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Abstract. This paper proposes a fully automated method for annotating confo-

cal microscopy images, through organic component detection and segmenta-

tion. The organic component detection is performed through adaptive segmen-

tation using a two-level Otsu’s Method. Two probabilistic classifiers then ana-

lyze the detected regions, as to how many components may constitute each one. 

The first of these employs rule-based reasoning centered on the decreasing 

harmonic patterns observed in the region area density functions. The second 

one consists of a Support Vector Machine trained with features derived from 

the log likelihood ratios of incrementally Gaussian mixture modeling detected 

regions. The final step pairs the identified cellular and parasitic components, 

computing the standard infection ratios on biomedical research. Results indicate 

the proposed method is able to perform the identification and annotation pro-

cesses on par with expert human subjects, constituting a viable alternative to the 

traditional manual approach. 
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1 Introduction 

Leishmania is the parasite responsible for Leishmaniasis, a disease currently affecting 

over 12 million people throughout 88 countries [1]. Leishmaniasis is treatable by 

chemotherapeutics, which, nevertheless, suffer from poor administration regimens 

and high host toxicity [2]. Although the disease is not generally deadly, it severely 

damages the immune system, leaving the body exposed to other deadly pathogens, 

which often prove fatal [2]. The inadequate means to treat Leishmaniasis render the 

research for new treatments an urgent task.  

Research in microscopy images produces large amount of data, which require an-

ywhere from days to weeks to classify and annotate. In a single laboratory the number 

can easily ascend to thousands of images with merely a dozen different experiments. 

Not only does this detract the researchers from exploring new alternatives, as it also 

introduces inter-person variance, as many images are extremely cluttered and contain 

several hundreds of cells and parasites. This results in a time consuming and mentally 

straining process, which expresses itself as a decaying function over time as the sub-
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ject gets tired, frustrated or bored. These reasons justify the need for the development 

of automatic mechanisms to replace or aid researchers in the annotation task, for 

which and to the best of our knowledge no current solution exists. The proposed 

method provides a fully automatic pipeline for the identification of cells and parasites 

in Leishmania infected microscopy imaging, enabling more accurate annotations. 

Pertaining this paper’s organisation, it is structured as follows. Section 2 describes 

the main characteristics of fluorescence microscopy imaging, as well as the dataset 

used in this study. Section 3 discusses the state of the art in cell identification and 

segmentation in microscopy imaging. Section 4 briefly describes the proposed meth-

od, followed by the description of its steps. In section 5, the results for the segmenta-

tion and classifiers, as well as from the method’s application to two real drug trials are 

presented. Finally, section 6, presents conclusions on the developed work, comment-

ing on its performance and readiness for real-world applicability. 

2 Fluorescence Microscopy Imaging 

In contrast to the classical optical microscopy, the use of fluorescence microscopy 

allows simultaneous labeling of different cell components, which can be easily distin-

guished based on the fluorescence properties of their specific dyes [3]. The images 

collected for this study used three fluorophores [3], which emitted three distinct wave-

lengths. These corresponded to the cell nuclei DNA (in blue), cytoplasmic and nucle-

ar DNA (in red) and the parasitic DNA (in green). This provided three separate sets of 

data per image (Figure 1), motivating the identification of cells, parasites and cyto-

plasm individually in the three channels as independent images. 

    Although very popular, fluorescence microscopy imaging (FMI) presents some 

well-known issues that also characterized our datasets. The most noticeable issues 

include: non-linear illumination (due to poor lighting conditions and sub-optimal 

experimental setup), photo bleaching, varying contrast, Gaussian noise, chromatic 

aberrations and overlapping cells and parasites (due to various focal planes). 

    In this study 794 fluorescence microscopy images from random drug trials with 

different experimental setups were collected and used. These images were collected 

through a light microscope and annotated manually by a Leishmania research team at 

the INEB/IBMC laboratory. Refer to section 5 for further details. 

