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Chapter 1

Introduction

Musical robots are increasingly present in multidisciplinary edutainment

areas thrilling fanciers worldwide with ensemble performances with

professional dancers and musicians1 (Weinberg, 2007b), and being active

intervenients in pedagogical and therapeutic scenarios (Kozima,

Michalowski, & Nakagawa, 2008). They already inspired the creation of

worldwide robot dancing contests where school teams, formed by students

of various ages, program their robots for dancing to music in a display that

emphasizes creativity of costumes and movement (RoboCupJunior, 2008).

Although these robotic systems undeniably demonstrate personality they

typically lack from musical awareness and animacy, with pre-programmed

deaf robots or dancing robots strictly tuned to music with no human

control. 

In this book we describe a user-customizable framework for robot

dancing edutainment applications. Contrasting to other approaches, the

developed system supplies a flexible interface for defining choreographic

compositions for Lego-NXT-based dancing robots in reactive response to

external multi-modal events. In order to assure an autonomous and

expressive behavior, the developed system explored the rhythmic

1 See when ASIMO robot conducted the Detroit Symphony Orchestra in a performance of Mitch
1. Online

at: http://www.autoblog.com/tag/asimo+orchestra/. 



phenomenon beyond music, which is composed of a succession of note-

events that generally makes people move (Bello, et al., 2005). To parse

these musical rhythmic events from polyphonic audio signals on-the-fly we

implemented a real-time onset detection algorithm based on the signal's

spectral flux. In addition, on top of the onset detection we applied an

adaptive peak-picking algorithm to retrieve three levels of rhythmic

intensity. In combination with these rhythmic events, the framework deals

with external inputs in the form of sensorial events, such as floor colors and

obstacles. Such multi-modal support enables the creation of more variable

and dynamic dancing sequences, while assuring the avoidance of obstacles. 

On top of the system, a user-interface gives high-level control over the

musical analysis and the Lego-NXT robot s sensorimotor parameters. 

Moreover, it provides an online visualization of the detected note-onsets for

the calibration of the performed onset detection. 

From an educational point of view this framework provides an intuitive

environment for learners and children to experiment the creation of their

own dancing behaviors, by generating robot dancing motions in response to

multi-modal events. Its autonomy and its basis on Lego robots, allied to the

use of an amusing aesthetics, enable the generation of varied and

expressive dance performances capable of entertaining vast audiences, of

various ages.  

To validate our approach, and considering such applications, a vast

audience formed by students ranging from 6 to 17 years old empirically

evaluated the developed robotic system. Their judgment suggested that our

implementation served its edutainment purposes but, due to hardware

limitations, is still far from the requested variety of human-inspired

movements and musical-synchrony. Nevertheless, the proposed

architecture can be used as a plausible platform for robot dancing contests

such as (RoboCupJunior, 2008) and (ROBO-ONEEntertainment, 2008). 

This chapter aims to contextualize our research in autonomous robot

dancing, presenting our motivations towards robot dancing based on multi-

modal events, and our methodology in consideration to the used tools and

chosen architecture. As a starting point to this book, we introduce some

basic thoughts and definitions followed by the main objectives involved. 



1.1 Motivations

The motivations which supported the topic of this work were drawn

from a conjunction of factors. To better describe the approached research

topics and in order to motivate the reader to follow our approach through

this book, in this section we summarize the scientific and technological

context of this work and introduce

personal trajectory before enrolling into this project. As one last point of

interest, we introduce some of the inspirational thoughts from the literature

beyond the conception of this work. 

1.1.1 Scope
More and more Dancing Robots and Human-Robot Musical

Interaction are becoming very common terms. In an increasing number of

research labs around the world (especially in Japan), researchers follow a

quest to find the perfect solution to achieve a rhythmic perceptive and

interactive dancing robot. 

Dance represents a form of non-verbal communication in social

rhythmic interactions, serving the increasingly importance given to Human-

Robot Interaction (HRI) and by the human natural need of keeping

relationships. This kind of interaction can be achieved by social intelligent

robotic agents that can map intermodal rhythms, perceived from the

environment, to dance motions; by imitation and improvisation while

following the musical rhythm. 

Robot Dancing is an interdisciplinary theme which increasingly

enjoyable. As the term points out, it embraces several topics such as dance,

rhythm, rhythmic perception, multi-modality, autonomous robotic systems,

sensorimotor synchronization, reactive and anticipatory behavior,

rhythmic entrainment and embodiment, and human-robot social

interaction. 

1.1.2 Research at LIACC and INESC Porto
This research was carried out at the Laboratory of Artificial Intelligence

and Computer Science (LIACC), under the supervision of Prof. Dr. Luis



Paulo Reis, in association with the Institute for Systems and Computer

Engineering (INESC) of Porto, under the supervision of Prof. Dr. Fabien

Gouyon. 

LIACC was created in 1988 to promote the collaboration of researchers

that were separately working in the fields of Computer Science and

Artificial Intelligence in different Faculties. LIACC aims to help solve

general computer science problems, from security to software reliability.

These hard, real-world problems can only be solved in the long term by

combining the power of formal methods with more technology-oriented

approaches and were used as a frame of reference in defining the LIACC

short-term goals. Since June 2007 LIACC activities are organized around

four research groups: Advanced Programming Systems, Distributed

Artificial Intelligence and Robotics, Formal Models of Computation, and

Language, Complexity and Cryptography. 

INESC Porto is an institution created to act as an interface between the

academic world, the world of industry and services, as well as the public

administration, in the framework of the Information Technologies, 

Telecommunications and Electronics. Its activities range from research and

development, to technology transfer, consulting and advanced training. Its

main research areas of interest are Telecommunications and Multimedia,

Power Systems, Manufacturing Systems Engineering, Information and

Communication Systems, and Optoelectronics. 

Among the various areas of expertise within these institutions, our work

was specially related to Autonomous Robotic Systems, covered by

Distributed Artificial Intelligence and Robotics, in LIACC; and Automatic

Rhythm Description, covered by the Telecommunications and Multimedia

(UTM) unit, in INESC.

1.1.3 Personal Trajectory
This book reports all the research and work developed during the last

five months (i.e., February to July of 2008) of the 5th year of the Integrated

Masters in Electrical and Computer Engineering (MIEEC) at the Faculty of

Engineering of the University of Porto (FEUP). It represents the final

project in an academic cycle of five years that came to an end. A cycle



through which I cultivated the skills and knowledge needed for the

development of such work. 

Everything else came, since early years, from the natural dancing

activities in complex interactive environments (e.g., discos and festivals). 

Activities that promoted curiosity on all the processes involved in the

rhythmic perception of music and its subsequent embodiment in the form

of dance.

1.1.4 Thoughts from the Literature

useful intelligent systems and the understanding of human

(Brooks, 

1991b, p. 1).  

activity producers which all interface directly to the world through

behavioral (Brooks, 1991a, 

p. 1). 

transformations of the signal, and the way that these transformations are

manifested as musical behaviors nction in which it is

(Scheirer, 2000, p. 75). 

overlapping and complementary roles in advancing our knowledge about

(Scheirer, 2000, p. 66). 

theory of perception or cognition in any modality must be validated

t

builder might have implemented a large lookup table and listed all the



(Desain & Honing, 

1992, p. 5). 

Resembling human perception and behavior (as human intelligent

capabilities), the research program we envisioned aims to develop a

rhythmic perceptual dancing robotic system that would generate dance

performances with a reasonable compromise between musical-synchrony,

animacy and variability, ultimately enhancing the long-term interest of the

general audience. The resulting dance should be tested in a real-world

environment and empirically compared to human dance performances. 

1.2 Aims and Outline

The fundamental slicing up of an intelligent system is in the orthogonal

direction dividing it into activity producing subsystems. Each activity

(pattern of interactions with the world), or behavior producing system

individually connects sensing to action... The advantage of this approach is

that it gives an incremental path from very simple systems to complex

autonomous intelligent systems (Brooks, 1991a). 

The main objective of this book is to create a user-customizable

framework which may be used in the control of a dancing humanoid robot

to perform seemingly autonomous dance movements in synchrony to the

musical rhythm, without former knowledge of the music. Ultimately, by

additionally combining external sensorial events, the proposed framework

should enable an interesting long-term relationship between general human

audience and the artificial dancing agent, by enabling a compromise

between musical-synchrony, variability, and animacy, while exhibiting an

autonomous but controllable behavior. 

For a list of publications about the work described in this book see

(Oliveira, Gouyon, & Reis, 2008a), (Oliveira, 2008b), and (Oliveira, Reis, 

Faria, & Gouyon, 2012). Abstracts and electronic versions of these



publications, and future information about this work, are available in

http://paginas.fe.up.pt/~ee03123/. 

1.3 Methodology and Tools

The implementation of the proposed robot dancing system required the

use of a conjunction of software applications, which worked together to

develop, experiment, and ultimately control the dancing robotic platform.

In this section we present the main used tools and their role in the

implementation of the proposed robotic system. 

1.3.1 Marsyas
Marsyas (Music Analysis, Retrieval and Synthesis for Audio Signals)2 is

an open source software framework for rapid prototyping and

experimentation with audio analysis and synthesis with specific emphasis

to music signals and Music Information Retrieval (MIR) (Tzanetakis &

Cook, 2000). Its basic goal is to provide a general, extensible and flexible

architecture that allows easy experimentation with algorithms and provides

fast performance that is useful for developing real-time audio analysis and

synthesis tools. A variety of existing building blocks that form the basis of

most published algorithms in Computer Audition are already available as

part of the framework and extending the framework with new

components/building blocks is straightforward. It has been designed and

written by George Tzanetakis with help from students and researchers from

around the world. Marsyas has been used for a variety of projects in both

academia and industry. 

1.3.2 Microsoft Visual Studio Visual C++
Microsoft Visual Studio3 is the main Integrated Development

Environment (IDE) from Microsoft. It can be used to develop console and

2 Available at http://marsyas.info/. 
3 Microsoft Visual Studio Developer Center at  
http://msdn.microsoft.com/en-us/vstudio/default.aspx.



Graphical User Interface (GUI) applications along with Windows Forms

applications, web sites, web applications, and web services in both native

code as well as managed code for all platforms supported by Microsoft. 

Visual C++ is Microsoft's implementation of the C and C++ compiler

and associated languages services and specific tools for integration with the

Visual Studio IDE. It can compile either in C mode or C++ mode.

1.3.3 MATLAB
MATLAB4 is a numerical computing environment and programming

language. Created by MathWorks, MATLAB allows easy matrix

manipulation, plotting of functions and data, implementation of algorithms, 

creation of user interfaces, and interfacing with programs in other

languages. 

1.3.4 Lego Mindstorms NXT
Lego Mindstorms NXT5 is a programmable robotic kit designed by

Lego (see Figure 1). It is composed of a brick-shaped computer, named

NXT brick, containing a 32-bits microprocessor, flash and RAM (Random

Access Memory) memory, a 4 MHz 8-bit microcontroller and a 100x64

LCD (Liquid Crystal Display) monitor. This brick supports up to four

sensorial inputs and can control up to three servo-motors. It also provides a

proper user interface displayed through the LCD and controlled with its

four buttons, and a 16 kHz speaker. Lego NXT supports USB (Universal

Serial Bus) 2.0 connection to a personal computer (PC) and supports

Bluetooth wireless communication, for remote control and data exchange. 

It offers many sensing capabilities through its ad hoc sensors. In the scope

of this project, we configured our robot with a color sensor, to detect and

distinguish visible colors, and an ultrasonic sensor, capable of obstacle

obstacles in inches or

centimeters. 

4 MATLAB official web site at http://www.mathworks.com/.
5 For more information consult http://mindstorms.lego.com/eng/default.aspx.



Figure 1 - Lego NXT brick and some of its sensors and servo-motors.

1.3.5 NXT Remote API
The NXT Remote API6 is a C++ library, designed by Anders Søborg. It

enables the remote control of the Lego NXT brick over Bluetooth, using

any C++ compiler on a Windows OS (Operating System) machine (the

library can be also used with Pocket PCs running Windows Mobile using

MS Visual Embedded C++). This API is decomposed in nine classes, 

which make it possible to:

Open and close Bluetooth connections with multiple NXT units;

Control the motors;

Send and receive messages from the NXT;

Read sensor values in both mode-dependent and raw;

Set Brick name, get battery level, read firmware version, etc;

Control the NXT speaker;

Play sound files;

Start and stop on-brick programs;

Use compass and sonar sensors;

Communicate with I2C (Inter-Integrated Circuit) sensors;

Direct commands for the PCF8591 A/D (Analog/Digital) converter;

Direct commands for the PCF8574 I/O (Input/Output) Chip. 

6 For more information and download consult http://www.norgesgade14.dk/index.php.



1.3.6 Methodology
In this section we describe our methodology beyond the conception of

the proposed framework by interconnecting all present tools towards the

proposed goal. This framework was decomposed into three sub-modules,

according to their functional nature:

Music Analysis Module: module responsible for the rhythmic analysis

of the musical input on-the-fly based on a real-time onset detection

function. 

Robot Control Module: module responsible for the robot control by

combining the multi-modal inputs and deciding on the robot dancing

output.

Human Control Module: module responsible for the user interface

through which the user has a deterministic role by defining the

and the onset function parameters and all the dance movements to be

performed by the robot. 

To clarify our method we summarize it through a diagram, depicted in

Figure 2. It is decomposed in a series of functional blocks each one

developed or executed with a correspondent tool or set of tools, as follows:

The Music Analysis Module was essentially based on Marsyas (v0.23),

by combining a set of signal processing blocks to develop a real-time

onset detection function. The resultant output, in the form of rhythmic

events, is sent to the Robot Control Module via UDP/IP (User Datagram

Protocol/Internet Protocol) sockets. 

The NXT Remote API (v0.3) was embedded in our Robot Control

Module to remotely receive sensing (i.e., ultrasonic and color sensors)

information from the robot and send motor outputs correspondent to the

generated dance movements. The bi-directional communication with the

robot was achieved via Bluetooth. 





referred sensors: color and ultrasonic sensor. This resulted in the robotic

agent tested in the proposed robot dancing framework. 

1.4 Book Structure

This book is organized in five chapters, the first of which is this

introduction to this motivation, aims, outline, methodology and

tools. The following Chapter 2 presents some related work from recent

literature on the areas of audio note-onsets detection and dancing robots,

and presents some relevant definitions for a comprehensive reading of this

book. Chapter 3 describes our implementation on

the designed system architecture. Chapter 4 describes the calibration of the

integrated onset detection function, and the setup for live demonstrations of

the generated robot dance performance. It ends with an empiric evaluation

of the implemented system and an overall discussion of the empiric results

after proper statistic analysis. Finally, Chapter 5 concludes this book by

summarizing general conclusions and proposing a path for future work. 



Chapter 2

Related Work

This chapter presents some related work in all topics of interest to this

book. It is divided in two main distinct sections: Section 2.1 Audio Note-

Onsets Detection and Section 2.2 Dancing Robots. A third Section 2.3

A Step Further defines our approach in contrast to the formerly reviewed. 

2.1 Audio Note-Onsets Detection

Many musical applications require the accurate detection of the onset-

times of notes in musical signals. Audio note-onset detection (or simply

audio onset detection) is one of the most classic research areas of Music

Information Retrieval, and several approaches have been proposed so far. 

The task of note-onset detection is typically defined as finding the starting

time of each musical note in a piece of music, where a musical note is not

restricted to those having a clear pitch or harmonic partials. Although this

seems a trivial task, in polyphonic music, where a set of notes (i.e., chords)

might occur almost simultaneously, the definition of onsets starts to

become blurred (Dixon, 2006). 

