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Abstract. This work addresses the issue of automatic organic component detection 
and segmentation in confocal microscopy images. The proposed method performs 
cellular/parasitic identification through adaptive segmentation using a two-level 
Otsu’s Method. Segmented regions are divided using a rule-based classifier modeled 
on a decreasing harmonic function and a Support Vector Machine trained with fea-
tures extracted from several Gaussian mixture models of the segmented regions. Re-
sults indicate the proposed method is able to count cells and parasites with accuracies 
above 90%, as well as perform individual cell/parasite detection in multiple nucleic 
regions with approximately 85% accuracy. Runtime measures indicate the proposed 
method is also adequate for real-time usage. 

 

1 Introduction 

Leishmania is the parasite responsible for Leishmaniasis, a disease currently affecting 
over 12 million people throughout 88 countries [1]. Leishmaniasis is treatable by 
chemotherapeutics, which, nevertheless, suffer from poor administration regimens 
and high host toxicity [2]. Although the disease is not generally deadly, it severely 
damages the immune system, leaving the body exposed to other deadly pathogens, 
which often prove fatal [3]. The inadequate means to treat Leishmaniasis render the 
research for new treatments an urgent task.  

Research in microscopy imaging produces large amounts of data, which requires 
anywhere from full days to weeks to classify and annotate. In a single laboratory the 
number can easily ascend to thousands of images with merely a dozen different exper-
iments. Not only does this detract the researchers from exploring new alternatives, as 



it also introduces inter-person variance, as many images are extremely cluttered and 
contain several hundreds of cells and parasites. This results in a time consuming and 
mentally straining process, which expresses itself as a decaying function over time as 
the subject gets tired, frustrated or bored. 

These reasons justify the need for the development of automatic mechanisms that 
are able to replace or aid researchers in the annotation task, for which and to the best 
of our knowledge no current solution exists. The proposed method provides a fully 
automatic, real-time pipeline for the identification of cells and parasites in Leishmania 
infected microscopy imaging, thus enabling more accurate annotations. 

Pertaining this paper’s organization, it is structured as follows. Section 2 describes 
the main characteristics of fluorescence microscopy imaging, as well as the dataset 
used in this study. Section 3 discusses the state of the art in cell identification and 
segmentation in microscopy imaging. Section 4 briefly describes the proposed meth-
od, followed by the description of its steps. In section 5, the results for the segmenta-
tion step and the implemented classifiers are presented. Finally, section 6, presents 
conclusions on the developed work, commenting on its performance and readiness for 
real-world applicability. 

2 Fluorescence Microscopy Imaging 

In contrast to the classical optical microscopy, the use of fluorescence microscopy 
allows simultaneous labeling of different cell components, which can be easily distin-
guished based on the fluorescence properties of their specific dyes [4]. The images 
collected for this study used three fluorophores, which emitted three distinct wave-
lengths [4]. These corresponded to the cell nuclei DNA (in blue), cytoplasmic and 
nuclear DNA (in red) and the parasitic DNA (in green). This provided three separate 
sets of data per image (Figure 1), motivating the identification of cells, parasites and 
cytoplasm individually in the three channels as independent images.  

Although very popular, fluorescence microscopy imaging (FMI) presents some 
well-known issues that also characterized our dataset. The most noticeable issues in-
cluded: non-linear illumination (due to poor lighting conditions and sub-optimal exper-
imental setup), photo bleaching [5], varying contrast, Gaussian noise, chromatic aber-
rations and overlapping cells, as well as parasites (due to various focal planes). 

In this study 794 fluorescence microscopy images from random drug trials with dif-
ferent experimental setups were collected and used. These images were collected 
through a light microscope and annotated manually by a Leishmania research team at 
the INEB/IBMC laboratory. Refer to section 6 for further details.  



 
Fig 1. Details of a fluorescence microscopy image. a) Original image; b) Cell nuclei channel; c) 
Parasite nuclei channel; d) Cytoplasmic channel. 

3 Related Work 

Microscopy image analysis has been an active field for several decades. In related 
work, Liao et al. [6] used a simple thresholding method, coupled with mathematical 
morphology and contextual shape detection to detect white blood cells. However, their 
approach does not tolerate cells outside the defined conditions (e.g.: poorly segmented 
regions, forming a cell cluster region). An automated method for cellular membrane 
segmentation is described in [7]. This method also allows the reconstruction of un-
stained tracts through the nuclear membranes as a spatial reference. Jiang et al. have 
also proposed white blood cell segmentation using scale-space filtering and watershed 
clustering in HSV color space [8]. 

