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Abstract
The specification of a class in Haskell often starts with stating, in
comments, the laws that should be satisfied by methods defined
in instances of the class, followed by the type of the methods of
the class. This paper develops a framework that supports testing
such class laws using QuickCheck. Our framework is a light-weight
class law testing framework, which requires a limited amount of
work per class law, and per datatype for which the class law is
tested. We also show how to test class laws with partially-defined
values. Using partially-defined values, we show that the standard
lazy and strict implementations of the state monad do not satisfy
the expected laws.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms design, languages, verification

Keywords laws, classes, testing, state monad

1. Introduction
The specification of a class in Haskell starts with specifying the
class methods with their type signatures and often also the laws
that should be satisfied. The signatures are part of the Haskell
code and instances are checked for conformance by the compiler,
but the class laws are normally just comments, leaving the laws
unchecked. For example, Figure 1 gives the Haskell 2010 Language
Report [Marlow 2010] specification of the Functor class, and Fig-
ure 2 gives parts of the specification of the Monad class.

A class law typically takes a number of arguments, and then
formulates an equality between expressions in which both the argu-
ments and values of the class type variable are used. The arguments
of a law are universally quantified, as are the values of the class type
variable. For example, the second functor law takes two arguments
f and g, and compares expressions obtained by mapping f and g
in different ways to a value of the class type. The laws for class
methods are central to the definition of classes but, unfortunately,
Haskell provides no language support for stating or checking such
laws.
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class Functor f where
fmap :: (a→ b)→ f a→ f b

The Functor class is used for types that can be mapped over.
Instances of Functor should satisfy the following laws:

fmap id id
fmap (f ◦g) fmap f ◦ fmap g

The instances of the class Functor for lists, Data.Maybe.Maybe and
System.IO.IO satisfy these laws.

Figure 1. Specification of the Functor class in the Haskell report
[Marlow 2010].

Instances of Monad should satisfy the following laws:

return a>>= k k a
m >>= return m
m >>=(λx→ k x>>=h) (m>>= k)>>=h

Instances of both Monad and Functor should additionally satisfy
the law:

fmap f xs xs>>= return◦ f

The instances of the class Monad for lists, Data.Maybe.Maybe and
System.IO.IO defined in the Prelude satisfy these laws.

Figure 2. The Monad laws from the Haskell report [Marlow 2010].

Since class laws are central to the definition of some classes,
we would like some guarantees that the laws indeed hold for in-
stances of the class. There are several ways in which such guar-
antees can be obtained. To show that the laws are satisfied for a
particular class instance, we can construct a proof by hand, use a
theorem prover to construct a proof for us, or test the law with the
QuickCheck [Claessen and Hughes 2000] library. In this paper we
develop a framework for specifying class laws such that we can
easily use QuickCheck to test a law for a class instance. In our
framework we define a single function quickLawCheck to test any
class law (of a certain form) on any datatype. This requires a small
amount of work for each class law, and for each datatype. The main
technology that makes this possible is type families [Chakravarty
et al. 2005].

Default QuickCheck generators do not test properties for par-
tially-defined values and the standard equality check cannot test
partial values for equality. Since some classes make essential use of
laziness, we want to be able to test class laws on partially-defined
values too. The ChasingBottoms library developed by Danielsson
and Jansson [2004] allows us to distinguish exceptional (‘bottom’)

49



values from other values. We use this library, and provide genera-
tors and equality tests suitable for testing class laws on partially-
defined values. As an example we show that neither the lazy nor
the strict state monad implementations satisfy the laws expected
for such instances if values may be partially defined.

In this paper we make the following contributions:

• We develop a framework that supports specifying testable laws
for a class.

• We make it easy to test a class law for a class instance.
• The framework supports stating and checking “poor man’s

proofs” (representing equality reasoning) for the laws.
• We show that the standard strict and lazy implementations fail

to satisfy the monad laws for partially-defined values.

This paper is organised as follows. Section 2 introduces our
framework by showing how a user can test the monoid laws for
an instance of the Monoid class. Section 3 shows how a user can
specify laws in our framework in such a way that they can be easily
tested. Section 4 shows how a user can add evidence (“poor man’s
proofs”) to a class law. Section 5 describes what a user needs to do
to test a class law on a datatype. Section 6 summarises the previous
sections by describing the various components of the framework.
Section 7 shows how to use the framework for testing with partial
values. Section 8 explores different state monad implementations
and explains their (non-)conformance with the laws. Section 9 gives
related and future work and concludes.

2. Testing the monoid laws
This section uses common instances of the Monoid class to intro-
duce our class-laws testing framework.

The Monoid class. The Monoid class, defined in the module
Data.Monoid in Haskell’s base libraries, has the methods:

mempty :: a
mappend :: a→ a→ a

together with a method mconcat :: [a]→ a which we won’t use in
this paper. We will write infix +++ for mappend. Implementations of
these methods in an instance of Monoid should satisfy the follow-
ing three laws:

mempty+++m = m
m+++mempty = m
l+++(m+++ r) = (l+++m)+++ r

Testing Monoid laws using QuickCheck. The Monoid laws are
easily formulated as polymorphic QuickCheck properties:

monoidLaw1 m = mempty+++m m
monoidLaw2 m = m+++mempty m
monoidLaw3 l m r = l+++(m+++ r) (l+++m)+++ r

and can be tested as follows for the Monoid instance for lists

main = do
quickCheck (monoidLaw1 :: [Int ]→ Bool)
quickCheck (monoidLaw2 :: [Int ]→ Bool)
quickCheck (monoidLaw3

:: [Int ]→ [Int ]→ [Int ]→ Bool)

Running main doesn’t lead to any counterexamples, as expected.
Throughout this paper we just pick monomorphic types (like

Int here) by hand, but in general we should use the schema from
Testing Polymorphic Properties [Bernardy et al. 2010] to find the
best type.

Testing laws for datatypes with functions. What if we want to
test whether or not the Monoid instance of the type Endo a:

newtype Endo a = Endo {appEndo :: a→ a}

satisfies the Monoid laws? Adding the line

quickCheck (monoidLaw1 :: Endo Int→ Bool)

to main gives, amongst others, the error message that we have no
instance of Eq (Endo Int). This is a reasonable error message, since
indeed we have no equality for functions. How can we test two
Endo a-values l and r for equality? If a is finite we can test equality
of appEndo l x and appEndo r x for all possible inputs x ::a. But for
big or infinite types, complete coverage is infeasible or impossible.
Instead we add a parameter to generate random a-values. So to
test equality of two Endo a-values l and r, we generate arbitrary
values of type a, and test equality of appEndo l and appEndo r
when applied to these random values.

Later in this paper we will also discuss laws for the State monad,
where State is defined by:

newtype State s a = State {runState :: s→ (a,s)}

To test equality of two State s a-values l and r, we need to generate
an s-value, and compare runState l x with runState r x.

