
Back Annotation in Action : from WCET
Analysis to Source Code Verification

Vı́tor Rodrigues1, Mário Florido1, Simão Melo de Sousa2

1 DCC-Faculty of Science & LIACC, University of Porto
vitor.gabriel.rodrigues@gmail.com

amf@ncc.up.pt
2 DI-Beira Interior University & LIACC, University of Porto

desousa@di.ubi.pt

Abstract. One of the essential safety parameters of real-time programs
is the respect for the temporal restrictions imposed by the real-time
systems. The assessment of this requirement is commonly based on the
computation and verification of the worst-case execution time (WCET).
The WCET is the main parameter used in schedulability analysis and can
be used both on software optimization and on hardware dimensioning. In
this context, the availability of WCET information at source code level
is highly desirable.
The main challenge is to establish a link based on annotations between
the source code and the machine code compiled to a particular target
architecture. At same time, the design of this annotation process in a
compiler-independent way is also transparent and modular. The con-
tributions on this paper report the back-annotation mechanism of the
platform ACCEPT (Abstraction Carrying CodE Platform for Timing
validation). In particular, we focus on the integration of a static analyzer
used for WCET analysis into the software development environment.

1 Introduction

Nowadays, many distributed systems have adaptive configuration mechanisms
that allow software actualizations after deployment. However, the auto-recon-
figuration of such systems requires information that is transmitted across the
network, fact that imposes new safety requirements on software actualizations.
Therefore, software actualizations must be object of verification in respect to
some safety policy. One important class of safety requirements is based on the
worst-case execution time of an application [5]. The main challenge in the imple-
mentation of verification mechanisms based on WCET on embedded real-time
systems is the efficiency in terms of computational resources.

Modern microprocessors have many specialized hardware features which in-
crease the difficulty to estimate the WCET. In practice, this means that al-
though real-time applications are written in high-level programming languages,
the analysis of the WCET must be performed at hardware level. However, if
the loss of abstraction resulting from compilation is definite, the feedback of the

WCET analysis results back to the source level is no longer possible. To pre-
vent from this, the standard DWARF [13] provides compiler debug information
with a bidirectional correspondence between the source code lines and the mem-
ory positions which hold the respective machine code. In Section 4, we present
an example that shows how the DWARF standard is used by the ACCEPT’s
back-annotation mechanism.

The theoretical foundations for the WCET analysis are the theory of Ab-
stract Interpretation (AI) combined with Integer Linear Programming (ILP)
techniques [14]. The static analyzer is based on a uniform fixpoint semantics
which is programming language-independent. To this purpose, a two-level deno-
tational meta-language was developed in the light of [8], that we use to represent
the semantics of programs in a uniform way. At the higher level of the meta-
language are defined meta-programs that encode the control flow graph of the
program which interpretation is always the same, regardless of the abstract do-
main. At the lower level of the meta-language are instantiated different abstract
interpretations, under the form of denotational semantic functions, that are used
to compute specific abstract properties, defined by a proper abstract domain.

The contribution of this paper is the integration of a back-annotation mecha-
nism into the ACCEPT platform (see Section 4) considering the C programming
language and the latest generation C compiler for the ARM target platform. A
brief introduction to the uniform program semantics is given in Section 3. Con-
clusions and future work are discussed in Section 5.

2 Related Work

Falk et al. present in [6] a compilation process for C programs, designated by
WCET-aware C Compiler (WCC), that incorporates the notion of WCET into
the compiler and delegates the WCET analysis on the static analyzer aiT [1]. The
advantage of using the aiT tool is the possibility to integrate state-of-art static
analysis, namely the analysis of the pipeline behavior and cache structures, into
the compiler environment. Although the ACCEPT’s back-annotation mechanism
is compiler-independent, its static analyzer also supports the advanced hardware
features such as pipelines and cache memories. On the other hand, the main
advantage of the ACCEPT’s static analyzer is its adequacy to the low resource
capabilities of embedded systems, specifically in terms of the necessary number
of iterations required to achieve fixpoints.

