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ABSTRACT

The usage of data mining models has the main purpose

of discovering new patterns from dataset analysis by ex-

tracting knowledge from data and converting it to infor-

mation. The most challenging part of problem solving is

not the generation of high number of instances in dataset,

most often hard to understand, but the interpretation of all

those instances to extrapolate information about it. Simu-

lation of coastal ecosystems is used to replicate some real

conditions related with physical, chemical and biologi-

cal processes, and produces large datasets from which it

could be deduced some information about attributes be-

haviors. This paper relates the use of Decision Tree mod-

els to analyze the growth of bivalve species in an ecosys-

tem simulation. With a set of attributes that represents

the water quality in certain modeled regions, the usage of

Decision Tree is intended to identify the most significant

attribute conditions, which could justify the growth be-

havior for each analyzed species. This approach aims the

creation of new information about how water conditions

should be to promote a healthy and fast growth of the

analyzed species, being useful to know in which zones

the bivalve should be seeded, and which are the condi-

tions that aquaculture producers should afford to benefit

the quality of its crops.

INTRODUCTION

Modeling and simulation processes are intended to pro-

vide realistic environment for the analysis of a certain

simulation. The simulated area that was used to obtain

the final results refers to Sango Bay in China, in which

were modeled hydrodynamic and biogeochemical vari-

ables (Duarte et al., 2003). All these results were pro-

vided by the EcoSimNet framework that is a platform for

simulation and support decision-making (Pereira et al.,

2009).

The large data set analyzed in this study is the sim-

ulation result of a lagoon ecosystem, modeled as two-

dimensional vertically integrated. Partial differential

equations were used to provide dataset attributes that de-

scribes different species, water temperature, water qual-

ity, seeded cells position, etc. The simulation is based

on a finite difference bathymetric staggered grid with 35

lines by 32 columns, generating 1120 cells, with spatial

resolution of 500m (Pereira et al., 2009). The aquacul-

ture doesn’t use all the 1120 representative cells of the

area model - only 352 cells were chosen to seed - and

the simulation covers one year and a half of real-time,

the bivalve’s growth cycle. All this information results in

800 000 instances for the final simulation dataset, being

important the implementation of data preparation phases,

first to remove not relevant information, and secondly to

choose only the pertinent attributes to the analysis.

The dataset used has several attributes, being a set

of them a representation of water quality in aquacul-

ture. The subset selection of these attributes is a common

problem in the data mining models, due to its improve-

ment of performance (Quinlan, 1996). In the case of

Decision Tree models, that are widely used in data min-

ing and decision support applications (Pach and Abonyi,

2006) and specifically the usage of C4.5 algorithm, al-

lows an efficient analysis of continuous variables, which

is a characteristic of simulated environments. With this

approach, we could obtain a large spectrum of corre-

lated variables that describe how all the water conditions

should be to promote a certain growth behavior.

Initially this paper tells about the State of the art, in

other words, the developed works and studies related

with bivalve’s growth behavior and its physiology pro-

cess. Thereafter it will be presented the C4.5 algorithm,

which was the algorithm used for the construction of De-

cision Tree, and the Section Dataset Preparation that sets

out the preprocessing phases to prepare the dataset used,

describing the different phases that composes it. Sec-

tion Implementation refers to the implementation phase

that has the purpose to provide the final dataset used to

C4.5 algorithm Decision Tree appliance. Section Exper-

iments is the section in which experiments are described

seeking the best values to apply in its parameters. Sec-

tion Results shows the obtained results, followed by the

Section Conclusions, in which the results are discussed
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reaching some conclusions about the approach used and

the attributes relations.

STATE OF THE ART

In the last decades many authors studied the ecosys-

tem properties, aiming a better understanding of how bi-

valves grow and its physiology could be influenced. Au-

thors like Gilbert (Gilbert, 1973), Bachelet (Bachelet,

1980), Appeldoorn (Appeldoorn, 1983) and Beukema

(Beukema and Meehan, 1985) claimed, in the early 80’s

and 90’s, that temperature and food quality are two of

the most important factors influencing the bivalve phys-

iology. In the late 90’s, Smaal & Haas also contributed

proving that seston concentrations and chlorophyll-a lev-

els near the bottom are generally higher than surface

values, showing the importance of suspended particu-

late matter - Boundary SPM concentration (Smaal and

Haas, 1997). A review made by Saxby in Western Aus-

tralia, year 2002, that includes several sites like Seto

Inline Sea in Japan and Saldanha Bay in South Africa,

proves that phytoplankton - high values affects positively

- along with nutrients, water temperature and salinity -

prolonged exposure to low salinity mays have depressed

all growth parameters - affects the bivalve physiology

and food quality (Saxby, 2002).

