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Abstract. Most applications rely on relational databases for persis-
tence, interacting through SQL embedded in the host programming lan-
guage. Such code being error-prone and hard to maintain, many propos-
als have been made to raise its level, mostly in the direction of deductive
and/or object-oriented databases. We have put forward an alternative
approach, inspired by natural language, that packs a lot of power in very
concise and readable code, while relying on standard database technol-
ogy. This is achieved using the flexible term syntax and deductive capa-
bilities of logic programming, both to compile a database scheme from a
high-level description, and to interpret high-level queries and commands.
In this paper we review the basic ideas of the novel approach and concen-
trate on the interaction language of queries and commands, formalizing
its semantics on the basis of characterizing canonical database schemes.
These rely on uniform notions of concept, attribute and reference, rather
than the dichotomous entity-relationship model. Query and command
expressions are variable-free terms, reading very naturally when appro-
priate nouns (rather than verbs) are chosen for all concept and attribute
names. Attribute inheritance and chaining avoid many explicit joins,
which are automatically derived as inner or outer joins.
Scheme-derived multi-valued global parameters can flexibly be used for
implicit current values. The abstraction power is further raised by having
manifold attributes, whose values may actually vary along a parametric
domain, the main examples being the handling of temporal validity and
multi-lingual data. Commands can also be very high-level, with simple
statements possibly resulting in large transactions.

1 Introduction

About a decade ago we launched a large project to implement a full-blown
academic management system for our institution. We had a vision of what a
proper information system should be, that raised a corresponding need of proper
software technology to be achievable, namely a concept-oriented architecture,
declarative sub-languages, generic programming capabilities, and a high-level
interaction-persistence link. So we ended up with the double challenge of re-
engineering the academic processes through a proper information system and
building proper software support for implementing the system.



We successfully met our goals using logic programming to develop the soft-
ware [1], with some scientific achievements along the way. Paramount among
these was a novel high-level approach for interacting with databases, offering
a language for defining the scheme and another for queries and commands, in-
spired by natural language noun phrases. Having reported a first overview of the
approach [2], in this paper we give a more detailed account of the interaction
language of queries and commands, presenting a formal semantics that rigor-
ously anchors the illustrating examples, stemming from a new characterization
of a canonical database scheme.

In the quest for better, more maintainable code for database access, we are
unaware of other approaches quite similar in spirit to our own. In deductive
databases (see e.g. [3, 4]) database tables are viewed as predicates in logic pro-
grams, with joins expressed through variable sharing. We rely instead on a few
fixed query and command predicates, whose “input” arguments are ground terms
structurally derived from simple natural language principles and lifted from the
atomic terminology introduced for concepts and attributes in a given scheme
definition. Deductive object-oriented approaches, such as F-logic [5], are closer
in spirit to our own by using the equivalent of our concepts (classes), attributes
(methods) and references (types), but differ essentially on their view that data
storage is object-oriented whereas we keep it relational (more flexible) while
allowing object-orientation in our queries and commands. Accordingly, we use
a different language for defining a scheme than for querying a corresponding
database, and precompile the scheme into unit clauses used for the interpreta-
tion of queries and commands. An explicit logic programming representation of
a scheme has been advocated before [6], but to encode basic set-theoretic con-
structions supporting the low-level relational calculus as a query language. In
deductive and/or object-oriented databases logic variables are used to denote
individuals inside query expressions, but we avoid them altogether (much as
natural language does); in this respect we are closer to using concept languages
(see e.g. [7]), also known as description logics [8]. Another major difference is
our conservative stance of keeping the power of deductive rules outside of the se-
mantics of the persistent storage. This apparent shortcoming was actually not an
issue in building our large real-world application, and, importantly, it allows the
use of stable, well-established logic programming and relational database tech-
nologies. Finally, a distinguishing methodological standpoint is that we attach
great importance to the choice of concept and attribute names, given its impact
on how natural (thus readily understandable) conceptual expressions become.

Our framework has two major components, a compiler for a scheme defi-
nition language NACS (NAtural Conceptual Scheme) and an interpreter for a
query and command language NADI (NAtural Database Interaction) using the
compiled scheme. In this paper we focus on the latter; a taste of the former is
found in [2]. For presenting the semantics of queries we do need a scheme’s ab-
stract characterization, that we present in a preliminary section. In essence we
rely on the notions of concept, attribute and reference (sets, functions and set
inclusion), with attributes being lexical (yielding atomic values) or non-lexical



(with a lexical tuple signature), identity or dependent (part of the primary key or
not), and having a simple unambiguous semantics under a definition of canonical
scheme. The next section presents the syntax and semantics for queries. Syntax
exploits the flexible usage of prefix and infix operator syntax in Prolog, with
e.g. a/c $(b <x) reading as “the a of the c whose b is less than x”. Semantics is
expressed in terms of tuples of values from a database. A highlight of NADI’s
abstraction power is the use of manifold attributes for dealing with temporal
and multilingual data. Commands are overview-ed next, and we conclude with
a summary of achievements and future work.

1.1 Notational conventions

Object-language expressions are in fixed-length teletype font, with standard term
notation including the use of prefix and infix operators.

In the meta-language we extensively use sequences (tuples), with two struc-
tural notations: parenthesized comma-separated elements (e1, . . . , en), and sim-
ple concatenation, with Roman and Greek letters ranging over respectively ele-
ments and sequences, say eσ for the sequence with first element e and remaining
(possibly empty) sub-sequence σ. The symbol ε denotes the empty sequence. The
notation σi is used to refer to the ith element in the sequence σ, with indexes
starting at 1. We use {{σ}} for the set of elements in the sequence σ.

The subscript fin signals restriction to finite sets, and S+ denotes the finite
non-empty sequences of elements of S.

We refer to the domains of functions with dom. Currying is assumed for
functions, with the notation fx for f(x) and fyx for f(x, y), e.g. for a function
f : A → B ⇀ C (total on A, partial on B) we have dom(f) ⊆ A × B and
a ∈ A ⇒ dom(fa) ⊆ B.

In any formal statement we implicitly assume universal quantification of the
free meta-variables in the appropriate domains (as with a above).

