The human supervisor can choose to apply it or not. If 

he chooses to not apply the solution, some feedback is given. For example and for a specific 

problem, it might be better to have lower passenger costs even if it means higher flight costs. 

Using this feedback, the Supervisor agent (the one with the organizer role in the negotiation 

process) improves the range of preferences included in the cfp and the negotiation process 

restarts. Before finish this section, it is important to point out that Ehlers & Langerman [28] 

proposed the use of an Intelligent Interface Agent that uses an hybrid approach (combination 

of an expert system and a Q-Learning system) to learn the preferences of the users when 

solving disruptions in airline schedules. Although there are some similarities (starting with 

the domain), we believe that our approach differs considerably. For example, we use a multi-

agent system that represents the AOCC and in this context, the agents are able to negotiate 

and learn autonomously. There are other differences but this one, by itself and in our 

understanding, shows the main difference between the two approaches. 

4.4.2. Team level negotiation 

At the Team Level we use a fipa-contract.net [29, 30] protocol with some modifications. 

Figure 9 presents this protocol applied to the CrewManager team. 

The Monitoring agent requests a solution to a specific problem. If the CrewManager 

agent (organizer) has expertise to propose a solution, he can decide to reply. For that, he 

issues a cfp (call for proposal) to start the negotiation process. On the cfp it is included 

information about the problem as well as deadlines for receiving an answer (refuse/propose) 

and for receiving the candidate solution from the responder agent (CrewSimmAnneal in the 

example). 

The respondent agent answers back with refuse or propose. If he answers with propose it 

means that he will seek for a possible solution according to the cfp conditions. The organizer 

agent answers back with an accept-proposal. To speed-up the communication, it was here 

that we have simplified the protocol. In our approach, we do not need to select from the 

received answers because we want all available agents to work in parallel. That is the reason 

why the answer from the respondent agents is ―yes‖ or ―no‖, meaning that they are available 

(or not) to seek for candidate solutions. If the respondent agent finishes the task with success, 

it will send the candidate solution included in the inform-result performative. If he fails, the 

reasons are included in a failure performative. 



 

Table 3. Summary of costs involved 

# Equations Description 

2  Total Operational Cost (tc) includes Direct Operational Costs (dc) and 

Quality Operational Costs (qc). 

3  Direct Operational Costs (dc) of a specific solution are costs that are 

easily quantifiable and are related with the operation of the flights, namely, 

Crew Costs (cc), Flight Costs (fc) and Passenger Costs (pc). 

4 

 

The Crew Cost (cc) for a specific flight includes the salary costs of all 

crew members (Salary), additional work hours to be paid (Hour), 

additional perdiem days to be paid (Perdiem), hotel costs (Hotel) and 

extra-crew travel costs (Dhc). 

5 

 

The Flight Cost (fc) for a specific flight includes the airport costs (Airp), 

i.e., charges applied by the airport operator like approaching and taxing; 

service costs (Service), i.e., flight dispatch, line maintenance, cleaning 

services and other costs; average maintenance costs for the type of aircraft 

that performs the flight (Maint); ATC en-route charges (Atc); and fuel 

consumption (Fuel), i.e., fuel to go from the origin to the destination (trip 

fuel) plus any additional extra fuel required. 

6 

 

The Passenger Cost (pc) of the delayed passengers for a specific flight 

includes airport meals the airline has to support when a flight is delayed or 

cancelled (Meals), hotels costs (PHotel) and any compensation to the 

passengers according to regulations (Comp). 

7 

 

Quality Operational Costs (qc) of a specific solution are costs that are not 

easily quantifiable and are related with passenger satisfaction. The 

quantification of this value is very important to increase the quality level 

of an airline company when facing a disruption. For more information 

about this topic please see section 4.5 and/or consult [31, 32]. 
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Figure 9. Contract net protocol (simplified) 

After receiving all the candidate solutions, the organizer agent needs to select the best 

one. This process is explained in [32] and is based on the Total Operational Cost criteria. 