Park has proposed bone marrow cell segmentation through an iteratively relaxed 
watershed algorithm [9]. However, this work is sensitive to illumination and noise 
conditions, since it overly relies on the fixed mean color values of each patch for the 
relaxation procedure. Begelman [10] performs cell nuclei segmentation using color, 
shape features and a fuzzy logic engine. This work is more robust than the aforemen-
tioned one because the extracted shape features, serve as an auxiliary classification 
input. However, it is still not able to account for non-circular geometries or abnormally 
colored cells due to the implemented rules’ simplicity. 

Yu proposes using an adaptive thresholding technique to detect cell nuclei, which 
are then expanded via level sets to determine cell boundaries [11]. Yan proposes a 
similar approach [12]. Yan improves on Yu by replacing the adaptive thresholding 
with a distance map of the initial adaptive histogram-based thresholding step. This 
distance map is then used to create a watershed transform, serving as a region list rep-
resenting the level-set seed points (Figure 2). The only drawback to this approach is 
that it is not able to deal with highly cluttered images, as the distance map would not 
provide enough information to accurately parameterize the watershed transform, thus 
leading to an erroneous number/location of seed points for the level-set step. 



 
Figure 2. Segmentation example of the method proposed in [12]. (a) Patch taken from original 
DNA image. (b) Binary thresholding result of (a). (c) Distance transform of (b); (d) Result of 
the watershed algorithm on (c). (e) Labeling nuclei by combining (b) and (d). 

From this review, it is clear that most of the literature does not attempt or is unable to 
deal with highly cluttered or overlapped image regions. This is a major concern in 
microscopy image analysis as the great majority of real-world data is heavily cluttered 
and saturated. The proposed method in this paper aims at addressing this issue. 

4 Proposed Method 

The proposed method focuses on developing robust methods for identifying and seg-
menting cellular and parasitic agglomerations in confocal microscopy images. The 
method starts by splitting the original image f in three channels: fc (blue); fp (green); 
fcyt (red). Each channel is then normalized and segmented through Otsu’s Method 
[13]. This yields three region vectors, corresponding each one to cellular DNA, para-
sitic DNA and weak1 DNA signatures (cytoplasm). Low-level features are computed 
for the first two aforementioned region vectors, and then used to train a rule-based 
classifier and a Support Vector Machine, both of which attempt to classify each re-
gion as to how many cells or parasites it contains. To resolve disputes between these 
two classifiers, a voting system taking into account both of the classifiers’ error mar-
gins is employed. Each region is then further segmented into the predicted number of 
sub-regions by Gaussian unmixing [17]. Figure 3 can be inspected bellow for a more 
structured understanding of the described pipeline. 
 

 
Figure 3. Developed method’s architecture. 

                                                             
1 In order to register a weak DNA signature, this fluorophore must be highly sensitive. Thus, it also regis-

ters the cell nuclei’s DNA. Since the cell nuclei can be trivially subtracted through set operations in-
volving the cell channel, we denominated this channel as the cytoplasmic channel. 



4.1 Pre-Processing and Segmentation 

The method first splits each of the target image’s f color channels, as they are inde-
pendently processed. Each image channel is then normalized and segmented into 
background and foreground components. An initial study on the general image char-
acteristics was conducted in order to choose an appropriate segmentation technique. 
In this study, the intensity values of 120 randomly selected images presented clear bi-
modal distributions for all color channels (Figure 4).  

 
Figure 4. Bimodal distributions observed in the RGB components of 120 images (averaged). 
A) Red color component; b) Green color component; c) Blue color component. 

Thus, Otsu’s Method presented itself as a fitting approach due to its low temporal 
and spatial complexity, non-parameterisable characteristics and segmentation principle. 
Otsu’s Method’s principle assumes a bi-modal distribution in the target dataset, for 
which it attempts to determine an optimal threshold value t by minimizing intra-class 
variance (σ) [13]: 

σb
2(t) = σ 2 - σω2(t) = ω1(t) ω2(t) [µ1(t) - µ2(t)]2  (1) 

Each color channel was binarised using Otsu’s Method and then proceeded to a 
connected component analysis [18], resulting in a region vector representing the cel-
lular, parasitic and cytoplasmic regions present in the image. Note that the cytoplas-
mic regions are not used in this work, as they are intended for associating cell-parasite 
pairs. They were, however, computed and integrated into the method in hindsight of 
future work. Figure 5 depicts the result of the segmentation step for the cellular chan-
nel.  

 
Figure 5. Segmentation output of a moderately cluttered image. a) Original image; b) Segmen-
tation output; c) Visual representation of the cellular region vector obtained from the connected 
component analysis (randomly color-coded). 