2 The scheme

As announced, we do not present here our own concrete language NACS for defin-
ing a database scheme. Nevertheless we must convey the structure of its outcome,
i.e. the formal characterization of a scheme and a corresponding database.

After an initial brief summary of our modelling viewpoint we formalize a
scheme as an abstract syntactic structure lifted from a vocabulary of names,
and provide a corresponding database semantics lifted from the domains of the
data types. We first give a scheme definition that is too broad, but which allows
the definition of auxiliary notions (including sub-concepts) that finally help in
defining a canonical scheme, on which to base the semantics of queries.

2.1 The modelling viewpoint

We consider irrelevant, and detrimental to our simplicity goal, the traditional dis-
tinction between entities and relationships made in most approaches to database



modelling. We find it much more convenient to have a uniform view of concepts
encompassing all our usual carving up of the world into types of entities, rela-
tionships, situations, events, etc. for which we have nouns in natural language
such as student, course edition, enrollment, registration, etc.

These concepts are all amenable to a simple semantics of sets of individual
“things” (henceforth called individuals) with an inner structure given by a set
of local attributes mapping each individual in a concept to a tuple of individuals
in other concepts, with the data types as the base concepts.

Attributes also correspond to nouns in natural language, usable to form at-
tribute chains such as “the name of the lecturer of the course” that will find a
direct counterpart in our query language. The lexical attributes are those with
atomic values, and any attribute has a signature as a (possibly unary) tuple
of lexical attributes. Every concept has an identity tuple of lexical attributes,
e.g. the (student, course, year, period type, period number) of an enrollment.
The classical entity-relationship distinction is the linguistically unimportant one
between concepts with unary and non-unary lexical identity.

The concepts and lexical attributes map directly into tables and fields of a
relational database, with the lexical identity attributes constituting the primary
key and attributes with concept images yielding foreign keys.

We can contrast our modelling viewpoint with the OWL language [9] pro-
posed for the Semantic Web [10]. We give importance to attributes with their
functional nature and noun-phrase terminology, whereas in OWL they are partic-
ular properties that in general are relations, and mostly adapt verbal terminology
with ensuing variant forms and the need to relate them, e.g. as inverse. For ex-
ample we may have a course_edition concept with attributes (among others)
course and lecturer, whereas in OWL we would have a teaches property
relating lecturers and course editions and the inverse isTaughtBy.

2.2 The scheme structure

The basic concepts are the data types T that are usual in relational databases,
including { int, num, date, time } ∪ { str(n) | n is a positive numeral }, with
predefined interpretations as the sets of (respectively) integers, numbers, dates,
time points and strings of at most n characters; included in T are also a few
other size-parametric data types for large textual and binary objects, that we
will not illustrate in this paper.

A conceptual scheme is an abstract syntactic structure built from the set of
data types T and a set of names N disjoint from T that includes the special
names * and {}, respectively “all” and “self”.

Definition 1. A conceptual scheme is a 4-tuple 〈C,A, T,R〉 with a concept set
C ⊂fin N and mappings for attribute signature A : C → N ⇀ N+, lexical type
T : C → N ⇀ T and conceptual reference R : C ⇀ N ⇀ ℘fin(C), satisfying the
following conditions:
1. the lexical attributes are Lc = dom(Tc) = { a | Aac = a } ⊂fin N ;
2. (Aac )i ∈ Lc, and (Aac )i 6= (Aac )j if i 6= j;



3. {{}, *} ⊆ dom(Ac), with the whole A*
c being a permutation of L(c) and the

identity A{}
c a prefix thereof;

4. dom(Rc) ⊆ dom(Ac)\{*};
5. c′ ∈ Rac ⇒ τ {}c′ = τac , with the tuple type τ : dom(A) → T + defined by

(τac )i = Tc((Aac )i);
6. c′ ∈ R{}

c ⇒ A{}
c′ = A{}

c .
We can see that each concept c has a non-empty finite set of lexical attributes

(those with atomic data types) that are totally ordered in the whole signature
A*
c, a prefix of which is the identity signature A{}

c , meant to uniquely identify
individuals of c, as will be apparent in the forthcoming definition of database
semantics. For convenience a concept may also have non-lexical attributes, stand-
ing for their signature’s tuple of lexical ones. As an example, consider the con-
cept course_edition whose lexical attributes are those of its identity (course,
year, period_type, period_number) and the (dependent) lecturer, along with
a non-lexical period with signature (period_type, period_number). An at-
tribute a of c may reference other concepts Rac , its lexical tuple Aac having the
same tuple type as the identity of every referred concept. In the latter example
we could have Rlecturer

course_edition = {person} with τ lecturercourse_edition = τ {}person = int.
The scheme definition language has features not reflected in this simple

scheme structure, namely virtual concepts and sub-attribute inheritance, that
contribute to the abstraction power of the interaction language. We can also
define attributes as having null values; this can be captured simply by having in
T extended versions ∗t of each primitive data type t, whose domains incorporate
the special null value [], i.e. [[ ∗t ]] = [[ t ]] ] {[]}.

Database semantics A conceptual scheme can be given a semantics in terms
of its possible databases, a notion lifted from the semantic domains of values [[ τ ]]
for the data types τ ∈ T , with [[ τ1 · · · τn ]] = [[ τ1 ]]× · · · × [[ τn ]] for tuple types.

Definition 2. A database ∆ for a scheme 〈C,A, T,R〉 is a mapping of C where:
1. ∆c ⊆fin [[ τ *c ]];

the attribute projections πac : ∆c → [[ τac ]] are defined by
(πac (t))i = tj if (Aac )i = (A*

c)j ;
2. t, t′ ∈ ∆c, t 6= t′ ⇒ π{}c (t) 6= π{}c (t′);
3. t ∈ ∆c, c

′ ∈ Rac ⇒ ∃t′ ∈ ∆c′ . π
a
c (t) = π{}c′ (t′).