Table 3 summarizes the costs involved. 

4.5. Quality Operational Costs 

The Airline Operations Control Centre (AOCC) has the mission of controlling the 

execution of the airline schedule and, when a disruption happens (aircraft malfunction, 

crewmember missing, etc.) find the best solution to the problem. It is generally accepted that, 

the best solution, is the one that does not delay the flight and has the minimum direct 

operational cost. Unfortunately, due to several reasons, it is very rare to have candidate 
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solutions that do not delay a flight and/or do not increase the operational cost. From the 

observations we have done in a real AOCC, most of the times, the team of specialists has to 

choose between candidate solutions that delay the flight and increase the direct operational 

costs. Reasonable, they choose the one that minimize these two values. Also from our 

observations, we found that some teams in the AOCC use some kind of rule of thumb or 

hidden knowledge that, in some cases, make them not choose the candidate solutions that 

minimize the delays and/or the direct operational costs. For example, suppose that they have 

disruptions for flight A and B with similar schedule departure time. To solve the problem, 

they have two candidate solutions: one is to delay flight A in 30 minutes and the other would 

delay flight B in 15 minutes. The direct operational costs for both candidate solutions are the 

same. Sometimes they would choose to delay flight A in 15 minutes and flight B in 30 

minutes. We can state that flights with several business passengers, VIP‘s or for business 

destinations correspond to the profile of flight A in the above example. In our understanding 

this means that they are using some kind of quality costs when taking the decisions, although 

not quantified and based on personal experience. In our opinion, this knowledge represents an 

important part in the decision process and should be included on it. 

4.5.1. Quantifying Quality Costs 

To be able to use this information in a reliable decision process we need to find a way of 

quantifying it. What we are interested to know is how the delay time and the importance of 

that delay to the passenger are related in a specific flight. It is reasonable to assume that, for 

all passengers in a flight, less delay is good and more is bad. However, when not delaying is 

not an opinion and the AOCC has to choose between different delays to different flights 

which one should they choose? We argue that the decision should take into consideration the 

passenger‘s profile(s) of the specific flight and not only the delay time and/or operational 

cost. For quantifying the costs from the passenger point of view, we propose the following 

generic approach: 

 

1. Define the existing passenger profile(s) in the flight. 

2. Define a delay cost for each passenger in each profile. 

3. Calculate the quality costs using the previous steps. 

 

Most likely, every airline company will have a different method to define the passenger 

profile in a specific flight. Most of the airlines will just consider one or two profiles (for 

example, business and economy). To get the number of passengers that belong to these 

profiles is very easy. Airline companies can use the flight boarding information to calculate 

this number.  

Most of the airline companies will choose to use a fixed delay cost value to each 

passenger of each profile. These numbers can reflect the perception of the costs from the 

point of view of the company or can result from a statistical analysis of the company 

information. In our opinion and that is one of the main contributions of our approach, we 

think that this cost should be calculated from the passenger point of view. This implies to use 

a formula to calculate the costs of each profile that represents this relation. Giving the above 

we believe that the quality costs should result from the relation between the number of 

passenger profiles in the flight and the delay cost for each passenger from their point of view, 

expressed by Equation 7 in Table 3. 
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4.5.2. Airline example 

The final goal in this real example is to be able to have passenger profiles to every flight 

in the company, regarding the delay cost from the point of view of the passengers. To get this 

information, we have done a survey to several passengers on flights of the airline company. 

Besides asking in what class they were seated and the reason for flying in that specific flight, 

we asked them to evaluate from 1 to 10 (1 – not important, 10 very important) the following 

delay ranges (in minutes): less than 30, between 30 and 60, between 60 and 120, more than 

120 and flight cancellation. From the results we found the passenger profiles in Table 4. 

For the profiles in Table 4 to be useful, we need to be able to get the information that 

characterizes each profile, from the airline company database. We found that we can get the 

number of passengers of each profile in a specific flight from the boarding database, using the 

information in Table 5. 