In order to clarify the concept of onset time and introduce the process of

its detection for any application, based on (Bello, et al., 2005) we define the

concepts of transients, onsets and attacks. Due to the importance of

distinguishing the similarities and differences between these key concepts





10 ms, below which it cannot distinguish two simultaneous transients as

two individual musical notes. 

In Section 2.1.1 Basic Definitions and General Architecture of Onset

Detection Algorithms we review the basic concepts behind note-onset

detection and introduce a general categorization of onset detection

algorithms. In Section 2.1.2 Audio Onset Detection Functions: A

Literature Review, we present a review on some of the research made on

this area, up to the year of 2007. In Section 2.1.3 Results

Comparison, we conclude the review in this area of research by presenting

a comparison of the results achieved by some of the most prominent

approaches, also up to the year of 2007. 

2.1.1 Basic Definitions and General Architecture of Onset
Detection Algorithms

As illustrated in Figure 4, onset detection algorithms are normally split

into three components (Bello, et al., 2005): the pre-processing of the

original audio signal for improving the performance of the subsequent

stages; the reduction of the pre-processed signal, which represents the

actual onset detection function as a representation of the changing state of a

musical signal, typically at a lower sampling rate; and the peak-picking

algorithm applied upon the detection function to retrieve the actual onset

times. Frequently, the pre-processing stage is ignored in order to simplify

the algorithm. 

Following (Bello, et al., 2005) , we decomposed this section in a

sub-section dedicated to each of these onset detection stages. 

1.4.1.1 Note-Onset Detection: Pre-Processing

Pre-processing implies the low-

waveform (e.g., by isolating different frequency bands) in order to

accentuate/attenuate various aspects of the signal to be analyzed (Bello, et

al., 2005). This is considered an optimization procedure which intimately

depends on the application of the implemented note-onset detection

method. 



Attending to the literature (particularly (Bello, et al., 2005)), this review

is decomposed in two processes that appear to be of particular relevance to

the pre-processing of onset detection approaches: multiple bands and

transient/steady-state separation. 

The pre-processing based on multi bands (e.g., by using filter-banks) is

normally used to satisfy the needs of specific applications that require the

onset detection in individual sub-bands to complement global estimates, as

a way of increasing the robustness of a given onset detection method

(Bello, et al., 2005). 

Figure 4 - Flowchart of a standard onset detection algorithm (Bello, et al., 2005). 



The process of transient/steady-state separation is usually associated

with the modeling of music signals, by means of sinusoidal models (e.g., 

and spectral modeling synthesis (SMS)), which

represent an audio signal as a sum of sinusoids with slowly varying

parameters. These models may also consider the residual of the synthesis

method as a Gaussian white noise filtered with a slowly varying low-order

filter (Bello, et al., 2005). Due to the irrelevance of the pre-processing stage

in the scope of this book a literature review shall not be presented. 

2.1.1.1 Note-Onset Detection: Reduction

In the context of note-onset detection, reduction consists of the process

of transforming the audio signal into a highly sub-sampled function which

salients the transients in the original signal or sub-bands of the original

signal (after pre-processing) (Bello, et al., 2005). It consists in the basis of

the onset detection approach beyond a wide class of onset detection

methods, which will be the main focus of our review in this context (see

Section 2.1.2).

Based on (Bello, et al., 2005), (Dixon, 2006), and (Duxbury, Bello, 

Davies, & Sandler, 2003b), we decomposed this reduction analysis in six

different classes, according to the nature of the methods (i.e., according to

their basis on signal features, of different kinds, or statistics): Temporal

Methods, Energy-Based (Spectral Weighting) Methods, Phase-Based

Methods, Complex Methods, Time-Frequency and Time-Scale Methods

(TFR), and Statistical Methods. 

Temporal Methods: An onset usually occurs attached to an increase of

(Bello, et al., 2005). Early temporal

methods of onset detection used a detection function, E(n), which

follows the amplitude envelope of the signal, constructed by low-pass

filtering the signal, x(n):

 , (2.1)



where is an N-point window or smoothing kernel, centered at

m=0. Distinctively, one can compute the local energy, rather than the

amplitude, by squaring, instead of rectifying, each sample, n, of the

signal:

 . (2.2)

This reduction method, without later adjustments, is not usually

suitable for reliable onset detection by peak-picking. An improvement, 

included in some standard onset detection algorithms, is to work with

energy derivative along time, in order to locate sudden rises in energy.

This process is commonly combined with a pre-processing based on

filter-banks or transient/steady-state separation. 

Energy-Based (Spectral Weighting) Methods: The occurrence of a

energy, which can

be flatter or sharper typically depending on the absence or presence

of percussion in the musical piece. Based on this notion, looking into

the energy of the signal across time is a straightforward and efficient

metric by which to detect certain types of note onsets, especially

percussive (Duxbury, Bello, Davies, & Sandler, 2003b). Consider the

time-frequency representation of a signal by computing the Short

Time Fourier Transform (STFT). By recurring to a finite-length

sliding window, , (e.g., Hamming Window (HW)), it can be

calculated as:

 , (2.3)

where x(mh) is the time-domain signal, -1 is the index

of each frequency bin, and n is the frame number. One of the

simplest methods to compute an energy-based onset detection



function may be produced by calculating the first derivative of the

L2-norm squared energy of a frame of the signal, E(m), given by:

 , (2.4)

where h is the hop size, m the hop number and q is the integration

variable. Another variant for computing an energy-based onset

detection function would be to calculate the L1-norm of the

difference between magnitude spectra. When restricted to positive

changes (to emphasize onsets rather than offsets) and summed across

all frequency bins, this results in the onset function commonly

known as the spectral flux (or spectral difference), SF, which is

given by (Dixon, 2006) and (Masri, 1996):

 , (2.5)

where is the half-wave rectifier function. 

Phase-Based Methods: According to Fourier analysis, a signal can

be represented by a group of sinusoidal oscillators with time-varying

amplitudes, frequencies and phases, which tend to have stable

amplitudes and frequencies during steady-state (Duxbury, Bello, 

Davies, & Sandler, 2003b). Hence, one can calculate the phase of the

kth oscillator at any given time-frame, n, from:

 , 
(2.6)

where k(n) represents the kth frequency bin of the nth time-frame from

the STFT of the audio signal (i.e., the phase unwrapping). This

implies that the phase deviation, PD, between the target and real phase

values can be calculated as (Bello & Sandler, 2003) and (Duxbury,

Bello, Davies, & Sandler, 2003b):



 , (2.7)

where the princarg operator maps the

range. Hence, d will tend to zero if the phase value is accurately

predicted and will deviate from zero otherwise, which is the case for

most oscillators during attack transients. 

Complex Methods: Considering that energy-based onset detection

function favor strong percussive onsets while phase-based approaches

emphasize soft onsets, one might combine phase and energy

information, both more reliable at opposite ends of the frequency axis, 

into onset detection functions of complex nature (Bello, Duxbury, 

Davies, & Sandler, 2004). 

For computing a complex-domain onset detection function one might

consider a simpler measure of the spread of the distribution calculated as

the mean absolute phase deviation:

 . (2.8)

Yet, this function is susceptible to phase distortion and to noise

introduced by the phases of components with no significant energy (Bello, 

et al., 2005). As an alternative, (Bello, Duxbury, Davies, & Sandler, 2004)

introduced an approach that works with Fourier coefficients in the complex

domain, summed across the frequency-domain to generate the following

complex difference, CD*, onset detection function:

 , (2.9)

where the kth spectral bin is quantified by calculating the Euclidean

distance, k(n), between the observed Xk(n) and that predicted by the

previous frame, :



 . (2.10)

This expression is derived from the following complex considerations:

 , (2.11)

where  .         (2.12)

In a simpler equivalent way, (Dixon, 2006) defined his own CD

function as:

 , (2.13)

where the target value, XT(n, k), is estimated by assuming constant

amplitude and rate of phase change:

 . (2.14)

Time-Frequency and Time-Scale Methods: Alternatively to the

former methods, one may also compute onset detection functions based

on time-scale or time-frequency representations. The most notable

algorithm based on this approach is the wavelet regularity modulus,

WRM, which is a local measure of the regularity of the signal given by

(Daudet, 2001):

 , (2.15)

where dj,k are the wavelet coefficients, is the full branch leading to a

given small-scale coefficient, d1,i, and s is a free parameter used to

emphasize certain scales. This model reveals to be an effective onset



detection function, where increases of WRM represents the existence of

large, transient-like coefficients in the branch, , (Bello, et al., 2005).

A more detailed review on this type of approach is presented in

Section 2.1.2. 

Statistical Methods: Onset detection based on statistical methods

assumes that the signal can be described by some model of probability

(Bello, et al., 2005). This type of approach looks for abrupt changes in

the signal and registers their likely times in a probabilistic manner, by

recurring to likelihood measures or Bayesian model selection criteria. 

Based on (Bello, et al., 2005), probabilistic approaches can be

decomposed in model-based change point detection methods (e.g., 

(Jehan, 1997)), through which change points are detected when the

given likelihood ratio surpasses a fixed threshold (looking for an

instantaneous switch between two distinct models); and in approaches

e.g., (Abdallah & Plumbley, 2003)), which

look for surprising moments relative to a single global model. The latter

are based on a detection function that uses a global ICA (Independent

Component Analysis) model to trace of the negative log-likelihood, NL, 

of the signal given its recent history:

 , (2.16)

where s is obtained from x using , pi is the assumed or

estimated probability density function of the ith component of s, and |A|

is the determinant of an N x N basis matrix, A. 

A more detailed review on this type of approach is presented in

Section 2.1.2. 

2.1.1.2 Note-Onset Detection: Peak-Picking

The actual timings of the note-onsets are inferred from the onset
detection function by finding local maxima in this function using peak-
picking algorithms, typically based in thresholding approaches subject to a
set of constraints. This thresholding should be carefully defined due to its
high impact on the ultimate results, specifically on the ratio of false



positives (reported detections where no onset exists) to false negatives
(missed detections) (Dixon, 2006). Following (Bello, et al., 2005), we
decomposed this process into two consecutive procedures: thresholding
followed by peak-picking. 

Thresholding: The definition of proper thresholds should take into
consideration the effective separation of event-related peaks from non-
event-related ones. This definition should also be intimately dependent
on the application in respect to the undesirability of false positives
and/or false negatives (Dixon, 2006). Following (Bello, et al., 2005),
one may decompose thresholding approaches into two main classes:
fixed thresholding and adaptive thresholding. 

Fixed thresholding defines onsets as peaks where the detection
function, d(n),  exceeds the threshold, i.e., , where is a positive
constant. Although very simple, this approach is inefficient in the
presence of dynamic music signals, tending to miss onsets, generally in
quiet passages, while over-detecting during the loud ones (Bello, et al., 
2005). This invokes the use of a signal adaptive threshold, ,
generally computed as a smoothed version of the detection function. 
This smoothing can be linear, e.g., using a low-pass FIR-filter:

 , (2.17)

with a0=1; or non-linear, e.g., using the square of the detection function
itself:

 , (2.18)

where is a positive constant and i}i=- is a smooth window. 
Alternatively, in order to reduce the fluctuations, due to the presence

of large peaks, the thresholding can be defined in percentiles, based, for
instance, in the local median (Bello, et al., 2005):

 . (2.19)

Similarly to the former, (Dixon, 2006) used an adaptive thresholding
function defined as:



 . (2.20)

Peak-Picking: Based on this decomposition, peak-picking can be
reduced to identifying local maxima above the defined threshold (Bello, 
et al., 2005). As a representative example we will describe (Dixon, 
2006) approach where each onset detection function, d(n), is
normalized to have a mean of 0 and a standard deviation of 1. In his

scheme, a peak at time is considered an onset if it fulfills the

following three conditions:

1)

2)     , 

3)
(2.21)

where is the size of the window used to find a local maximum, m
= 3 is a multiplier so that the mean is calculated over a larger range
before the peak, is the threshold above the local mean which an onset
must reach, and is the used threshold function, given by eq. (2.20).

For a review of a number of peak-picking algorithms for audio
signals see (Kauppinen, 2002). 

2.1.2 Audio Onset Detection Functions: A Literature Review
Earlier algorithms developed for onset detection focused mainly on the

variation of the signal energy envelope in the time domain (Lacoste & Eck, 

2007). 

Based on the (instantaneous short-term) spectral structure of the signal, 

Masri (Masri, 1996) proposed a high frequency content (HFC) function

with a linear frequency dependent weighting, Wk = |k|, which linearly

weights each , k, contribution in proportion to its frequency, and is

given by:

 . (2.22)



The HFC function produces sharp peaks during attack transients and is

notably successful when faced with percussive onsets, where transients are

well modeled as bursts of white noise (Bello, et al., 2005). In a more

general approach, based on changes in the spectrum, Masri formulated the

-term Fourier

spectra, treating them as points in an N-dimensional space. Based in this

criterion, he developed the spectral flux, SF, onset detection method, which

calculates the spectral difference using the L1-norm of the difference

between magnitude spectra (see eq. (2.5)). 

Later, (Duxbury, Sandler, & Davies, 2002) used a pre-processing

scheme based on a constant-Q conjugate quadrature filter-bank to separate

the signal into five sub-bands. By using this approach, the authors

developed a hybrid approach that considers energy changes in high-

frequency bands and spectral changes (i.e., spectral flux) in lower bands. In

order to calculate this spectral flux, the authors proposed the use of the L2-

norm of the rectified difference:

 , (2.23)

where is a half-wave rectifier. This rectification has

the effect of counting only those frequencies where there is an increase in

energy, and is intended to emphasize onsets rather than offsets. By

implementing a multiple-band scheme, the approach effectively avoids the

constraints imposed by the use of a single reduction method, while having

different time resolutions for different frequency bands. 

(Scheirer, 1998) demonstrated that much information from the signal

can be discarded while still retaining its rhythmical aspect. On a set of test

musical pieces, Scheirer filtered out different frequency bands using a

filter-bank as pre-processing. He extracted the energy envelope for each of

those bands using rectification and smoothing. Finally, with the same filter-

bank, he modulated a noisy signal with each of those envelopes and merged

everything by summation. With this approach, rhythmical information was

retained. Yet, in another experiment he showed that if the envelopes are



summed before modulating the noise, a significant amount of information

about the rhythmical structure is lost. This experiment alerted for the care

needed when discarding signal content for not losing any of its rhythmic

information. 

(Klapuri, 1999) used the psychoacoustical model developed by Scheirer

to develop a robust onset detector, propounding the difference of the log

spectral power in bands as a more psychoacoustically relevant feature

related to the discrimination of intensity (and

perception of loudness). Hence, to get better frequency resolution, he

employed a pre-processing consisting of a filter-bank of 21 filters. The

author points out that the smallest detectable change in intensity is

proportional to the intensity of the signal, which means that is a

constant, where I

(d/dt)A where A is the amplitude of the envelope, he used

. This provided more stable onset peaks and allowed lower

intensity onsets to be detected. Later, (Klapuri, Eronen, & Astola, 2006)

used the same kind of pre-processing and won the ISMIR (International

Symposium on Music Information Retrieval) 2004 tempo induction

contest7. 

(Jehan, 1997), also motivated by psychoacoustical factors, formed an

onset detection function by taking power in Bark bands and applying a

spectral masking correction based on spreading functions, familiar from the

perceptual coding of audio, and post masking with half cosine convolution. 

approaches, (Bello & Sandler,

2003) took advantage of phase information (i.e., phase deviation) to track

the onset of a note. They found that, at steady state, oscillators tend to have

predictable phase. This is not the case at the time of an onset, which

allowed the decrease in predictability to be used as an indication of note

onset. To measure this effect, they collected statistics about the phase

acceleration, as estimated by eq. (2.7). To detect the onset, different

statistics were calculated across the range of frequencies, including mean,

7 For more information consult http://www.ismir.net/. 



variance, and kurtosis. These provided an onset trace, which could be

analyzed by standard peak-picking algorithms, equally considering all

frequency bins, k. 