Each member of ∆c is the syntactic characterization of an individual of the
concept c as a tuple of values, of the prescribed data types, for the concept’s
whole tuple A*

c of lexical attributes. Condition 1 ensures type correctness. The
role of the self attribute {} as identity, corresponding to the chosen primary
key in database parlance, is enforced by condition 2. Finally any conceptual
reference, corresponding to a database foreign key, is satisfied by condition 3.

Non-lexical attributes other than * or {} are not strictly needed for defining
a scheme and database, as we could define R directly on lexical tuples. But they
are essential abstractions for writing concise scheme definitions and also queries
and commands, where they can be global parameters (see later).



Canonical scheme In practice we want to tighten the given definition of a
scheme, to ensure reasonable syntactic and semantic restrictions that simplify,
without sacrificing expressiveness, the handling of queries and commands. For
this purpose we define first a few auxiliary notions.

Definition 3. Given a conceptual scheme 〈C,A, T,R〉,
1. IAc = { a | {{Aac}} ⊆ {{A{}

c }} } are the identity attributes of c;
2. DAc = dom(Ac)\(IAc ] {*}) are the dependent attributes of c;
3. the transitive closure of { (c, c′) | c′ ∈ R{}

c } is the sub-concept relation <.

As an example, consider user < person < agent with IAuser = IAperson =
IAagent = {{}, id_code}, DAuser = {user_id}, DAperson = {sex} and DAagent =
{name, common_name}.

The sub-concept relation, in our formalization a particular case of concep-
tual reference, is actually a very important notion when modelling a real-world
domain. It must give rise to a proper hierarchy, with implicit inheritance of
attributes reflected in the interaction language. Hierarchically related concepts
share their identity attributes, being distinguishable through their dependent at-
tributes. In the interaction language attributes should be usable across hierarchy
paths in an unambiguous way. Such concerns are addressed as follows.

Definition 4. A conceptual scheme 〈C,A, T,R〉 is canonical if
1. < is a strict partial order, i.e. c 6< c;
2. every concept c ∈ C has a unique root c ∈ C such that c v c′ ⇒ c′ v c,

where v is the reflexive closure of <;
3. c1, c2 ∈ Rac ⇒ c1 = c2;
4. hierarchically related concepts share identity but not dependent attributes,

i.e. c1 6= c2, c1 = c2 ⇒ IAc1 = IAc2 ,
DAc1 ∩ DAc2 = ∅.

The first condition is not surprising. In NACS it is automatically enforced,
because one can only refer to previously defined concepts when defining a new
one, thereby avoiding referential loops.

The condition on unique roots may not seem essential, but it is quite natural
to assume, as ideally the sub-concept relation is viewed as set inclusion for
individuals of the same sort, and we naturally consider the root concept of the
whole sort. The third condition makes the natural demand that an attribute
value may be of only one sort.

The uniqueness of attributes among hierarchically related concepts is very
important for unambiguously giving meaning to attributive expressions in the
NADI interaction language. This uniqueness is quite natural in modelling, since
attribute names should be nouns in natural language that reflect a (possibly
partial) functional property of individuals of the same sort. In the previous
example the id_code of a user, person or agent uniquely refers to their (shared)
identity code, the name of a person is uniquely defined (through agent), and the
user_id of a person also uniquely defined (if the person is a user). The same
dependent attribute in two database tables sharing identity would open the door
to the inconsistency of multiple attribute values for the same individual.

So we extend and classify the attributes applicable to a concept, as follows.



Definition 5. For any concept c in a canonical conceptual scheme:
1. HAc =

⋃
c′vc

DAc′ are the hierarchical attributes;
2. PAc = { a ∈ HAc | c v c′ ⇒ a 6∈ DAc′ } are the partial attributes.
3. TAc = IAc ] (HAc\PAc) are the total attributes;
4. NAc = HAc\DAc are the non-local attributes;
5. LAc = IAc ] DAc are the local attributes;
6. AAc = IAc ] HAc = TAc ] PAc = LAc ] NAc are the applicable attributes.

To illustrate this terminology using our running example, for the concept
person the hierarchical attributes include name which is total and non-local
(being locally defined above in agent), sex which is total but local, being a
dependent attribute of person itself, and user_id which is partial (necessarily
non-local) for being local in the sub-concept user.

Total/partial attributes intuitively correspond to total/partial functions on
the concept domain. We can locate any hierarchical attribute in the hierarchy.

Proposition 1. In a canonical scheme, for every concept c there is a unique
location mapping λc : HAc → { c′ | c′ v c } such that a ∈ HAc ⇒ a ∈ DAλa

c
.

Proof. By definition 5.1, for any a ∈ HAc there is at least one c′ v c such that
a ∈ DAc′ . For any other c′′ v c we must have c′′ = c = c′, and from condition
4 of the canonicity definition 4 we conclude that DAc′′ ∩ DAc′ = ∅, so a 6∈ DAc′′ .
Therefore λac = c′.

3 Queries

In our interaction language NADI a query is expressed in a term, defining a
database view yielding a (possibly empty) sequence of base value tuples. Two
ways are available for retrieving such answers: either one at a time, through
the backtrack-able call (Query <? Tuple), or all at once with the determinate
(Query <?> Tuple_list). The term representation of tuples is simply
<tuple> ::= <value> | <value>,<tuple> 1

We first introduce by examples the main features of NADI queries, followed
by a formal semantic account of their core functionality.

3.1 Illustration of the main features

All conceptual expressions in NADI are built using a variety of infix and prefix
operators, taking advantage of the flexible precedence definition mechanism (a
standard feature of Prolog) to minimize the use of parenthesis.

As an example, the query for “the name and sex of the students enrolled
in courses of the CS department in 2008/09” can be represented by a term
whose main operators, besides the usual conjunction and equality, are the left-
associative ‘/’ (“of the”) and the stand-alone ‘$’ (“for which”):
1 We can avoid lists because <value>s are of base types and not themselves lists.