Since we also want to test laws for datatypes like Endo a and
State s a, we replace the standard equality in testing by a method
testEqual. Function testEqual also returns a boolean, but what
arguments does it take? Function testEqual is a generalisation of
( ), so a first approximation for its type is a→ a→ Bool. This
would be fine for a type such as [Int ], but is not appropriate for
testing Endo a and State s a. For testing these types, testEqual needs
an extra parameter, which depends on the type to be tested. To
represent the parameter, we introduce a type family Param:

type family Param b

The Param type family is defined for each datatype on which we
want to test a law. For example, to determine the equality of values
of [a], Endo a and State s a, we define

type instance Param [a ] = ()
type instance Param (Endo a) = a
type instance Param (State s a) = s

We do not need an extra parameter to test list values, so the Param
instance for lists is the empty tuple type. Now we can define the
class TestEqual

class TestEqual a where
testEqual :: a→ a→ Param a→ Bool

together with the instances:

instance Eq a⇒ TestEqual [a] where
testEqual l r = l r

instance Eq a⇒ TestEqual (Endo a) where
testEqual l r p = appEndo l p appEndo r p

instance (Eq a,Eq s)⇒ TestEqual (State s a) where
testEqual l r s = runState l s runState r s

Using testEqual for the Monoid laws. We could now replace
with ‘testEqual‘ in the monoid laws, but for greater flexibility we
first factor out the testing part by introducing an intermediate type
Equal a for equality tests. Instead of a boolean, a law now returns a
pair of values1. This choice makes it possible to easily experiment
with different notions of equality without changing the “law” part.

1 In Sec. 4 we generalise this pair to a list of steps in a “poor man’s proof”.
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type Equal a = (a,a)
infixr 0 .
( . ) = (,)

monoidLaw1 m = mempty+++m . m
monoidLaw2 m = m+++mempty . m
monoidLaw3 l m r = l+++(m+++ r) . (l+++m)+++ r

We can use this new formulation of the laws to test whether or not
the Monoid-instance of Endo a satisfies the Monoid-laws.

tooVerboseVersionOfMain = do
quickCheck

(uncurry testEqual◦monoidLaw1
:: Endo Int→ Param (Endo Int)→ Bool)

quickCheck
(uncurry testEqual◦monoidLaw2
:: Endo Int→ Param (Endo Int)→ Bool)

quickCheck
((λ l m r→ uncurry testEqual (monoidLaw3 l m r))
:: Endo Int→ Endo Int→ Endo Int→

Param (Endo Int)→ Bool)

From quickCheck to quickLawCheck. The expressions that test
the laws become quite verbose when we use testEqual. A first step
towards making testing laws easier is to redefine the type of the
method testEqual of the class TestEqual.

class TestEqual a where
testEqual :: Equal a→ Param a→ Property

The method testEqual now takes an Equal a-value as argument, in-
stead of two a-values, and it returns a property instead of a boolean.
Using Equal a-values as arguments, we get rid of the occurrences
of uncurry in the arguments to quickCheck, and returning a prop-
erty gives us more flexibility in the definition of testEqual. Fur-
thermore, we will abstract from the common structure to arrive at
the following form of the above tests (where un is just the dummy
value undefined):

main = do
quickLawCheck (un :: MonoidLaw1 (Endo Int))
quickLawCheck (un :: MonoidLaw2 (Endo Int))
quickLawCheck (un :: MonoidLaw3 (Endo Int))

In the rest of this section we will introduce the machinery to make
this possible.

Function quickLawCheck is just quickCheck ◦ lawtest where
lawtest turns a “law” into a testable property. Our next step is to
explain how laws are represented.

Representing laws. Since monoids are specified as a class, and
the laws are specified (in comments) in the class, we define a class
MonoidLaws in which we specify the laws for monoids, together
with their default instances.

class Monoid m⇒MonoidLaws m where
monoidLaw1 :: m→ Equal m
monoidLaw2 :: m→ Equal m
monoidLaw3 :: m→ m→ m→ Equal m
monoidLaw1 m = mempty+++m . m
monoidLaw2 m = m+++mempty . m
monoidLaw3 l m r = l+++(m+++ r) . (l+++m)+++ r

Note that instances can override the default instances for laws given
in the MonoidLaws class. We will use this feature to extend a law
with the steps of a poor man’s proof in Section 4. To turn a law
into a testable property, we need to generate arbitrary values for
the arguments of the law. Furthermore, to use function testEqual to

test equality on the datatype on which the law is tested, we need
to generate values of the parameter type. Since different laws take
different numbers and types of arguments, we introduce another
type family to represent the arguments of a law:

type family LawArgs t

We cannot make class methods instances of a type family, so for
each law we introduce a datatype without values:

data MonoidLaw1 m
data MonoidLaw2 m
data MonoidLaw3 m

Now we can create instances of the type family LawArgs, which we
will later connect to the class methods for the laws.

type instance LawArgs (MonoidLaw1 m) = m
type instance LawArgs (MonoidLaw2 m) = m
type instance LawArgs (MonoidLaw3 m) = (m,m,m)

In the body of the monoid laws, we compare two monoid values.
To compare these two values, we use function testEqual. It follows
that we need to detect the parameter type of the body of the law. We
introduce yet another type family to describe the type appearing in
the body of the law.

type family LawBody t

and for the three monoid laws we declare:

type instance LawBody (MonoidLaw1 m) = m
type instance LawBody (MonoidLaw2 m) = m
type instance LawBody (MonoidLaw3 m) = m

The instances for functor laws, which we will give later, show
more variety. Using these newly introduced type families, we can
reformulate the type of the monoid laws as follows:

type Law t = LawArgs t→ Equal (LawBody t)
class Monoid m⇒MonoidLaws m where

monoidLaw1 :: Law (MonoidLaw1 m)
monoidLaw2 :: Law (MonoidLaw2 m)
monoidLaw3 :: Law (MonoidLaw3 m)

Here we connect the datatypes for monoid laws to their respective
class methods. This definition of the class MonoidLaws, together
with the default instances, replaces the earlier definition given in
this paragraph.

Testing laws. Using the type families LawArgs, LawBody, and
Param, we can finally specify the type of the function lawtest. Since
we use lawtest on values of different types, we let lawtest be the
method of a class LawTest. Class methods have to refer to the type
variable introduced by the class, so we add a dummy first argument
to the lawtest method that steers its type.

class LawTest t where
lawtest :: t

→ LawArgs t
→ Param (LawBody t)
→ Property

In general, a type t cannot be recovered from a type family, such as
LawArgs t. If we had used data families instead of type families we
could have recovered the t, but using data families leads to many
extra constructors, and we prefer to use type families.

A law that is passed as argument to quickLawCheck is specified
by an un-value of its corresponding type. The un-value is never
used in function lawtest. The instances of LawTest for the monoid
laws are easy:
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instance (MonoidLaws m,TestEqual m)⇒
LawTest (MonoidLaw1 m) where

lawtest = testEqual◦monoidLaw1

instance (MonoidLaws m,TestEqual m)⇒
LawTest (MonoidLaw2 m) where

lawtest = testEqual◦monoidLaw2

instance (MonoidLaws m,TestEqual m)⇒
LawTest (MonoidLaw3 m) where

lawtest = testEqual◦monoidLaw3

Testing laws with functional arguments. Some laws take func-
tions as arguments. For example, the second functor law in Fig-
ure 1 takes two functions as arguments. Using quickLawCheck to
test this law gives the error message that there is no instance of
Show for functions. To test this law, and other laws that take func-
tions as arguments, we introduce quickFLawCheck, a variant of
quickLawCheck that doesn’t require the types of all arguments of
a law to be instances of the Show class. Using quickFLawCheck
leads to rather incomprehensible error reports when a counterex-
ample is found. To obtain a comprehensible counterexample, we
have to introduce a Show instance for the function type that is used,
for example by showing the function results on a few arguments.