On the other hand, the technology and tools to

reach these conclusions are also significant. The au-

thor Michel R. Claereboudt used the GMDH algorithm

(Group Method of Data Handling) to achieve some of

these results. This algorithm is an inductive process

that selects the best solutions for a given problem using

the external criterion (Claereboudt, 1994). Despite the

distinct approach of this algorithm and C4.5 (Quinlan,

1992), both reached good results in this context.

C4.5 ALGORITHM

The most common utilization of Decision Trees (DT)

lies in the classification of instances from well-known

datasets. There are two types of datasets that are manda-

tory in classification method, which are the training

dataset, and the test dataset. The first one lies about the

instances that are already classified, and the second tells

about the instances that have to be classified based on the

training dataset. For the construction of DT, all the at-

tributes are tested as root nodes using a criterion for split,

that can be a binary or a multi-way split, until the most in-

formative attribute is found. The dataset is then divided

by the root node split, and recursively subsequent trees

are calculated, utilizing the partitioned dataset, until all

samples for a given dataset belong to the class.

Decision Trees are attractive in the utilization of data

mining models due to its intuitive representation (easy

to understand by humans), its relatively fast construc-

tion, compared with other models, and its comparable or

superior accuracy to other models. The utilization of a

Decision Tree implies an algorithm that guides the con-

struction of nodes and leafs. The nodes of DT depicts

the attributes of dataset, and leafs represent the labeled

instances, being the C4.5 algorithm chosen for its con-

struction (Quinlan, 1992). This algorithm is one of best-

known and most widely-used in learning models, allow-

ing the analysis of numeric attributes, which is the case

of our problem. The split criterion used in this problem

is the Gain Ratio, instead of Information Gain, due to the

high levels of entropy (common in continuous variables).

The choice of this criterion is well explained in the Im-

plementation Section.

In the problem solving method developed, the main

purpose was to take advantage of Gain Ratio criterion,

knowing the split nodes (conditions of the attributes an-

alyzed) and values of attributes that reach the classified

instances. Hence, was only used a set of classified in-

stances to produce a DT based on it, with the intent of

capture the Water Conditions of each labeled instance.

DATASET PREPARATION

The analysis of the dataset to be used, is an important

phase that could be done by some essential steps. CRISP-

DM (Shearer, 2000) is a Data Mining Process that aims

in dataset analysis, on a specific domain of problem. For

the growth behavior analysis, only the Data Preparation

phase of this model was used, which is constituted by sub

phases like Data Selection, Data Cleaning, Data Con-

struction, Data Integration and Data Formatting. Only

this phase was used due to the fact of merely clean and

construct data phases were needed, making the processed

dataset capable of being analyzed, and for further imple-

mentation of C4.5 algorithm.

In the first phase of the process, Data Cleaning, the

treatment is focused on outliers - data that is not com-

mon or expected to be different, that in this case repre-

sents a non-seeded cell - and missing data. The treatment

of these cases is positively important to the final result, in

which a consistent analysis couldn’t be made due to the

corrupted data and miss representation of information.

The used dataset from EcoSimNet framework, like pre-

viously said, is composed by a 32 lines by 35 columns,

but only 352 cells represent the total number of seeded

species, due to the existence of land cells and boundaries

of the ecosystem. These specific cases of non-seeded

cells could be easily found, since a very high number of

variables, e.g. shell length, was used. The option was to

remove the outlier’s cells, being this information not rele-

vant to the final analysis. To the amount of instances pro-

duced by the simulation of 731 iterations (days), the re-

moval of missing or corrupted data seems not very harm-

ful. The amount of instances per cells remains sufficient

to make a posterior good analysis.

The Subset Selection Problem is a very common prob-

lem of attribute selection for dataset analysis. This at-

tribute selection is totally relevant for our solution, since

the analysis is focused on the Water Quality, and not in

the whole information of the dataset. As we are deal-

ing with continuous variables - Modeling and Simulation
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(John et al., 1994) - the appliance of C4.5 algorithm is

adequate, and the attribute selection promotes its perfor-

mance.

The concept of Entropy may be informally defined as

the measure of impurity in a group example. It is max-

imum when we cannot predict nothing from the data -

the probability of choosing an example in a group is the

same - and it is minimum when we can say for sure that

a certain data will be chosen - the probability of choos-

ing an example is 1 (only one type of data in the group).