( name, sex ) / student /
enrollment $ ( acronym/department/course = ’CS’, year = 2009 )
The query consists of a projection (name,sex)/student of a concept enrollment
under constraints. The form of the expression is close to its natural language
counterpart, certainly much closer than the corresponding SQL statement
select distinct a1.name, p1.sex
from enrollment e1, course c1, organization o1,

student s1, agent a1, person p1,
where e1.course = c1.code

and c1.department = o1.code and o1.acronym = ’CS’
and e1.year = 2009 and e1.student = s1.code
and s1.person = a1.code and s1.person = p1.code

where many more concepts have to be made explicit, along with aliases and join
equations. Attribute chains like “the acronym of the department of the course”
are explicit in our conceptual expression and effective towards its readability,
whereas they are scattered and therefore hidden in the SQL syntax.

The default ordering of answers is database-dependent. We can specify as-
cending or descending order on given projection attributes by prefixing them
with *> or *<, respectively. Prefixing an intermediate projection attribute with
? puts its identity in the projection tuple. In our example, the alternative pro-
jection ( *<sex, *>name ) / ?student would ask for the descending sex, as-
cending name and identity code of the students.

By default the SQL distinct qualifier is applied to the selection, yielding
distinct tuples, i.e. a set of answers. This can be overridden with the ?? prefix,
e.g. ??grade / enrollment $ ( course_edition=CE ) retrieves the multiset
of grades for a particular course edition (for computing a histogram, say).

A very useful feature in most applications is to have parameters under global
assignment, whose current values are reflected in the queries through the lin-
guistic equivalent of using the definite article. For example, the query for the
students enrolled in the course edition (assumed to be contextually assigned)
is student/enrollment$(@course_edition). Its processing performs the call
course_edition=@CE to retrieve the current value, and then uses the constraint
course_edition=CE. Usage is very flexible for scheme-defined parameters, e.g.
course_edition=@CE succeeds with CE=(123,2009,s,1) after the assignments
year@=2009, course@=123 and period@=(s,2), and conversely year=@Y suc-
ceeds with Y=2008 after course_edition@=(95,2008,s,1).

Constraints under $ can be grouped inside nested conjunctions and dis-
junctions. A common individual constraint is <attribute-chain> <op> <value>,
with <attribute-chain> ::= <attribute> | <attribute-chain>/<attribute-chain>
and appropriate <op>s (=, \=, >, etc.) and <value>s (@<parameter> is a value).
The common case of identity valuation, {}=V, can be written simply as {V}.

Sometimes we need to express constraints using sub-queries instead of explicit
values, as in “this year’s lecturers that were also (our) students”, doable with
lecturer/course_edition$(@year,lecturer^person/student). The opera-
tor ^ (“is a”) assumes an attribute chain on the left but a query on the right, so
lecturer is interpreted as an attribute but student as a concept.



The dual of ^ is ~ (“is not a”). Both exist also as prefix (rather than infix)
operators (meaning respectively “there is a” and “there isn’t a”) over query
expressions. But if we use e.g. A$(· · · ^B$X· · · ) we generally want, inside X, to
relate attributes of B to attributes of A. For this we use the * prefix to move one
level up in the context of attribute interpretation. As an example we can express
“the students enrolled in only one course this year” with
student / enrollment$( @year, ~enrollment$( @year, *student,

course \= *course )

where *student can be read as “the same student” and is just shorthand for
student = *student, equating the student of the inner and outer enrollments.

Similar contextual sub-queries can appear in the projection part of a query,
e.g. we get “this year’s courses and the lecturers that ever taught them” with
(course,lecturer/course_edition$(*course))/course_edition$(@year).

Queries such as this, yielding for each course a number of lecturers, suggest
the usefulness of packing the answer accordingly. This is achieved by using “;”
instead of “,” where the grouping is needed. So, each solution of the alternative
query (course;lecturer· · · )/· · · <? CL binds CL to a term c:[l1,· · · ,ln] with
a course c and a list of lecturers li of c.

We can specify group projections using prefix operators for sum (+), aver-
age (+/) or count (#). For example, “the number of students enrolled in each
course· · · ” is simply expressed as (#student,course)/enrollment$· · · . The
grouping is implicit in the regular projection elements, in this case course.

Another facility is the expression, with the usual syntax, of external functions
available in the database engine (e.g. arithmetic, string and date functions). An
example would be a query about enrollments in the previous year, expressed
simply with enrollment$(@year-1).

3.2 A formal account of query answers

Although queries really produce sequences of answers, our semantic account will
be given in terms of sets, avoiding both the implicit and explicit ordering—
an orthogonal issue with a standard meaning—and also the variant multiset
reading—a straightforward adaptation from sets.

We can assume, without loss of generality, that our queries are of the form
<query> ::= <projection>/<constrained-concept>

<constrained-concept> ::= <concept>$<constraints>

All other queries are easily converted into this format, using the self attribute
{} and the null constraint []:

c 7→ {} / c
p / c 7→ p / c $ []

p / ?c $ x 7→ ( p, {} ) / c $ x

Given a query p/c $x, the semantic intuition is that the constraints x denote
a Boolean function acting as a filter on the individuals of c, and the projection



p (for constrained c) a function projecting the filtered individuals into values of
the projection tuple type, i.e. the answers. Formally,

Q[[ p/c $x ]] = P [[ p ]]c( { t ∈ ∆c | F [[x ]]tc } )

But in general queries can be nested, and there must be a notion of conceptual
context parametrizing the semantics. Recall the example with *course used in
a context with two instances of enrollment. So the equation above is just a
particular case, with F [[ . ]] parametrized on a single concept c and applying to
a single tuple t. In general we must make both Q[[ . ]] and F [[ . ]] parametric on a
sequence (stack) σ of concepts and applicable to a corresponding sequence τ of
tuples, with the empty sequence ε as the base:

Q[[ p/c $x ]] = Q[[ p/c $x ]]εε (1)
Q[[ p/c $x ]]τσ = P [[ p ]]c( { t ∈ ∆c | F [[x ]]tτcσ } ) (2)

Constraints Let us consider the core sub-language of constraint expressions:
<constraints> ::= <constraint>

| <constraints>;<constraints>
| <constraints>,<constraints>

<constraint> ::= <attribute-chain><relation-op><value-exp>
| <existential-op><query>
| []

<attribute-chain> ::= <attribute>
| <attribute-chain>/<attribute>

<relation-op> ::= = | \= | > | < | >= | =< | <existential-op>

<existential-op> ::= ^ | ~
As with queries, we assume that alternative simplified forms in the concrete

NADI syntax are mapped into this core language. For example,

{<value>} 7→ {}=<value>

For null, conjunction and disjunction the semantics is straightforward:2

F [[ [] ]]τσ = >
F [[x,y ]]τσ = F [[x ]]τσ ∧ F [[ y ]]τσ
F [[x;y ]]τσ = F [[x ]]τσ ∨ F [[ y ]]τσ

The semantics of existential constraints is defined from the emptiness of the
denotation (answer set) of the argument query.