 

Figure 1. Details of a fluorescence microscopy image. a) Original image; b) Cell nuclei chan-

nel; c) Parasite nuclei channel; d) Cytoplasmic channel. 



3 Related Work 

Microscopy image analysis has been an active field for several decades. In related 

work, Liao et al. [4] used a simple thresholding method, coupled with mathematical 

morphology and contextual shape detection to detect white blood cells. However, 

their approach does not tolerate cells outside the defined conditions (e.g.: poorly seg-

mented regions, forming a cell cluster region). An automated method for cellular 

membrane segmentation is described in [5]. This method also allows the reconstruc-

tion of unstained tracts through the nuclear membranes as a spatial reference. Jiang et 

al have also proposed white blood cell segmentation using scale-space filtering and 

watershed clustering in HSV color space [6]. 

Park has proposed bone marrow cell segmentation through an iteratively relaxed 

watershed algorithm [7]. However, this work is sensitive to illumination and noise 

conditions, since it overly relies on the fixed mean color values of each patch for the 

relaxation procedure. Begelman [8] performs cell nuclei segmentation using color, 

shape features and a fuzzy logic engine. This work is more robust than the aforemen-

tioned one because the extracted shape features, serve as an auxiliary classification 

input. However, it is still not able to account for non-circular geometries or abnormal-

ly colored cells due to the implemented rules’ simplicity. 

Yu proposes using an adaptive thresholding technique to detect cell nuclei, which 

are then expanded via level sets to determine cell boundaries [9]. Yan proposes a 

similar approach [11]. Yan improves on Yu by replacing the adaptive thresholding 

with a distance map of the initial adaptive histogram-based thresholding step. This 

distance map is then used to create a watershed transform, serving as a region list 

representing the level-set seed points. The only drawback to this approach is that it is 

not able to deal with highly cluttered images, as the distance map would not provide 

enough information to accurately parameterize the watershed transform, thus leading 

to an erroneous number/location of seed points for the level-set step.  

From this review, it is clear that most of the literature does not attempt or is unable 

to deal with highly cluttered or overlapped image regions. This is a major concern in 

microscopy image analysis as the great majority of real-world data is heavily cluttered 

and saturated. The proposed method in this paper aims at addressing this issue. 

4 Proposed Method 

The proposed method focuses on developing robust methods for identifying and seg-

menting cellular and parasitic agglomerations in confocal microscopy images. The 

method starts by splitting the original image f in three channels: fc (blue); fp (green); 

fcyt (red). Each channel is then normalized and segmented through Otsu’s Method. 

This yields three region vectors, corresponding each one to cellular DNA, parasitic 

DNA and weak
1
 DNA signatures (cytoplasm). Low-level features are computed for 

                                                           
1 In order to register a weak DNA signature, this fluorophore must be highly sensitive. Thus, it 

also registers the cell nuclei’s DNA. Since the cell nuclei can be trivially subtracted through 



the first two aforementioned region vectors, and then used to train a rule-based classi-

fier and a Support Vector Machine, both of which attempt to determine how many 

cells or parasites each region contains. To resolve disputes between these two classifi-

ers, a voting system taking into account both of the classifiers’ error margins is em-

ployed. Each region is then further segmented into the predicted number of sub-

regions by Gaussian unmixing. Figure 2 can be inspected bellow for a more structured 

and clear understanding of the described pipeline. 

 

 

Figure 2. Developed method’s architecture. 

4.1 Pre-processing and Segmentation 

The method first splits each of the target image’s f color channels, as they are inde-

pendently processed. Each image channel is then normalized and segmented into 

background and foreground components. An initial study on the general image char-

acteristics was conducted in order to choose an appropriate segmentation technique. 

In this study, the intensity values of 120 randomly selected images presented clear bi-

modal distributions for all color channels (Figure 3). 