Following the region extraction, various low-level features were computed for each 
region. From these we highlight the ones with greatest classification potential, which 
were later chosen to form the following feature vector Fi=[a, ll1..N, d1

1..N (ll), d2
1..N (ll)]. 

The features comprising the vector are: a, the area value (in pixels); ll, the log-



likelihood ratios for modeling the region with 1 to N Gaussian mixtures; d1(ll), the 
first discrete derivate of ll and d2(ll), the second discrete derivate of ll. The area fea-
ture was used to define the rule-based classifier. The log-likelihood ratios and their 
derivates were used to train the SVM classifier. 

4.2 Classification 

The classification step is based on the assumption that the regions obtained from 
the segmentation process may not always correspond to a single cell or parasite. 
Based on this, it attempts to discern in how many sub-regions each region must be 
split. This is achieved by employing two separate classifiers: a rule-based classifier 
(RBC) and a support vector machine (SVM) [20]. 

The RBC exploits the low area overlap percentage observed between cell and par-
asite pairs. This low overlap percentage is due to the high depth of field observed in 
the collected images, resulting in a near-perfect 2D cross-section of the 3D space 
within the tissue sample. Following this principle, and as single cells/parasites pre-
sented normal distributions, it was hypothesized that the area functions for cells and 
parasites could be approximated by a harmonic function. In fact, this was verified 
experimentally with the addition of larger multi-nucleic regions being less frequent. 
Thus, the functions present decreasing harmonic patterns. Although simple, this ap-
proach was found to be quite accurate (around 89.0% accuracy, hitting a maximum 
value of 98,9% when considering an error of ±2 regions as acceptable). Figure 6 illus-
trates a detail for one of the observed decreasing harmonic functions.  

 
Figure 6. Detail of a decreasing harmonic function described by the normalized (cellular) area 
values of 120 randomly sampled images (~870 regions per image: 106.318 region samples 
total). Horizontal axis: area values; Vertical axis: area value occurrences. 

In light of this finding, the classifier was programmed with rules reflecting these func-
tions and taught to ignore values outside its knowledge space, as there was no data to 
accurately model regions over 10 cells or parasites. Note that cells and parasites each 
have their own harmonic function, since their area distributions do not exhibit the 
same standard deviation. 

The SVM classifier relies on the concept that circles and ellipses can be described 
as Gaussian distributions and, as macrophages and parasites partake such geometry, 
clusters of these objects can be formulated as a mixture problem. Our conjectured 
hypothesis was that: as mixtures are added to the modeling process of each region, the 
improvement rate is described in the log-likelihood ratio evolution sequence. Thus, if 
an initial annotated dataset with the correct number of mixtures N is available, it 



should be possible to model a function that is able to predict this N for new, non-
annotated observations. Following this hypothesis, the classifier was trained with a 
subset of features from the main feature vector, consisting of the log-likelihood ratios, 
it’s first and second order discrete derivates. The training set was obtained from 
roughly 150 regions, modeled with N = [1..15] Gaussian mixtures. Various machine-
learning classifiers were tested. Ultimately, a SVM model was chosen as it achieved 
the highest (85,3%) sequential split and cross-validation classification rates. 

4.3 Declustering & Association 

Having obtained a prediction for the number of nuclei in each region, these were un-
mixed using the Expectation-Maximization [14] method. The algorithm was parame-
terized with a minimum standard deviation of 1x10-6, and a maximum of 200 itera-
tions. To minimize runtime, the seeds for the centroids of each mixture were set by 
the averaged centroids of a 10 fold cross-validated K-Means. Figure 7, portrays the 
meth-od’s expert performance, even in the presence of large nucleic clusters. 

 
Figure 7. Several declustering examples for 6, 4, 3, 5 and 11 region clusters. a) through e) 
Original region patches. f) through j) Respective declustered patches. 

Since not all biomedical researchers use the same annotation guidelines, two routines 
representing the two most popular techniques [16] were implemented: 

• If the cell overlaps with one or more parasites; 
• If a parasite is within a certain radius (~50% of the average cell radius). 
 
Cellular and parasitic cytoplasmic membership was computed via set algebra on the 
region vectors. The radius was calculated using the Euclidean between the centers of 
mass and boundaries of each declustered region. 

5 Results 

To appraise the proposed method, the segmentation and classification steps were in-
dividually assessed. For this, two stress datasets (DSA, B) were built. Dataset A tested 
the segmentation step by presenting dim and out-of-focus conditions, while dataset B 
included highly clustering images, thus straining the classification step. Three bio-
medical researchers provided the ground truth by manually annotating both datasets. 