Besides being able to get the number and characterization of profiles from the survey 

data, we are also able to get the trend of each profile, regarding delay time/importance to the 

passenger. Plotting the data and the trend we got the graph in Figure 10 (x – axis is the delay 

time and y – axis the importance). 

If we apply these formulas as is, we would get quality costs for flights that do not delay. 

Because of that we re-wrote the formulas. The final formulas that express the importance of 

the delay time for each passenger profile are presented in Table 6. It is important to point out 

that these formulas are valid only for this particular case and express the information we have 

from this specific survey data. Our goal is to update this information every year, using the 

annual company survey, and obtain different formulas according to flight destinations, flight 

schedules and/or geographical areas. 

Table 4. Passenger Profiles 

Profiles Main Characteristics 

Business Travel in first or business class; VIP‘s; Frequent Flyer members; Fly to business 

destinations; More expensive tickets. 

Pleasure Travel in economy class; Less expensive tickets; Fly to vacation destinations. 

Illness Stretcher on board; Medical doctor or nurse travelling with the passenger; Personal 

oxygen on board or other special needs. 

Table 5. Boarding Information 

Profiles Relevant Fields for Profiling 

Business #C/CL pax; #VIP‘s; #Freq. Flyer; #Pax according ticket price; Departure or arrival = 

business. 

Pleasure #Y/CL pax; #Pax according ticket price; Departure or arrival = vacation. 

Illness #Pax special needs; Stretcher on board=yes. 

Table 6. Final Quality Formulas for the Airline Example 

Profiles Formula 

Business y = 0.16*x2+1.39*x 

Pleasure y = 1.20*x 

Illness y = 0.06*x2+1.19*x 
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Figure 10. Case study trend formulas for the profiles 

Let‘s calculate the quality operational costs for the following flight (assuming 10 as the 

coefficient to convert to monetary costs): Flight 103 will be delayed 30 minutes at departure. 

It has 20 passengers in the business profile (B), 65 in pleasure profile (P) and 1 in the illness 

profile (I). Applying the formulas in Table 6, the cost of 30 minutes delay for each passenger 

in each profile is: 

 Bcost-103 = 0.16*302+1.38*30 = 185.4 

 Pcost-103 = 1.2*30 = 36 

 Icost-103 = 0.06*302+1.19*30 = 89.7 

The quality operational cost for the flight 103 with a delay of 30 minutes is: 

 QCcost-103 = 10*(20*185.4+65*36+1*89.7) = 61377 

4.6. Problem Solving Algorithms 

As it is possible to see in Figure 6 (Section 4.3), the aircraft and crew dimension have, 

each one, a team of specialist agents. Each agent should implement a heterogeneous problem 

solving algorithm on the team they belong to. Preliminary results show that a single problem 

solving algorithm is not able to solve, dynamically and within the required time restriction, all 

types of problems that we have identified during our observations (see Section 3.3). Taking 

advantage of the modularity, scalability and distributed characteristics of the MAS paradigm, 

we are able to add as many specialist agents as required, so that all types of problems are 

covered. As we have seen in Section 4.3 and 4.4.2, the idea is to have all specialist agents of a 

team looking for solutions concurrently. 

In this section we are going to show how we have implemented one of the specialist 

agents of the crew team, namely, CrewHillClimb. This agent implements a hill climb 
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algorithm. For more details regarding how we have implemented this and other specialist 

agents, please read Mota [33].  

The hill climbing agent solves the problem iteratively by following the steps: 

 

1. Obtains the flights that are in the time window of the problem. This time window 

starts at the flight date, and ends at a customizable period in the future. This will be 

the initial solution of the problem. The crew members‘ exchanges are made between 

flights that are inside the time window of the problem. 

2. While some specific and customizable time has not yet passed, or a solution below a 

specific and customizable cost has not been found, repeats steps 3 and 4. 