Besides being a necessary component for the production of optimized code
based on cost functions, the analysis of the WCET is by itself valuable for the
programmer in those cases where the visualization of the WCET at source level
is possible. In such a scenario, the analysis of the WCET is pragmatically per-
formed at source level by allowing the programmer to abstract from the machine
code details, also taking advantage from the fact that the WCET analysis is au-
tomatic. Along these lines, [7] presents a method for loop unrolling based on the
WCC platform, which optimizes cycles by means of code expansion at the same
time that explores maximal reduction of the WCET.

An alternative way to establish the bridge between the analyzed machine
code and the high-level representation of source code is to use the DWARF
debug information [13] generated by the compiler and included inside the exe-
cutable binary. Despite the limitations that the DWARF standard revels when
compiler optimizations are active, its use allows the integration of a generic com-
piler into the ACCEPT platform, at the same time that allows WCET data to
become visible in the development environment. This approach is followed by
Plazar et al. in [9], where is presented a variant of the WCC platform. The
main difference between these two approaches is the granularity of the back-
annotation mechanism. While with WCC the data about WCET are exported
to the compiler’s back-end, which holds an exact correspondence between the
source code constructs and the machine code, the use of a generic compiler in
the shape of a black-box makes the annotation of WCET data dependent from
the DWARF internal representation, which only associates source code lines to
the corresponding memory instruction addresses.

3 Program Semantics

Program semantics are expressed by the relational-algebraic constructs of the
meta-language, regardless of the programming language being object of analy-
sis. In complement, the particularities of some programming language are ex-
pressed by a denotational semantics which is used as a parameter by the rela-
tional algebra [10]. Pragmatically, this separation brings the possibility to derive
a meta-program, composed by polymorphic relational operators, that reflects
the structure of the program. Later, this meta-program is simulated using the
denotational semantic functions as arguments. The implementation of this mech-
anism is based on the hierarchy of semantics proposed by Cousot in [4, Theorem
33] and on the two-level meta-language proposed by the Nielsons in [8].

int main (void) {
int y = foo () ;
return y ;

}

f oo () {
int x = 5 ;
while (x>0) {

x−−;
}
return x ;

}

Fig. 1. Source Example

As an example, consider the source code exam-
ple in Figure 1 and the corresponding machine code
in Figure 2(a) generated by GNU GCC compiler for
the ARM target platform [3]. In [11], we demon-
strate that the meta-semantic formalism defined at
relational level can be effectively used to generate
all possible program paths throughout a refinement
process [4, Section 6], and that the same formalism
supports interprocedural analysis according to the
functional approach described in [12, Section 3].

Figure 2(a) illustrates the form of the relational
semantics. It is composed by a set of pairs of states,
each state corresponding to a program transition.
The order of the relational semantics is based on
the intermediate states and corresponds necessarily to the order of the program’s
instructions. The assignment to an intermediate state is done according to a weak
topological order [2]s. Simple states are numbered with the prefix “n” and the

states that introduce non-determinism (heads) are numbered with the prefix “h”.
Additionally, each state contains the procedure to which it belongs in “{}”.

n1{0}: mov ip, sp :n0{0} [d1]
n2{0}: stmfd sp!, fp,ip,lr,pc :n1{0} [d2]
n3{0}: sub fp, ip, #4 :n2{0} [d3]
n4{0}: sub sp, sp, #4 :n3{0} [d4]

n10{1}: bl 24 :n4{0} [d5]
n6{0}: mov r3, r0 :n5{0} [d6]
n7{0}: str r3, [fp, #-16] :n6{0} [d7]
n8{0}: ldr r3, [fp, #-16] :n7{0} [d8]
n9{0}: mov r0, r3 :n8{0} [d9]
HALT: ldmfd sp, r3,fp,sp,pc :n9{0} [d10]

