
Fairness resource sharing for dynamic workflow
scheduling on Heterogeneous Systems

Hamid Arabnejad, Jorge Barbosa
LIACC, Departamento de Engenharia Informática

Faculdade de Engenharia, Universidade do Porto

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

hamid.arabnejad@fe.up.pt, jbarbosa@fe.up.pt

Abstract—For most Heterogeneous Computing Systems (HCS)
the completion time of an application is the most important
requirement. Many applications are represented by a workflow
that is therefore schedule in a HCS system. Recently, researchers
have proposed algorithms for concurrent workflow scheduling in
order to improve the execution time of several applications in a
HCS system. Although, most of these algorithms were designed
for static scheduling, that is all application must be submitted at
the same time, there are a few algorithms, such as OWM (online
workflow Management) and RANK HYBD, that were presented
for dealing with dynamic application scheduling. In this paper, we
present a new algorithm for dynamic application scheduling. The
algorithm focus on the Quality of Service (QoS) experienced by
each application (or user). It reduces the waiting and execution
times of each individual workflow, unlike other algorithms that
give privilege to average completion time of all workflows. The
simulation results show that the proposed approach significantly
outperforms the other algorithms in terms of individual response
time.

I. INTRODUCTION

Heterogeneous Computing Systems (HCS) are characterized

by having a variety of different types of computational units

and are widely used for executing parallel applications, es-

pecially scientific workflows. The workflow consist of many

tasks with logical or data dependencies that can be dispatched

to different computation nodes in the HCS. To achieve efficient

execution of a workflow and minimize the turnaround time, we

need an effective scheduling strategy that decides when and

which resource must execute the tasks of the workflow. When

scheduling multiple independent workflows that represent user

jobs and, consequently, are submitted at different instants of

time, the common definition of makespan needs to be extended

in order to account the waiting time as well as the execution

time of a given workflow, contrary to the makespan definition

for single workflow scheduling [7]. The metric to evaluate a

dynamic scheduler of independent workflows has to represent

the individual makespan instead of a global measure for the

set of workflows, in order to measure the Quality of Service

experienced by the users which is related to the finish time of

each user application.

A popular representation of a workflow application is the

Directed Acyclic Graph (DAG) in which nodes represent

individual application tasks and the directed edges represent

inter-task data dependencies.

The DAG scheduling problem has been shown to be NP-

complete [3]. DAG scheduling is mainly divided in two major

categories, namely Static Scheduling and Dynamic Schedul-

ing. Most of the scheduling algorithms in static category

are restricted to single DAG scheduling. In [2] the authors

compared 20 scheduling heuristics for single DAG scheduling.

For static scheduling of multiple DAGs there were proposed

some algorithms such as in [4] for homogeneous non-parallel

task graphs with the aim of increasing system efficiency, [13]

for heterogeneous clusters and non-parallel task graphs and

[8] for multi-clusters and parallel task graphs. In [13] the

authors proposed an algorithm for scheduling several DAGs

at the same time where the aim was to achieve fairness in

the resource sharing, defined by the slowdown each DAG

experiences as a results of competing for resources. In [8] the

authors proposed several strategies of sharing the resources

based on the proportional share. They defined a proportional

share based on critical path, width and work of each DAG.

They also proposed a weighted proportional share that rep-

resent a better tradeoff between fairness resource sharing and

makespan reduction of the DAGs. Both works differ from what

is proposed here due to their static approach and due to the

objective functions considered. Here we consider a dynamic

scheduling and we focus on the response time the system gives

to each application.

For dynamic scheduling multiple parallel task graphs on a

heterogeneous system, it was proposed an algorithm in [1] that

minimizes the overall makespan, that is the finish time of all

DAGs. In [5] and [12] there were proposed two algorithms

namely OWM and RANK HYBD for dynamic scheduling of

multiple workflows. Both algorithms were proposed for the

same context of the algorithm proposed here.