Researchers were asked to carefully perform the annotations in separate days and 
double-check them, so as to minimize human error. 

5.1 Segmentation 

Since the method assumes that the cell/parasite identification process is not complete-
ly performed in the segmentation step, multi-nucleic regions were considered as well 
segmented results. A region was considered ill segmented if: a) it was not detected or 
b) its geometry was not correctly identified. Table 1 presents the obtained detection 
accuracies on both datasets, when compared with the ground truth. 

Table 1.  SEGMENTATION ACCURACY RATINGS 

 Macrophages Parasites 
Segmentation total (DSA) 3916 5257 
Ground truth (DSA) 4025 5572 
Accuracy percentage (DSA) 97.29 94.35 
Segmentation total (DSB) 4813 1832 
Ground truth (DSB) 5034 1981 
Accuracy percentage (DSB) 95.60 92.50 

5.2 Classification Results 

As dataset B possesses almost no testing data for either classifier due to its low clus-
tering index, both classifiers were tested with data extracted from randomly selected 
regions in each of dataset A’s images. Care was taken so that the data was divided, as 
equally as possible, between each class. The rule-based classifier’s results are detailed 
bellow, in Table 2. No distinction was made between cellular or parasitic regions. 

Table 2.  RULE-BASED CLASSIFIER ACCURACY RATINGS 

Class 
0 Error Mar-
gin (correct) 

±1 Error 
Margin 

±2 Error 
Margin 

±3 Error 
Margin 

0 (noise) 0.94 0.06 0.00 0.00 
1 0.85 0.12 0.03 0.00 
2 0.84 0.13 0.02 0.01 
3 0.83 0.11 0.04 0.02 
4 0.86 0.09 0.03 0.02 
5 0.93 0.06 0.01 0.00 
6 0.93 0.05 0.01 0.01 
7 0.94 0.04 0.02 0.00 
8 0.95 0.03 0.01 0.01 
9 0.96 0.03 0.01 0.00 

 
It is clear that as the number of nuclei increases, the classifier’s error margins 

quickly decrease. The reason behind this is that, as the number of nuclei present in a 



region increases, the more the area value (normalized to the number of nuclei) approx-
imates the distribution’s mean value.  

As previously mentioned, the log-likelihood ratios and their first and second order 
derivates were computed from mixture modeling 150 random clustered regions. These 
were then used to build several classifiers using Weka [15]. From these, Table 3 high-
lights the ones with the highest accuracy. All methods were validated through 2 and 
10-fold cross validation (CV), as well as a 66% sequential split (SS). Ultimately, the 
SVM classifier was chosen due to its superior accuracy results. As with the RBC, care 
was taken so that the data was divided uniformly between classes. 

Table 3.  MACHINE-LEARNING CLASSIFIER ACCURACY RATINGS 

Validation Type C4.5 [19] Best-First Search [19] FFNN [19] SVM [19] 
Sequential Split 79.4% 82.4% 82.4% 85.3% 
10-fold 
Cross Validation 79.4% 67.6% 70.6% 76.5% 

2-fold  
Cross Validation 69.2% 69.2% 61.5% 69.2% 

5.3 Execution Times 

In order to assess the method’s real-time capabilities, the running times for each step 
were computed in both datasets. Table 4 compares the mean running times of the 
proposed method, measured in seconds, with the mean annotation time for each da-
taset across subjects. The mean number of regions for dataset A was ~203.5 and 
~607.3 for dataset B. The obtained results show that, even with a computationally 
taxing approach, the method is capable of analyzing images considerably faster than 
human experts. Thus, real-time annotation proves a feasible reality, albeit with room 
for small code improvements, such as parallelization techniques. 

Table 4.  MEAN RUNTIMES AND STANDARD DEVIATION FOR THE PROPOSED METHODS VARIOUS 
STAGES (IN SECONDS). THE TESTS WERE RUN ON A LAPTOP WITH AN INTEL DUAL CORE T2410 2,0 GHZ 
CPU, 4 GB RAM, RUNNING WINDOWS 7 32-BITS. NO GRAPHICAL ACCELERATION WAS USED. 

 Segmentation Classification Declustering Total Annotation 
Dataset A 0.205 s 1.156 s 0.197 s 276.3 s 436.4 s 

Dataset B 0.287 s 1.272 s 0.316 s 923.7 s 1395.7 s 

6 Conclusions 

This work has suggested a robust, automatic analysis methodology for cell and para-
site detection in fluorescence microscopy imaging. The proposed method has shown 
itself robust to poor lighting conditions and high cluttering indexes, falling well with-
in the error margins of expert biomedical researcher annotations. 