n11{1}: mov ip, sp :n10{1} [d11]
n12{1}: stmfd sp!, fp,ip,lr,pc :n11{1} [d12]
n13{1}: sub fp, ip, #4 :n12{1} [d13]
n14{1}: sub sp, sp, #4 :n13{1} [d14]
n15{1}: mov r3, #5 :n14{1} [d15]
n16{1}: str r3, [fp, #-16] :n15{1} [d16]
n20{1}: b 16 :n16{1} [d17]
n18{1}: ldr r3, [fp, #-16] :n17{1} [d18]
n19{1}: sub r3, r3, #1 :n18{1} [d19]
n20{1}: str r3, [fp, #-16] :n19{1} [d20]
n21{1}: ldr r3, [fp, #-16] :n20{1} [d21]
n22{1}: cmp r3, #0 :n21{1} [d22]
n17{1}: bgt -20 :h22{1} [d23]
n23{1}: ldr r3, [fp, #-16] :h22{1} [d24]
n24{1}: mov r0, r3 :n23{1} [d25]
n5{0}: ldmfd sp, r3,fp,sp,pc :n24{1} [d26]

(a) Relational semantics

10 11
 mov ip, sp

12

 stmfd sp!, {fp,ip,lr,pc}

13
sub fp, ip, #4

14
sub fp, ip, #4

15

 mov r3, #5

16
str r3, [fp, #-16]

20

 b 16

19
 str r3, [fp, #-16]

17 18
 ldr r3, [fp, #-16]

sub r3, r3, #1
21

 ldr r3, [fp, #-16]

22

 cmp r3, #0
 bgt -20

23

 ldr r3, [fp, #-16]

24
mov r0, r3

5
ldmfd sp, {r3,fp,sp,pc}

6

 mov r3, r0

4

 bl 24

(b) Control Flow Graph

Fig. 2. Alternative Representations at Machine Code Level

4 Back-Annotation

Having the local execution times computed by the static analyzer and the WCET
calculated by the ILP component, the back-annotation mechanism pushes the
results of WCET analysis beyond the limits of the machine language. The ob-
jective is to annotate the maximal local execution times on each source code
line and the overall WCET on the top level procedure. To this end, the back-
annotation mechanism relies on a mapping between the program points in the
source code and the memory addresses (program counter) where the correspond-
ing machine code is stored. A human readable representation of this mapping is
found in the debug section ELF “.debug line” which can be obtained from the
executable binary using the dwarfdump tool. For the example in Figure 3(a), the
referred mapping is given by the two first columns in Figure 3(b).

To this matrix is added a third column that contains the labels of the states
defining the relational semantics in Figure 2(a). These labels are obtained by
post-processing the relational semantics in order to establish a link between
each label and the corresponding source code line. In this way, the program
counter addresses enable a correspondence between the source program and the
control flow graph of the machine program and, therefore, provide the means

1 // wcet = Just 399.0 cpu cyc l e s
2 int main (void){ // 0 cyc l e s
3 int y = foo () ; // 8 cyc l e s
4 return y ; // 8 cyc l e s
5 }
6

7 f oo ()
8 {
9 int x = 5 ; // 8 cyc l e s

10 while (x > 0){ // 6 cyc l e s
11 x−−; // 10 cyc l e s
12 }
13 return x ; // 10 cyc l e s
14 }

(a) Annotated Source Code

Line Program Counter Machine Point
2 0x8450 n0
3 0x8460 n4
4 0x846c n7
5 0x8470 n8
8 0x8478 n10
9 0x8488 n14
10 0x8490 n16
11 0x8494 n17
10 0x84a0 n20
13 0x84ac h22
14 0x84b0 n23
14 0x84b8 n5

(b) Post-processing of DWARF
Information

Fig. 3. Example of Back-Annotation

to annotate the source code with the local execution time bounds obtained by
abstract analysis.

Analyzing the first column in Figure 3(b), one can see that to the same
source code line may correspond more that one program counter. This repetition
can be related to the beginning of a basic block, the beginning of an epilogue
of a procedure or the end of a prologue of a procedure. In particular for the
source code line 10, the first program counter specify the branch instruction
that initiates the while cycle, whereas the second program counter specifies the
first instruction of the while cycle. Analyzing the third column in Figure 3(b), it
is demonstrated that the relational semantics in Figure 2(a) correctly expresses
the control flow of the machine program. Considering the same example of the
source code line 10, the relation d17 specify precisely the transition between the
labels n16 and n20.