3. Generates the successor of the initial solution (the way a successor is generated is 

described below). 

4. Evaluates the cost of the solution. If it is smaller than the cost of the current solution, 

accepts the generated solution as the new current solution. Otherwise, discards the 

generated solution. The way a solution is evaluated is described below. 

5. Send the current solution to the CrewManager agent following the protocol as we 

have seen in Section 4.4.2. 

 

The generation of a new solution is made by finding a successor that distances itself to 

the current solution by one unit, that is, the successor is obtained by one, and only one, of the 

following operations: 

 

 Swap two crewmembers between flights that belong to the flights that are in the time 

window of the problem. 

 Swap a crewmember of a flight that belongs to the flights that are in the time window 

of the problem with a crewmember that isn‘t on duty, but is on standby. 

 

When choosing the first element to swap, there are two possibilities: (1) choose randomly 

or (2) choose an element that is delayed. The choice is made based on the probability of 

choosing an element that is late, which was given a value of 0.9, so that the algorithms can 

proceed faster to good solutions (exchanges are highly penalized, so choosing an element that 

is not late probably won‘t reduce the cost, as a possible saving by choosing a less costly 

element probably won‘t compensate the penalization associated with the exchange). 

If the decision is to exchange an element that is delayed, the list of flights will be 

examined and the first delayed element is chosen. If the decision is to choose randomly, then 

a random flight is picked, and a crewmember or the aircraft is chosen, depending on the 

probability of choosing a crewmember, which was given a value of 0.85. When choosing the 

second element that is going to swap with the first, there are two possibilities: (1) swap 

between elements of flights or (2) swap between an element of a flight and an element that is 

not on duty. The choice is made based on the probability of choosing a swap between 

elements of flights, which was given a value of 0.5. 

The evaluation of the solution is done by an objective function that measures the 

following types of costs: 

 

 The crew cost according to Equation 4 in Table 3; 

 The penalization for exchanging elements; 
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Table 7. Implementation of the hill climbing algorithm in Java 

GregorianCalendar currentDate = new GregorianCalendar(); 

 int secondsExecution = (int) ((currentDate.getTimeInMillis() - 

startDateResolution.getTimeInMillis()) / 1000); 

 while(!Shared.to(problem.getNumSeconds(), secondsExecution, 

problem.getMaxCost(), currentSolutionCost)) 

 { 

  // get successor 

  successor = 

Shared.generateSuccessor(Shared.copyArrayList(currentSolution));     

  // checks if successor has an inferior solution cost 

  successorCost = Shared.calculateCost(successor, initialPlainSolution); 

  System.out.println("Successor Cost: " + successorCost + "\n"); 

  if(sucessorCost < currentSolutionCost) 

  { 

   currentSolution = successor; 

   currentSolutionCost = successorCost; 

  }     

  currentDate = new GregorianCalendar(); 

  secondsExecution = (int) ((currentDate.getTimeInMillis() - 

startDateResolution.getTimeInMillis()) / 1000); 

 } 

 

 The penalization for delayed elements. The cost associated with this aspect is the 

highest, because the goal is to have no delayed elements. 

 

The Hill Climbing Objective Function (hc) is given by Equation 8. 

 hc = cc + excW * nExc + delayW * nDelay

 (8) 

 

In this equation, cc represents the crew cost calculated according to equation 4 (table 3), excW 

represents the penalization for crew exchanges, nExc represents the number of crew 

exchanges, delayW represents the penalization for delaying crewmembers and nDelay the 

number of delayed crewmembers. 