The obtained results demonstrate this method is capable of performing the image 
analysis task adequately and in less time than a human expert. Being a computer pro-
gram, the method also boasts from being immune to traditional human errors related 



to distraction, fatigue or subjectivity. Since these human errors are the major source of 
ambiguity in the manual annotation process, we consider our alternative to be a more 
suitable choice. This claim is supported with the fact that the method has a fixed error 
margin, meaning, the error does not randomly vary through time, as human errors do. 
Thus two or more drug trials can be safely compared as to their effectiveness, whereas 
if considering human error, the comparison requires validation through multiple con-
firmations. 

Future work should focus on the methods used in the segmentation step, possibly 
employing mean shift or normalized cuts techniques, as well as increasing the training 
datasets of both classifiers. The built processing pipeline was made to be modular and 
applicable to other image types, thereby easily expandable to solve similar problems. 
This work has been successfully integrated with a pre-existing image annotation 
framework and is currently being used in the INEB/IBMC laboratories in Portugal. 

7 References 

[1] Ryan K. J., Ray C. G. 2004. Sherris Medical Microbiology. McGraw Hill. pp. 749–754. 
[2] Myler P., Fasel N. 2008. Leishmania: After The Genome. Caister Academic Press. 
[3] Jeronimo S. M. B., DeQueiroz-Sousa A., Pearson R.D. 2007. Leishmaniasis. In: Goldman L, 

Ausiello Deds. Cecil Medicine. 23rd Ed. Philadelphia, Pa: Saunders Elsevier:Ch: 369. 
[4] Lichtman J. W. and Conchello J. A. 2005. Fluorescence Microscopy. Nature Publishing Group. 
[5] Spring K. R. 2010. MicroscopyU: Introduction to Fluorescence Microscopy. 
[6] Liao Q., Deng Y. 2002. An Accurate Segmentation Method For White Blood Cell Images. Pro-

ceedings IEEE International Symposium on Biomedical Imaging, pp. 245-248. 
[7] Ficarra E., Cataldo S. D., Acquaviva A., Macii E. 2011. Automated Segmentation of Cells With 

IHC Membrane Staining. IEEE Transactions on Biomedical Engineering, Vol: 58, Issue: 5. 
[8] Jiang K., Liao Q., Dai S. 2003. A Novel White Blood Cell Segmentation Scheme Using Scale-

Space Filtering And Watershed Clustering. Proceedings of ICMLC. 
[9] Park J.  and Keller J. M. 1997. Fuzzy Patch  Label  Relaxation  in Bone  Marrow  Cell  Segmenta-

tion. International Conference on Computational Cybernetics and Simulation, pp: 1133–1138. 
[10] Begelman G., Gur E., Rivlin E., Rudzsky M., Zalevsky Z. 2004. Cell Nuclei Segmentation 

Using Fuzzy Logic Engine. Proceedings IEEE International Conference on Image Processing. 
[11] Yu W., Lee H. K., Hariharan S., Bu W., Ahmed S. 2008. Level Set Segmentation of Cellular 

Images Based on Topological Dependence. ISAVC. 
[12] Yan P., Zhou X., Shah M., and Wong S. T. C. 2008. Automatic Segmentation of High-

Throughput RNAi Fluorescent Cellular Images. IEEE Transaction On Information Technology In 
Biomedicine, Vol. 12, No. 1. 

[13] Nobuyuki Otsu (1979). "A threshold selection method from gray-level histograms". IEEE Trans. 
Sys., Man., Cyber. 9 (1): 62–66. 

[14] Freeman H. 1961. On the encoding of arbitrary geometric configurations. IRE Transactions on 
Electronic Computers, pp:260-268. 

[15] Neal R. A., Croft S. L. 1984. An in-vitro system for determining the activity of compounds 
against the intracellular amastigote form of Leishmania donovani. Journal of Antimicrobial 
Chemotherapy, Vol. 14, Issue: 5, pp: 463-75. 

[16] Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I. H. 2009. The WEKA 
Data Mining Software: An Update. SIGKDD Explorations, Volume 11, Issue 1. 

[17] Douglas Reynolds. Gaussian Mixture Models. MIT Lincoln Laboratory, MA 02140, USA. 
[18] Gonzales and Woods. Digital Image Processing, 3rd Ed. (DIP/3e). 2008. 
[19] Bishop C. M. 2007. Pattern Recognition and Machine Learning. Springer. ISBN: 0387310738. 

 