Advocating that the energy of the signal is concentrated within the bins

which contain the partials of the currently sounding tones, (Dixon, 2006)

developed an improvement in the former phase-based detection function, 

by proposing weighting the frequency bins, k, by their magnitude. Based on

this rationale, Dixon built a new onset detection function, called the

weighted phase deviation (WPD), and defined by:

 . (2.24)

This is similar to the complex functions (analyzed below), in which the

magnitude and phase are considered jointly, but with a different manner of

combination. The author further proposed another option to define a

weighted phase deviation function, but in a normalized way (NWPD),

where the sum of the weights is factored out to give a weighted average

phase deviation:

 . (2.25)

Subsequently, Bello et al. presented three studies, (Bello, Duxbury,

Davies, & Sandler, 2004), (Duxbury, Bello, Davies, & Sandler, 2003a), and

(Duxbury, Bello, Davies, & Sandler, 2003b), on the combined use of

energy and phase information for the detection of onsets in musical signals, 

in the form of complex domain methods, and developed a set of complex

domain, CD, algorithms. They showed that by combining phase and energy

approaches it is possible to achieve a more robust onset detection function,

enjoying from both performances: energy-based onset detection functions

perform well for pitched and non-pitched music with significant percussive

content, while phase-based approaches provide better results for strongly



pitched signals and are less robust to distortions in the frequency content

and to noise. This was corroborated by the experimental results achieved

for a large range of audio signals. 

(Dixon, 2006) has also proposed an improvement to these complex

methods (specifically given by eq. (2.9)), by trying to resolve their absence

in distinguishing increases from decreases in the amplitude of the signal

(i.e., onsets from offsets). They formulated such resolution in the form of a

rectified complex domain, RCD, function, by applying a half-wave

rectification to a spectral flux-based function, which grants exclusive

consideration to increases in energy in spectral bins. Therefore, the RCD is

basically the incorporation of this rectification in a CD method, being

described as follows:

 , (2.26)

where   

 . (2.27)

By rather approaching a time-frequency/time-scale analysis, (Daudet, 

2001) developed a transient detection based on a simple dyadic wavelet

decomposition of the residual signal. This transform, using the Haar

wavelet8, was chosen for its simplicity and its good time localization at

small scales. The method takes advantage of the correlations across scales

of the coefficients. The significance of full-size branches of coefficients, 

from the largest to the smallest scale, can be quantified by a regularity

modulus, which is a local measure of the regularity of the signal (see eq. 

(2.15)). 

8 The Haar wavelet is the first known wavelet and was proposed in 1909 by Alfréd Haar. It is
the simplest possible wavelet, but has the advantage of not being continuous and therefore not
differentiable.



By considering probability models instead, we shall again refer the work

of (Jehan, 1997), which also developed a statistical scheme based on the

comparison between two auto-regressive models of the signal, forming a

model-based change point detection method. Like other similar approaches, 

he uses two parametrical Gaussian statistical models, -

likelihood ratio, s, is defined as:

 . (2.28)

This function assumes that s will change sign at some unknown time, due

to the signal convergence from model to model . In approach, 

both models parameters and the signal change points, s, are then

optimized to maximize the log-likelihood ratio between the probability of

having a change at these points and the probability of not having an onset

at all. Change points are detected when this likelihood ratio surpasses a

fixed threshold. 

(Abdallah &

Plumbley, 2003) introduced the negative log-likelihood using an ICA

model scheme, given by eq. (2.16). Their approach was developed on the

notion of an observer which builds a model of a certain class of signals, 

such that it is able to make predictions about the likely evolution of the

signal as it unfolds in time. Such an observer will be relatively surprised at

the onset of a note because of its uncertainty about when and what type of

event will occur next. However, if the observer is in fact reasonably

familiar with typical events (i.e., the model is accurate), that surprise will

be localized to the transient region, during which the identity of the event is

becoming established. Thus, a dynamically evolving measure of surprise, 

or onset (novelty), can be used as a detection function. 

Ultimately, some recent models, despite being rare, approach onset

detection as a problem of supervised (machine) learning. (Davy & Godsill, 

2002), also based on time-frequency and time-scale analysis, developed an



audio segmentation algorithm using a Support Vector Machine (SVM)9 that

classify spectrogram frames into being probable onsets or not. The SVM

was used to find a hypersurface delimiting the probable zone from the less

probable one. Unfortunately, no clear tests were made to outline the

performance of the model. 

(Kapanci & Pfeffer, 2004) also used SVM on a set of frame features to

estimate if there is an onset between two selected frames. By using this

function in a hierarchical structure, they were able to find the position of

onsets. Their approach was mainly focused on finding onsets in signals

with slowly varying changes over time, such as solo singing. 

(Marolt, Kavcic, & Privosnik, 2002) used a neural network approach for

note onset detection. Their model used the same kind of pre-processing as

Scheirer in (Scheirer, 1998), with a filter-bank of 22 filters. An integrate-

and-fire network was then applied separately to the 22 envelopes. Finally, a

multi-layer perception was applied on the output to accept or reject the

onsets. Results were good but the model was only applied to mono-timbral

piano music.

In a similar approach, regarding the use of neural networks, (Lacoste &

Eck, 2005) and (Lacoste & Eck, 2007) most notably developed two onset

detection algorithms that have participated in the MIREX (Music

Information Retrieval Evaluation eXchange) 2005 Audio Onset Detection

contest10, yielding the best and second best performance. Both proposed

algorithms first classify frames of a spectrogram into onset or non-onset by

using a feed-forward neural network. From the classification of each frame,

their model extracts the onset times by recurring to a simple peak-picking

algorithm based on a moving average. The first version of their algorithm,

SINGLE-NET, is comprised of a time-space transform (spectrogram)

which is in turn treated with a feed-forward neural network (FNN), and the

resulting trace is fed into a peak-picking algorithm to find onset times. The

second version of their algorithm, MULTI-NET, repeats the SINGLE-NET

9 SVMs are a set of related supervised learning methods used for classification and regression. 
They belong to a family of generalized linear classifiers. A tutorial on SVM has been produced
by C.J.C Burges, at http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf. 
10 For additional information consult the results of the Audio Onset Detection task at MIREX
2005 in http://www.music-ir.org/mirex/wiki/2005:Audio_Onset_Detection_Results.



variant multiple times, by applying different hyper-parameters. A tempo

detection algorithm is run on each of the resulting FNN outputs, and the

SINGLE-NET and tempo-detection outputs are then combined using a

second neural network. With this work, they concluded that a supervised

learning approach to note onset detection performs well and warrants

further investigation. 

   

With so many possible algorithms for the detection of musical note-

onsets in an audio signal now published, which some are referred above, 

research questions are turning to the comparative evaluation of such

methods (Collins, 2005). Therefore, below we present some approaches for

the comparative evaluation of onset detection methods. 

Bello et al., in (Bello, et al., 2005), presented a tutorial on onset

detection in music signals where they reviewed, categorized, and compared

some of the most commonly used techniques for onset detection, also

presenting possible enhancements, and providing some guidelines for

choosing the appropriate method for a given application. The discussed

methods were based on several predefined signal features, namely the

phases (spectral and phase-based methods), time-frequency representations

(temporal methods); and methods based on probabilistic signal models

(statistical methods). The achieved results are discussed in the following

Section 2.1.3. 

Based on (Bello, et al., 2005) work, Collins, in (Collins, 2005), and then

Dixon, in (Dixon, 2006), sought to extend their results and reviewed them,

as a benchmark for comparison. 

Collins, besides reviewing and extending their work, also explored the

potential of psychoacoustically motivated models such as those of (Klapuri, 

1999) and (Jehan, 1997), referred above. In this research, the author

investigated 16 detection functions, including a number of novel and

recently published models. 

(Dixon, 2006) complemented and extended (Bello, et al., 2005)

by introducing new onset detection functions, already referred, and by

testing the new methods alongside independent implementations of a subset



of the published methods on the same data set and on a second data set

which is two orders of magnitude larger. They restricted their comparison

to methods based on short term spectral coefficients, which are the most

widely used methods, and the most successful according to the MIREX

2005 Audio Onset Detection evaluation. The achieved results are also

discussed in the following Section 2.1.3, in comparison to the previous

ones. 

2.1.3 Results Analysis and Comparison
In signal processing, onset detection is an active research area leading to

worldwide contests as the Audio Onset Detection contest featured by the

MIREX annual competition an ISMIR member since 2005. These

contests aim to find the more efficient onset detection function at retrieving

the time locations at which all musical events in a recording begin. We

begin this subsection by presenting the main difficulties beyond the

evaluation of note-onset detection models and then introducing some

methods to overcome this difficulty with the use of tools for building a set

of reference onset times. Next, based on (Bello, et al., 2005) and (Dixon, 

2006), we present a benchmarking comparison between some of the

referred reduction models (see Section 2.1.1.2), and emphasize the ones

with best performance. We finish this comparison by introducing some

guidelines for choosing the right onset detection function according to its

application. 

2.1.3.1 Methodology and Tools for the Evaluation of Automatic Onset
Detection Algorithms

The main difficulty with the evaluation of any MIR task is that of

obtaining large data sets where the ground truth is manually annotated by

human expert musicians. The case of annotating the precise timings of

onset locations by hand is a laborious and error-prone task (Dixon, 2006). 

A second problem consists of robustly comparing the results obtained

from different algorithms according to their accuracy on finding the correct

onset times, within a given tolerance window (typically of 50ms) (Dixon, 

2006). To solve this problem, MIR researchers typically measure the

accuracy of note-onset detection algorithms using the F-measure, often



graphically depicted through a Receiver Operating Characteristic (ROC)

curve, by combining precision, P, and recall, R, into a single value

representing the optimal point in the ROC curve, as follows:

, 

, 

 , 

(2.29)

(2.30)

(2.31)

where c is the number of correct detections, f+ is the number of false

positives and f is the number of false negatives. 

A third, and last, problem that raises when evaluating and comparing

onset detection algorithms is related to the consideration of a single or

multiple onsets when these are played very close together (e.g., when a

chord is played on a piano or guitar). The MIREX Audio Onset Detection

evaluation addresses this issue by complementing the standard counts of

correct detections, false positives and false negatives, with counts of

merged onsets (i.e., two onsets detected as a single onset) and double

onsets (i.e., a single onset recognized as two) (Downie, West, Ehmann, &

Vincent, 2005). 

By addressing these issues, we describe two distinct frameworks to

improve the performance of the evaluation of algorithms for automatic note

onset detection in music signals. 

(Leveau, Daudet, & Richard, 2004) developed a carefully designed

software tool, called SOL (Sound Onset Labellizer), which combines the

three most used hand-label methods (i.e., signal plot, spectrogram, and

listening to signal slices), to provide an user-interface to construct the set of

reference onset times and cross-validate it amongst different expert

listeners. With this application, the authors have objected to build a

common methodology and a common annotation tool, which in turn can be

used to build a common database of onset-annotated files. In order to be



shared by the widest community they freely disposed this software and files

online11. 

In order to enable, coordinate and evaluate submissions to MIREX, a

software framework was developed by (Downie, West, Ehmann, &

Vincent, 2005) in association with the IMIRSEL team. Their final solution

is based in the Data-to-Knowledge (D2K) Toolkit and is included as part of

the Music-to-Knowledge (M2K) Toolkit12 (both implemented in JAVA).

M2K modules are connected by an itinerary based in XML (Extensible

Markup Language) which describes the particular process flow for each

evaluation task. These frameworks are flexibly customizable to suit the

specific topologies of submissions. Hence, they represent a

significant advance over traditional evaluation frameworks in general MIR.

2.1.3.2 Benchmarking

Following the previous analysis, in this subsection we present (Bello, et

al., 2005) and (Dixon, 2006) experimental results that compare the most

relevant onset detection approaches, described in Section 2.1.2. 

To test every relevant scheme, they have both used the same mono data

set of 44.1 KHz and 16 bit sound files, with reference onsets marked up by

hand by a single expert. The tests were composed of 4 sets of short excerpts

from a range of instruments, classed into the following groups (Bello, et al., 

2005):

NP non-pitched percussion, such as drums (119 onsets);

PP pitched percussion, such as piano and guitar (577 onsets);

PN pitched non-percussion, in this case solo violin (93 onsets);

CM complex mixtures from popular and jazz music (271 onsets).

In (Bello, et al., 2005), the onset labeling was accomplished mostly by

hand, which is a lengthy and inaccurate process, especially for complex

recordings such as pop music, typically including voice, multiple

11 Available at http://perso.telecom-paristech.fr/~grichard/ISMIR04/.
12 M2K is an open-source initiative and is freely available from  
http://music-ir.org/evaluation/m2k.



instruments and post-production effects. A small subsection of the database

corresponds to acoustic recordings of piano music, generated through MIDI

(Musical Instrument Digital Interface), which removes the error introduced

by hand-labeling. In a way to allow for its inaccuracy, the authors

considered correct matches the ones which match the annotated onsets

within a 50ms window. (Bello, et al., 2005, p. 11~Table I) presents the

achieved results for all compared methods, according to the characteristics

of each: Spectral Weighting Methods Spectral Flux (SF) (Masri, 1996),

and High-Frequency Content (HFC) (Masri, 1996), given by eq. (2.5);

Phase-Based Methods Phase Deviation (PD) (Duxbury, Bello, Davies, 

& Sandler, 2003a), given by eq. (2.7); Time-Frequency and Time-Scale

Methods Wavelet Regularity Modulus (WRM) (Daudet, 2001), given by

eq. (2.15); and Statistical Methods Negative Log-Likelihood (NL)

(Abdallah & Plumbley, 2003), given by eq. (2.16). For the sake of a fair

comparison between the detection functions, the authors opted to use a 

common post-processing and peak-picking technique. Peak-picking was

accomplished using the moving-median adaptive threshold method, based

on (Rodet & Jaillet, 2001). However, the performance for each detection

function could be improved by fine tuning the peak-picking algorithm for

each specific onset detection function. (Bello, et al., 2005, p. 10~Figure 7)

presents the results achieved in (Bello, et al., 2005, p. 11~Table I) in the

form of a ROC curve, comparing the performance of each tested scheme.

To compose this curve, all peak-

frequency, ) were held constant, except for the threshold, , which was

varied to trace out the performance curve. Better performance is indicated

by a shift of the curve upwards and to the left. The optimal point on a

particular curve can be defined as the closest point to the top-left corner of

the axes, where the error is at its minimum. 

An overview of every analyzed method when applied to different types

of audio signals (i.e., violin, piano, and pop music) can be observed in

(Bello, et al., 2005, pp. 7-8~Figure 4, Figure 5, Figure 6). 

Following (Bello, et al., 2005) considerations, by reading the different

optimal points we can retrieve the best set of results for each onset

detection method. In overall, the negative log-likelihood performed the



best, with a mean accuracy of 90.6±4.7%, followed by the HFC, with a

mean 90.0±7.0%, the spectral flux, with a mean 83.0±4.1%, the phase

deviation, with a mean 81.8±5.6%, and, finally, the wavelet regularity

modulus, with a mean 79.9±8.3%.