In this paper, we propose a new algorithm called the Fair-

ness Dynamic Workflow Scheduling (FDWS) for scheduling

dynamically workflow applications in a heterogeneous system.

The remainder of this paper is organized as follows: section

II describes the workflow representation; section III discuses

related work; section IV presents the FDWS algorithm; section

V presents the experimental results and discussion and section

VI concludes the paper.

2012 10th IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-4701-5/12 $26.00 © 2012 IEEE

DOI 10.1109/ISPA.2012.94

633

II. WORKFLOW REPRESENTATION

A workflow application can be represented by a Directed

Acyclic Graph (DAG), G(V,E, P,W) as shown in Figure

1, where V is the set of v tasks and E is the set of

���

��

�� �� �� �� �	

�
 �� ��

�
 �	
�
�

� �

 ���

��
�

�

	
�

��� �� �� ��

�� �� �� ��

�� �� �� ��

�� � � �

�� �� �� ��

�� �� �� ��

�	 �� �� ��

�
 �	 �� �

�� �� �� ��

�� �� �	 ��

��� �� �� ��

Fig. 1: Application model and computation time matrix of the

tasks in each processor

e communication edges between tasks. Each e(i, j) ∈ E
represents the task-dependency constraint such that task ni

should complete its execution before task nj can be started.

P is the set of p heterogeneous processors available in the

system. W is a v × p computation cost matrix, where v is

the number of tasks and p is the number of processors in

the system. wi,j gives the estimate time to execute task vi
on machine pj . The mean execution time of task ni can be

calculated by wi = (
∑

j∈P wi,j)/p. Each edge e(i, j) ∈ E
is associated with a non-negative weight ci,j representing the

communication cost between the tasks ni and nj . Once this

value could be computed only after defining where tasks i
and j will be executed, it is common to compute the average

communication costs to label the edges [11]. The average

communication cost ci,j of an edge e(i, j) can be calculated

by ci,j = L +
datai,j

B
where L is the average latency time

of all processors and B is the average bandwidth of all links

connecting the set of P processors. datai,j is the amount of

data elements that task i needs to send to task j. Note that,

when task i and j are assigned to the same processor, the

real communication cost is considered to be zero because it is

negligible compared to interprocessor communication costs.

Next, we present some of the common attributes used in

task scheduling, that we will refer in the following sections.

• pred(ni): denotes the set of immediate predecessors of

task ni in a given DAG. A task with no predecessors

is called an entry task, nentry. If a DAG has multiple

entry tasks, a dummy entry task with zero weight and

zero communication edges is added to the graph.

• succ(ni): denotes the set of immediate successors of

task ni. A task with no successors is called an exit
task, nexit. Like the entry task, if a DAG has multiple

exit tasks, a dummy exit task with zero weight and zero

communication edges from current multiple exit tasks to

this dummy node is added.

• makespan: it is the finish time of the exit task in

the scheduled DAG, and is defined by makespan =
AFT (nexit) where AFT (nexit) denotes the Actual Fin-

ish Time of the exit task.

• Critical Path(CP): the CP of a DAG is the longest

path from nentry to nexit in the graph. The length of

this path |CP | is the sum of the computation costs of

the tasks and intertask communication costs along the

path. The |CP | value of a DAG is the lower bound of

the makespan. In this paper, the makespan includes de

execution and waiting time spent in the system.

• EST(ni,pj): denotes the Earliest Start Time of a node

ni on a processor pj .

• EFT(ni,pj): denotes the Earliest Finish Time of a node

ni on a processor pj .

III. RELATED WORK

In the past years, most of research on DAG scheduling were

restricted to a single DAG. Only a few scheduling algorithms

work on more than one DAG at a time.