5. EXPERIMENTAL SETUP 

To evaluate our approach we have setup a scenario that includes 3 operational bases (A, 

B and C). Each base includes their crewmembers each one with a specific roster. The data 

used corresponds to a real airline operation of June 2006 of base A. A scenario was simulated 

where 15 crewmembers, with different ranks, did not report for duty in base A. In table 7 we 

present the collected information for each event. 
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Table 7. Information collected 

 

Table 8. Events used (testing) 
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1 05-06 

07:25 

1ORY149S 0 7 123 05-06 

13:35 

06-06 

01:35 

370 2 CAB 80 John A 

2 05-06 

07:25 

1ORY149S 10 11 114 05-06 

13:35 

06-06 

01:35 

370 2 CAB 45 Mary A 

3 05-06 

07:25 

1ORY85P 0 10 112 05-06 

13:35 

06-06 

01:35 

370 1 CPT 35 Anthony  

4 15-06 
04:10 

2LIS24X 30 0 90 16-06 
16:15 

17-06 
04:15 

1757 2 CAB 99 Paul M 

5 15-06 
04:10 

3LIS25X 25 3 77 15-06 
09:20 

15-06 
21:20 

632 2 CAB 56 John B 

6 15-06 
12:50 

2LHR63P 5 25 85 16-06 
20:45 

17-06 
08:45 

1549 1 CPT 57 Paul S 

7 15-06 

12:50 

2LHR63P 0 20 95 16-06 

20:45 

17-06 

08:45 

1549 1 OPT 53 Mary S 

8 15-06 

14:15 

1LHR31P 0 23 52 15-06 

20:55 

16-06 

08:55 

843 2 CCB 23 Sophie 

9 15-06 

15:25 

2LHR19P 10 27 105 16-06 

20:45 

17-06 

08:45 

1341 2 CCB 34 Angel 

10 15-06 

15:25 

1ZRH12X 0 5 115 17-06 

09:30 

17-06 

21:30 

1318 1 CPT 32 Peter B 

11 25-06 
05:20 

1LIS16S 20 3 97 25-06 
15:05 

26-06 
03:05 

585 2 CAB 20 Paul G 

12 25-06 
05:20 

1LIS16S 5 2 108 25-06 
15:05 

26-06 
03:05 

585 2 CAB 10 Alice 

13 25-06 

05:20 

1LIS158T 0 4 92 25-06 

15:05 

26-06 

03:05 

585 2 CAB 15 Daniel 

14 25-06 

06:15 

3LIS174S 0 1 129 27-06 

16:15 

28-06 

04:15 

1258 2 CAB 71 George 

15 25-06 

14:20 

4LIS50A 0 2 83 28-06 

19:40 

29-06 

07:40 

219 1 OPT 65 Allan 
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Table 9. Partial data for method 4 

 Duty ID Base ID Crew Grp Rank Hour Pay Perdiem Pay Quality Op. 

Cost 

Direct Op. 

Cost 

1 1ORY149S B 2 CAB 0,00 72,00 0 86,40 

2 1ORY149S A 2 CAB 0,00 72,00 501,31 72,00 

3 1ORY85P C 1 CPT 0,00 106,00 0 148,40 

4 2LIS24X B 2 CAB 637,77 144,00 838,11 938,12 

5 3LIS25X B 2 CAB 0,00 72,00 1021,42 86,40 

6 2LHR63P C 1 CPT 102,90 212,00 272,10 440,86 

7 2LHR63P B 1 OPT 37,22 144,00 0 217,46 

8 1LHR31P B 2 CCB 229,17 72,00 0 361,40 

9 2LHR19P C 2 CCB 0,00 144,00 788,78 201,60 

10 1ZRH12X B 1 CPT 0,00 212,00 0 254,40 

11 1LIS16S C 2 CAB 0,00 80,00 426,98 112,00 

12 1LIS16S A 2 CAB 0,00 80,00 144,34 180,00 

13 1LIS158T C 2 CAB 0,00 31,00 0 43,40 

14 3LIS174S B 2 CAB 985,00 216,00 0 1081,20 

15 4LIS50A A 1 OPT 152,72 288,00 0 440,72 

 Totals    1844,77 1945,00 3993,02 4564,36 

 

Each event corresponds to a crewmember that did not report for duty in a specific day. 