Based on (Bello, et al., 2005), one might also withdraw additional

conclusions by analyzing the shape of each curve, as it contains useful

information about the properties of each method. The negative log-

likelihood seems the most appealing for most applications by remaining

closer to the top-left corner of the ROC curve despite the class of

instruments, while producing little noise. The HFC was able to identify

most (95%) of the annotated onsets in all excerpts while only falsely

identifying 10% of noise peaks as onsets (i.e., 10% of false positives). The

wavelet regularity modulus revealed similar performance but it seems more

prone to false positives. Finally, the spectral flux and the phase deviation,

as temporal-domain methods, seemed to deliver a smoother onset detection

function, which minimized noise that would potentially result in false

positive detections. 

According to (Bello, et al., 2005, p. 11~Table I), and also referring

(Bello, et al., 2005) , we present a performance analysis

depending on the type and quality of the input signal. Notably, the negative

log-likelihood was the best performing onset detection function, working

generally well for all classes of instruments in the data sets. The HFC

seems to be best suited for highly percussive sounds and complex mixtures, 

in the presence of drums (i.e., percussion). On the other hand, the phase

deviation seems best suited for pitched sounds (both PP and NP), richer in

tonal information, while being poor at analyzing percussive sounds and

complex mixtures. The wavelet regularity modulus was only effective

when dealing with simple percussive sounds. Ultimately, the spectral flux

seems moderate for all classes of instruments, slightly under-performing

phase deviation for pitched sounds and HFC for more percussive and

complex sounds. 

Following these results, we present Dixon analysis, from (Dixon, 

2006). In his experiments, the ground-truth data was used in advance to

select optimal values of (positive thresholding constant) and (the



threshold above the local mean which an onset must reach). Similarly to

(Bello, et al., 2005), Dixon considered an onset to be correctly detected if it

matches a ground-truth onset time within a 50 ms tolerance window.

However, the author did not penalize merged onsets, considering that the

analyzed data contained many simultaneous or almost simultaneous notes

(and the author was not attempting to recognize the type of notes). Also

contrarily to (Bello, et al., 2005), Dixon, in (Dixon, 2006, p. 5~Table 1),

presented the comparative results in function of their precision, recall, and

F-measure, as respectively given by eq. (2.29), eq. (2.30), and eq. (2.31).

F. 

In this context, and in order to compare his results with (Bello, et al., 

2005) , Dixon re-tested the spectral flux (SF), the phase deviation (PD),

and also tested his proposed models, WPD, NWPD, and RCD, in contrast to

their former versions compiled in (Bello, et al., 2005) (respectively, PD,

PD, and CD).

Therefore, (Dixon, 2006, p. 5~Table 1) presents his own comparative

results, based on the same data sets used in (Bello, et al., 2005), for 8

different onset detection functions: Energy-Based Methods Spectral

Flux (SF* from (Bello, et al., 2005) and SF from (Dixon, 2006)); Phase-

Based Methods Phase Deviation (PD* from (Bello, et al., 2005) and PD

from (Dixon, 2006)); Weighted Phase Deviation (WPD), from (Dixon, 

2006); Normalized Weighted Phase Deviation (NWPD), from (Dixon, 

2006); Complex Methods Complex Domain (CD), from (Bello, 

Duxbury, Davies, & Sandler, 2004) and (Duxbury, Bello, Davies, &

Sandler, 2003b); and Rectified Complex Domain (RCD), from (Dixon,

2006). 

By analyzing (Dixon, 2006, p. 5~Table 1), it is observable that there are

SF*

and PD*) and own implementations of the same functions (i.e., SF

and PD).

Referring (Dixon, 2006) analysis, and akin to (Bello, et al., 2005)

results, the SF* and SF revealed better performance on percussive sounds

(i.e., on PP data) than on the PN and NP data sets. Yet, SF showed

much smaller performance differences among the 3 tested data sets than



s SF*, although this difference may be justified by the use of a more

uniform peak-picking function. Greater differences were even evident

PD PD* onset detection functions. Contrarily

to PD, PD* achieved overall results closer to WPD and NWPD. This fact

was latter justified by (Bello, et al., 2005) to be the result of applying a

weighting scheme to PD*, which was not applied to PD. Nevertheless, the

WPD and NWPD functions revealed significant improvements over the PD

function, although no conclusions could be withdrawn on the overall

improvement of applying normalization on the WPD function (i.e., by

using the NWPD function), since the NWPD was slightly better for the PP

and CM data but slightly worse for the remaining data. Finally, the RCD

function slightly outperformed CD in the overall, although the difference

was not significant. 

(Dixon, 2006)

(Bello, et al., 2005) and suggested that similar performance might be

obtained, in the overall, with a magnitude-based (e.g., spectral flux), a

phase-based (e.g., weighted phase deviation) or a complex domain (e.g., 

complex difference) onset detection function. Yet, since the tested data sets

were small and not sufficiently general, Dixon did not draw further

conclusions about the differences between these methods, except to state

that spectral flux has the advantage of being the simplest and fastest

algorithm. 

As conclusion, one should refer that all the discussed results (from

(Bello, et al., 2005) and (Dixon, 2006)), while depicting a general trend in

the behavior of the tested approaches, are not absolute due to the signal

dependencies of the methods, and to the chosen peak-picking and post-

processing algorithms. The hand-labeling of the ground truth onsets used in

the evaluation could also be ambiguous and subjective, especially in

complex mixtures, which might have slightly compromised the results on

this type of data.

2.1.3.3 Onset Detection Functions: Comparative Analysis and Application
of the Methods

When picking the most accurate method for a specific application the

general rule of thumb is that one should choose the method with minimal



complexity that satisfies the requirements of that application, in a balance

of complexity between pre-processing, construction of the detection

function, and peak-picking (Bello, et al., 2005). 

What follows is a summary discussion of the merits of different

reduction approaches and some guidelines to find the appropriate method

for a specific application, with an emphasis on the ones that have been

previously compared, founded mainly on (Bello, et al., 2005) and (Dixon, 

2006) results. 

We decomposed this general discussion in six different methods,

according to Section 2.1.1.2:

Temporal Methods (e.g., (Klapuri, 1999)): these reveal the highest

simplicity in a computational perspective. However, they depend on the

existence of clearly identifiable amplitude increases, which are only

present in highly percussive events in simple audio signals. Either way, 

temporal-based onset detection functions, relying on the amplitude of

the signal, are typically inefficient when facing amplitude modulations

(i.e., vibrato, tremolo) or the overlapping of energy produced by

simultaneous sounds. Ultimately, these methods present low precision

in the time-localization of the detected onsets. 

Bello et al. consider these methods especially adequate to very

percussive (PP, e.g., drums) musical signals (Bello, et al., 2005). 

Energy-Based (Spectral Weighting) Methods (e.g., (Masri, 1996), 
(Duxbury, Sandler, & Davies, 2002)): from these we shall refer the

commonly used HFC (Masri, 1996). It is particularly efficient when

applied to percussive signals but less robust when facing low-pitched

and non-percussive events, due to the occurrence of energy changes at

low frequencies, which are then de-emphasized by the weighting. This

problem can be overcome by using spectral difference (spectral flux)

methods such as the L1-norm of the difference between magnitude

spectra, given by eq. (2.5), (Masri, 1996), or the L2-norm of the rectified

spectral difference, given by eq. (2.23), (Duxbury, Sandler, & Davies, 

2002), as these can respond to changes in the distribution of spectral



energy, as well as the total, in any part of the spectrum. However, the

spectral flux only relies on magnitude information. 

Bello et al. consider the SF, similarly to PD, especially adequate to

strongly pitched transients (Bello, et al., 2005). 

Phase-Based Methods (e.g., (Bello & Sandler, 2003), (Duxbury, 
Bello, Davies, & Sandler, 2003a), (Dixon, 2006)): these were designed

in order to compensate the shortcomings of the former approaches. We

shall refer the spread of the distribution of phase deviations (PD), given

by eq. (2.7), (Duxbury, Bello, Davies, & Sandler, 2003a), which are

successful at detecting low and high-frequency tonal changes regardless

of their intensity. Yet, they are especially susceptible to phases of noisy

low-energy components, and to phase distortions common of complex

audio signals. The WPD, given by eq. (2.24), and the NWPD, given by

eq. (2.25), both proposed in (Dixon, 2006), are both very significant

improvements of the PD function, but the normalization is only an

improvement of the WPD in the presence of PP or CM data, while for

pitched PN and NP data (Dixon, 2006) observed a slight degradation in

the performance of the results. 

As referred, Bello et al. also consider the PD especially adequate to

strongly pitched transients (Bello, et al., 2005). 

Complex Methods (e.g., (Bello, Duxbury, Davies, & Sandler, 2004), 
(Duxbury, Bello, Davies, & Sandler, 2003b), (Dixon, 2006)): In the

complex domain, both phase and amplitude information work together

to offer generally more robust onset detection approaches. These

approaches are both straightforward to implement, and computationally

cheap. Besides, they prove effective for a large range of audio signals. 

Some complex domain algorithms, like the complex difference (CD),

given by eq. (2.9) (Duxbury, Bello, Davies, & Sandler, 2003b), and

performing better on the lower frequency components of the spectrum,

may be beneficial to incorporate them within a multi-resolution

approach. This has the advantage that high frequency noise bursts may

be used to improve time localization of hard onsets. The RCD, given by



eq. (2.26), as proposed by (Dixon, 2006), revealed to offer small

performance improvements to CD, with non-significant differences. 

Bello et al. consider the CD a good choice to any application in

general, at the cost of a slight increase in computational complexity,

when compared to PD or SF (Bello, et al., 2005). 

Time-Frequency and Time-Scale Methods (e.g., (Davy & Godsill, 
2002), (Daudet, 2001)): As an exemplar TRF method we shall refer the

wavelet regularity modulus, given by eq. (2.15), (Daudet, 2001). It can

be used to precisely localize onset events in a theoretical resolution

down to two samples of the original signal, which is typically better

, this alternative resolution

imposes a much less smooth detection function (requiring some post-

processing to remove spurious peaks) and an increase in algorithmic

complexity.

Bello et al. consider the WRM especially useful, possibly in

combination with another method, to applications requiring a precise

detection of the onset times (Bello, et al., 2005). 

Statistical Methods (e.g., (Abdallah & Plumbley, 2003)):
Probabilistic models provide a more general theoretical view of the

analysis of onsets. If the model is adequate, then robust detection

functions for a wide range of signals can be produced. An example is

the surprise-based method using ICA to model the conditional

probability of a short segment of the signal, calculated as the difference

between two negative log-likelihoods, NL, (Abdallah & Plumbley,

2003), as given by eq. (2.16). This adaptive statistical model grants the

most precise onset detection, but imposes a potentially computational-

expensive and time-consuming training process to fit the parameters of

the model to a given training set. 

Bello et al. considered the NL as the best option, due to its best

overall accuracy and less dependence on a particular choice of

parameters, if a high computational load is acceptable, and a suitable

training set is available (Bello, et al., 2005). 



Contesting some of (Bello, et al., 2005) results and conclusions, 

(Dixon, 2006) argued that the SF, PD, and the CD onset detection functions

achieved similar higher level of performance, where SF was proven to be

the best approach, offering the best tradeoff between accuracy and

computational demands. 

, and given the real-time requirements of

our robot dancing system, we used Marsyas to implement the spectral flux

method for the integrated note-onset detection function, as given by eq.

(2.5). This was the basis of the implemented low-level rhythmic perception

model integrated in our Music Analysis Module (see Chapter 3).

2.2 Dancing Robots

Interaction through dance is expected to improve the quality of

symbiosis between robots and people in natural environments. Since

human emotions have a close relationship to music and dancing, the

research of these expressive non-verbal languages applied to robots may

spoken language. Besides, robotics has even become a mode of artistic

expression by means of embodied mechanical actions with aesthetical

designs. 

This subsection presents the solutions achieved by some of the most

notable researchers on the area of robotic dancing and rhythmic interactive

robots. 

The first dance-expressive robots set back to the 80s through robotic art

performances, where choreographers and cinematographers explored the

emotional and aesthetic dimension of robot movement into theatre and

movie characters. The first cinematic robot dancing performance was

Figure 5a)),

where a team of industrial robots on an automobile assembly line where

programmed to dance together in synchrony to music recorded by

c Orchestra. Since then, many



cinematographic and theatrical pieces were shot with differently shaped

robots expressively performing dance with humans, in artistic scenes. The

first most famous cinematic dancing robot was the one featured by Short

s hero Johnny 5 (in Figure 5b)), back to 1986, which could already

express emotions and body movements, controlled by a puppeteer wearing

a telemetry suit. Other remarkable artistic robot dancing performances were

presented by Jean-

-

-theatrical

performances of the Omnicircus from Frank Garvey and Chico

MacMurtrie's Amorphic Robot Works. More recent artistic dancing robots

include Robot Pole Dancers (Figure 5c)) and Lapassarad

Thanaphant s dancing robot waiter at Hajime Robot Restaurant (in Figure

5d)).

Figure 5 Artistic dancing robots: a) [top-left]; b) Short
[top-middle]; c) Giles Walker Robot Pole Dancers [top-

right]; d) [bottom-left]; e)
dancing industrial robot [bottom-right]. 

In the line of the former, Apostolos et al. presented a comprehensive

study exploring the aesthetics of (industrial) robotic movements for robot

choreography while artistically comparing different robot designs (see



Figure 5e)) (Apostolos, 1988), (Apostolos, Littman, Lane, Handelman, &

Gelfand, 1996). 

Later, by deeply exploring the paradigms of embodied interactions

between humans and robots in artistic settings such as museum exhibitions

(see Figure 6a)), theatre, and musical installations, Camurri et al. designed

an interactive multi-modal architecture for emotional dancing agents

(Camurri & Coglio, 1998). Their paradigm consisted of generating

emotional outputs, through specific robot actions, such as motion, 

navigation, and light effects; and audio commands, through music

composition and speech; in Reaction and Rationalization to multi-modal

inputs acquired from human movement, musical context, and the robot

emotional internal state. Their architecture was tested with children in a

museum exhibition by recurring to a mobile robot, ActiveMedia Pioneer 1, 

dressed and equipped with on-boar remote-controlled loudspeakers, 

infrared localization sensors, and a Saphira navigation system. 

Suzuki et al. extended this concept by introducing four musical

platforms to create multimodal artistic environments for collaborative

human-robot music and dance performances (Suzuki & Hashimoto, 2004).

For supporting the interaction, their robotic system integrated acoustic and

visual environmental inputs, and own movement, to

dynamically react with motion while producing sound and music according

to the context of the performance. All integrating modules, along with a

flexible GUI, were interconnected through a MIDI network, which

provided means for communicating and exchanging data.

The four human machine multimedia-multimodal settings, depicted in

Figure 6b), consisted of: i) a Reactive Audiovisual Environment, as an

environment-oriented musical system where human movement and

environmental sound produces contextualized sound and music in real-time

(Figure 6b), top-left); ii) a Visitor Robot, that extends the former setting by

generating robot motion and navigation within the interactive space

according to the external audio-visual stimuli (Figure 6b), bottom-left); iii)

an iDance installation, as an object-oriented setup through which the robot

reacts to direct physical contact provided by a human performer (Figure

6b), top-right); and iv) a MIDItro setting, which combines all of the former



direct

physical contact (Figure 6b), bottom-right). 

Figure 6 Multimedia-multimodal human-robot installations: a)
dei -robot interaction involving music, movement, dance, and a
mobile robot (Camurri & Coglio, 1998) [left]; b) Four human machine multimedia-multimodal
settings (Suzuki & Hashimoto, 2004) [right]: Reactive Audiovisual Environment [top-left], 
Visitor Robot [bottom-left], iDance [top-right], and MIDItro [bottom-right]. 

Focusing on the most recent approaches concerning robot dancing, we

may start to refer some of the existing commercial edutainment toy robots

with embedded choreography editors and high-level motion controllers. 