Zhao and Sakellariou [13] presented two approaches based

on fairness strategy for multi DAGs scheduling. The fairness

is defined on the basis of slowdown that each DAG would

experience (the slowdown is the difference in the expected ex-

ecution time for the same DAG when scheduled together with

other workflows and when scheduled alone). They proposed

two algorithms, one fairness policy based on finish time and

another fairness policy based on current time. Both algorithms,

at first, scheduled each DAG on all processors with the static

scheduling (like HEFT [11] or Hybrid.BMCT [9]) as the pivot

scheduling algorithm, save its schedule assignment and keep

its makespan as the slowdown value of the DAG. Next, sort all

DAGs in descending order of their slowdown in the list. Then

until there are unfinished DAGs into the list, the algorithm

selects the first DAG with highest slowdown and then selects

the first ready task that has not been scheduled on the DAG.

The key idea is to evaluate the slowdown value of each DAG

after scheduling a task and make a decision on which DAG

should be selected to schedule the next task. The difference

between the two fairness based algorithms proposed is that the

Fairness Policy based on Finish Time, calculates the slowdown

value of only the selected DAG, whereas in the Fairness Policy

based on Current Time, the slowdown value is recalculated for

every DAG. But these two algorithms are designed to schedule

multiple workflow applications that are known at the same

time (off-line scheduling). Here we consider the scheduling

of dynamic workflows, meaning that they arrive at different

instants, where the age and remaining time of each concurrent

DAG is considered by the scheduler (on-line scheduling).

Z. Yu and W. Shi in [12] proposed a planner-guided strat-

egy (called RANK HYBD algorithm) to deal with dynamic

workflow scheduling of applications that are submitted by

different users at different instants of time. The RANK HYBD

algorithm ranks all tasks using ranku priority measure [11].

In each step, the algorithm reads all ready tasks from all DAGs

and selects the next task to schedule based on their rank. If

the ready tasks belong to different DAGs, the algorithm selects

the task with lowest rank and if they belong to the same DAG,

the task with highest rank is selected. With this strategy, The

RANK HYBD algorithm allows the DAG with lowest rank

634

(lower makespan) to be scheduled first to reduce the waiting

time of the DAG in the system. But this strategy does not

achieve good fairness because it always like to finish first

lower DAGs in the system and postpones the higher DAGs. For

instance, if a longer DAG is being executed and several lower

DAGs are submitted to the system, the scheduler postpones the

execution of the longer DAG to give priority to the smaller

ones.

Hsu, Huang and Wang in [5] proposed Online Workflow

Management (OWM) for scheduling multiple online

workflows. In OWM algorithm, unlike in the RANK HYBD

that puts all ready tasks from each DAG into the ready

list, it selects only a single ready task from each DAG

with highest rank into the ready list. Then until there

are unfinished DAGs on the system, the OWM algorithm

selects the task with highest priority from ready list. Then it

calculates the earliest finish time (EFT) for the selected task

on each processor and selects the processor with minimum

earliest finish time. If the selected processor is free at

that time, the OWM algorithm assigns the selected task

to the selected processor otherwise keeps the selected task

in the ready list in order to be scheduling later. In their

results, The OWM algorithm has better performance than

RANK HYBD [12] and Fairness Dynamic (modified version

of fairness algorithm [13]) in handling online workflows.

The results of different mean arrival intervals according to

different performance metrics show that the OWM algorithm

outperforms Fairness Dynamic by 26% and 49%, and

outperforms RANK HYBD by 13% and 20% for average

makespan and average SLR (defined by eq. 5), respectively.

As the RANK HYBD algorithm, OWM uses a fairness

strategy but, instead of scheduling smaller DAGs first, it

selects and schedules tasks from the longer DAGs first. OWM

has better strategy by filling the ready list with one task

from each DAG so that it gives to all DAGs the chance to

be selected in current time for scheduling. In their simulation

environment, the number of processors is always near to the

number of workflows so that in the most cases the scheduler

has suitable number of processors to schedule the ready tasks.