Putting it all together. Using the definitions introduced in this
section, we can make Endo a an instance of MonoidLaws:

instance MonoidLaws (Endo a)

and then we can write

main = do
quickLawCheck (un :: MonoidLaw1 (Endo Int))
quickLawCheck (un :: MonoidLaw2 (Endo Int))
quickLawCheck (un :: MonoidLaw3 (Endo Int))

to test the monoid laws for Endo a. As expected, QuickCheck
does not find any counterexamples. In Section 7 we will show
how to define a function quickLawCheckPartial, which also tests
laws for partially-defined values. If we replace quickLawCheck by
quickLawCheckPartial in main, QuickCheck gives counterexam-
ples for the first two monoid laws. The counterexamples represent
the inequalities id ◦⊥ = const ⊥ 6≡ ⊥ and ⊥◦ id = const ⊥ 6≡ ⊥,
where ⊥ (pronounced “bottom”) is the least defined value of any
domain. Note that we use un (short for undefined) for a dummy
value used essentially as a type argument, and ⊥ to build a partial
value used in testing.

3. Specifying class laws
This section shows how a user can add laws to a class using our
framework, by showing how the laws for functors are specified.

The module Control.Monad.Laws from our framework con-
tains all the laws specified in comments in the Haskell 2010
Control.Monad module. But what if you define your own class,
instances of which should satisfy a particular set of laws? This sec-
tion shows how you can specify laws for a class, by showing how
we specify the laws for the functor class.

The functor laws are specified in the Functor class in Figure 1.
Here we define them in our framework, giving them names starting
with default because we will use these definitions as defaults for
instances of the class FunctorLaws.

defaultFunLaw1 x = fmap id x . id x
defaultFunLaw2 (f ,g,x) =

(fmap f ◦ fmap g) x . fmap (f ◦g) x

At the moment we still have to explicitly provide the arguments to
the laws. It is future work to lift this restriction. The first functor

law takes an argument x of type f a for some f :: ∗ → ∗ and some
a. We define the instance of LawArgs for the datatype FunLaw1
corresponding to this law as follows:

data FunLaw1 a (f ::∗→ ∗)
type instance LawArgs (FunLaw1 a f ) = f a

The second functor law takes a triple of arguments: two functions,
and a value on which the composition of these functions is mapped.

data FunLaw2 a b c (f ::∗→ ∗)
type instance LawArgs (FunLaw2 a b c f ) =

(b→ c,a→ b, f a)

For the type of the body of the laws, we have to make explicit which
of the argument type variables appear in the body.

type instance LawBody (FunLaw1 a f ) = f a
type instance LawBody (FunLaw2 a b c f ) = f c

Now we define the class FunctorLaws:

class Functor f ⇒ FunctorLaws f where
funLaw1 :: Law (FunLaw1 a f )
funLaw2 :: Law (FunLaw2 a b c f )
funLaw1 = defaultFunLaw1
funLaw2 = defaultFunLaw2

We make these datatypes instances of LawTest as follows:

instance (FunctorLaws f ,TestEqual (f a))⇒
LawTest (FunLaw1 a f ) where

lawtest = testEqual◦ funLaw1

instance (FunctorLaws f ,TestEqual (f c))⇒
LawTest (FunLaw2 a b c f ) where

lawtest = testEqual◦ funLaw2

To implement laws for a class C in our framework, we define
one empty datatype per law, for which we define instances of two
type families. We then define a class CLaws in which we specify
the laws for C. To test the laws, they are made instances of the class
LawTest.

4. Adding evidence to a law
This section shows how we can add evidence to a law in the form
of a “poor man’s proof”, and test the evidence. The “proof” is
expressed as a list of steps in an equality reasoning argument for
why the law holds. For example, if we prove a law lhs = rhs in a
scientific paper, we typically write

lhs
= {good reason}

lhs′

...
rhs′

= {another good reason}
rhs

In this section we show how we express this proof as a list of
expressions [lhs, lhs′, ...,rhs′,rhs ], which requires that the types of
the expressions are the same, and makes it possible to test equality
of adjacent pairs, and hence of all expressions. The basic idea of
these “proofs” is independent of the type family machinery used
for ClassLaws. We used an early version already in 2001 when
preparing [Jansson and Jeuring 2002], resulting in over 5000 lines
of poor man’s proofs.

Suppose we define our own kind of lists,

data List a = Nil | Cons a (List a)
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on which we want to have a function fmap that not only applies a
function to all elements in the list, but also reverses the list at the
same time.

instance Functor List where
fmap f Nil = Nil
fmap f (Cons x xs) = snoc (f x) (fmap f xs)

Here snoc takes an element and a list, and adds the element to the
end of the list:

snoc y Nil = Cons y Nil
snoc y (Cons x xs) = Cons x (snoc y xs)

We omit the more efficient implementation that uses an accumula-
ting parameter. Suppose we also want to use functionality from the
Monad and Applicative classes on our lists. For the Monad instance
of our lists we take the predefined standard instance. An instance
of Applicative requires a proper instance of Functor. To make sure
that our list instance of Functor satisfies the Functor laws, we use
our framework to test class laws.

import Control.Monad.Laws
instance FunctorLaws List
instance MonadLaws List
instance FunctorMonadLaws List

With the three instance declarations we declare that our instances
should satisfy the laws of the Functor and Monad (represented by
MonLaw1, MonLaw2, and MonLaw3, see Figure 2) class, respec-
tively, and that it should also satisfy the law that requires an in-
stance of both Functor and Monad (represented by FunMonLaw,
see the last law in Figure 2): fmap f xs xs>>= return ◦ f . We use
quickLawCheck and quickFLawCheck to test the laws:

main = do
quickLawCheck (un :: FunLaw1 Char List)
quickFLawCheck (un :: FunLaw2 Int Char Bool List)
quickFLawCheck (un :: MonLaw1 Char Int List)
quickLawCheck (un :: MonLaw2 Int List)
quickFLawCheck (un :: MonLaw3 Int Bool Char List)
quickFLawCheck (un :: FunMonLaw Char Int List)

If we run main, we find that the Functor laws are not satisfied for
our instance. For these two laws we get the counterexamples:

(Cons 0 (Cons 2 Nil),Cons 2 (Cons 0 Nil))
(Cons (−4) (Cons (−3) Nil),Cons (−3) (Cons (−4) Nil))

respectively. Clearly, lists of length two are sufficient to show that
fmap changes the order of the elements. The Monad laws do not
lead to any counterexamples, but for the FunMonLaw we get the
counterexample:

(Cons 0 (Cons 1 Nil),Cons 1 (Cons 0 Nil))

Suppose we are (erroneously) convinced that our implementation
of lists satisfies the first functor law. To find out where our reason-
ing fails, we provide a detailed sequence of steps which we think
proves the law. The first functor law serves as an example:

instance FunctorLaws List where
funLaw1 xs = addSteps (defaultFunLaw1 xs)

(case xs of
Nil → nilCase
xs@(Cons )→ consCase xs)

nilCase = [ fmap id Nil
, -- definition of fmap on Nil
Nil
]

consCase (Cons y ys) =
[ fmap id (Cons y ys)
, -- definition of fmap for Cons
snoc (id y) (fmap id ys)
, -- definition of id
snoc y (fmap id ys)
, -- induction hypothesis
snoc y ys
, -- definition of id
id (Cons y ys)
]

In the FunctorLaws List instance, we specify that we think that the
left-hand side of the first functor law (defaultFunLaw1) equals the
right-hand side, and that evidence is provided by the list of steps
given in the second argument of addSteps. For this to work, we
have to change the Equal type, and its ‘constructor’ . into a list of
values instead of a pair of values:

type Equal = [ ]
type Theorem = Equal
( . ) :: a→ a→ Theorem a
( . ) a1 a2 = [a1,a2 ]
addSteps :: Theorem a→ Equal a→ Equal a
addSteps [lhs,rhs ] steps = lhs : steps++[rhs ]
addSteps = error "addSteps ..."