F [[ ^q ]]τσ =
(
Q[[ q ]]τσ 6= ∅

)
F [[ ~q ]]τσ =

(
Q[[ q ]]τσ = ∅

)
The most common constraint is the one expressing a relation between the

value of a partial generalized attribute, expressed by an <attribute-chain>, and
2 We use > for the Boolean “true”.



a generalized value expressed by <value-exp>. The generalized (by chaining)
attribute is partial because it may not yield a value. The expression user_id\=X
is a syntactically valid constraint under the concept person, but semantically
a person may not have a user id, its identity being present in the person but
not in the user database table. The constraint should be understood as “the
user id exists and is different from X”. To capture the partiality of a generalized
attribute we formulate its semantics A[[ . ]] as returning a set, which may be
empty or a singleton. Actually larger sets may also be returned, as explained
later, giving extra meaning to the “generalized” qualification. The semantics a
relational constraint becomes existential, expressed as follows from the partial
generalized attribute and generalized value semantics A[[ . ]] and V [[ . ]], with R[[ r ]]
the relation denoted by a <relation-op> r in the union of all applicable domains:

F [[ a r v ]]tτcσ =
(

(A[[ a ]]tc × { V [[ v ]]tτcσ } ) ∩ R[[ r ]] 6= ∅
)

(3)

Notice that a filter demands a non-empty context, to apply a partial generalized
attribute to (just) its topmost (current level) tuple for a concept. Generalized
values may require the whole context, being possibly (contextual) sub-queries.

Partial generalized attributes An atomic <attribute-chain> a must be one
of the applicable attributes AAc = LAc ] NAc for the contextual concept c. If
local (a ∈ LAc), its value is obtained by a simple (local) projection πac (t) of the
contextual tuple t ∈ ∆c. If non-local (a ∈ NAc), it must be valuated through the
projection πac′(t

′) of a (non-local) tuple t′ ∈ ∆c′ for a hierarchically related con-
cept c′ = λac 6= c satisfying an identity join (π{}c′ (t′) = π{}c (t) ) with the (local)
tuple t ∈ ∆c; t′ always exists for a total attribute (a ∈ TAc), but possibly not
for a partial one (a ∈ PAc). Partial generalized attributes expressed by chains
such as acronym/department/course, “the acronym of the department of the
course”, are (recursively) partial generalized attributes of concepts referenced
by an applicable attribute, requiring the corresponding join—in this example
π{}organization(t′) = πdepartmentcourse (t) to allow the final projection πacronymorganization(t′). Par-
tial generalized attributes are indeed partial since joins may fail.

We define partial generalized attributes A[[ . ]] indirectly, through an auxiliary
syntactic mapping γ, the generalized attribute location, from attribute chains
and their base concepts to auxiliary terms of type <location>.
<location> ::= <attribute> | @(<attribute>,<concept>,<location>)

The indirect @-structured locations give rise to joins in the semantics. In a loca-
tion @(a,c′,l) for a concept c, c′ is either a direct attribute reference r ∈ Rac or
a super-concept (r < c′) or sub-concept (c′ < r) thereof, with l a location for c′.

Here are some examples of γ mappings:

(name, agent) 7→ name

(name, person) 7→ @({},agent,name)

(name/student, enrollment) 7→ @(student,student,@(person,agent,name))

(name, enrollment) 67→



The first case is explained by name being a dependent, and therefore a local
attribute of agent. In the second case name is not a dependent attribute of
person, but it is a non-local hierarchical one; under our assumption of a canonical
scheme, it has a unique location in a hierarchically related concept, in this case
agent, joinable through the common identity. The last case shows two effects:
sub-attribute inheritance, expressable in our scheme definition language NACS,
that allows the attribute name to be applied to a student meaning the name of its
person; and the chained location of that attribute in the root concept agent of
the one (person) referenced by the attribute person in student. The γ mapping
is naturally partial as e.g. name is not an applicable attribute of enrollment.

In order to define γ, please remember that condition 3 of the canonicity
definition 4 imposes a unique root on an attribute’s conceptual references. Since
hierarchical attributes are defined from the root (definition 5.1), we can handle
attribute references through a simpler alternative to R, namely the root reference
mapping R : dom(A) ⇀ C defined by

R
a

c = r if {x | x ∈ Rac } = {r}

The definition of γ is split into the base case, when the attribute chain is an
atomic attribute, and the recursive case:

γc(a) =
{
a if a ∈ LAc
@({},λac,a) if a ∈ NAc

γc(a2/a1) =

{
@(a1,R

a1

c ,γRa1
c

(a2)) if γc(a1) = a1

@(a′,c′,@(a1,R
a1

c′ ,γRa1
c′

(a2))) if γc(a1) = @(a′,c′,a1)

In our implementation the base case of γ is precompiled when processing the
NACS database scheme, for direct use by the NADI interpreter. We also apply
the following equivalence to minimize joins:

@(a,R
a

c,@({},c
′,l)) ≡ @(a,c′,l)

Our goal of defining partial generalized attributes is realized in terms of a
partial location semantics for the γ images, applicable to the contextual tuple
of a given concept.

A[[ a ]]tc = L[[ γc(a) ]]tc
For the location semantics we project local attributes and recursively switch to
the tuple of the non-local concept whose identity joins with the local attribute.