This choice does not expose a fragility of the algorithm that

occurs when the number of DAGs is significant in relation to

the number of processors or, the same is to say, for heavier

loaded systems. Another problem with the OWM algorithm

is in the processor selection phase where if the processor

with earliest finish time for the selected task is not free, the

algorithm postpones that task and keeps it in the ready list.

If the system is heavy loaded, it is possible that in the next

task selection, it is postponed again because meanwhile it

may arrive new tasks with highest rank.

Both algorithms, RANK HYBD and OWM, present results

in terms of average makespan. This metric combines in the

same way long and short DAGs and do not allow to infer the

average waiting time spent by the DAGs individually. In this

paper we propose new strategies in both aspects of selecting

tasks from ready list and in the processor assignment in order

to reduce the individual completion time of the DAGs, that is

the total time between the submission and the completion time

which includes execution and waiting time. We use the metric

Schedule Length Ratio (SLR) that is a normalized measure of

the completion time and that is more appropriated to conclude

about the individual performance experienced by each user.

IV. FAIRNESS DYNAMIC WORKFLOW SCHEDULING

This section presents the Fairness Dynamic Workflow

Scheduling (FDWS) algorithm. Figure 2 shows the structure

of the FDWS algorithm. It comprises four main components:

(1) Submit application, (2) Workflow pool, (3) Selected Tasks

and (4) Processor allocation.

�
��
��
��
�
		

��
�

��
��
�
��

��
��
�

�������		

�	��
	��� �	��
	���

����� ����� �����

��
��
	�
��
��

��
��

��
	�
��
��
��
��
�

����	�

����	�

����	�

����	�

����� 	����	!
����"

�
�
��
��
�	
�
���
�
��
��

��
��
	�
��
��

��
��
	�
��
��

Fig. 2: Fairness Dynamic Workflow Scheduling (FDWS) Sys-

tem

Next we describe all these parts in detail:

• Submit application: users can submit their application

at any time in the system.

• Workflow pool: after users submitted their applications

they enter the workflow pool (each application can be

represented by a DAG). At each scheduling time, this

component finds all ready tasks of each DAG. The

RANK HYBD algorithm adds all ready tasks into the

ready pool (or list) and the OWM algorithm adds only

one task with highest priority from each DAG into the

ready pool. Considering all ready tasks from each DAG

leads to a unbiased preference for longer DAGs and the

consequent postponing of smaller DAGs resulting higher

SLR and unfair processor sharing. In FDWS algorithm,

we add only a single ready task with highest priority from

each DAG to ready tasks pool like as OWM. For assign

the priority to tasks in the DAG, we used the upward rank

635

[11]. ranku represents the length of the longest path from

task ni to the exit node, including the computational cost

of ni and is given by equation 1.

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj)} (1)

where succ(ni) is the set of immediate successors

of task ni, ci,j is the average communication cost of

edge(i, j) and wi is the average computation cost of

task ni. For the exit task ranku(nexit) = 0.

• Selected tasks: in this block we defined a different rank

to select the task to be schedule from the ready tasks

pool. To be selected to the pool we use ranku computed

for each DAG individually. To select from the pool, we

compute a new rank for task ti belonging to DAGj ,

defined by equation 2, and the task with highest rankr
is selected.

rankr(ti,j) =
1

PRT
{
DAGj

} × 1

CPL
{
DAGj

} (2)

The metric rankr considers the Percentage of Remaining

Task number (PRT) of the DAG and its Critical Path

Length (CPL). The PRT value gives more priority to

DAGs that are almost completed and only have few

tasks to execute. This strategy is different from the

Smallest Remaining Processing Time (SRPT) [6]. The

SRPT algorithm, on each step, selects and schedules the

application with the smallest remaining processing time.