Function addSteps returns a list of values, which are pairwise tested
for equality. Testing gives a counterexample:

(5,Cons 1 (Cons 0 Nil),Cons 0 (Cons 1 Nil))

The first component (5) of the triple denotes the first position in
the evidence where it fails to be a chain of equal expressions.
Here, the fifth and sixth expressions are unequal and thus break
the evidence chain. Since function addSteps includes the evidence
steps in between the left-hand side and right-hand side of the law,
and since we have a non-empty example here, a consCase, this
implies that there are counterexamples for the equality of snoc y ys
and id (Cons y ys). This is indeed true: snoc y ys appends y to the
end of ys, instead of to the front. Any list with at least two different
elements provides a counterexample.

5. Testing class laws
This section shows what we need to do to test a class law on an
instance of the class for a particular datatype.

To test a law on a datatype using our framework, we need three
instances for the datatype:

• an Arbitrary instance to generate arbitrary values of the data-
type. The Arbitrary instance is needed for the body of the law,
which usually is a value of the datatype itself.

• a Show instance to present a counterexample if such an example
is found.

• a TestEqual instance for testing equality of a list of values.

For example, for the Arbitrary instance for the type List, we trans-
late the arbitrary values generated by the Arbitrary instance for
standard lists [ ] provided by QuickCheck to Lists. We derive
the Show instance for Lists, and define the following instance of
TestEqual:

instance (Eq a,Show a)⇒ TestEqual (List a) where
testEqual p = testEq ( ) p
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Function testEq takes an equality operator and a list of values to be
tested for equality, and returns a property, which tests consecutive
elements for equality with the function pairwiseEq.

testEq :: Show a⇒
(a→ a→ Bool)→ Equal a→ Property

testEq ( ) steps =
whenFail (print $ failingPair ( ) steps)

$ property $ liftBool $ pairwiseEq ( ) steps
pairwiseEq :: (a→ a→ Bool)→ Equal a→ Bool
pairwiseEq ( ) (x : y : ys) = x y ∧ pairwiseEq ( ) (y : ys)
pairwiseEq ( ) = True
type Pos = Int
failingPair :: (a→ a→ Bool)→ [a ]→ (Pos,a,a)
failingPair = failingPair′ 1
failingPair′ pos ( ) (x : y : ys) =

if ¬ (x y)
then (pos,x,y)
else failingPair′ (1+pos) ( ) (y : ys)

The functions property and liftBool are QuickCheck utilities which
turn a boolean into a property. Function whenFail shows its first
argument whenever the test of the property fails.

As explained in Section 2 types that abstract over functions,
such as the the types State and Endo are harder to test. For these
types we define:

instance (Eq a,Show a,Eq s,Show s)⇒
TestEqual (State s a) where

testEqual = testRunEq runState ( )

instance (Eq a,Show a)⇒ TestEqual (Endo a) where
testEqual = testRunEq appEndo ( )

Here we use the function testRunEq, which takes a run function, a
list of values to be tested for equality, and a start value for the run
function, and returns a property, which tests consecutive elements
in the list to be equal by means of the function pairwiseEq.

testRunEq :: Show r⇒
(t→ p→ r)

→ (r→ r→ Bool)
→ Equal t→ p→ Property

testRunEq run ( ) steps p =
testEq ( ) (map (‘run‘p) steps)

Besides the TestEqual instance, we also need to provide Arbitrary
and Show instances for these types. A possible Arbitrary instance
for Endo a lifts the arbitrary instance for a:

instance (Arbitrary a,CoArbitrary a)⇒
Arbitrary (Endo a) where

arbitrary = liftM Endo arbitrary

Showing a function is slightly more challenging:

instance Show (Endo Int) where
show (Endo f ) = concat $ map (show◦ f ) [0..10 ]

where the Show instance just shows a small sample of f -values.

6. The ClassLaws framework
This section summarises the previous sections by giving an over-
view of our framework.

To specify one or more laws l1, l2, ... for a class C in our
framework, we need to specify:

• The laws themselves as functions defaultl1, defaultl2, ....

• Datatypes L1, L2, ..., which take the type arguments used in the
types of the laws as argument, and have no right-hand sides.

• Type family instances for the datatypes L1, L2, ..., in which
the instance for LawArgs specifies the types of the universally
quantified arguments for the law, and LawBody specifies the
type of the elements tested for equality.

• A class CLaws with methods l1, l2, ..., which take the LawArgs
of the corresponding datatype as argument, and return a value
of the Equal-type for the LawBody. The laws are given default
instances l1 = defaultl1 etc.

• Instances of the class LawTest for the datatypes L1, L2, ..., in
which lawtest is defined by lawtest = testEqual◦ l1, etc.

For testing any law on a datatype D in our framework, we have
to provide:

• A D instance of the type family Param, specifying the extra
information necessary for testing equality of values of D.

• A D instance of the class TestEqual, with a method testEqual
specifying how we test equality of values of type D.

• D instances of the classes Arbitrary and Show.

To test class laws CLaws on a datatype D for a D instance of C,
we have to provide:

• An empty D instance of CLaws.

It follows that we have to perform a little amount of work per
law and per datatype, to get functionality for testing laws for free.
Per class for which we want to test laws, we need to specify one
declaration, per law seven declarations, and per datatype on which
we want to test the laws of a class five declarations. Twelve of these
thirteen declarations need only be given once, and can be reused
for testing laws on different datatypes, or testing different laws on
a datatype.

We released version 0.3.0.1 of our code in June 2012 on Hack-
age under the name ClassLaws2.

7. Testing Laws with Bottoms
The previous sections show how to test class laws in the standard
QuickCheck environment, in which random generated values are
total. Testing properties with total values is often sufficient, but
sometimes we also want to know if a law holds in the presence
of partial values. For functions that make essential use of laziness,
it is necessary to also test with partial values. Every datatype has
undefined or partial values, and we should adapt random generation
for all datatypes to also test properties for partially-defined values.
QuickCheck comes with predefined random generators in instances
of Arbitrary for many types, and it is hard to use QuickCheck with-
out importing these predefined random generators. The standard
approach to change random generation is to introduce a type mod-
ifier and specify random generation for the type modifier. To ran-
domly generate partially-defined values, we introduce a type mod-
ifier Partial

newtype Partial a = Partial {unPartial :: a}
We use this modifier to generate and test laws for partially-defined
values. We show how to generate random values that are possibly
partial, how to compare partial values for equality, and how to sup-
port partial predicates (QuickCheck properties) with ClassLaws.