L[[ a ]]tc = {πac (t) } if a ∈ LAc
L[[ @(a,c′,l) ]]tc =

⋃
t′∈∆c′

{ L[[ l ]]t
′

c′ | π{}c′ (t′) = πac (t) }

The somewhat dense formalization in the last definition hides the simple fact
that at most one t′ satisfies the required join, given the uniqueness of identity.
The join may fail if c′ is not a reference of a in c nor a super-concept thereof,
i.e. x ∈ Rac ⇒ x 6v c′, thereby yielding partiality (the empty set). An example is
γuser_idstudent = @(person,user,user_id) with R

person
student = {person}.



Generalized values Our syntax of relational constraints is asymmetric for
pragmatic reasons, without sacrificing expressive power. The notion of general-
ized value, appearing as the right argument, includes (besides plain values) fully
contextual attribute chains and (sub-)queries.
<value-exp> ::= <value>

| ?<attribute-chain>
| *<contextual-attribute-chain>
| <query>

<contextual-attribute-chain> ::= <attribute-chain>
| *<contextual-attribute-chain>

In a constraint we can then relate two attributes of a concept, using the ?
prefix on the right, e.g. name \= ?common_name. The prefix is needed to disam-
biguate the interpretation of an atomic name as either a value or an attribute,
on the right-hand side only—thus the asymmetry of the relational constraint.

The semantics for generalized values can now be stated.
V [[ v ]]τσ = v if v : <value>

V [[ ?a ]]tτcσ = A[[ a ]]tc

V [[ *a ]]tt
′τ

cc′σ =

{
V [[ a ]]t

′τ
c′σ if a = *a′

A[[ a ]]t
′

c′ otherwise
V [[ q ]]tτcσ = Q[[ q ]]tτcσ if q : <query>

The contextual marker * signals the descent of one level in the dual context
of concepts and their tuples, to interpret there (and not in the current level)
the sub-expression. Queries can only appear under a <existential-op>, whose
relational reading is R[[ ^ ]] = (∈), R[[ ~ ]] = (6∈).

Projections Let us start by considering just standard projections without
group operators, ordering or external functions. Their core syntax is
<projection> ::= <attribute-chain>

| <query>
| <projection>,<projection>

Sub-queries in projections are supposedly contextual, as in the example about
courses and lecturers towards the end of section 3.1. The concrete syntax allows
conjunctions inside attribute chains, equivalent to their distribution over the
chaining operator:

(a,b)/c 7→ a/c, b/c

We may recall, from the semantic equation 2 for queries, that answers result
from applying the denotation of the projection to the set of database tuples
for the concept filtered by the constraints. The set argument is needed for the
semantics of group operators (sum, max, etc.), but for standard projections the
semantics is flat—obtained locally (as a set of tuples) from each tuple:

P [[ p ]]c(T ) =
⋃
{Π [[ p ]]tc | t ∈ T }



We have seen the partial generalized attribute semantics attached to an
<attribute-chain> in a constraint. Its projection semantics is basically similar,
except that where the other is partial—returning the empty set—this one returns
a singleton with a null tuple ([], . . . , []) of the appropriate size. This alternative
encoding of partiality with nulls corresponds, in database parlance, to outer joins
rather than inner joins. The query (name,user_id)/student/enrollment$...
yields answers with the names of all the students in question along with their
user id, if recorded in user, otherwise a null. A contextual sub-query in a projec-
tion is also linked through an outer join. The upshot is that every filtered tuple
yields a projected answer tuple—exactly one if the projection consists only of
strict3 attribute chains, or possibly more if sub-queries are present, e.g. in the
aforementioned example in section 3.1, where for each course we may get several
lecturers. So here is the definition of our tuple projection semantics:
Π [[ p1,p2 ]]tc = Π [[ p1 ]]tc ⊗ Π [[ p2 ]]tc (A⊗B = {αβ | α ∈ A, β ∈ B } )

Π [[ a ]]tc = L[[ γac ]]tc ∪ { []
a
c | L[[ γac ]]tc = ∅ } if a : <attribute-chain>

Π [[ q ]]tc = Q[[ q ]]tc ∪ { []q | Q[[ q ]]tc = ∅ } if q : <query>

The null tuple mappings are [](a1,...,an)/c$x = []a1
c · · · []

an
c and []ac = [][[ γac ]]

for a suitable adaptation [][[ . ]] of L[[ . ]] to chase indirect locations even through
failed joins and use the lexical arity of the final attribute for the null tuple.

The projection semantics for group functions is more involved. When ask-
ing for e.g. (course,#student)/enrollment$(@year) (how many students en-
rolled in each course this year) one must consider the equivalent classes of the
enrollment tuples filtered under their course projection, which are the groups,
then the application of the group function (count, in this case) to each group’s
student projection, and finally the concatenation of each projected course with
its student count.

3.3 Derived attributes and universal quantification

The attribute names defined in the scheme correspond to (possibly partial) func-
tions, and we’ve seen the corresponding attribute semantics A[[ . ]] yielding single-
tons or the null set. However, in natural language certain nouns are used exactly
like attributive ones but with a relational, rather than functional, meaning. An
example is “daughter”; yielding possibly more than one value, when applied to
a person, it must generally be used along with quantifiers: “one daughter. . . ” or
“all daughters. . . ”.

Our framework allows for such derived (pseudo-)attributes, by naming con-
ceptual expressions with outstanding contextual references to the target concept.
If e.g. person has (standard) attributes father and mother, we may define

child = person$( father= *{}; mother= *{} )
daughter = person$( sex=f, ( father= *{}; mother= *{} ) )

3 Not involving manifold attributes, explained next.



Now A[[ child ]]tperson can be a set with more than one member. Since the
default interpretation of constraints is existential, as expressed in equation 3,
the constraint sex/child=f is interpreted as “with (at least) one daughter”. It
becomes necessary to introduce extra syntax for signalling universal quantifica-
tion; we do this by enclosing the (generalized) attribute chain in braces. So, we
can ask for persons having no sons with person$({sex/child}=f). Supposing
person with an attribute age, and son defined analogously to daughter, we may
ask person$({age/daughter}>{age/son}) for those whose daughters are older
than any son.

We have to qualify equation 3 with the restriction that a and v are not braced
expressions, and define the universal cases, such as e.g.