 

Figure 3. Bimodal distributions observed in the RGB components of 120 images (averaged). a) 

Red color component; b) Green color component; c) Blue color component. 

Thus, Otsu’s Method presented itself as a fitting approach due to its, low temporal 

and spatial complexity, non-parameterisable characteristics and segmentation princi-

ple. Otsu’s Method’s principle assumes a bi-modal distribution in the target dataset, 

                                                                                                                                           
set operations involving the cell channel, we denominated this channel as the cytoplasmic 

channel. 



for which it attempts to determine an optimal threshold value by minimizing intra-

class variance [12]: 
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Thus, each color channel was binarised using Otsu’s Method and then proceeded to a 

connected component analysis, resulting in a region vector representing the cellular, 

parasitic and cytoplasmic regions present in the image. Note that the cytoplasmic re-

gions are not used in this work, as they are intended for associating cell-parasite pairs. 

They were, however, computed and integrated into the method in hindsight of future 

work. Figure 4 depicts the result of the segmentation step for the cellular channel. 

 

 

Figure 4. Segmentation output of a moderately cluttered image. a) Original image; b) Segmen-

tation output; c) Visual representation of the cellular region vector obtained from the connected 

component analysis (randomly color-coded). 

Following the region extraction, a low-level feature vector Fi=[a, ll1..N, d
1

1..N (ll), 

d
2

1..N (ll)], is computed for each region. The features comprising the vector are: a, 

the area value (in pixels); ll, the log-likelihood ratios for modelling the region 

with 1 to N Gaussian mixtures; d
1
(ll), the first discrete derivate of ll and d

2
(ll), the 

second discrete derivate of ll. The area feature was used to define the rule-based 

classifier. The log-likelihood ratios and their derivates were used to train the SVM 

classifier. 

4.2 Classification 

The classification step is based on the assumption that the regions obtained from the 

segmentation process may not always correspond to a single cell or parasite. Based on 

this, it attempts to discern in how many sub-regions each region must be split. This is 

achieved by employing two separate classifiers: a rule-based classifier (RBC) and a 

support vector machine (SVM). 

The RBC exploits the low area overlap percentage observed between cell and para-

site pairs. This low overlap percentage is due to the high depth of field observed in the 

collected images, resulting in a near-perfect 2D cross-section of the 3D space within 

the tissue sample. Following this principle, and as single cells/parasites presented 

normal distributions, it was hypothesised that the area functions for cells and parasites 

could be approximated by a harmonic function. Since larger multi-nucleic regions are 

increasingly less frequent, the functions present a decreasing harmonic pattern. Alt-

hough simple, this approach was found to be quite accurate (around 89.0% accuracy, 



hitting a maximum value of 98,9% when considering an error of ±2 regions as ac-

ceptable). Figure 5 illustrates a detail for one of the described decreasing harmonic 

functions. 

 

Figure 5. Detail of a decreasing harmonic function described by the normalized (cellular) area 

values of 120 randomly sampled images (~870 regions per image: 106.318 region samples 

total). Horizontal axis: area values; Vertical axis: area value occurrences. 

The classifier was programmed with rules reflecting this concept and taught to ignore 

values outside its knowledge space, as there was no data to accurately model regions 

over 10 cells or parasites. Note that cells and parasites each have their own harmonic 

function, since their area distributions do not exhibit the same standard deviation. 

The SVM classifier relies on the concept that circles and ellipses can be described 

as Gaussian distributions and, as macrophages and parasites partake such geometry, 

clusters of these objects can be formulated as a mixture problem. Our conjectured 

hypothesis was that: as mixtures are added to the modeling process of each region, the 

improvement rate is described in the log-likelihood ratio evolution sequence. Thus, if 

an initial annotated dataset with the correct number of mixtures N is available, it 

should be possible to model a function that is able to predict this N for new, non-

annotated observations. Following this hypothesis, the classifier was trained with a 

subset of features from the main feature vector, consisting of the log-likelihood ratios, 

it’s first and second order discrete derivates. The training set was obtained from 

roughly 150 regions, modeled with N = [1..15] Gaussian mixtures. Various machine-

learning classifiers were tested. Ultimately, a SVM model was chosen as it achieved 

the highest (85,3%) sequential split and cross-validation classification rates. 