What do we need to change? Suppose we want to test the
first monoid law on Endo Int for partially-defined values. This
law is tested in the ClassLaws framework using the expression

2 http://hackage.haskell.org/package/ClassLaws
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quickLawCheck (un :: MonoidLaw1 (Endo Int)). We do not want
to change the type of the monoid law itself to also include par-
tial values, so we change the implementation of quickLawCheck
instead. The implementation of quickLawCheck uses testEqual on
the monoid law to test the law on random values. The TestEqual in-
stance used to test the first monoid law on Endo a, uses testEq ( ),
thus “normal” equality. We have to replace this function to en-
sure that partial values are generated (by passing arguments of
type Partial a, and declaring a special instance of Arbitrary for
Partial a). Furthermore, the equality test used should take partiality
of values into account.

Function quickLawCheckPartial. The change to the TestEqual
instance to also take partial values into account requires changes
at all intermediate levels in the code too, which makes the change
rather laborious. To avoid users having to change their types at
many places, we introduce function quickLawCheckPartial, which
takes a law as introduced in the ClassLaws framework as argument,
and tests the law also with partially-defined values. The next section
gives an extensive example of how the adapted functionality is
used to show that none of the standard implementations of the state
monad satisfies the state monad laws.

Function quickLawCheckPartial is defined by

quickLawCheckPartial = quickCheck ◦Partial◦ lawtest

Note that Partial is wrapped around a predicate taking two argu-
ments, namely the law arguments and the parameter of the body of
the law.

Making Partial prop testable. Function quickCheck requires the
type of its argument to be an instance of Testable. The Testable class
contains types which can be tested—here is a somewhat simplified
presentation:

• the types Bool and Property are Testable, corresponding to
properties without parameters,

• a function type a→ prop is Testable if prop is Testable and a is
an instance of Arbitrary.

We copy the QuickCheck class structure to handle “partial laws”:
we define the class TestablePartial here and ArbitraryPartial later.

class TestablePartial prop where
propertyPartial :: prop→ Property

The function propertyPartial has the same type as QuickCheck’s
property function, but also takes values that may be partial into
account when testing. To make a “partial law” Testable, we make
Partial prop an instance of Testable.

instance TestablePartial prop⇒
Testable (Partial prop)

where property (Partial x) = propertyPartial x

So if the type prop is testable in the partial setting, Partial prop is
testable using QuickCheck.

The value sent to quickCheck is of the form Partial f with f =
lawtest law of type LawArgs t→ Param (LawBody t)→ Property.
We provide TestablePartial instances for Property and functions in
the same style as QuickCheck so that we can test all our predicates
with partially-defined values.

Property (and Bool) are made instances of TestablePartial by
reusing their instances of Testable.

instance TestablePartial Property where
propertyPartial = property

The instance of TestablePartial on function types is more interest-
ing:

instance (ArbitraryPartial a
,Show (Partial a)
,TestablePartial prop
)⇒ TestablePartial (a→ prop) where

propertyPartial f = forAllShrink arb shr prop where
arb = fmap Partial arbitraryPartial
shr (Partial x) = map Partial (shrinkPartial x)
prop (Partial x) = propertyPartial (f x)

The instance of TestablePartial on function types turns a func-
tion f into a property using the QuickCheck function forAllShrink.
Function forAllShrink takes a generator, a shrinking function,
and a property as argument. The generator generates values us-
ing arbitraryPartial. The shrinking function, which is used when-
ever a counterexample is found, shrinks counterexamples using the
ArbitraryPartial method shrinkPartial, defined below. The property
applies function f to the generated value, and calls propertyPartial
again. The instance of TestablePartial on function types requires a
testable co-domain and the possibility to generate and show pos-
sibly partial values of the domain. For the latter requirements we
give an instance of Show for Partial a, and an instance of the class
ArbitraryPartial for a, where the class ArbitraryPartial is defined
by:

class ArbitraryPartial a where
arbitraryPartial :: Gen a
shrinkPartial :: a→ [a ]

To check a property for Partial values, QuickCheck now generates
values using the generator given in the ArbitraryPartial instance
instead of the Arbitrary instance.

Working with partial values. To show, detect and compare partial
values we build on the ChasingBottoms library [Danielsson and
Jansson 2004]3. Every (boxed) type in Haskell has a least defined
“bottom”-value. When generating partial values we use ⊥ (defined
to be error "_|_") to represent this bottom. (Note that we write
⊥ instead of un, to distinguish generated bottom values from the
un values passed to lawtest to steer the type.) The ChasingBottoms
library provides an unsafe function isBottom ::a→Bool that tries to
determine whether or not a value is bottom. Note that we simplify
matters here. In a precise semantics for Haskell there would be
several different “bottoms”: non-termination, different exceptions,
etc. But we lump these together in one bottom for this paper. The
test isBottom a returns False if a is distinct from bottom, True for
certain exceptions (see the ChasingBottoms documentation for the
details) and fails to terminate if a fails to terminate.

The library also exports a SemanticEq class which lets us check
equality (with ==!) and a SemanticOrd class that lets us check
domain order (with <=!) and determine the most defined value
(x /\! y) that is at most as defined as both x and y, the meet of
the two values. With these operations we can provide instances of
classes such as Show and ArbitraryPartial that deal with potentially
partially-defined values. For example, tLess and tMeet both termi-
nate and evaluate to True:

tLess =⊥<=! (const ⊥ :: Bool→ Bool)
tMeet = (⊥,’b’,’c’)/\! (’a’,⊥,’c’)==! (⊥,⊥,’c’)

To work around some problems with ChasingBottoms we use our
own classes SemEq, SemOrd and SemMeet below. (We aim to
submit patches to the package soon.)

Generating partial values. A user of our library has to provide
functions that also generate partially-defined values by providing

3 See http://hackage.haskell.org/package/ChasingBottoms for
the corresponding software package.
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instances of ArbitraryPartial a for all types a for which partial
values should be generated.

For finite types such as Int and Char it is easy to define in-
stances of ArbitraryPartial, using their Arbitrary instances de-
fined in QuickCheck. To generate possibly partial values, function
genPartial introduces ⊥-values in the set of values generated by
another generator. Function genPartial takes as arguments the ratio
between bottom values and values from a given generator, repre-
sented as two integers, and a generator, and returns a new generator
using the ratio. We pick ratios so that ⊥s appear reasonably often,
since we are particularly interested in testing values that contain
partial values.

genPartial :: Int→ Int→ Gen a→ Gen a
genPartial rb ra ga = frequency [(rb,return⊥),(ra,ga)]
instance ArbitraryPartial Int where

arbitraryPartial = genPartial 1 20 arbitrary
instance ArbitraryPartial Char where

arbitraryPartial = genPartial 1 20 arbitrary

To test laws with functions as arguments, such as the second
functor law, we want to generate arbitrary continuous functions,
not just totally defined ones. Generating partial functions requires
some extra machinery. Haskell functions are monotonous (and con-
tinuous), that is, they preserve the order of the elements of the do-
main. We need to guarantee that the arbitrary functions we gen-
erate are monotonous. This is in general a complex problem but
in the following instance of ArbitraryPartial on function types
e → s we limit ourselves to bounded enumerations e and types
with a SemMeet s instance. Bounded enumerations give us flat do-
mains, which makes it relatively easy to preserve the order in the
codomain.

instance (Enum e,Bounded e,Eq e
,SemMeet s,ArbitraryPartial s
)⇒ ArbitraryPartial (e→ s) where

arbitraryPartial = arbitraryPartialFun arbitraryPartial

To obtain an arbitrary partial function, we first create a function ta-
ble which binds an arbitrary value of the codomain to each domain
value. Since our domain is a bounded enumeration, its values con-
sist of ⊥ together with all elements of the domain: enumElems =
[minBound..maxBound ]. We then turn this table into a function by
means of the function table2fun.

arbitraryPartialFun ::∀ e a.
(Enum e,Bounded e,SemEq e,SemMeet a)⇒
Gen a→ Gen (e→ a)

arbitraryPartialFun ag = do
funtab← forM (⊥ : enumElems :: [e]) (\ → ag)
genPartial 1 6 (return (table2fun funtab))

Function table2fun returns a monotonous function by ensuring that
the image of bottom is the meet of all possible images.

type FunTab e s = [s]
table2fun :: (Enum e,Bounded e,SemEq a,SemMeet a)⇒

FunTab e a→ (e→ a)
table2fun tab@( : tottab) = fun

where meet = foldr1 (/\!) tab
fun x | isBottom x = meet

| otherwise = tottab !! (fromEnum x)

With this setup we generate arbitrary partial functions from boun-
ded enumerations. We could extend this to more general function
types, but these definitions are sufficient to find counterexamples
for the laws in the next section.