The most known for their dance orientation are the RoboSapien robots

created by WooWee Robotics (in Figure 7a)) RoboSapien, RoboSapien

V2, FemiSapien, and RoboSapien RS Media (WooWeeRobotics, 2008).

behaviors may be designed through visual

programming environments such as Robo-Go Choreographer, and users

may control and trigger their dance creations, through the RobotDance

application, by recurring to voice commands, to

Remote, or to the RoboRemote. Other similar low-cost edutainment

humanoid platforms, with ad hoc motion editors for easily composing

continuous point-to-point dancing sequences, include Kondo Kagaku and

-I (HitecRobotics, 2008) and

(Gouaillier, et al., 2008). Other platforms

already used for robot dancing include programmable robotic kits such as

Lego Mindstorms NXT, as used in this work, and Robotis Bioloid. 

Other trendy dancing toy- (SegaToys, 

2008), iCat, iDog (Figure 7b)), iFish, iCYPenguin, and iSpin, and the USB

Dancing Robot (Gizmodo, 2008) (in Figure 7c)). These Tamagotchi-like

plastic pets were especially designed for being connected to an iPod (or



other MP3 player) or placed next to a loud speaker. These little robots

come in a variety of colors

through flashing LEDs (Light-Emitting Diodes) in time to the music and

bopping/moving to the beat. Some of them even display mood feelings

given the type of music and the level of music deprivation. 

Figure 7 Commercial dance-oriented robots: a)
(WooWeeRobotics, 2008) [left]; b) iDog Pup (SegaToys, 2008) [middle]; c) USB Dancing
Robot (Gizmodo, 2008) [right].

Back to the academia, Nakazawa, Nakaoka et al., from Tokyo

University, presented an approach for designing a biped robot, HRP-2, that

could imitate the spatial trajectories of complex motions recurring to a

Motion Capture (MoCap) system (see Figure 8) (Nakaoka, et al., 2007),

(Nakaoka, et al., 2005), (Nakaoka, 2003). To do so, they developed a

Learning-From-Observation (LFO) training method that enabled a robot to

acquire situated knowledge from observing human demonstrations, by

relying on predesigned task models which represent only the actions that

are essential to mimicry. This method was applied in the performance of

Japanese traditional folk dances imitating a female human dancer. For

such, and because the leg and upper body have different purposes (the leg

motions stably supported the robot body, while the upper-body motions

expressed dancing patterns) as well as different motor constraints, the

authors applied different strategies to design task models for leg and upper-

body motions. These two motion types were concatenated and adjusted in

the final stage. Finally, to generate executable motion, while considering

balance and stability issues, the authors applied a dynamic filter to

compensate the Zero-Moment Point (ZMP) and the yaw-axis moment of



the robot, and conducted skill refinement to resolve other kinematic

problems such as self-collision. 

Figure 8 - HRP-2 learning from observation (Nakaoka, et al., 2005): a) HRP-2 humanoid robot
[left]; b) Mapping human dancing movements onto HRP-2 [middle]; c) HRP-2 imitating an
Aizu Bandaisan Japanese dance performance [right]. 

Despite the flexibility of motion generation, the referred approach was

not able to autonomously adjust the timing of dancing motion

while interacting with the auditory environment, i.e., while listening to

music. To overcome this limitation, later, (Shiratori, Kudoh, Nakaoka, &

Ikeuchi, 2007) modeled the proper modifications to the generated upper

body dance motion in way that it would follow the speed of the played

music (see Figure 9). Their model was based on the insights that high

frequency components are gradually attenuated with the increase of the

music speed, and that important stop motions are preserved even when

high frequency components are attenuated. For that purpose, and to satisfy

the joint limitations of the robot, the authors analyzed motion data at

varying musical speeds by using a hierarchical motion decomposition

technique the hierarchical B-spline. All motion data was captured at 120

fps (frames per second) by an optical motion capture system, produced by

Vicon, and each joint angle was calculated and converted into a 3D

logarithmic space using quaternion algebra. 

Their final tests were also performed in HRP-2 with which they

achieved successful upper-body robot dance performances at different

speeds, while satisfying the criteria for balance maintenance.





Figure 11 Sony entertainment robot QRIO (Tanaka & Suzuki, 2004): a) QRIO humanoid
robot [left]; b) QRIO reacting to human movement by following its rhythm and shape [middle];
c) A set of moving- [right]. 

In the line of iPets, (Aucouturier & Ogai, 2007) used a robot designed

by ZMP, called MIURO (see Figure 12), for dancing while playing music

from an embedded iPod. For generating dancing behaviors in a seemingly

autonomous manner the authors designed basic dynamics through a special

type of chaos (chaotic itinerancy (CI)) for the robot to exhibit a variety of

periodic motion styles alternating from detached independent movements

to others strongly attached to the musical rhythm. The robot motor

commands were generated in real-time by converting the output from a

neural network that processes a pulse sequence corresponding to the beats

of the music. Each neuron was (biologically) inspired in the FitzHugh-

Nagumo model to generate a chaotic itinerant dancing behavior among

low-dimensional local attractors of higher dimensional chaos. The resulting

dancing revealed a strong compromise between musical-synchrony and

autonomy which ultimately enhanced the long-term interest of human

audiences. 

Figure 12 - The MIURO robot dancing platform (Aucouturier & Ogai, 2007): a) MIURO white
edition [left]; b) -wheeled musical player equipped with an iPod
mp3 player interface and a set of loudspeakers [middle]; c) Wheel velocities can be controlled
in real-time through wireless communication with a computer [right].



On the same year, Sony launched a similar egg-shaped robot named

Rolly (see Figure 13) as a conventional mp3 portable player with

musically-synchronous dancing moves and light effects (Sony, 2008).

Besides its two 1.2 W speakers, Rolly is equipped with several motors for

accelerometer for vertical orientation. Its audio analysis functions extract

musical components such as beat, meter, voice and pitch, which are used

for different reactions. Proprietary choreographical software allows users to 

create their own dancing routines or download extra dancing schemes from

-in Bluetooth module supports music

streaming directly from other devices like PCs, mobiles and Hi-Fi (High-

Fidelity) systems. 

Figure 13 (Sony, 2008): a) Rolly white edition [left]; b) Dancing music player
mode of operation [right]. 

(Burger & Bresin, 2007), and (Burger, 2007) used the Lego Mindstorms

in

Figure 14 which expressed movements to display emotions embedded in

the audio layer, in both live and recorded music performances. Their robot

had constraints of sensors and motors, so the emotions (happiness, anger

and sadness) were implemented by taking into account only the main

movements supported the intended emotions without recurring to ad hoc

musical stimuli, the authors designed two behavioral evaluation scenarios

with subjects that experienced and assessed robot emotions with and

without music.



Figure 14 - (Burger, 2007). 

Focused on a more active robotics perspective, towards human

interaction, (Takeda, Hirata, & Kosuge, 2007) proposed a dance partner

robot, which was named MS DanceR, consisting of a platform for realizing

effective human-robot coordination with physical interaction. MS DanceR,

as illustrated in Figure 15, consists of an omni-directional mobile robotic

interface which moves along dance-step trajectories during a ballroom

dance, including a force/torque sensor (Body Force Sensor) to realize

compliant physical interaction between the robot and a human, by

measuring the user leading force moment. For estimating the next intended

dance step according to the human lead at the transition, a Step Estimator

module uses a set of Hidden Markov Models (HMM) to stochastically

model the time series of the leading force-moment. According to step

transition rules, based on motion constraints, the Motion Generator module

generates cooperative robot dancing movements in a close-loop physical

interaction for accompanying the human dance partner. 

Figure 15 - The dance partner robot (Takeda, Hirata, & Kosuge, 2007): a) A force-torque
-moment

[left]; b) MS DanceR two-colors layout [middle]; c) An omni-directional mobile base uses
special wheels to move along dance-step trajectories [right]. 



Considering rhythmicity as a holistic property of social interaction, 

(Michalowski, Sabanovic, & Michel, 2006), (Michalowski, Kozima, &

Sabanovic, 2007), and (Michalowski & Kozima, 2007) investigated the

role of rhythm and synchronism in human-robot interactions, and their

application in pedagogical and therapeutical scenarios. For this purpose, the

authors applied perceptive techniques and generated social rhythmic

behaviors in non-verbal interactions through dance between Keepon

(Michalowski, Kozima, & Sabanovic, 2007), (Michalowski & Kozima,

2007), a yellow puppet-like robot with 4 DoF (see Figure 16a) and Figure

16b)), or Roillo (Michalowski, Sabanovic, & Michel, 2006), a robotic

virtual platform (see Figure 16c)), and children. For perceiving rhythm

over different modalities, their robotic system integrated musical signal-

processing techniques to detect the musical tempo, hand-clapping, or drum-

beats; and computer-vision methods, and accelerometers (and pressure

sensors) to enable the perception of repetitive movements by peoples

heads, arms, or bodies.  

In (Michalowski, Kozima, & Sabanovic, 2007), Keepon attended to both

auditory and visual data, and extracted movement by computing the

average optical flow in a region of interest of an incoming video stream. In

(Michalowski & Kozima, 2007), Keepon recurred to auditory stimuli and

spatial sensing by using a battery-powered three-axis accelerometer, with

wireless Bluetooth data transfer, implanted in a toy, that detected rhythmic

movements by finding magnitude peaks, after applying a zero-crossing or

low-pass filtering the retrieved data. These peaks were then treated as

changes, as in (Michalowski, Kozima, & Sabanovic, 2007). 

Ultimately, a Max/MSP (Max/Max Signal Processing) object, sync~,

received the stream of multi-modal beats and produced an oscillator

synchronized with the given tempo. This oscillator drove a stream of

degrees-

of-freedom. At last, a sequencer was used to record aligned streams of

beats, sensor data, and motor commands for later playback and behavioral

analysis. 



  

Figure 16 Rhythm and Synchrony in human-robot interactions: a) Keepon dancing with a
child (Michalowski & Kozima, 2007) [left]; b)
(Michalowski & Kozima, 2007) [middle]; c) Roillo requesting the ball using a deictic gesture
(Michalowski, Sabanovic, & Michel, 2006) [right]. 

By extending robot dancing to multi-robot choreography, (Park, Kim, 

Lee, Yoo, & Kim, 2007) presented an heterogeneous robot dancing team,

RoboBees, constituted by one HSR-VII (HanSaRam 7) and several

Robonova humanoids (see Figure 17). Their system performed

synchronized dance movements among the team of robots by generating

and combining both periodic motions, through an online pattern generator, 

and aperiodic motions, through an offline pattern generator. For generating

and stabilizing the online periodic motions, the authors introduced a time-

domain passivity compliance control system for changing the initial

planned trajectories accordingly. 

Figure 17 - Synchronized aperiodic dancing motions among a team of robots (Park, Kim, Lee,
Yoo, & Kim, 2007). 

(Ellenberg, Grunberg, Oh, & Kim, 2008) also used Robonova as their

humanoid robot dancing platform see Figure 18. In their implementation, 

they applied a real-

(Klapuri, Eronen, & Astola, 2006)

motion to the beat of the music. Their application coordinated

dancing by choosing a random series of gestures, from a motion library,

and linearly interpolating them, point-to-point, for generating dancing



d a priori with a

careful design of the integrated dancing motions. A graphical user

interface, shown in Figure 18b), was also designed to let users choreograph

gesture sequences, which extended the system towards a basic

choreographic tool. 

Figure 18 Dancing Robonova (Ellenberg, Grunberg, Oh, & Kim, 2008): a) Motion editor
[left]; b) Application GUI [middle]; c) Demonstration screen-shot [right]. 

By using a similar humanoid platform (see Figure 19a)), Shinozaki et. al

investigated the role of robots in entertainment (Shinozaki, Oda, Tsuda,

Nakatsu, & Iwatani, 2006) and designed a robot dancing system to perform

dancing sequences concatenated from short dance motions (named dance

units), adapted from real human performances (Shinozaki, Iwatani, &

Nakatsu, 2007). For such, the authors collaborated with a professional

dancer to extract around sixty hip-hop dancing units, which were converted

into humanoid poses, using a motion editor. By linearly interpolating those

dancing primitives, using a neutral posture between them, the authors could

perform a huge amount of dance variations, representing a repertoire of

generic hip-hop dancing. 

Later, the authors developed a real-time audio beat tracker in order to

generate beat-synchronous robot dancing sequences (Nakahara, et al., 

2009). The detected beats conducted the linear interpolation between key-

poses, to be accomplished within the duration of the current Inter-Beat-

Interval (IBI). Additionally, the system also supported symbolic audio

signals inputted from a MIDI keyboard. Through this device the user could

control both the musical tempo and the musical strength, which, 

respectively, controlled the velocity of motion execution and the range of

movements. 



Figure 19 Generating humanoid motions for entertainment (Shinozaki, Iwatani, & Nakatsu, 
2007): a) Tai-Chi humanoid robot motion; b) Adapting a hip-hop dancing unit from a human
dancing posture to the robot. 

Concerned with robotic anthropomorphism, Or designed the first

flexible spine humanoid robot for belly dancing performances (Or, 2006),

(Or, 2009) (see Figure 20). Inspired by the rhythmic movements commonly

exhibited in lamprey locomotion, the author simulated belly-dancing by

replicating the lamprey Generator (CPG) for developing a

control architecture for the high degree-of-freedom. The

lamprey CPG follows a connectionist model consisting of 100

interconnected copies of a segmental oscillator with eight neuron units

each. These receive global and local excitations from the lamprey brain

stem, to, respectively, control the frequency of oscillation of the CPG, and

altering the inter-segmental phase lag. 

  

Figure 20 Flexible spine humanoid belly dancer (Or, 2009): a) The Waseda Belly Dancer no.
1 (WBD-1) [left]; b) WBD-2 performing emotional belly dancing with flexible and undulatory
movement [right]. 

By varying the global and extra excitations from the brain stem as well

as the plane of movements, the proposed lamprey CPG model could

generate plausible output patterns, which could be used for all the possible

motions of the human spine. By designing the control for basic spine



movements, such as (lateral) flexion, hyperextension, and twisting; and

complex movements, such as chest circle and undulation (see Figure 20b)), 

Or was able to produce full-body flexible spine emotional humanoid

robots, which could dance more naturally and at a lower cost than

conventional research-type humanoid robots. 

Distinctively, Schöllig et. al proposed a control algorithm to enable

flying vehicles to perform musically-synchronous rhythmic movements

(Schöllig, Augugliaro, Lupashin, & D'Andrea, 2010). The proposed

algorithm synchronized the side-to-side motion of a quadrocopter (in

Figure 21c)) with the musical beat and melody, while stabilizing the

vehicle in the air, contradicting its non-linear and unstable dynamics. The

2D side-to-side quadrocopter oscillation was defined in the xz-pane by a

cascade controller design. The actual synchronization was achieved by

using concepts from Phase-Locked Loops (PLL), as depicted in Figure

21b), in order to reach the quadrocopter side-to-side outermost positions

with the beat. A feedback strategy was used to keep the vehicle in phase

with the musical beats (pre-processed from the music). Additionally, a

feed-forward component was added to achieve fast adaptation to frequency

(beat) and amplitude (melody) changes. 

Figure 21 Quadrocopter motion synchronized to music (Schöllig, Augugliaro, Lupashin, &
D'Andrea, 2010): a) Quadrocopter [top-left]; b) Overall system architecture based on PPL for
beat-synchronous quadrocopter motion [top-right]; c) Side-to-side 2D quadrocopter motion
[bottom].