The data for each event is presented in Table 8. As an example, event 15 corresponds to the 

following: Allan, a crewmember with number 65 and rank OPT (first officer), belongs to 

crew group 1 (flight crew), did not report for duty with ID 4LIS50A with briefing time at 

14:20 in 25-06-2006. This flight has 83 economy passengers and 2 business passengers and it 

did not delay on departure. The new crewmember must have the same rank and belong to the 

same group. The duty ends at 19:40 on 28-06-2006 and the rest period end at 07:40 in 29-06-

2006. For the payroll, the duty will contribute with 219 minutes. Solutions were found after 

setting-up the scenario, using four different methods. 

The first three methods, named Human (M1), Agent-no-Quality (M2) and Agent-Quality 

(M3) are explained in [32]. Basically, in the human method we have used a human controller 

from the AOCC, using current tools, to find the solutions. In the agent-no-quality an agent-

based approach was used without considering the quality costs as presented in equation 7 in 

table 3. In the agent-quality method it was considered the quality costs. For more information, 

please read [32].  

In the fourth method, we have used the approach presented in section 4, but without the 

user feedback (see section 4.4.1). Table 9 presents the collected data. 

6. RESULTS AND DISCUSSION 

For each method the experimentation results are presented in table 10. The discussion 

that compares method 1 (human), method 2 (agent-no-quality) and method 3 (agent-quality) 

was presented in our previous work [32]. Here, we are going to concentrate our attention in 

comparing the agent-quality approach with the one presented in this chapter (integrated). In 

the integrated approach we use the two levels of negotiation as explained in section 4.4 but 

without the user feedback. From the results we can see the following: 
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Table 10. Results summary 

 Human (M1) Agent-no-Quality (M2) Agent-Quality (M3) Integrated (M4) 

 Total % Total % Total % Total % 

Event base:         

- From base (A) 7 47% 3 20% 3 20% 3 20% 

- From base B 6 40% 7 47% 7 47% 6 40% 

- From base C 2 13% 5 33% 5 33% 6 40% 

          

Time to Find 
Solution (avg sec) 

101 100.00% 25 24.75% 26 25.74% 28 27.72% 

Flight Delays  
(avg min): 

  11 100.00% 7 63.64% 6 54.54% 

- Base A (avg)   14 40% 7 30% 5 29% 

- Base B (avg)   9 26% 4 17% 6 35% 

- Base C (avg)   12 34% 12 52% 6 35% 

Direct Operational 

Costs: 

7039.60 100.00% 3839.36 54.54% 4130.07 58.67% 4564.36 64.84% 

Total by Base:           

- Base A 4845.55 92.42% 288.00 11.23% 578.83 14.02% 592.72 12.99% 

- Base B 1796.40 34.26% 1275.80 49.77% 1429.54 34.61% 3025.38 66.28% 

- Base C 397.60 7.58% 2275.56 88.77% 2121.70 51.37% 946.26 20.73% 

Quality 
Operational Cost: 

  7788.47 100% 4781.53 61.39% 3993.02 51.27% 

Total by Base:           

- Base A   1649.57 21.18% 593.30 12.41% 645.65 16.17% 

- Base B   3617.66 46.45% 1562.19 32.67% 1859.52 46.57% 

- Base C   2521.24 32.37% 2626.04 54.92% 1487.86 37.26% 

Total Operational 
Costs: 

  11628.01 165% 8911.60 126.6% 8557.38 121.6% 

Total by Base:          

- Base A   1937.57 16.66% 1172.13 13.15% 1238.37 14.47% 

- Base B   4088.42 35.16% 2991.73 33.57% 4884.90 57.08% 

- Base C   4796.80 41.25% 4747.74 53.28% 2434.12 28.44% 

 

 The integrated method decreases the flights delays in approximately 14.30% (on 

average). 