The remaining processing time is the time needed to

execute all remaining tasks of the workflow. This is very

different from our strategy. As an example, if we have

two workflows with the same number of remaining tasks

like it is shown in Figure3 (tasks with same name have

the same computational time), using the SRPT strategy,

��

�� �� ��

��

��

��

��

��

��

#�$� #�$�

Fig. 3: Two sample workflows

there is no difference between these DAGs to select the

next task, but attending to the response time, it is better to

select a task from DAG1 because it has a lower expected

finish time. With rankr we also consider the existing

concurrency in each level by using the critical path (as

it can be seen DAG1 has lower critical path length

than DAG2 and therefore it would be schedule first).

Also selecting only the smallest remaining time is not

necessarily better; consider an application that is being

executed and that have a few tasks remaining. With SRPT

strategy, the application would be postponed if shorter

DAGs arrive, which would increase the response time to

the user. By using rankr we consider the percentage of

remaining tasks to give the opportunity to the DAGs with

fewer remaining tasks to be finished even if the work on

those tasks is higher than the work on the new arrived

DAGs.

Note that in RANK HYDB and OWM, only the individ-

ual ranku is used for selecting tasks into the pool and

to select one from the pool of ready tasks which leads

to a scheduling decision that do not considers the DAG

history in the workflow pool.

• Processor allocation: the FDWS algorithm uses the

following strategy for assigning a task to a processor.

All processors are tested and it selects the processor

with lowest finish time for the current task, but if in

current time the processor is busy, it puts the task into the

processor task queue, so that the task is schedule at the

first attempt. The finish time of a task on a processor also

considers the queue list. In RANK HYBD algorithm only

the free resources are considerer at any given scheduling

instant. But the processor which is busy right now, may

execute the task with lower finish time. On the other

hand, the OWM algorithm tests all available processors

(both free and busy processors), then if the finish time

of the task in the busy processor is less than in a free

processor, the OWM algorithm postpones the assignment

of the task to the next steps. Since the system is dynamic,

it is possible that at any time a new application may arrive

and the postponed task may have lower priority than the

new ones and therefore being postponed again. This may

lead to an excessive completion time for smaller DAGs.

The proposed FDWS (Fairness Dynamic Workflow Schedul-

ing) algorithm is formalized in Algorithm 1.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents performance comparison of the FDWS

algorithm with OWM and RANK HYBD algorithms. For this

purpose, we divide this section into 4 parts where we describe

first the DAG structure; then we present the environment

scheduling system and hardware parameters; in the third part

we present the comparison metrics and in the last part we

present results and discuss the results.

A. DAG structure

To evaluate the relative performance of the algorithm, we

considered randomly generated workflow (DAG) application

graphs. For this purpose, we used a synthetic DAG generation

program available at [10]. There are four parameters that

define a DAG shape:

• n: number of computation nodes in the DAG (i.e., appli-

cation tasks);

• fat: gives the width of the DAG by efat∗log(n), that

is the maximum number of tasks that can be executed

concurrently. A small value will lead to a thin DAG, like

a chain, with a low task parallelism, while a large value

636

Algorithm 1 The FDWS algorithm

1: while Workflow Pool is NOT Empty do
2: if new workflow has arrived then
3: calculate ranku for all tasks of the new Workflow

4: Insert the Workflow into Workflow Pool
5: end if
6: Ready Pool ← ready tasks (one task with highest

ranku from each DAG)

7: calculate rankr(ti,j) for each task ti belonging to

DAGj in Ready Pool
8: while Ready Pool �= φ AND CPUsfree �= 0 do
9: Tsel ← the task with highest rankr from

Ready Pool
10: EFT (Tsel, Pj) ← Earliest Finish Time of task Tsel

on Processor Pj with considering of Task Queue
and using insertion-based policy

11: Psel ← the processor with lowest EFT for task Tsel

12: if Psel is free then
13: Assign Task Tsel to processor Psel

14: else
15: add Task Tsel into Task Queue of the processor

Psel

16: end if
17: remove Task Tsel from Ready Pool
18: end while
19: end while

induces a fat DAG, like a fork-join, with a high degree

of parallelism;

• density: denotes the number of edges between two levels

of the DAG, with a low value leading to few edges and

a large value leading to many edges;

• regularity: the regularity denotes the uniformity of the

number of tasks in each level. A low value means that

levels contain very dissimilar numbers of tasks, while a

high value means that all levels contain similar numbers

of tasks;

• jump: indicates that an edge can go from level l to level

l+jump. A jump of 1 is an ordinary connection between

two consecutive levels.