F [[ {a} r {a′} ]]tτcσ =
(

(A[[ a ]]tc × {A[[ a′ ]]tc } ) ⊆ R[[ r ]]
)

The not operator is also available for constraints, with the obvious semantics
of Boolean negation, so that the last example above can be equivalently stated
as person$(not( age/daughter =< ?(age/son) )).

3.4 Manifold attributes

Most concepts and attributes in the real world have a temporal validity, i.e. their
individual existence and values change with time. If this happens with periodic
regularity, as with the course editions in an academic institution, the temporal
structure is explicitly ascribed to attributes in the scheme (we’ve used year,
period). Most of the temporal variability is, however, non-periodic—a user’s
identifier should be changeable at any time, as well as the name (e.g. through
marriage). We may want to register such changes in the database, to be able to
look at the evolution of things, but also wish to retain simplicity in most queries,
as in saying e.g. “the student’s user id” to mean the current (real-time) value.

Another prevalent variability is that of names, acronyms, etc. with language
(e.g. English, French). Again, we ideally want a database scheme accommodating
this multilingual variability but avoiding explicit mention of language in queries
and commands where it can be assumed in context.

Achieving these goals is a highlight of our approach. We provide special
notation in NACS, and the corresponding treatment in NADI, for what we call
manifold attributes, whose value for a given individual may vary along a certain
manifold dimension. Temporal and multilingual are the most common examples
of such manifolds.

Temporal attributes Take the example of a user id. Some persons may never
get one, while others may have different ones over time, not necessarily all the
time. Given this, the temporal dimension is considered a fluid manifold. In our
example user_id is no longer a local attribute of user, becoming an attribute
of a different sort of concept, the fluid manifolding agent_with_user_id, whose
identity is the relationship between agents and maximal validity time intervals
for their user id’s. The temporal manifold is a virtual concept with attributes



start and end (with inclusive and exclusive reading, respectively) of type date
(in our example) or moment. Since start fully identifies each (disjoint) interval,
we end up with A{}

agent_with_user_id = (agent, start) and DAagent_with_user_id =
{end, user_id}.

Queries abstract away from these implementation details. In fact, asking sim-
ply for user_id/student/· · · retrieves by default the current user id’s for the
students in question. NADI therefore exhibits upward compatibility [11] when
transforming a regular into a temporal attribute. Added expressive power comes
with the possible attachment of temporal constraints to temporal attribute oc-
currences in queries. NACS allows us to predefine shorthand for these, such as
e.g. (<T) for (end=<T) or simply T for (start=<T,end>T). An example of usage
is user_id~d(2005,12,31)/· · · asking for id’s valid at the end of 2005. The
expression user_id~[] uses the empty constraint to denote all the user id’s (at
all times). This can occur in a projection to list them all, or e.g. in a constraint
user_id~[]=X to assert that the user id at some point in time is X; remember
the existential semantics of relational constraints expressed in equation 3.

The default constraint (applied when no other is available) is now, standing
for the dynamically evaluated current time value (of type moment or date). It
can be implicitly overridden by another contextual default, assigned to the global
parameter temporal_validity. This is useful for avoiding explicit constraints
in multiple queries under the same temporal validity assumption.

What about querying the temporality associated to values? We simply prefix
the projected attribute, e.g. ~user_id/· · · asks for the time interval associated
with the current user id, followed by it, and ~user_id~[]/· · · retrieves all the
(start, end, user_id) triples. The extreme temporal values are implementation-
dependent, and generally understood as “unknown”.

Multilingual attributes The multilingual manifold, contrary to the tempo-
ral, is solid rather than fluid. This is because a multilingual attribute always
returns a value, either the variant for the required language or the base value
that always exists (for some language). This behaviour allows the unbroken pro-
gressive adaptation of existing services to another language, as translation data
gets filled in.

A multilingual attribute, in contrast to a fluid one, remains local in its con-
cept, to hold the base value, along with the extra dependent attribute language.
An example might be the name of a course. We get {name, language} ∈ DAcourse,
and course name translations get stored in the auxiliary solid manifolding con-
cept course_ml,4 withA{}

course_ml = (course, language) and DAcourse_ml = {name}.
A database view course_ml_ is also created, as a virtual super-type of course_ml,
to achieve the desired effect of defaulting to the base value for name in course
when the translation for (course, language) is not in course_ml.

Where the ~ operator was used in fluid attribute expressions, we use ^ for
solid ones. The constraints are just values for the language, the generic default
being application-dependent, and implicitly overridden by a value assigned to
4 ml stands for multilingual.



the global parameter language. So, for example, name^en/course might re-
fer to the course name in English, also accessed simply by name/course in a
context where language=@L yields L=en. Through ^name^[]/course we get all
(language, name) pairs, and name^{}/course refers to the base name, recorded
in the course database table.

Manifold combination Manifolds can be combined. If we define the name
of an organization as being both temporal and multilingual, we may then ask
name~d(2005,12,31)^en/department· · · for a department’s name at the end of
2005 in English, or ~^name^{}/department· · · for the validity and base language
of the (and) current name of the department.

Manifold formalization Lacking the space to fully develop the formal account
of manifold attributes, we may nevertheless hint at what it takes to do so. The
generalized attribute location γ has to cater for new base cases regarding fluid
and solid manifold attributes. In the user_id example we would have e.g.

γperson(user_id) = agent_with_user_id~user_id

This case would be handled by the location semantics with
L[[ c′~a ]]tc = {πac′(t′) | t′ ∈ ∆c′ , π

{̄}
c′ (t′) = π{}c (t) }

where the base identity {̄} of a manifolding c′ refers to the manifolded concept
c. In the example, A{̄}

agent_with_user_id = agent, a super-type of person. Actually,
the given equation reflects just the case with no manifold constraints. In general
we have to consider an extra argument in the location semantics, to carry the
abstract constraint to be imposed on t′ alongside the identity (join) constraint.
Notice that we can refer in the same query to different variants, under appropri-
ate constraints, of the same manifold attribute, e.g. the names before and after
a given date.