In order to reconcile diverging predictions, a voting system was developed. As 

previously mentioned, the RBC exhibits an overall accuracy of nearly 98%, when 

considering an error margin of ±2. The SVM is generally much more accurate
2
, but its 

error margins are, in counterpart, much wider. Making use of these characteristics, the 

voting system makes its choice based on the assumption that the correct decision does 

not deviate more than 2 from the RBC, so if the SVM’s prediction is within this win-

dow, it is considered correct and incorrect if otherwise. 

                                                           
2 Note that the 85% accuracy percentage referred for the SVM classifier refers to the classifica-

tion of only multi-nucleic regions, as the accuracy ratings for the RBC refer to multi and 

uni-nucleic regions, giving it a considerable advantage. 



4.3 Declustering 

Having obtained a prediction for the number of nuclei in each region, these were un-

mixed using the Expectation-Maximization [13] method. The algorithm was parame-

terized with a minimum standard deviation of 10
-6

, and a maximum of 200 iterations. 

To minimize runtime, the seeds for the centroids of each mixture were set by the av-

eraged centroids of a 10 fold cross-validated K-Means. Figure 6, portrays the meth-

od’s expert performance, even in the presence of large nucleic clusters. 

 

Figure 6. Several declustering examples for 6, 4, 3, 5 and 11 region clusters. a) - e) Original 

region patches. f) - j) Respective declustered patches. 

5  Results 

In order to evaluate the practical applicability of our method, we choose to compare 

the method’s classification output with the final annotations made by biomedical re-

searchers in real drug trials. Upon surveying the current drug trials undergoing in the 

IBMC lab two specific drug trails were chosen. These were labeled trial 1 (T1) and 

trial 2 (T2). Trial one was chosen for presenting a low number of regions, most of 

which were difficultly differentiated from the background, thus straining the method’s 

segmentation step. Trial two was chosen due to the sheer number of oversaturated and 

overlapping regions, hence straining mostly the classification step. These two trials 

were held as complementary, therefore constituting a complete test of the foreseeable 

experimental conditions in real-world applications. Our ground truth was taken as the 

individual annotations of three biomedical researchers. The researchers were asked to 

carefully perform the annotations in separate days and double-check them, so as to 

minimize human error. 

5.1 Individual Component Results 

In order to understand the method’s general behavior across experimental conditions 

we measured its segmentation and classification accuracy in both trials. The following 

section details the summary ratings obtained. 

 



Regarding the classification step, since the method assumes that the cell/parasite iden-

tification process is not completely performed in the segmentation step, multi-nucleic 

regions were considered as well segmented results. A region was considered ill seg-

mented if: a) it was not detected or b) its geometry was not correctly identified. Figure 

7 exemplifies these criteria. 

 

Figure 7. Examples of ill-segmented regions. 

Table 1 presents a summary of the obtained segmentation accuracy on both trials. 

Table 1. Accuracy ratings for the segmentation step of both datasets. 

 Macrophages Parasites 

Segmentation total (T1) 4873 6113 

Ground truth (T1) 5007 6437 

Accuracy percentage (T1) 97,32 94,96 

Segmentation total (T2) 7633 2571 

Ground truth (T2) 8014 2783 

Accuracy percentage (T2) 95,24 92,38 

 

Regarding the rule-based classifier, it showed itself capable of identifying regions 

with 98.34% accuracy, when considering a ±2 error margin acceptable. This result 

was obtained by manually inspecting 1500 distinct regions from both datasets. No 

distinction was made between cellular or parasitic regions.  