In this paper, we used the synthetic DAG generator only

for making the DAG structure which includes the spe-

cific number of nodes and their dependencies. In our ex-

periment, for random DAG generation, we consider n =[
10, 20, 30, 40, 50, 60

]
, jump =

[
1, 2, 4

]
, regularity =[

0.2, 0.8
]
, fat =

[
0.1, 0.4, 0.8

]
and density =

[
0.2, 0.8

]
.

With these parameters we have 216 different structure DAGs

for our experiment. The DAG structure is presented apart

from other simulation parameters because the structure of the

workflows is dependent from users requests and independent

from the hardware environment.

B. Environment system parameters

From the DAG structure obtained as explained above, we

obtain computation and communication costs by using the

following parameters:

• CCR (Communication to Computation Ratio): ratio of the

sum of the edge weights to the node weights in a DAG;

• beta (Range percentage of computation costs on proces-

sors): it is the heterogeneity factor for processors speed.

A higher value for β implies higher heterogeneity and

very different computation costs among processors and

a low value implies that the computation costs for a

given task is almost equal among processors. The average

computation cost of a task ni in a given graph wi is

selected randomly from a uniform distribution with range[
0, 2×wDAG

]
, where wDAG is the average computation

cost of the given graph (in our experiment wDAG = 100).

The computation cost of each task ni on each processor

pj is randomly set from the range of equation 3.

wi ×
(
1− β

2

)
≤ wi,j ≤ wi ×

(
1 +

β

2

)
(3)

In our experiment, for random DAG generation, we con-

sider CCR =
[
0.1, 0.8, 2, 5

]
, β =

[
0, 0.1, 0.5, 1, 2

]
and

Processors =
[
8, 16, 32

]
.

For creating the simulation scenarios, we consider two addi-

tional parameters: number of workflows in each scenario, that

are 30 and 50 respectively; and arrival interval value between

workflows, that are set based on the Poisson distribution with

mean value of 0, 50, 100 and 200 time units respectively.

With these parameters (number of concurrent DAGs, arrival

interval time, CCR, beta and CPU number) and considering 10

different workflows per combination, each experiment involves

a test case of 4800 workflows.

C. Performance metrics

For evaluate and compare our algorithm with other ap-

proaches, we used the following metrics:

• Overall makespan: is the finish time of the last task to be

executed in a set of workflows submitted to the system.

It is calculated by equation 4. This metric gives the time

required to complete all workflows in the scenario.

Overall makespan = max
ti∈DAGs

{AFT (ti)} (4)

• Schedule Length Ratio (SLR): we have DAGs with

very different structure and execution time. The SLR

normalizes the makespan of a given DAG to the lower

bound and is given in equation 5.

SLRDAGi =
makespan(DAGi)∑

ni∈CP DAGi
minpj∈P (w(i,j))

(5)

The denominator in the SLR equation is the minimum

computation cost of the critical path tasks. As the nu-

merator represents the total time spent by a DAG in the

system, waiting and execution time, a low value, such as

1, means that the response time was the lowest possible

for that DAG in the target system. On the other hand,

a higher value means that, due to the concurrent DAG

637

scheduling, the DAG required more time to complete.

In this sense, the SLR is a metric of Quality of Service

experienced by the users. We used the SLR value for each

Scenario (SLRScenario) and it is equal to average SLR

values of all DAGs in each Scenario.

• Win(%): this metric represents the percentage of the

number of occurrences of better results that is the per-

centage of DAGs in each scenario that have the shortest

makespan when applying the FDWS algorithm.