Showing partial values. Just as we need to generate partial func-
tions, we need to show partially-defined values, since the coun-
terexamples found when testing might include partial values. We
give an instance Show (Partial a) for all types a for which we want
to show partial values. It is easy to show values of type Partial a if
we have an instance of Show for a, by using isBottom to distinguish
between partial and total values.

instance Show (Partial Int) where
show (Partial i) = showPartial "Int" show i

showPartial :: String→ (a→ String)→ a→ String
showPartial t p | isBottom p = "_|_"++ t++"_"

showPartial f p = f p

Showing functions is slightly more challenging. If a function ap-
pears in a counterexample, we want to inspect the map between the
domain and the codomain. Since we only generate functions from
bounded enumeration domains, we only need to show such func-
tions.

instance (Enum e,Bounded e
,Show (Partial e),Show (Partial b)
)⇒ Show (Partial (e→ b)) where

show (Partial f ) = showPartialFun (⊥ : elements) f

Function showPartialFun shows for each value in the domain, the
value in the codomain to which it is bound.

showPartialFun p f =
if isBottom f
then "<_bot_fun_>"

else "<("++
(concat $ intersperse "; "

[ show (Partial x)++"->"++
show (Partial (f x))
| x← p])

++")>"

Comparing partial values. Function lawtest uses the function
testEqual to test whether or not the left-hand side and right-
hand side of a law are equal. Now that laws are tested with
partially-defined values, equality needs to deal with partial val-
ues as well. For this purpose we use the class SemEq inspired by
ChasingBottoms.

class SemEq t where
(==!) :: t→ t→ Bool

The “bottom-aware” equality test (==!) uses the standard equality
( ) for total values, and deals with⊥s separately. For example, the
instance on Int is given by:

instance SemEq Int where
x==! y = eqPartial (x y) x y

eqPartial :: Bool→ a→ a→ Bool
eqPartial b x y = case (isBottom x, isBottom y) of

(False, False)→ b
(bx, by) → bx by

We only compare functions defined on bounded enumerations. We
check (extensional) equality by testing that two functions return
the same value for all values in their domain. If we know how to
compare partially-defined values of type b, and we have a bounded
enumeration type e, we can compare functions of type e→ b by
means of:

56



instance (Bounded e,Enum e,SemEq b)⇒
SemEq (e→ b) where

f ==! g = eqPartial eqFun f g
where eqFun = all (λx→ f x==! g x)

(⊥ : elements)

We have adapted the TestEqual instance of Endo a to test the
monoid laws also for partial values.

instance (SemEq (Endo a),Show (Partial (Endo a)))⇒
TestEqual (Endo a) where

testEqual l = testEqPartial (==!) l

Where testEqPartial is the (trivially) adapted version of testEq that
also deals with partial values. We can now call

testMonoidEndoPartial = do
quickLawCheckPartial (un :: MonoidLaw1 (Endo Bool))
quickLawCheckPartial (un :: MonoidLaw2 (Endo Bool))
quickLawCheckPartial (un :: MonoidLaw3 (Endo Bool))

to find that these laws are not satisfied anymore. QuickCheck gives
counterexamples for the first and second monoid laws. The coun-
terexamples show that if we instantiate these laws with a ⊥ value,
we get ⊥ at the left-hand side of the first law and const ⊥ at the
right-hand side, and similarly for the second law.

8. State Monad – A Case Study
This section defines the laws for the MonadState class, discusses
various instances of the class, and shows some counterexamples
we found when testing with partial values. To find counterexam-
ples for the laws for the implementations, we use the ClassLaws
framework, and follow the steps as outlined in Section 6.

MonadState and its laws. The MonadState class is specified in
Figure 3. The specification does not explicitly mention laws, but
the following combinations of the MonadState operations are often
given as the axioms for MonadState [Gibbons and Hinze 2011].

put s′>>put s = put s
put s>> get = put s>> return s
get >>=put = skip
get >>=(λ s→ get>>= k s) = get>>=λ s→ k s s

We could give the GetGet law as

get>>=λ s→ get>>=λ s′→ return (s,s′) =
get>>=λ s→ return (s,s)

which would remove the need for the k argument and simplify the
type instance later, but we want to stick to the law exactly as given
in the Gibbons and Hinze [2011] reference.

By replacing = with . in these equalities, we obtain the default
implementations of these laws in the class MonadStateLaws.

data MSPutPut s (m ::∗→ ∗)
data MSPutGet s (m ::∗→ ∗)
data MSGetPut (m ::∗→ ∗)
data MSGetGet s a (m ::∗→ ∗)
class MonadState s m⇒MonadStateLaws s m where

mSPutPut :: Law (MSPutPut s m)
mSPutGet :: Law (MSPutGet s m)
mSGetPut :: Law (MSGetPut m)
mSGetGet :: Law (MSGetGet s a m)

We omit the default declarations of these laws for brevity. Each
of the datatypes used to represent a law has instances of the type
families LawArgs and LawBody.

class Monad m⇒MonadState s m|m→ s where
get :: m s
put :: s→ m ()

Figure 3. The MonadState class in the monad transformer library.

type instance LawArgs (MSPutPut s m) = (s,s)
type instance LawBody (MSPutPut s m) = m ()

type instance LawArgs (MSPutGet s m) = s
type instance LawBody (MSPutGet s m) = m s
type instance LawArgs (MSGetPut m) = ()
type instance LawBody (MSGetPut m) = m ()

type instance LawArgs (MSGetGet s a m) =
s→ s→ m a

type instance LawBody (MSGetGet s a m) = m a

Finally, we make the MonadState laws instances of the class
LawTest to allow for testing the laws. We only show a single in-
stance, the other three instances are similar.

instance (MonadStateLaws s m,TestEqual (m ()))⇒
LawTest (MSPutPut s m) where

lawtest = testEqual◦
(mSPutPut :: Law (MSPutPut s m))

Two instances of MonadState. We use the following datatype
State s a for an instance of MonadState. A value of type State s a is
a function which given a state returns a pair of a value and a new
state.

newtype State s a = S {runS :: s→ Pair a s}
data Pair a b = Pair a b
instance MonadState s (State s) where

get = S $ λ s→ Pair s s
put = S $ const (Pair () s)

If we take (,) instead of Pair we get the datatype State s a as defined
under Control.Monad.State (library versions mtl-1.x). We use an
older version of the standard because from mtl-2.x the state monad
is defined by a monad transformer. Using the more recent version
would complicate the presentation in a way we think unnecessary
for the purpose of this paper. We use Pair instead of (,) to allow
better control when testing partial values. (It simplifies making one
or both components strict, for example).