5 Conclusions and Future Work

In this paper we presented the back-annotation mechanism used in the ACCEPT
platform to provide an effective WCET analysis at source code level. The an-
notation process does not depend on a particular compiler but on the imple-
mentation of DWARF standard by the compiler. Although the actual version
of the GNU compiler for the target platform ARM does not yet support the
latest DWARF format, one of the most relevant improvements in this standard
is the description of optimized code. In the short term, this fact will enable the
support for compiler optimization in a transparent way. On the other hand, the
correspondence between the program points in the source code to the program
points in the machine code also enables the verification of the correction of the
compilation using the theory of abstract interpretation [11]. The next challenge
is the extension of this mechanism to allow the back-annotation of machine level
data, such as register values and memory locations, to the source level so that
user-defined specifications can be verified.

6 Acknowledgments

This work is partially funded by LIACC, through the Programa de Financia-
mento Plurianual, FCT, and by the FAVAS project, PTDC/EIA-CCO/105034/
2008, FCT.

References

1. AbsInt: (2011), http://www.absint.com/pag/
2. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: In Pro-

ceedings of the International Conference on Formal Methods in Programming and
their Applications. pp. 128–141. Springer-Verlag (1993)

3. the GNU Compiler Collection, G.: (2011), http://gcc.gnu.org/
4. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system

by abstract interpretation. Electronic Notes in Theoretical Computer Science 6
(1997)

5. Engblom, J., Ermedahl, A., Sjodin, M., Gustafsson, J., Hansson, H.: Worst-case
execution-time analysis for embedded real-time systems. International Journal on
Software Tools for Technology Transfer 4, 437–455 (2003)

6. Falk, H., Lokuciejewski, P., Theiling, H.: Design of a wcet-aware c compiler. In:
Proceedings of the 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for
Real Time Multimedia. pp. 121–126. ESTMED ’06, IEEE Computer Society, Wash-
ington, DC, USA (2006)

7. Lokuciejewski, P., Marwedel, P.: Combining worst-case timing models, loop un-
rolling, and static loop analysis for wcet minimization. In: Proceedings of the 2009
21st Euromicro Conference on Real-Time Systems. pp. 35–44. IEEE Computer
Society, Washington, DC, USA (2009)

8. Nielson, H.R., Nielson, F.: Pragmatic aspects of two-level denotational meta-
languages. In: Proceedings of the European Symposium on Programming. pp. 133–
143. ESOP ’86, Springer-Verlag, London, UK (1986)

9. Plazar, S., Lokuciejewski, P., Marwedel, P.: A Retargetable Framework for Multi-
objective WCET-aware High-level Compiler Optimizations. In: Proceedings of The
29th IEEE Real-Time Systems Symposium (RTSS) WiP. pp. 49–52. Barcelona /
Spain (Dec 2008)

10. Rodrigues, V., Florido, M., Melo de Sousa, S.: A functional approach to worst-
case execution time analysis. In: 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP) (July 2011)

11. Rodrigues, V., Florido, M., Melo de Sousa, S.: Towards adaptive real-time sys-
tems by worst-case execution time checking. Tech. rep., Artificial Intelligence and
Computer Science Laboratory (LIACC)- University of Porto (May 2011)

12. Sharir, M., Pnueli, A.: Two Approaches to Interprocedural Data Flow Analysis,
chap. 7, pp. 189–233. Prentice-Hall, Englewood Cliffs, NJ (1981)

13. The DWARF Debugging Standard : http://www.dwarfstd.org/
14. Wilhelm, R.: Why ai + ilp is good for wcet, but mc is not, nor ilp alone. In: Stef-

fen, B., Levi, G. (eds.) Verification, Model Checking, and Abstract Interpretation,
Lecture Notes in Computer Science, vol. 2937, pp. 309–322. Springer Berlin (2003)