D. Results and discussion

In this section, we compare FDWS with RANK HYBD and

OWM algorithms in terms of SLR, Overall Makespan, Average

Makespan and percentage of Wins. We present results for a

set of 50 and 30 DAGs that arrive with a time interval mean

value that ranges from zero (all DAGs available at time zero)

to 200 time units. We consider 3 sets of processors with 8,

16 and 32, in order to analyse the behaviour of the algorithms

concerning the system load. The maximum load configuration

is observed for 8 processors, 50 DAGs and a mean arrival time

interval of zero.

Figure 4 shows the SLRscenario obtained with the 3 algo-

rithms. We can see that FDWS obtains significant performance

improvement over RANK HYBD and OWM for all arrival

time intervals. It keeps a stable relative improvement above

35%, for all cases, and being of 40% for the most loaded

scenario. The SLR, as mentioned before, is in fact a metric

that reflects the Quality of Service (QoS) experienced by the

users, and therefore, we can conclude that FDWS improves

significantly the QoS of the system.

The results shown in [5] that compare OWM with

RANK HYBD show close results for both algorithms al-

though OWM performs slightly better. In our experiment this

difference is not obvious and in some cases RANK HYBD

performs better. This is mainly because in [5] the authors

considered that they have 100 DAGs for 90 to 150 processors

that is, the number of DAGs is in general less than the

number of processors available. Consequently, the concurrency

is lower than in our experiment.

Table I shows the improvement of FDWS over the two

other concerning Overall Makespan. We can see that OWM

achieves a better result showing that OWM obtains a total time

to process all DAGs shorter than the others.

Arrival Interval

DAGs Algorithm 0 50 100 200

50
OWM -18.10% -14.13% -10.43% -5.00%

RANK HYBD 20.55% 16.61% 13.75% 8.60%

30
OWM -22.58% -18.01% -13.510% -7.28%

RANK HYBD 15.77% 13.42% 10.81% 6.84%

TABLE I: Overall Makespan improvement of FDWS over the

RANK HYBD and OWM algorithm; a negative value means

that FDWS as a worse result

Figure 5 shows boxplots for SLRscenario as a function

of different hardware parameters such as CCR, heterogeneity

� �� �� �� �� ��� ��� ��� ��� ��� ���
�

�

�

�

��

�		
���
���	�������	������

�
�
��

�
�
�

�
	

�
��

�
�
�

�

������������
� !��������
"� #��������

� �� �� �� �� ��� ��� ��� ��� ��� ���
�

�

�

�

��

�		
���
���	�������	������

�
�
��

�
�
�

�
	

�
��

�
�
�

�

�����$������
� !�$������
"� #�$������

Fig. 4: Results of different mean arrival times for average SLR

for 30 and 50 concurrent DAGs

factor and CPU number. The mean value is also shown

by a individual stronger line. We can see that FDWS has

statistically better behaviour for all CCRs, heterogeneity factor

and CPU number. Lower mean and median values and also less

dispersion.

Figure 6 shows results of Average Makespan, a non nor-

malised measure, that is defined by the average Makespan

of all DAGs in the scenario. These results show similar

performance as for SLR that is the normalized makespan.

Figure 7 shows the percentage of wins and, as it can be seen,

FDWS produces in most of the times better schedules for the

DAGs. Only for a low loaded scenario with 30 DAGs and a

mean arrival interval of 200, it is outperformed by OWM.

FDWS is always better than RANK HYBD and in most of

the cases it is better than OWM, obtaining similar results only

for low loaded scenarios.

VI. CONCLUSIONS

Most workflow scheduling algorithms focused on single

workflows and there are only a few works on multiple work-

flow scheduling. In this paper, we presented a new algorithm

called FDWS (Fairness Dynamic Workflow Scheduling) and

compared it with two recent algorithms, namely OWM [5]

and RANK HYBD [12] algorithms that deal with multiple

workflow scheduling in dynamic situations. Based on our

experiments, FDWS has better improvement in terms of SLR,

Win(%) and Average Makespan, showing better Quality of

Service characteristics. The drawback of this feature is to

obtain a longer Overall execution time. As future work, we

intend to find if the SLR improvement is the main reason to

increase the Overall Makespan or if both characteristics can

be reduced.