Depending on the instances of State s on Monad and Functor we
call the MonadState instance lazy or strict. The lazy version of the
state monad can be found in the module Control.Monad.State.Lazy.

instance Monad (State s) where
return a = S $ λ s→ Pair a s
m>>= k = S $ λ s→ let Pair a s′ = runS m s

in runS (k a) s′

instance Functor (State s) where
fmap f m = S $ λ s→ let Pair a s′ = runS m s

in Pair (f a) s′

Control.Monad.State.Strict contains the instances resulting in a
strict version of the state monad.

instance Monad (State s) where
return a = S $ λ s→ Pair a s
m>>= k = S $ λ s→ case runS m s of

Pair a s′→ runS (k a) s′
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instance Functor (State s) where
fmap f m = S $ λ s→ case runS m s of

Pair a s′→ Pair (f a) s′

In the rest of this section we will use the lazy instance of state
monad, unless mentioned otherwise.

Making State s testable. We want to test, using the ClassLaws
framework, whether or not our State s instance of MonadState
satisfies the laws. For this purpose, we need to specify

• a State s a instance of the type family Param, providing the extra
parameter(s) needed to compare the monadic values,

• a State s a instance of the class TestEqual, with a method
testEqual showing how we test equality of the monadic val-
ues,

• and State s a instances of the classes Arbitrary and Show.

The parameter of the type used for testing equality on State s
values depends on the equality check we use in the TestEqual
instance. For general types s we can test functions as shown in
Section 2 for State s a values, by requiring an initial s value. But
for bounded enumerations (the approach in Section 7) no such
argument is needed. In both cases, an s parameter, which is ignored
for the second equality, is fine.

type instance Param (State s a) = s

Depending on the kind of equality we want to use on functions,
the TestEqual instance of State s can either use the helper func-
tion testRunEq or testEq. To test partial values, we use (trivially)
adapted versions testRunEqPartial and testEqPartial of these func-
tions. Function testRunEqPartial checks whether running state
monadic expressions on some initial state results in the same fi-
nal state, and testEqPartial checks whether the expressions have
the same State s a-value.

instance (SemEq a,SemEq s
,Show (Partial a),Show (Partial s)
,Bounded s,Enum s
)⇒ TestEqual (State s a) where

testEqual l = testEqPartial (==!) l

The instances of Bounded and Enum are used for testing equal-
ity of arbitrary functions defined on bounded enumeration do-
mains. We will refer to this equality as exact equality. We can
change the equality check to use runS by changing testEqPartial
to testRunEqPartial. We will refer to this equality as run equality.
For run equality, the Bounded and Enum constraints are not needed.

Generating arbitrary, possibly partially defined, State s a values
relies on generating arbitrary functions of type s → (a,s) using
the approach to generating such functions on bounded enumeration
domains introduced in Section 7.

instance (ArbitraryPartial a,SemMeet a
,ArbitraryPartial s,SemMeet s
,Enum s,Bounded s,Eq s
)⇒ ArbitraryPartial (State s a) where

arbitraryPartial = genPartial 1 20 (liftM S arbitraryPartial)

We generate partially-defined continuous functions on bounded
flat domains with the help of an operator to calculate the meet
of two values, for which we need instances of class SemMeet on
a and s. Since State s a makes use of the datatype Pair a b, we
provide instances of Arbitrary, ArbitraryPartial, Show and SemEq
on Pair a b, together with a Show instance for Partial (Pair a b).
The definitions are omitted.

In the tests of the laws we will use small enumeration types as
arguments to State, both to reduce complexity of counterexamples

Lazy Strict
Law run exact run exact
MSPutPut . . . .
MSPutGet . . . .
MSGetPut . . . .
MSGetGet . . . .
FunLaw1 F F . F
FunLaw2 . . . .
MonLaw1 . F . F
MonLaw2 F F . F
MonLaw3 . . . .
FunMonLaw . . . .

Table 1. Summary of the Lazy and Strict state monad with run =
run equality, exact = exact equality, “F” = fails QuickCheck test,
“.” = passes 100 QuickCheck tests. The tests were run with ghc
version 7.4.2 and the results are same both with and without the
flag -fpedantic-bottoms.

and to make it possible to show functions that appear in counterex-
amples. For this purpose we use the types (), Bool, and Ordering,
with one, two, and three non-bottom values, respectively. Since
the maximum number of different type variables appearing in the
laws is three, it suffices to have three different types available for
testing. () and Bool already have Arbitrary and CoArbitrary in-
stances. ArbitraryPartial instances for these types are similar to the
ArbitraryPartial instances for Int and Char given in Section 7. For
Ordering we define similar instances.

To define the instances of Show for the types State s a and
Partial (State s a), we use the instance of Show on partial functions
given in Section 7

instance (Enum s,Bounded s,Show a,Show s)⇒
Show (State s a) where

show (S f ) = "(S "++ show f ++")"

instance (Enum s,Bounded s
,Show (Partial a),Show (Partial s))⇒
Show (Partial (State s a)) where

show (Partial s) | isBottom s = "_|_St_"

show (Partial (S f )) =
"(S "++ show (Partial f )++")"

Testing the MonadState laws. To test the MonadState laws for
our State s instance of MonadState we create the empty instance:

instance MonadStateLaws s (State s)

We also want to test the Functor, Monad, and FunctorMonad laws
for our instance, so we also declare:

instance MonadLaws (State s)
instance FunctorLaws (State s)
instance FunctorMonadLaws (State s)

Examples. To test the laws for our State s instances, we apply
quickLawCheck and quickLawCheckPartial to each law, testing
with total and partial values, respectively. The inputs to these func-
tions are dummy values of the following types:

MSPutPut Bool (State Bool)
MSPutGet Bool (State Bool)
MSGetPut (State Bool)
MSGetGet Bool Ordering (State Bool)

and so on for the other laws.
Table 1 summarises the results for the lazy and strict state mon-

ads. First, when testing only with total values, both implementa-
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tions pass all tests, thus we only show results for partial values.
The tests also suggest that the four MonadState laws, the second
functor law, the third monad law and the FunMonLaw always hold,
even in the presence of partial values. The failing cases in the par-
tial setting are the first functor law and the first and second monad
laws.

For partial values we distinguish between “run equality” and
“exact equality”. With exact equality functions are compared as
values in the semantic domain, thus ⊥ 6≡ const ⊥. Run equality
of f and g is checked after applying runS to both sides. The first
functor law and the first and second monad law are not satisfied in
many cases.

The first functor law fails for the value ⊥ of type State Bool ().
In the left hand side of the law we have

fmap id (⊥ :: State Bool ())
≡ -- definition of fmap

S $ λ s→ let Pair a s′ = runS (⊥ :: State Bool ()) s
in Pair (id a) s′

≡ -- apply runS
S $ λ s→ let Pair a s′ =⊥ :: Pair () Bool

in Pair a s′

≡ -- let-reduction
S $ λ s→ Pair (⊥ :: ()) (⊥ :: Bool)

which differs from the right hand side

id (⊥ :: State Bool ())
≡ -- apply id
⊥ :: State Bool ()
≡ -- newtype constructor S is strict

S (⊥ :: Bool→ Pair () Bool)

It is important to notice that patterns in let-expressions are lazy.
These terms are different with respect to exact equality, and their
final states, with True as the first state parameter, are also different.