Ultimately, we may refer worldwide robot dancing contests where

school teams and research groups program their robotic creations to dance

in creative displays of costumes, movement and music. The most



(RoboCupJunior, 2008) (Figure 22a)), ROBO-ONE GATE Dance

Competition (ROBO-ONEEntertainment, 2008) (Figure 22b)), and by the

(UAS, 2008) (Figure 22c)).

Figure 22 Robot dancing contests: a) (RoboCupJunior, 2008) [left];
b) ROBO-ONE GATE Dance Competition (ROBO-ONEEntertainment, 2008) [middle]; c)
Hexapod Dancing Championship (UAS, 2008) [right]. 

2.3 A Step Further

Most of the referred musical robotic systems lack from flexibility and

human control, presenting mainly reactive robots manifestly stiffed to their

pre-programmed functions (i.e., through a fixed sequence of motor

commands). Their musical perceptive systems are typically mere

applications of existing models, with the dance movements being rendered

to a given piece of music by adapting the execution speed of the dance

motion sequence to the musical tempo (which is, in many approaches, 

extracted a priori from the musical signal. 

These approaches have merits, with a notable convincing effect of

musical-synchrony, but typically fail at sustaining long-term interest, since

the dance repertoire of the robot is rapidly exhausted and frequent patterns

begin to reoccur without any variation. 

Improving these absences, by developing a customizable framework in

which users have a deterministic role, by flexibly defining the robot

choreography through selected individual dance movements that are able to

react in real-time to multi-modal external events, seems the perfect start to

give a step further to robot dancing applications that would exhibit a

compromise between musical-synchrony, variability, and animacy. 



Chapter 3

System Architecture

The implemented robot dancing system architecture was firstly

published in (Oliveira, Gouyon, & Reis, 2008a) and fully described in

(Oliveira, 2008b). This system is composed of a humanoid robotic agent

(see Figure 23 and Figure 24), built with two Lego Mindstorms NXT kits13;

a hand-made dance environment, composed of a multi-color floor and a

covering wall to delimit the dance space (see Figure 25); and a robot

dancing control software constituted by three modules (see Figure 26):

Music Analysis Module, Robot Control Module, and Human Control

Module. 

The proposed architecture generates reactive robot dancing behaviors in

response to multi-modal events formed by i) three rhythmic events: Low,

Medium or Strong onsets; and two sensorial event classes defined by ii) the

stepped color: Blue, Yellow, Green, Red; and iii) the proximity to a

surrounding obstacle: OK, Too Close. By playing with these inputs a user

can, through a proper interface, flexibly define a set of dance moves, which

are sequenced during the dance performance. Contrasting to some other

approaches, every body movement, as their progression during the dance, is

produced by the robot in an autonomous way without former knowledge of

the music. Besides, the proposed framework abdicates from strict musical-

13 For the Lego Mindstorms NXT complete kit set constitution and overview (i.e., pieces and
correspondent references), consult http://www.peeron.com/inv/sets/8527-1. 



synchrony in favor of sustaining the long-term interest of the general

audience by promoting variability and animacy to the robot dance

performance. 

available in (Oliveira, Reis, & Gouyon, 2008c). 

In this chapter we fully describe the proposed robot dancing system

architecture. This description is depicted in three sections: Section 3.1

Dancing Robotic Agent, Section 3.2 Dance Environment, and Section 3.3

Dancing Control System. 

3.1 Dancing Robotic Agent

Following the idea that humanly shaped robots greatly provide the

anthropomorphism requested by natural interactions, and that dance, as a

bodily language, requires a physical body, our dancing robotic agent was

designed as a humanoid with six degrees-of-freedom (DoF), as illustrated

in Figure 24. For its conception, we used two Lego Mindstorms NXT kits, 

each composed of an NXT-brick (i.e., a brick-shape automaton) with

Bluetooth support, and each connected to three servo-motors. In total, the

six motors control two legs, which form an omni-directional base, two

arms, the head (along with a spinning fan), and a rotating hip. In addition, 

we connected a color sensor to our robot, for detecting and distinguishing

visible colors, and an ultrasonic sensor for obstacle detection. Ultimately,

to increase the animacy

dressed it with a red skirt that spins with the robot hip while dancing (see

Figure 23b)).

4 distinct dance

movements, defined as BodyPart-

Legs-RRotate,

Legs-LRotate, Head-RRotate, Head-LRotate, Body-RRotate, Body-LRotate,

RArm-RRotate, RArm-LRotate, LArm-RRotate, LArm-LRotate, 2Arms-

RRotate, 2Arms-LRotate, 2Arms-RAlternate, and 2Arms-LAlternate. 







Figure 25 Real-world dance environment. 

3.3 Dancing Control System

The modular architecture of the proposed system was designed to

control the robot dancing tuned to multi-modal events while supplying

flexible human control. As illustrated in Figure 26, this implementation

was composed of three control modules. Initially, the Music Analysis

Module applies a real-time onset detection algorithm to detect musical

rhythmic events (i.e., note-onsets), at three defined levels of magnitude.

These events are then sent in real-time, via UDP/IP sockets, to the Robot

Control Module. By combining these rhythmic events with sensorial

commands that are sent to the robot via Bluetooth to control its dancing

(see Figure 29). Above the former two, a Human Control Module,

composed of a Graphical User Interface, enables flexible user control over

the system behavior. It provides a control panel for the configuration of the

quence composition. 

To keep the parallelism of behaviors and the demanded real-time







FlowThru: This composite combines a series of objects

to a single , sequentially executed one after the other, but

forwards the original composite input to the output. This structure grants

that the sound file is simultaneously analyzed and reproduced, and that

the (Music Analysis Module output) and

(speakers output) occur at (almost) exactly the same time (marked as

Figure 28). This composite assures the

musical-synchrony of the performed dance to the reproduced audio. 

SoundFileSource: This represents the first functional

block, which consists of reading and loading the chosen audio WAV

(WAVEform Audio Format) file input to be further analyzed.  

Stereo2Mono: This class converts the stereo input file to a mono

output, in order to simplify the signal processing. 

ShiftInput: This block overlaps each consecutive frame of the signal in

order to grant a smoother analysis. Its output emerges in the form of

overlapped windows of the input signal, with their size adjusted by the

defined (i.e., windows size). The analysis step is called hop

size and equals to the frame size minus the overlap (typically 10 ms).

The hop size (assigned as ) defines the data granularity. In

general, more overlap will give more analysis points and therefore

smoother results across time, but the computational expense is

proportionately greater.

Windowing: Windowing of a simple waveform causes its Fourier

transform to have non-zero values (commonly called leakage) at

frequencies other than . It tends to be worst (highest) near and least

at frequencies farthest from . Windowing in the time domain results in

This

implementation used a Hamming Window (HW), due to its moderation. 

The Hamming window does not have as much side-lobe suppression as



other windowing functions (like e.g., Blackman), but its main lobe is

narrower. Its side- This

window is in the family known as "raised cosine". Its equation is

described as follows:

 . (3.1)

Spectrum: A periodic signal can be defined either in the time domain, 

as a function, or in the frequency domain, as a spectrum. In order to

transform the signal from time to frequency domain a Fourier

Transform shall be applied. Its discrete version is defined as follows:

 , (3.2)

where represents the frequency, the angular frequency,

the sampling frequency, t the time domain and x[n] represents the

samples of the signal x(t), given by:

, 

,

 , 

(3.3)

(3.4)

(3.5)

Therefore, this block applies the Fast Fourier Transform (FFT) to

compute the complex spectrum (with N/2+1 points) of each input

window (given by the former block). Its output is an N-sized column

vector (where N is the size of the input audio vector and N/2 is the

Nyquist bin), in the following format:

[Re(0), Re(N/2), Re(1), Im(1), Re(2), Im(2), ..., Re(N/2-1), Im(N/2-1)] . 



, X(n, k), is then displayed by a plot of the

Fourier coefficients as a function of the frequency index, where the FFT

is defined as:

 , (3.6)

where n is the frame number, k the frequency bin, h the hop size, and N

the window size, which are parameters already defined in the former

blocks. 

Any aspect of the signal can now be retrieved from its audio

spectrum. 

PowerSpectrum: The power spectrum of a signal, PSdB[n], also

referred as the energy/power spectral density, represents the

contribution of every frequency of the spectrum to the power of the

overall signal. It is useful because many signal processing applications, 

such as onset detection, are based on frequency-specific modifications

of the musical signal. Hence, this class computes the magnitude/power

of the complex spectrum (in decibels (dB)), by taking N/2+1 complex

spectrum bins and processing the corresponding N/2+1 decib

values. Its function is described as follows:

 , (3.7)

where E[n] is the energy/power of the signal, given by:

. (3.8)

Therefore, the given output data of this block, at each frame, 

represents the power spectrum, or contribution of every frequency to the

power of the original signal, for a given window. 



(Spectral) Flux: This block outputs the actual onset detection function, 

which is given by eq. (2.5). As observed, in Section 2.1.1.2, the spectral

flux measures the change in magnitude in each frequency bin, k, given

by the , restricted to the positive changes and

summed across all frequency bins. 

Derivation: This functional block retrieves only the crescent

output to emphasize onsets rather than offsets. For this purpose, this

block subtracts the n frame of the signal spectral flux, SF[n], to its n-1

one, SF[n-1]:

 . (3.9)

SendRobot: This last block comprises our peak-picking function and

UDP client. It applies peak-picking with an adaptive thresholding

algorithm that distinguishes three rhythmic events according to their

magnitude, in the form of Strong, Medium and Soft onsets. These are

sent to the Robot Control Module via UDP sockets.

At time intervals, i, of 5 frames, the peak-picking algorithm looks for

the highest onset detected so far, mPP, through the following function:

 . (3.10)

Due to the potential inconsistencies in the beginning of some music

data, the calculation of the first mPP waits approximately 2.5s from the

beginning of the musical analysis before starting to be computed. 

In order to distinguish the three referred rhythmic events, the

integrated adaptive thresholding algorithm, SR(x), is defined as follows:

 , (3.11)



where,   .    (3.12)

The values of , , and , are constants which can

be flexibly assigned through the user interface (see Section

3.3).

AudioSink: This class consists of a real-time audio sink based on

RtAudio, a Microsoft produced adaptive wide-band speech codec. It is

responsible for sending its output to the speakers in order to reproduce

the given audio file, as music.

Given this decomposition, some last considerations shall be presented in

respect to classic decomposition of audio note-onset algorithms (see

Section 2.1):

Pre-Processing: The pre-processing (see Section 2.1.1.1) of our onset

detection scheme consists of the series composed of the following

blocks: , , , ,

and . These processes properly prepare the analyzed

audio signal to be processed by the implemented spectral flux onset

detection function.

Onset Detection Function: This function (see Section 2.1.1.2) is fully

determined by the functional block, which measures the variation

of the energy between consecutive frames in order to detect the required

onsets.

Post-Processing: The post-processing (see Section 2.1.1.3) is

represented by the Derivation and blocks, which are

responsible for selecting the onsets from the former onset detection

function. It consists of a peak-picking algorithm, which finds local

maxima in the detection function; and an adaptive thresholding





from the Music Analysis Module on-the-fly, and variably according to the

received sensorial events and pre-defined dance compositions (see Section

3.3.3).

In Figure 29, we present a flow chart describing the implemented robot

dancing decision algorithm. 

stimuli formed by four rhythmic events, namely: Low, Medium, Strong

onsets, or Silence; and two types of sensorial events defined by the detected

color: Blue, Yellow, Green, Red; and by the proximity to an obstacle: Too

Close, OK(Distance). 

In order to assure the color variation during dance performance, while

enforcing a variable behavior, the robot wanders around the dance floor

while performing its pre-assigned dance movements. 

All the dance movements, defined for each conjunction of rhythmic plus

sensorial events, as the velocity of their execution, can be flexibly assigned

in the Human Control Module, through a proper user interface (see Section

3.3.3). Each full dance composition can be saved in a proper XML file (see

Appendix B). 

The bi-directional interaction between this module and the robot is

achieved via Bluetooth, thanks to the NXT Remote API (see Section 1.3.5)

through the following classes (see Figure 30):

Serial Class: This class is responsible for the Bluetooth

communication. It ensures the connection (through the

,

through pre-defined Communications Serial Ports (COM).

  

Brick Class: Through this class we can retrieve and set any information

related to the NXT brick ( , ,

, and or programs). This class was used to

retrieve the battery level ( function) in order to

check (and consequently assure) the correct connection to each brick

and the Bluetooth connection state.





bricks; pick the audio file to be analyzed and reproduced, and define the

correspondent music analysis parameters (which can be possibly saved in a

proper text file). The Dance Creation Menu (see Figure 31) enables the

user to flexibly define each individual dance movement in correspondence

to a given rhythmic and color event; as well as their velocity of execution:

High, Medium, Low, None. The resulting dance can be saved in a proper

XML file and imported into the system a posteriori. Hence, the user has

robot choreography, through a set of dance movements to be executed

during performance; by selecting the audio data to be reproduced and

analyzed; and by setting the threshold parameters for calibrating the music

analysis. In addition, we included a real-time plotting interface (based on

MATLAB) that enables the visualization of the detected note-onsets on-

the-fly for the proper calibration of the music analysis.  

The implemented GUI, and its interaction with the former modules, is

respectively represented in Figure 31, Figure 32, and Figure 33. In

consideration to them, Table 2 briefly describes each control component

marked in Figure 31 and Figure 32. 

Figure 31 - Dance Creation GUI. 



Figure 32 Robot Control Panel GUI.

Table 2 - Human Control Module GUI: components description. 

Nr.
Control

Component
Description

1
Control Panel

File Menu

This menu is decomposed in three separators:

Load Dance File, which opens the Windows

explorer in order to choose and subsequently

load a created XML dance file; Dance

, which opens the Dance Creation

interface; and Exit, to quit the application. 

2 GUI Help Menu

This menu contains the separator which

presents some information about the author and

the software version. 



3 Audio Port

In this text box the user can define the UDP

client socket port opened by the correspondent

socket server (i.e., the Music Analysis Module),

in order to transmit the audio parameters and

receive the given rhythmic events. By default it

was defined as 3333. 

4
Start/Stop

Buttons

These buttons are responsible for starting or

stopping the robot control. The start button

initializes the UDP connection with the Music

Analysis Module and the Bluetooth connection

with each NXT brick, loading every defined

parameter. When ready, the system waits for the

selection of simulation or performance mode of

operation (by pressing the respective button

see below). The stop button stops the robot (if it

was dancing), stops the connection with the

Music Analysis Module, and clear all previously

defined parameters. 

5

Audio

Connection

Status

This text box shows the status of the UDP

connection with the Music Analysis Module. 

6
Graph Mode

(Simulation)

This button allows for the simulation of the onset

detection function, given the assigned

parameters. This simulation is represented

through a MATLAB plot (see Chapter 4) which

points out the peak-picking of each detected

rhythmic event (Soft, Medium, or Strong onset).

7
Musical Mode

(Performance)

This button activates the actual performance of

the robot, through its pre-defined dance

movements in reaction to each individual

conjunction of rhythmic and sensorial events. 

8
Audio (WAV)

File Explorer

This button opens the Windows explorer in order

to choose the intended audio WAV file, to be

analyzed and parallelly reproduced. 



9
Audio (WAV)

File Path

This text box shows the path of the chosen audio

file.

10

Save Audio

Parameters Text

File

This button saves the audio thresholding

parameters ( , , and

see Section 3.3.1), defined manually in (12), in a

proper text (.txt) file, with the name of the audio

file. Each audio file should have its own

. 

11

and

Parameters

These text boxes show the defined values of

and , to be sent to the

Music Analysis Module, and allow their manual

manipulation. 

12
Thresholding

Parameters

These text boxes show the loaded values of

, , and (from the

correspondent audio parameters text file), to be

sent to the Music Analysis Module, and enable

their manual manipulation.