 The flight delays in each base are much more balanced than with any of the other 

methods. For example, with the quality method we got 7 minutes delay in base A, 4 

in base B and 12 in base C. With our approach we got 6 minutes delay in base A, 6 in 

base B and the same value in base C (average values). 

 The quality costs with the integrated method decreased on average 16.48%. 

 The total operational costs decreased on average 3.95%. 

 The direct operational costs increased on average 10.51%. 

 The time to find a solution increased on average 7.69%.  

 

These results are encouraging. We see that the flight delays, quality costs and total 

operational costs decrease. However, the direct operational costs increased around 10% and 

this value can correspond to a significant amount of money. If we read this figure as-is, we 

have to consider that we did not achieve an important goal. In our opinion, this result should 

be interpreted together with the flight delay result. Although the integrated method increases 
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the direct operational costs in 10% it was able to select solutions that decrease the flight 

delays in 14.30%. So, when there are several solutions to the same problem, the integrated 

method is able to select the solution with less quality costs (corresponds to better passenger 

satisfaction), less operational cost and, due to the relation between flight delays and quality 

costs, the solution with less flight delays. 

Considering the above conclusion how does it compare with minimizing the direct 

operational cost and the expected flight delay? It is a reasonable question because the flight 

delay is the variable that has the biggest impact on passenger satisfaction and we could expect 

that the results were the same. So, in general, we might say that this assumption is true. But 

what should happen when we have two solutions for the same problem, with the same delay 

and direct operational cost? Which one should we choose? For us, it depends on the on-board 

passenger profiles and the importance that they give to the delays. It is this important value 

that we capture with our quality operational cost. Our approach uses all this criteria to 

achieve the best integrated solution and, because of the GQ-Negotiation protocol, we were 

able to decrease the quality operational costs in 16.48% when compared with the agent-

quality approach (that also uses quality operational costs). 

Regarding the time to find a solution, the integrated approach took 7,69% more time than 

the agent-quality. The fact that we are using a negotiation protocol at the Managers Level 

explains this Figure. However, the average time (28 seconds) is still within the acceptable 

values, so this increase as a minor impact on the proposed approach. 

It is important to point out that we need to evaluate a higher number of scenarios with 

data from the all year. The air transportation domain has seasonal behaviours and that might 

have an impact on the results we have found in our work. Nevertheless, we believe that these 

results are encouraging. 

7. CONCLUSION 

We have introduced the Airline Operations Control Problem as well as the Airline 

Operations Control Centre (AOCC), including typical organizations and problems, the current 

disruption management (DM) process, a description of the main costs involved and a 

classification of current tools and systems. 

We proposed a new concept for disruption management in airline operations control, 

where the most repetitive tasks are performed by several intelligent software agents, 

integrated in a multi-agent system that represents the AOCC. We found that the multi-agent 

paradigm is very adequate to model this type of problems and, as such, we presented the 

reasons that make us adopt it. A description of the proposed solution with agents and some of 

their characteristics (social-awareness and autonomy, for example), as well as their roles and 

protocols used, was included. We presented the costs criteria as well as the negotiation 

algorithms used as part of the decision mechanisms. 

Four different methods were used to test our approach using data from an airline 

company. The results show that with our approach and when compared with methods that 

minimize direct operational costs, it is possible to have solutions with shorter flight delays 

while contributing to better passenger satisfaction. 
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Several improvements are expected in a very short term. Among them, we would like to 

point out the following: 

 

 Complete the implementation of the GQ-Negotiation protocol as described in section 

4.4.1, especially, the inclusion of the user feedback and the associated learning 

mechanisms. By including knowledge provided by the user as well as from the other 

specialist agents, we are improving the distributed characteristics of our approach. 

 Use the knowledge gathered from learning to improve robustness of future schedules. 

 Improve autonomy and learning characteristics of the Monitor agent, so that he is 

able to consider new events (or change existing ones) according to the experience he 

gets from monitoring the operation, without relying exclusively on the definition of 

events created by the human operator. 
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