638

�%� �%� � �
�

�

��

��

��

��

$�

&&'

�
	

�
��

�
�
�

�

%&'#
(�)
�#��

(a)

� �� $�
�

�

��

��

��

��

$�

&()

�
	

�
��

�
�
�

�

%&'#
(�)
�#��

(b)

� �%� �%� � �
�

�

��

��

��

��

$�

*���	�+���
�,

�
	

�
��

�
�
�

�

%&'#
(�)
�#��

(c)

Fig. 5: Boxplots of SLR value for each scenario with respect to the (a) CCR, (b) CPU and (c) heterogeneity factor for random

graphs

� �� ��� ���
�

����

�����

�����

�		
���
���	�������	������

��
+
!
��
��
-�
�

"� #��������
� !��������
������������

� �� ��� ���
�

����

����

����

����

�����

�����

�		
���
���	�������	������

��
+
!
��
��
-�
�

"� #�$������
� !�$������
�����$������

Fig. 6: Results of different mean arrival times for Average

Makespan

ACKNOWLEDGEMENTS

We would like to thank the support given by Cost Action

IC0805 Open Network for High-Performance Computing on

Complex Environments, Working Group 3: Algorithms and

tools for mapping and executing applications onto distributed

and heterogeneous systems.

REFERENCES

[1] J.G. Barbosa and B. Moreira. Dynamic scheduling of a batch of parallel
task jobs on heterogeneous clusters. Parallel Computing, 37(8):428–438,
2011.

[2] L.C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng. Comparative
evaluation of the robustness of dag scheduling heuristics. In Grid
Computing, pages 73–84. Springer, 2008.

[3] E.G. Coffman and J.L. Bruno. Computer and job-shop scheduling
theory. John Wiley & Sons, 1976.

[4] U. Hönig and W. Schiffmann. A meta-algorithm for scheduling multiple
dags in homogeneous system environments. In Parallel and Distributed
Computing and Systems. ACTA Press, 2006.

[5] C.C. Hsu, K.C. Huang, and F.J. Wang. Online scheduling of workflow
applications in grid environments. Future Generation Computer Systems,
27(6):860–870, 2011.

� �� ��� ���
�

��

��

��

��

���

�		
���
���	�������	������

��
+

�

� �� ��� ���
�

��

��

��

��

���

�		
���
���	�������	������

��
+

�

"� #��������
� !��������
������������

"� #�$������
� !�$������
�����$������

Fig. 7: Results of different mean arrival times for Win(%)

[6] D. Karger, C. Stein, and J. Wein. Scheduling algorithms. CRC Handbook
of Computer Science, 1997.

[7] Y.K. Kwok and I. Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys
(CSUR), 31(4):406–471, 1999.

[8] T. N’takpé and F. Suter. Concurrent scheduling of parallel task graphs on
multi-clusters using constrained resource allocations. In Parallel & Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, pages 1–8. IEEE, 2009.

[9] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling
on heterogeneous systems. In Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, page 111. IEEE,
2004.

[10] F. Suter. Synthetic dag generation program. http://www.loria.fr/
˜suter/dags.html, 2010.

[11] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and
Distributed Systems, IEEE Transactions on, 13(3):260–274, 2002.

[12] Z. Yu and W. Shi. A planner-guided scheduling strategy for multiple
workflow applications. In Parallel Processing-Workshops, 2008. ICPP-
W’08. International Conference on, pages 1–8. IEEE, 2008.

[13] H. Zhao and R. Sakellariou. Scheduling multiple DAGs onto hetero-
geneous systems. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 14–pp. IEEE, 2006.

639