13

Lego NXT Bricks

(Check + BT 

COM Port)

In this area the user can check the state of

connection to each NXT brick, and define their

correspondent Bluetooth serial COM port. 

14
Sensors Control

(Brick + Port)

In this area the user can define the sensors

connected to each NXT brick and the

correspondent NXT ports on which the sensors

are connected. 

15

Motors Control

Brick 1 (Check + 

Ports)

In this area the user can check which motors, 

from NXT brick 1, shall be controlled, and

define the ports to which they are connected. 

16

Motors Control

Brick 2 (Check + 

Ports)

In this area the user can check which motors, 

from NXT brick 2, shall be controlled, and

define the ports to which they are connected. 

17

Lego NXT bricks

Connection

Status

These text boxes show the current connection

status to each defined NXT brick. 



18
Color Display

Activation

This checkbox activates or deactivates the

display of the detected color events, received

from the color sensor. 

19

UltraSonic

Display

Activation

This checkbox activates or deactivates the

display of the ultrasonic events, received from

the ultrasonic sensor. 

20

Rhythmic

Display

Activation

This checkbox activates or deactivates the

display of the detected rhythmic events, received

from the Music Analysis Module. 

21
Rhythmic

Display

If the

is activated, this text box displays

the received rhythmic events: (Soft),

(Medium), (Strong), (Silence).

22
UltraSonic

Display

If the

is activated, this

frame displays the received ultrasonic events:

, . 

23 Color Display

If the

is checked, this text box displays the

received color events: , , ,

. 

24 Dance File Path
This text box shows the path of the chosen XML

dance file.

25
Dance Creation

File Menu

This menu is decomposed in three separators:

New, which resets the Dance Creation interface

to the default values; , which

opens the Windows explorer in order to choose

and subsequently load a previously created XML

dance file, to be further analyzed or altered; and

Save and , to respectively save the

created dance in the opened dance file or in a

new one.

26 Dance Movement To choose the intended dance movement from





Chapter 4

Experiments and Results

Our experiments focused on performance and efficiency tests related to

the integrated real-time note-onset detection and on an empiric evaluation

of the robot dance performance. These experiments are described in this

chapter through two distinct sections: Section 4.1 Real-Time Note-Onset

Detection Calibration and Section 4.2 Assessment of the Robot Dance

Performance. 

4.1 Real-Time Note-Onset Detection Calibration

In this section, we describe the calibration made to the implemented

real-time note-onset detection algorithm (see Section 3.3.1). We

decomposed these experiments in two sub-sections: Section 4.1.1 Note-

Onset Detection Post-Processing and Section 4.1.2 Thresholding

Parameters Settings. All tests were performed with aid of

simulation mode (see Section 3.3.3), 

capabilities. 

4.1.1 Note-Onset Detection Post-Processing
In order to smooth the response of the implemented onset detection

function down to the main onsets, we experimented applying a Butterworth



low-pass filter to the output, tested with different coefficient values

(see Figure 34 block).

Digital Butterworth are FIR (Finite Impulse Response) filters

characterized by a magnitude response that is maximally flat in the pass-

band and monotonic15 in the overall. These filters sacrifice roll-off

steepness for monotonicity in the pass- and stop-bands, being essentially

smooth. 

The gain, , of an n-order Butterworth low pass filter is given in

terms of its transfer function, H(s), (output-input ratio, , where ):

, (4.1)

where n is the order of the filter; c the cutoff frequency16, which must be a

per sample); and G0 is the DC (Direct Current) gain (gain at zero

frequency).

Marsyas processes this filtering through a generic filter transfer function

defined by the coefficients, b and a, with the length of n+1 row vectors,

and coefficients in descending powers of z, as follows:

 . (4.2)

In order to retrieve the correspondent Butterworth coefficients (ai, bi), to

each chosen n and c values, we used the MATLAB

function. 

It can be seen, as shown in Figure 35a), that as n approaches infinity, the

gain becomes a rectangle function and frequencies below c will be passed

15 Monotonicity is a property of certain types of digital-to-analog converter (DAC) circuits. In a
monotonic DAC, the analog output always increases or remains constant as the digital input
increases. Monotonicity is an important characteristic in many communication applications
where DACs are used.
16 Cutoff frequency is that frequency where the magnitude response of the filter is .  





signal peaks). However, this generated a group delay17 (see Figure 35b))

that increased with the increase of this smoothing. The minimum

acceptable coefficient values ( c = 0.075 and n =3 see Figure 36b))

created a delay of almost 12 frames, which corresponds to approximately

0.8 seconds, due to fsFlux = 14.36 Hz. In addition to the whole process

natural time consumption, this represents a considerably high delay facing

the requirements. 

Figure 36 Butterworth low-pass filter output for different coefficient values: a) c = 0.28 and
n = 2; b) c = 0.075 and n = 3; c) c = 0.075 and n = 4. d) c = 0.02 and n = 4. 

In a way to bypass this issue we decided to substitute the filter with a

slight increase of the window size and hop size (i.e., and

). By experimenting different pairs of values, in response to the

same musical input, as shown in Figure 37, we agreed to set these

parameters to = 4096 and = 3072. Although it

obscures some signal content underneath, these parameters provide more

efficient onset detection with no delay imposed in the process. These can

17 The group delay is defined as the derivative of the phase with respect to angular frequency
and is a measure of the distortion in the signal introduced by phase differences for different
frequencies. It can be seen that there are no ripples in the gain curve in either the pass-band or
the stop-band.



be further manually changed through the user interface (see

Section 3.3.3).

Figure 37 Music Analysis Module output for different pairs of win size and hop size values: a)
= 2048 and = 512; b) = 2048 and = 3072; c)
= 4096 and = 1024; d) = 4096 and = 3072.

4.1.2 Thresholding Parameters Settings
For the sake of more meaningful and uniform (and eventually

autonomous) definition of the pick-peaking threshold parameters, we

perform a set of tests with diverse music styles. Based on (Bello, et al., 

2005), we tested different music styles according to a range of musical

instruments classed into the following four groups (see Section 2.1.3.2):

NP, PP, PN, and CM. Due to the inherent differences of the four considered

instrumental classes, we were compelled to consider different thresholding

parameters for each class of musical piece in order to normalize the onset

detection accordingly. By taking advantage of the simulation

mode (see Section 3.3.3), Table 3 presents the optimal threshold values



achieved for each of the considered music styles. Figure 38 depicts the

resultant onset detection for an excerpt of each tested instrument class. 

As described in Section 3.3.3, all these parameters can be individually

saved in a dedicated text file for each tested musical piece. 

Figure 38 - Output of the implemented onset detection set with different thresholding
parameters, in response to excerpts of different instrument classes: a) PN excerpt using
= 0.15; = 0.40; = 0.70.

b) PP excerpt using = 0.25; = 0.50; = 0.75.



c) NP excerpt using = 0.25; = 0.50; = 0.75.

d) CM excerpt using = 0.35; = 0.65; = 0.80.

Table 3 Optimal onset detection parameters.

Music Style
PN 0.15 0.40 0.70
PP 0.25 0.50 0.75
NP 0.25 0.50 0.75
CM 0.35 0.65 0.80



4.2 Assessment of the Robot Dance Performance

For evaluating the resulting robot dance performance we based its

assessment on live empiric observation (Oliveira, Reis, Faria, & Gouyon, 

2012). For this purpose, we considered a student population constituted by

254 individuals, 118 girls and 136 boys, with ages comprising 6 to 17 years

old. The focus on a young audience composed of children and teenagers

was demanded by the educational and entertaining applications of our

dancing robotic system. For such evaluation, we performed several

demonstrations run during the Engineer Open-Week at FEUP, and at

College Dom Diogo de Sousa, in Braga, during an open-session to aware

students of the power of mathematics and its applications. This system was

also exhibit in Portugal Tecnológico, a major technological event, where a

variety of people, from all ages, also gave their feedback. In order to better

demonstrate the adaption of the robot's dancing to the music, while

enforcing the symbiosis with the public, different mainstream musical

excerpts were chosen, and distinct dance compositions were defined a

priori for each. 

Figure 25 illustrates the real-world dance environment where the

demonstrations took place. A video demonstration of the robot dance

performance can be observed in (Oliveira, Reis, & Gouyon, 2008d). 

For evaluating the quality of

overall performance each student fulfilled a Likert-scaled questionnaire

(Likert, 1932) after observing one live demo of the robot dance

performance. This questionnaire assessed the system in respect to the

musical-synchrony, its variety of movements (crucial to the

variability), its human characterization (crucial to the robot

animacy), and about the flexibility of the user control over the

system. Besides, the audience was also inquired about the potential

application of such robotic system in educational settings, and about its

degree of amuse. Namely, this questionnaire approached a set of three

qualitative aspects of the robot dance performance. It objected the

evaluation of technical issues, through the questions:

a) Was the robot dancing tuned to the music?



b) Does the robot show a good variety of movements?

c) Does the application supply a flexible control over the robot?

d) Does the robot resemble human behavior?

It objected the evaluation of the system's potentiality in educational and

entertainment applications, through questions:

e) Was the robot dancing performance amusing?

f) This robot may have applications in education?

Finally, this questionnaire assessed the

dancing robot and performed demonstration:

g) Do you like to own a Lego robot dancer?

h) Did you like the robot dancing demo?

The first step of our analysis was to determine the correlations between

the variables, measured through Spearman's Correlation. Next, we

evaluated the association between them by recurring to the Chi-square test. 

Ultimately, we investigated if the distribution of the variables were

significantly different by sex and age, using the Mann-Whitney test. Given

the high statistical difference between the variables distribution, Figure 39

presents the relative frequency graphs for each question of the

questionnaire, distributed by Group of Age (1 left charts) and Sex (2

right charts). A discussion of these results is presented in the following

section. 

4.2.1 Discussion

correlations between every pair of questions, getting the highest

correlation, r = 0.449, between questions e) and h), and the lowest, r =

0.105, with the pair e) and d). To reveal statistical evidences on the

Sex and Group of Age we

applied the Mann-Whitney test. The variable age was recoded into child

11 years old) and teenagers

the youngest and the ones with higher maturity. The mean and standard

deviation were, respectively, x = 8.68 and s = 2.34 for the child group, and

x = 14.49 and s = 2.37 for the teenagers. 







On a global descriptive analysis, we may still infer some relevant

conclusions. Question d) denotes higher frequency on undecided/neutral

answers, revealing a relative frequency of 41.4% of answers with negative

connotation. This may be implied by the aesthetics of the robot and its 360-

degrees rotating movements, suggesting the need of replacing it with a

different, more humanly shaped robot design. On the other hand, question

e) reveals the great amusing potentiality of this framework, where 66.1% of

the subjects strongly approved it, uniformly across all ages (within a total

of 91.3% approvals). It is also interesting to notice that 81.9% approve or

strongly approve the intention of acquiring a Lego robot dancer (see Figure

39g)), with a greater adherence of the male group. 

Ultimately, we strongly believe that the robot aesthetics, dressed with a

proper outfit (see Figure 23b)), along with its reactive strong moves was

determinant for keeping an entertaining atmosphere. The artisanal aspect of

the dance environment (see Figure 25) and the chosen music were also

ed

dance performance. Ultimately, we may refer the ambiguity of question

c)

and control the system by themselves. 

assessment, we finalize our discussion by focusing on three requisites that

we consider of most relevance for a meaningful and interesting robot dance

performance:

Musical-Synchrony: essentially due to processing and Bluetooth

communication delays we verified some flaws in terms of musical-

synchrony. The use of a multi-threading architecture granted the

musical-synchrony flaws due to race conditions in the processing of the

dance movement decision mechanism. In terms of hardware-software

communication, the Bluetooth interface had to constantly deal with

communication overflows, as it can only receive/send data in time-

intervals of approximately 50-100 ms while taking around 30 ms to

transit from transmit mode (i.e., send motor data), to receive mode (i.e., 



receive sensor data). In addition to such limitations, the high number of

detected onsets in many occasions surpassed the refresh rate of the

duced flaws by the fault

of not executing the requested movement. Although all these flaws

represent detachments with the music it enforces autonomy to the robot

and consequently the interest to the spectators. These issues might be

solved through the use of some kind of multithreading synchronization

objects (e.g., critical sections, events, semaphores, or mutexes), which

are used to protect memory from being modified by multiple threads at

the same time. These would assure that each thread waits for the others

when facing data dependence among the threads. Yet, this solution is

impracticable due to the real-time requirements, which imposes that

every action shall occur in a reactive manner, through a cause effect

behavior (so music cannot wait for a dance decision, which on its hand

cannot wait for communicating with the robot). A proper solution might

then imply the use of a multi-processing architecture instead, or the use

of more robust and advanced humanoid robot with an embedded CPU

(Central Processing Unit), capable of higher clock rates for

accompanying the music with sequenced dancing behaviors. 

Variability:

by the great variety of possible dance style compositions (in a total of

1512-1), formed by 14 distinct individual dance movements (plus None)

distributed through 12 conjunctions of events (3 rhythmic events x 4

dance environment while avoiding its obstacles. This variable behavior

is ultimately transposed to the human decision, which has the versatility

to adapt the robot performance a priori through a flexible definition of

the robot dancing behavior. Although, in theory, these characteristics

enable a more varied behavior, the lack of individual dance moves, 

-of-freedom, restricted the

performance to repetitive dancing sequences, which only differ in



velocity of execution or orientation. Again, more variety of movements

demands the use of a more articulated humanoid robot. 

Animacy:

greatly inspired on human dancing, its performance is still far from

being human representative, by presenting mainly 360-degree spinning

moves. However, our robotic system was inspired on human behavior

by interacting with the real-world in a reactive behavioral-basis that

connects perception to action. Not unexpectedly, a robot dance

performance comparable to human behavior is greatly dependent on the

former two requisites (i.e., musical-synchrony and variability) and

therefore also requires a more advanced humanoid robot. Yet, despite

the undeniable improvements, such robot might bring to artificial

dancing its rigid, strict mechanical moves, greatly attached to music, 

In conclusion, despite some musical-synchrony issues, referred above, 

the robot seems to react in real-time to the external music and other

external events while demonstrating reasonable variability and animacy. 

This suggests that a varied and flexible robot dancing behavior in

compromise with a reasonable extent of musical-synchrony assures the

required interest and entertaining relationship between the artificial agent

and a human audience.



Chapter 5

Conclusions and Future Work

Designing entertainment systems that exhibit a dynamic compromise

between short-term synchronization and long-term autonomous behavior is

the key to maintain an interesting relationship between a human and an

artificial agent, while sustaining long-term interest (Aucouturier & Ogai, 

2007). 

Based on this claim, we focused our efforts in the development of a

user-customizable dancing robotic system which essentially rely on

musical-synchrony, variability and animacy criteria, as described in Section

4.2.

In this chapter, in Section 5.1 Work Revision and Summary of

Contributions, we summarize our approach and its main results, presenting

our contribution and a list of possible applications. Following, in Section

5.2 Future Work we present our proposal to enhance this framework

through further research towards human-interactive robot dancing. 

5.1 Work Revision and Summary of Contributions

It seemed a reasonable requirement that intelligence be reactive to

dynamic aspects of the environment, that a mobile robot operate on time

scales similar to those of animals and humans, and that intelligence be able



to generate robust behavior in the face of uncertain sensors, an

unpredictable environment, and a changing world (Brooks, 1991b). 