4 Commands

The major commands are for the creation, deletion and update of concept mem-
bers, expressed respectively with

+ <constrained-concept>

- <constrained-concept>

<constrained-concept> -+ <equalities>

These procedures are much more powerful than their strict SQL counterparts.
Wishing to create a person, for example, we naturally need to specify the values
of its total attributes (except its automatically incremented id_code identity)
but not the actual concepts in the hierarchy where they are located, and we can
add attributes for implied sub-concepts of person. For instance, the call

+ person$( sex=f, name=N, common_name=CN, user_id=I )



will split the specified attributes into their locations agent (name, common_name),
person (sex) and user (user_id),5 generate (from a database sequence) the
common identity id_code=IC, and insert a new tuple for each database table,
in their hierarchical order. If user_id is a temporal attribute, the very same
command still works fine, inserting a tuple in agent_with_user_id with the
provided user_id and the default values for start and end, which happen to
be their respective extreme values (thus meaning forever). For a multilingual
attribute the static default value for language would be used. The defaults can
be overridden with the same syntax used in queries to attach explicit manifold
constraints.

We can take much advantage of parameters. Imagine the logic programming
code for a service on the Web for students to enroll in courses. Upon its invocation
the parameters student, year, etc. have been assigned values, and when the
student clicks on a course its code is transmitted and assigned to course, with
nothing else needed but to call

+ enrollment$( @student, @course_edition ).
Equally powerful is the update command. We can simply use, for example,

@student -+ ( common_name=N )

to update the student’s common name in the agent tuple whose id_code is that
of the student’s person attribute. This comes through the implementation of
λidentifierstudent that finds the sub-attribute inheritance of common_name from person
and its location at agent = person.

Manifold attributes require notions of update going beyond simple equalities.
For example, the introduction of a new translation for the name of a course is
expressed as an update for the course such as @course-+(+name^fr=FN), that
actually inserts a new tuple in the course_ml translation table.

The true power of updates, however, is revealed when updating an identity
attribute. This change in an individual’s identity has to be propagated all over
the database tables where the individual is present. In order not to violate foreign
keys, this has to performed by creation and deletion, instead of immediate up-
date, and in the correct order when chasing dependencies. The compiled scheme
has all the information for this reasoning to be performed flawlessly, which in
some cases would be a daunting task if done manually. If, for example, there
ever was a reason to change the identity code of a course, the deceptively sim-
ple call @course-+(id_code=C) would do it, and in the end the course identity
would have changed in course, course_edition, enrollment, etc. without ever
having violated the database keys during the complex operation.

Deletion is similarly powerful, but presents more occasion for ambiguity and
inconsistency. Deleting a concept instance implies, much as for identity updates,
to chase dependencies in order to eliminate the instance from the database. But
while this is sound for sub-concepts and derived concepts (those where it is just
part of the identity), what about super-concepts and dependent concepts (those
where it is a dependent attribute)? In both cases we may have a strong or weak
reading of the deletion, respectively deleting or not the super-instance or derived
5 Assuming that no attribute is manifold.



concept. If the strong reading might make sense for the super-concept (delete the
individual, not just the fact that it belongs to a class in the hierarchy), for derived
concepts it is hard to justify (say, delete enrollments with a peculiar grade that
is being deleted). So we opt for the weak reading, resulting in (exception) failure
if any of the hard cases happens.

Speaking of failure, it should be mentioned that we provide contextual trans-
actions (db_transaction:Exec) that can be nested. Actually, any command
raises an exception if not called under a transaction.

5 Summary of achievements and further work

We have shown how to interact with relational databases using a vastly more ef-
fective language than SQL, following natural language principles of noun phrase
composition with attribute chains and contextual definite references. The nat-
ural and concise character of our queries and commands is a match for other
approaches based on deductive and/or object-oriented paradigms, with higher
impact on the readability of code and ease of its change, and the bonus of re-
quiring only standard and mature relational database technology.

In this paper we exhibited precise formal semantics for the core features of
our query language, based on a formal model of canonical schemes and corre-
sponding databases, with our attributive syntax translating into implicit inner
and outer joins. Useful features include definite references (“the”) to contextual
entities, local or global. The abstraction power is much enhanced with a generic
treatment of manifold phenomena such as temporal and multilingual attributes,
incorporated in the scheme definition and database interaction languages, result-
ing in very powerful effects with little effort. Commands can be very high-level,
with concise statements possibly resulting in large transactions.

Complying with the formal semantics, the NADI interaction language has
been implemented with high reliance on the distinguishing features of logic pro-
gramming, namely structural unification and implicit backtracking, to reason
over a compiled version of a database scheme. This compilation is itself a deduc-
tive task carried out by a logic program, over a scheme description in the NACS
language (described elsewhere [2]) that exploits inheritance and name composi-
tion to achieve also a high level of conciseness and readability. The architecture
is available to developers of Prolog applications through the scheme compiler,
the resulting on-line scheme documentation, and a few interface predicates for
queries and commands. A team of around ten people has used it for years to
build a very large real-world academic management system [1].

There are several directions for improving and building on this work. One
is to embed the NADI interaction language in other programming languages
through libraries capable of calling Prolog. Performance-wise we can achieve
static optimizations of the code by partial evaluation, which should be quite
manageable since we are using a purely compositional alternative to Prolog.
It is important also to cope with multiple databases and schemes in the same
application. A different and much greater challenge, of vast importance, is to



tackle the problem of scheme change. This is a fact of life for most real-world
applications, and generally a nightmare for the software development teams. One
will have to jump from a purely static view of a scheme to a much higher-level
plane where to express the process of scheme change rather than purely its result,
and use this to deduce the impacts, and proceed with the necessary changes, on
both the current relational database structure and the database interaction code.

At another level of effort it would be interesting to promote these languages
as complementary to the current dogmatic choice of languages for the semantic
Web, as we believe there is a misguided misconception of what is “content”, and
an approach favouring a question-answering paradigm of how to acquire useful
information, tapping on the immense potential of existing relational databases,
is no less adequate than the idea of extracting “knowledge” as structured data
to be reasoned upon. One can easily conceive of a site publishing the scheme
of (part of) its relational database, in NACS or its compiled form, and allowing
clients to submit corresponding NADI queries to Web services providing answers.
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