(⊥ :: Bool→ Pair () Bool) True
≡ -- apply ⊥
⊥ :: Pair () Bool

6≡
Pair (⊥ :: ()) (⊥ :: Bool)

≡ -- beta-reduction
(λ s→ Pair (⊥ :: ()) (⊥ :: Bool)) True

This is an interesting counterexample because it works for both
kinds of equality in the lazy implementation.

Another case where the first functor law fails is in the strict
version with exact equality.

fmap id (⊥ :: State Bool ())
≡ -- definition of fmap

S $ λ s→ case runS (⊥ :: State Bool ()) s of
Pair a s′→ Pair (id a) s′

≡ -- apply runS and id
S $ λ s→ case (⊥ :: Pair () Bool) of

Pair a s′→ Pair a s′

≡ -- case-reduction
S $ λ s→ (⊥ :: Pair () Bool)

6≡
⊥ :: State Bool ()

≡ -- apply id
id (⊥ :: State Bool ())

The first monad law only fails tests that compare monadic terms.
This suggests the law only has problems with different function
terms that map their arguments to equal images. This pattern can be
explained by the objects⊥ and const⊥ of the function space a→ b,

that map any (x ::a) into (⊥ ::b). The counterexamples support this
claim. For the strict version (with k = const ⊥):

return False>>= k
≡ -- definition of (>>=)

S $ λ s→ case runS (return False) s of
Pair a s′→ runS (k a) s′

≡ -- definition of return
S $ λ s→ case runS (S $ λ s→ Pair False s) s of

Pair a s′→ runS (k a) s′

≡ -- apply runS
S $ λ s→ case (λ s→ Pair False s) s of

Pair a s′→ runS (k a) s′

≡ -- beta-reduction
S $ λ s→ case Pair False s of

Pair a s′→ runS (k a) s′

≡ -- case-reduction
S $ λ s→ runS (k False) s

≡ -- apply k
S $ λ s→ runS (⊥ :: State Bool ()) s

≡ -- apply runS
S $ λ s→⊥ :: Pair () Bool

6≡
⊥ :: State Bool ()

≡ -- apply k
k False

And for the lazy version (with k =⊥ :: Bool→ State Bool ()):

return False>>= k
≡ -- definition of (>>=)

S $ λ s→ let Pair a s′ = runS (return False) s
in runS (k a) s′

≡ -- definition of return
S $ λ s→ let Pair a s′ = runS (S $ λ s→ Pair False s) s

in runS (k a) s′

≡ -- apply runS
S $ λ s→ let Pair a s′ = (λ s→ Pair False s) s

in runS (k a) s′

≡ -- beta-reduction
S $ λ s→ let Pair a s′ = Pair False s

in runS (k a) s′

≡ -- let-reduction
S $ λ s→ runS (k False) s

≡ -- apply k
S $ λ s→ runS (⊥ :: State Bool ()) s

≡ -- apply runS
S $ λ s→⊥ :: Pair () Bool

6≡
⊥ :: State Bool ()

≡ -- apply k
k False

The second monad law fails for cases similar to the first functor
law. The lazy version of the state monad does not satisfy the second
monad law either. From ⊥ :: State Bool Ordering the law evaluates
to

Pair (⊥ :: Ordering) (⊥ :: Bool)
6≡ ⊥ :: Pair Ordering Bool

when we run this monadic computation (in any first state) and to

const (Pair (⊥ :: Ordering) (⊥ :: Bool))
6≡ ⊥ :: State Bool Ordering

when we check exact equality.
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When we change to the strict version of the state monad we have
fewer failing behaviours. Most failing behaviours that disappeared
are due to Pair ⊥⊥ 6≡ ⊥ :: Pair a b. But the issue remains when we
use exact equality.

With (⊥ :: State Bool Ordering), the strict version results in

const (⊥ :: Pair Ordering Bool)
6≡ ⊥ :: State Bool Ordering

We have tried a few other variations of state monad implemen-
tations, without finding a formulation that satisfies all the laws at
the same time. We believe that there is in fact no implementation of
a state monad in Haskell which satisfies all of the laws. It is future
work to prove that this is the case (or show a counterexample). The
fact that state monads seem to work out fine anyway indicates that
the laws are most likely “wrong”, at least for partial values. Ex-
ploring alternative formulations of the laws is also future work, but
can be helped by the ClassLaws framework. Starting from the pa-
per on “Fast and loose reasoning” [Danielsson et al. 2006] it should
be possible to implement a library of combinators for “selectively
ignoring” bottoms in parts of the laws.

9. Conclusions and related work
We have introduced a framework for testing class laws. Using a
single quickLawCheck function, we can test any class law on any
instance of a class with laws. To make this work, we need to specify
laws in a particular format, and we need to provide instances for
generating, comparing, and showing values of the class instance
that we want to test. The format for specifying laws allows us
to provide further evidence for a law, so that we can check the
steps in a ‘proof’ for a law. Furthermore, we introduce a function
quickLawCheckPartial, which tests laws in the same format with
potentially partially-defined values. To make this work we use
a type modifier Partial and the ChasingBottoms library, and we
introduce classes for generating and comparing potentially partial
values. We use the framework and function quickLawCheckPartial
to check whether or not the standard implementations of the state
monad satisfy the expected laws. It turns out that none of the
implementations satisfies the expected laws if we also test with
partially-defined values.

ClassLaws is a light-weight framework, in which a user has to
add a couple of declarations per law, and a couple of declarations
per datatype on which laws are to be tested, to test class laws. A
few of these declarations could be derived automatically, such as
the instances of LawTest, and the definition of the law in terms of
the law default. Deriving these declarations automatically is hardly
worth the effort: it saves only a few, trivial, lines, and would make
the framework less light-weight.

There is little related work on checking type class laws. In
his blog post ‘QuickChecking Type Class Laws’, Taysom [2011]
shows how to QuickCheck the laws for semirings. He more or less
describes the first steps we take in Section 2 for QuickChecking
laws, and does not deal with testing laws for types like Endo a
or providing evidence, nor with testing with partially-defined val-
ues. Elliott [2012] has developed a package that wraps up the ex-
pected properties associated with various standard type classes as
QuickCheck properties. He does not deal with testing laws for types
like Endo a or providing evidence, nor with testing with partially-
defined values. On the other hand, Checkers makes it easy to check
all laws of a class using a single declaration, something we deferred
to future work. We used QuickCheck and ChasingBottoms for all
testing purposes, but we could have used Lazy Smallcheck [Runci-
man et al. 2008] instead. Although Lazy SmallCheck generates
partially-defined values, it does not generate functions, so also
when using Lazy Smallcheck we would have had to implement our
own generators for partially-defined functions.

Besides the class laws given in this paper, we also implemented
the laws for the Haskell standard classes Num, Integral, and Show.
It is future work to express laws for all classes specified in the
Haskell base library. Other future work consists of making the
framework more convenient to use, by providing functionality for
testing all laws of a class by means of a single declaration, and
by allowing η-reduction when specifying laws. Finally, we do not
only want to test laws and their evidence, but also to verify laws
using a proof checker like the Haskell Inductive Prover https:
//github.com/danr/hip by Dan Rosén.
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