 

To train the SVM classifier, the log-likelihood ratios and their first and second order 

derivates were computed from mixture modeling 150 random clustered regions. The 

SVM classifier was trained using John Plat’s sequential minimal optimization algo-

rithm and an RBF kernel [14]. Validation was performed through a 66% sequential 

split (SS), for which the classifier obtained an 85.3% classification accuracy. 

5.2 Stress Testing 

In order to assert our method’s real-world applicability, the computed infection ratios 

were compared with each of the three manual annotations. To account for inter-person 

variation, annotation values were modeled as a normal distribution and the method 

considered accurate if its output did not deviate more than 2 standard deviations from 

the mean value. Intra person variance was eliminated from this test, as each subject 

was instructed to carefully perform the annotations in a single pass. Table 2 presents 

the acceptable error margins for both trials. 



Table 2. Stress-test error margins for both trials. 

 Cells (total) Parasites (total) Infected Cells 

Annotation Mean (T1) 3020 4037 1873 

Annotation Standard Deviation (T1) 885 1110 546 

Algorithm Error (T1)  1353 1574 947 

Annotation Mean (T2) 5069 1967 1024 

Annotation Standard Deviation (T2) 294 34 38 

Algorithm Error (T2) 223 133 28 

 

 
In trial one we observe a large standard deviation, both in the cellular and parasitic 
counts, which also has a bleeding effect into the infect cell count. Due to these large 
discrepancies, the method easily fits within the defined boundaries, actually being 
closer to one standard deviation in total parasites and infected cells. Hence, the method 
performs in a manner suitable for real-world application for images exhibiting similar 
experimental conditions as trial one.  
Regarding trial two, the manual annotation discrepancies seen in trial one are no longer 
present, thus contributing to the low standard deviation verified. This further increased 
the error observed in the segmentation results. Although the algorithm error in total 
cells and parasites for trial two is not considerable in absolute numbers, it is in relative 
distance to the standard deviation, which translates to an error of over 3 standard devia-
tions for the total cell count.  

In sum, the method passed all tests, except the parasite detection category in trial two. 

Since this trial presented little to no multi-nucleic regions, no fault could be attributed 

to the classification step. Thus, the low parasitic detection (and ensuing error) falls 

upon the segmentation process, indicating future improvements should be directed at 

this step. The results indicate our method is robust to highly cluttered images, being 

able to expertly split region clusters and compute infection ratios. 

6 Conclusions 

In this work a robust, automatic analysis methodology for cell and parasite detection in 
fluorescence microscopy imaging was suggested. The proposed method has shown 
itself robust to poor lighting conditions and high cluttering indexes, falling well with-in 
the error margins observed in expert biomedical researcher annotations. 
The obtained results demonstrate the method is capable of performing the image analy-
sis task adequately and in less time than a human expert. Being a computer program, 
the method also boasts from being immune to traditional human errors related to dis-
traction, fatigue or subjectivity. Since human errors are the major source of ambiguity 
in the traditional annotation process, we consider our alternative to be a more suitable 
choice. This claim is supported with the fact that the method has a fixed error margin; 
meaning, the error does not randomly vary through time, as human error does. The 
attained results in both stress tests further support our claim, proving the method’s 
suitability for this specific task. As an added benefit, using the proposed method two or 
more drug trials can be safely compared as to their effectiveness, whereas if consider-



ing human error, the comparison would require validation via multiple annotations to 
attenuate the uncertainty generated by inter and intra-person variance. 
Future work should focus on the methods used in the segmentation step, possibly em-
ploying mean shift or normalized cuts techniques, as well as increasing the training 
datasets of both classifiers. The built processing pipeline was made to be modular and 
applicable to other image types, thereby easily expandable to solve similar problems. 
This work has been successfully integrated with a pre-existing image annotation 
framework and is currently used in the INEB/IBMC laboratories in Portugal. 
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