In this research project, we developed a flexible framework for

autonomous robot dancing applications. The proposed architecture was

applied to a Lego NXT mobile humanoid robot that bodily reacts, in real-

time, to multi-modal events by performing autonomous dance movements

alternated through a variety of motion styles. We report on an empirical

evaluation made by a group of students over the overall robot dance

performance after a set of live demonstrations. The empiric evaluation

validated our approach suggesting that, despite its limitations, the resulting

dance shown a reasonable level of musical-synchrony with variable

dancing sequences while interacting with the surrounding environment;

. The

discrepancies in the overall opinions between the younger and the older

subjects indicate clear differences in their expectations, typically younger

older subjects. Besides, giving the age and/or the unawareness of the

audience about the technical issues underneath the system, their technical

of movements and its physical aesthetics and outfit, interleaving from

musically attached movements to others more freely executed (many due to

enthusiastic about the dance performance, the audience might have

consequently ignored eventual flaws or unpredictable behaviors. 

Concerning the inquired genders, we could not realize relevant differences

in opinion, except when inquired about the robot variety of movements

(question b)), which pointed for greater approval by males. 

In conclusion, the multidisciplinary concepts and the Lego foundations

of the implemented robotic system, allied to an amusing aesthetics through

dance performances interchanging musically-synchronous with variable

dance movements validated the edutainment purposes of the proposed

framework. It enforced the idea that designing robotic entertainment

systems exhibiting such dynamic compromise between short-term



synchronization and long-term autonomous behavior might be the key to

maintain the interest of the general audience.

5.1.1 Summary of Contributions
The proposed research and work can be used in different fields of

application, which can be decomposed into six main areas:

Entertainment: it is undeniable the increasing role of robotics in

multidisciplinary entertainment areas and the great investment that is

context we intended to enhance robot dancing to a new level of

expressiveness and captivation by focusing on high-level human control

and variable dancing by reacting to multi-modal events. 

Specifically, we must refer some robot dancing events, namely

RoboCup- (RoboCupJunior, 2008) (see Section 2.2), 

where the proposed architecture can be applied as a plausible

framework. 

Education: from an educational point of view this framework may

provide an intuitive environment for learners and children to experiment

the creation of their own dancing behaviors, by generating robotic

motion patterns in response to multi-modal external events. The

approached multi-disciplinary project addressed multi-domain aspects

such as rhythm, dance, movement, robotics, computation, and human-

robot interaction, among others. We hope that through the medium of

music and dance we can attract students from diverse backgrounds, who

are not regularly drawn to fields such as mathematics, physics, 

computation, and robotics, allowing them to move across modalities and

media, and between action and embodied expression. 

Therapy: art, dance, and music therapy are a significant part of

complementary medicine in the twenty-first century. These creative art

therapies contribute to all areas of healthcare and are present in



treatments for most psychological and physiological illnesses. The art

therapies also contribute significantly to the humanization and comfort

of modern healthcare institutions by relieving stress, anxiety and pain of

patients and caregivers. 

Research: to the research community, our robotic system may provide a

controlled environment to study the coordination and relations between

body, brain, and musical environment. In such way, it may foster a

playground for professional dancers and choreographers to test their

dance movements composition, and for researchers to experiment

embodied perception theories. 

5.2 Future Work

After analyzing and evaluating the lacks and limitations of the proposed

robot dancing framework, this chapter ends this book by proposing and

describing an improved robot dancing framework envisioning the

interaction with humans in a non-verbal dance-based relationship founded

on multi-modal environmental rhythms. 

The proposed system may account for a proper architecture where a

physical agent shall have multi-modal rhythmic knowledge for conveying

proper dance motions towards interacting with human subjects. In order to

achieve this kind of rhythmic interactional intelligence the conceived

framework may be composed of a set of interconnected layers (depicted in

Figure 40), built incrementally and maintained within a behavioral-based

topology, concerning reaction and anticipation (Brooks, 1991a). 

Each layer should consist of an activity-producing subsystem

incorporating its own perceptual modeling, and planning requirements, 

individually connecting sensing to action, and parallelly processed, in a

multi-tasking (ideally multi-processing) architecture, in order to process all

modules with the required simultaneity. 

This architecture must be conceived for generic robot dancing

applications, being applicable to different humanoid robotic platforms. For





comprehensive review on vision-based human motion tracking and analysis

see (Moeslund, Hilton, & Krüger, 2006). 

As an alternative or complement to vision-based motion acquisition, we

may use accelerometers embedded in the body of the interactors for

retrieving motion onsets compiled in body rhythmical patterns (see e.g., 

(Enke, 2006)).

This layer shall then output images and body trajectories along with pre-

processed audio signals, for the proper extraction of relevant rhythmic

features. 

Filtering Extraction of Relevant Low-Level Features (Layer 2):
This layer comprises the extraction of the most relevant cues for

conceiving a coherent rhythmic perception. Respecting to vision, these cues

may describe the energy of each movement (Quantity of Motion (QoM)),

as an overall measure of the amount of detected motion, involving velocity

and force; or related to the body contraction/expansion within the

surrounding environment, both proposed by (Camurri, Lagerlof, & Volpe,

2003). Additional cues account for the 2D centre of mass, retrieved from

the body silhouette with central moments. The variation of these cues may

depend on motion trajectories in respect to their length, direction, and

dynamic models. 

In the presence of accelerometers, a rhythmic spatial analysis may

account for the extraction of relevant low-level features such as the

alternation of bulges, for detecting singular movements; accentuation

variations, by analyzing maximum magnitudes and covered areas; and by

denoting singular acceleration, counter-acceleration and deceleration peaks. 

Regarding audio signals, the extraction of rhythmically relevant cues

account essentially for accentuation filter-banks (Scheirer, 1998) or on

methodologies for detecting note onsets, through temporal, spectral, or

combined features. For a comprehensive review on note onset detection see

Section 2.1. 

Additional rhythmical cues may be given by simple statistical measures

directly retrieved from the visual/spatial and auditory signals. 



Perception Appliance of High-Level Rhythmic Computational

Models (Layer 3):
This layer comprises a series of higher level computational models for

inferring the desired multi-modal rhythmical information. 

In respect to the auditory analysis, this layer may apply a noise-robust

causal and real-time computational audio beat tracker, founded on the

previously onset detection function, for beat prediction, and as a tempo

descriptor for sonic interactive applications. For future references on this

subject see (Oliveira, Davies, Gouyon, & Reis, 2012b), (Oliveira, Ince,

Nakamura, & Nakadai, 2012c), and (Oliveira, et al., 2012d). 

Considering the visual analysis, some motion signal processing

techniques (Bruderlin & Williams, 1995) may be used in order to find

distinctive directional changes periodically occurring in real motions, as

proposed by (Kim, Park, & Shin, 2003). In a visual perspective, this layer

is responsible for segmenting the individual motion computed from the

formerly retrieved cues and applying statistical and Bayesian methods for

measuring dance periodic cycles defined by repeated transitions of

prominent stop-motions. Such phase and periodicity analysis may be also

processed from the retrieved motion features by recurring to the real-time

beat tracker described above. This kind of rationale may even be applied to

motion onsets retrieved from accelerometer data.

Binding Correlating Auditory and Visual Information (Layer 4):
Integration and synchronization between audio and video signals is

essential to multi-modal audio-visual applications, due to their strict timing

constraints. 

This layer is so responsible for fusing the musical beats with the motion

metrical structure. For this purpose, non-linear signal matching procedures, 

- methods, can be applied in order to

identify a combination of expansion and compression which can best

he two discrete signals together (Bruderlin & Williams, 1995).

This problem may be solved by combining the optimal sample

correspondences between the two signals, and by applying the wrap which

forms the discrete, point-sampled correspondence that minimizes the



Dynamic Programming (DP) matching, which matches features points

(e.g., beats) extracted from the auditory and the motion signal by time-

warping and synchronizing both signals (Lee & Lee, 2005). 

The processing of multi-modal features may be also contemplated by

the integrated beat tracking system (in Layer 3) by considering both signals

and finding the most salient periodicities among them, or by correlating

each other in order to disambiguate metrical ambiguity. 

The different modalities may even generate motion reactions from

distinct body parts. 

Entrainment Sensorimotor Synchronization and Musical

Expression (Layer 5):
This layer must treat the rhythmic coordination between perception and

action while embodying human-like dancing gestural patterns, previously

synthesized from motion captured data. This musically-synchronous

behavior must consider and deal with psychological/cultural issues, such as

intension, variability, and disambiguation; and mechanical constraints, such

as motor rate limits, balancing, and limited degrees-of-freedom (Repp, 

2005). 

The generation of human-inspired rhythmically meaningful gestural

patterns may depend of two interdependent tasks: automatic dance key-

trajectories generation within key-poses, in rhythmic metrical cycled

transitions (Oliveira, et al., 2012a). The former might be achieved by

directly mapping the human body extremities (hands and feet) positions, of

metrically segmented key-poses, onto the humanoid (this way mapping the

spatial intentionality) and applying Inverse Kinematics (IK) to infer the

rem

The latter shall organize those key-poses at specific spatiotemporal beat-

scaled points and must threat the interpolation (using simple spline

functions, e.g., sine-interpolation) between them, in metrical closed-loops. 

In order to increase stability and overcome biped balancing issues, 



stabilization criteria, such as the Center of Pressure (CoP) (Goswami,

1999), or the Zero-Moment Point (Vukobratovic, Borovac, Surla, & Stokic,

1990), may also be applied to reduce the amount of moments generated by

The envisioned methodology should follow the Topological Gesture

Analysis (TGA), proposed by (Naveda & Leman, 2010). Their method

analyses the dancing spatial reasoning of music and its immanent temporal

organization (i.e., rhythm and meter), by projecting a sequence of musical

features onto the three-dimensional spatial trajectories of the corresponding

dancing patterns. By considering accumulations of topological points in

delimited regions of space they decompose each dancing gestural pattern in

discrete stop-motions segmented at ¼ beat subdivisions, from a 2-beat

length scale (i.e., measure). Future work approaching this method have

already been implemented and tested in (Oliveira, et al., 2012a) and (Sousa,

Oliveira, Reis, & Gouyon, 2011). 

Additionally, in order to reproduce the reciprocal and dynamical

coupling between body and brain, perception and action, the multi-modal

rhythmic model shall support online feedback control through which the

robot may adjust the metrical level to its morphological naturalness, 

following the Dynamic Attending Theory (DAT) (Drake, Baruch, & Jones, 

2000). This methodology shall insure a more natural dancing performance,

overcoming the robot's limited motor rates, while disambiguating the

variety of perceptive rhythmic patterns, by providing a rhythmic resonance

(Santiago, Oliveira, Reis, 

Sousa, & Gouyon, 2012). 

To sustain the variability of the performance, within repeated gestural

patterns, the robot joint target angles may be injected with "controlled

noise" correlated with the musical rhythmic salience, given by the energy

of the occurring beat-onset. 

Some combined techniques for robotic sensorimotor rhythmical

synchronization have already been proposed. In order to overcome the

robot joint limitations and keep the motion rhythmicity, (Shiratori, Kudoh,

Nakaoka, & Ikeuchi, 2007) used temporal scaling techniques for

attenuating high frequency components of captured human motion



components, as the musical tempo becomes faster; while preserving the

extracted key-poses. This technique consisted of the use of a hierarchical

B-spline interpolation for control frequency resolution, by only setting

control points at desired temporal intervals, denoted by the musical tempo. 

This method also preserves motion acceleration continuity by iteratively

applying constraints for optimizing the inter-joint kinematics

body and the robot balance.

Other techniques, more focused on legged motion and balance issues, 

used the captured motion data to specify a trajectory for the ZMP in the

control system rather than using it explicitly as the desired joint angles

(Nakaoka, 2003). This method modified the original motion in a way that

the upper body is horizontally translated so that a pseudo ZMP follows the

desired one. Since translating the upper body is an approximation of

translating the whole body, applying this method must be iterated until

translation converges. For interpolating the joints within each posture the

authors additionally applied inverse kinematics techniques. 

Alternatively, for keeping the sensorimotor synchronization, Yoshii et

al. 

intervals tuned to the predicted beat times, while accounting for musical

tempo deviations (Yoshii, et al., 2007). 

Concerned with keeping the dance kinematic continuity, Ellenberg et al.

considered the full dance as a state machine transiting from a sequence of

motion states (Ellenberg, Grunberg, Oh, & Kim, 2008). This transitions

consisted of the point-to-point interpolation between successive poses with

recur to intermediate states to maintain stability, such as switching

supporting legs, or walking forward. In order to keep synchrony with the

musical beats, their beat tracker was optimized to predict beat times in the

needed anticipatory fashion for generating the selected key-poses on beat-

time.

Interaction Interactivity and Improvisation (Layer 6):
This layer might apply specific methodologies for improving the

interactive and improvisational sense of the proposed architecture. This

task may be implicitly comprised by the entrainment model itself



(described in Layer 5), which may grant the robot-human interactional

synchrony while keeping an enduring dynamic relationship with

A real-time method, applied to dance interaction, was proposed by

(Tanaka, Fortenberry, Aisaka, & Movellan, 2005), which advocated that

for keeping a long-term interesting relationship between a robot and a

human one must consider sympathy and variation factors within an

imitational process. For this effect, the authors proposed an Entrainment

Ensemble Model based on multiple entrainment factors (multiple ensemble

rhythmic motions), accomplished by a naive rule-based structure and a

recurrent neural network with parametric bias (RNNPB), both trained with

observed rhythmic moving regions (exclusive visual observation). The

level of imitation could be controlled by changing the order of strengths of

the multiple entrainment factors. 

Other robotic imitational methodologies keep the entrainment between

interactors by recurring to similar models like non-linear oscillators

(Ijspeert, Nakanishi, & Schaal, 2002) or other recurrent neural oscillators

(Williamson, 1999). 

In order to synthesize new motions based on existing motion capture

data, some methods have been proposed for splicing collections of motion

sequences in a directed graph (Arikan & Forsyth, 2002). In this kind of

representation, each motion sequence becomes a node in the graph with an

edge between nodes for every frame of one sequence, which can then be

spliced to a frame in another sequence or itself. In order to constrain the

motion sequences, a randomized search method can be applied for

searching appropriate paths. By following Layer 5, some additional

methods must then be used for keeping the kinematic continuity between

motion segments. This can be achieved through transition graphs, 

representing a collection of rhythmic motions of an identical type, by

traversing the movement transition graph from node to node (i.e., the

conjunction of  key-poses to be interpolated), guided by the transition

probabilities, while synthesizing a basic movement at each node (Kim,

Park, & Shin, 2003). 



Above all the layers we shall integrate a proper user interface through

which a human user can set the main definable parameters and control the

overall behavior of the system, akin to the implemented in the robot

dancing control system as described in this book. 

The following Figure 41 illustrates the whole general idea, as a

clarification of the proposed framework. It is observable the incremental

capabilities of this system, achieved through the subsequent incorporation

of each layer and their interconnection, while keeping the parallel

processing in an ideal multi-processor architecture.

Figure 41 Future work proposal, incorporating all the proposed layers and their
interconnection.



Appendix A

Color Sensor

The NXT color sensor, designed by HiTechnic18, operates by using three

different color light emitting diodes to illuminate the target surface and

measure the intensity of each color reflected by the surface. Using the

relative intensity of each color reflection, the color sensor calculates a color

number that is returned to the NXT program. The color sensor connects to

an NXT sensor port using a standard NXT wire and uses the digital I2C

communications protocol.  The color number calculated by the sensor is

refreshed approximately 100 times per second. 

Figure 42 presents the color number chart which shows the relationship

between the target color and the color number returned by the color sensor.

Figure 42 HiTechnic color sensor number chart. 

18 For more information visit http://www.hitechnic.com/.



Appendix B

XML Dance File Structure

In this appendix, we present the structure of XML dance

file, on which the dance choreographies created by the user can be saved,

through the Human Control Module:  
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