This concept is important, because the several data re-

garding the dataset have a high level of entropy that is a

characteristic of continuous variables. Due to the Data

Cleaning phase, the value of entropy was significantly

reduced, improving the efficiency of the work, being the

final result more consistent and credible.

After this step, we have to be aware of the attributes

that are important to achieve the main final purpose. The

initial dataset has the following attributes, excluding the

time step, position, and species information: Box depth:

depth of the seeded box; Dynamic height: height of the

water in a determined cell as tide’s result; U Velocity: ve-

locity of the water in the longitude orientation; V Veloc-

ity: velocity of the water in the latitude orientation; Salin-

ity; DIN: Dissolved Inorganic Nitrogen; Phytoplankton

biomass; POM: Particulate Organic Matter; TPM: To-

tal Particulate Matter; Water temperature; Zooplankton

biomass; Boundary NO3 concentration: nitrate - indica-

tor of water quality; Boundary POM concentration: Par-

ticulate Organic Matter; Boundary SPM concentration:

Suspended Particulate Matter; Boundary Zoo concentra-

tion.

After an analysis phase, in which we select the at-

tributes that are significant to the problem, the final selec-

tion attributes are the following: Boundary NO3 concen-

tration; POM; Phytoplankton biomass; Boundary SPM

concentration. All these attributes represent the quantity

of particulate matter and the level of pollution in the wa-

ter in which the bivalves are seeded.

The last step of this phase, is to separate the species

information for a further independent treatment. In

the EcoSimNet simulations, it was used three types of

species: Chlamys Farreri (scallops), Crassostrea Gigas

(oysters) and Laminaria Japonica (algae).

When the Data Preparation phase is concluded, the

main question that have to be made, regarding the main

goal of the problem, is: how can water quality influ-

ence the bivalve’s growth? Firstly we have to analyse

the growth behavior of some cells, in order to consider

if an improvement of growth could be made. Figure 1

is a representation of Chlamys Farreri growth behavior

(Scallop), from seed to harvest season, being each line a

single cell of the seeded grid simulated.

As can be seen from Figure 1, not all the cells have

the same behavior pattern, or even the same final shell

length when the harvest season occurs. This is a great

indicator to deduce the water conditions that promotes a

good bivalve growth. One of the purposes of this work

Figure 1: Chlamys Farreri Growth Behavior

is to answer the question above, with information that

can be understood by a regular person, provided by very

intuitive and easy seen representation methods.

Laminaria Japonica won’t be contemplated for further

analysis due to the lack of unusual and specific condi-

tions that could be explored to induce a good growth.

Hence, only Chlamys Farreri and Crassostrea Gigas will

be used to generate its correspondent Decision Tree, with

the C4.5 algorithm usage.

Using the derivative of growth species, we could clas-

sify the instances of simulation into Good and Bad

growth. This Quality Measure sub-section is intended to

establish a value (Threshold) that should separate these

two classifiers, in order of being capable to distinguish

the attribute circumstances that promote a certain growth,

in the final phase of this work. As previously said, the

growth derivative was used, represented by Figure 2, be-

ing these values a representation of growth registered in

a certain time step of the simulation - slope between two

neighbor time steps.

Which threshold represents better a quality measure?

It is the question that should be answered to reach a high

confidence in each species dataset analysis, in which the

number of instances per classification Good or Bad has

to be considerable and balanced. So, if the number of

Good classified instances is significantly low compared

with Bad classified ones, we could say that the dataset

could be biased due to the unbalanced number of in-

stances, and benefit one of the classifications. Hence, the

Threshold - value that separates the derivative function

of each growth species, into a good or bad label - will be

discussed in the following sections.
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Figure 2: Chlamys Farreri Derivative Growth Behavior

IMPLEMENTATION

The utilization of C4.5 algorithm lies in the fact of dataset

attributes generated from the EcoSimNet simulation pro-

cess being continuous. This algorithm was improved and

developed with different versions along time, and now is

capable of treat continuous attributes efficiently (Quin-

lan, 1996).

Relatively to the C4.5 algorithm parameters, the crite-

rion used was the Ratio Gain due to its more adequate

appliance, comparing to Information Gain. The fact

of dealing with high different values per attribute, nor-

mally found in continuous variables (Witten and Frank,

2005), like numeric values, the Information Gain ap-

proach could be biased, and overfitting could occur - se-

lection of non-optimal attribute for prediction. The Gain

Ratio is a based Information Gain method that takes into

account the number of attribute instances, reducing the

bias on high-branch attributes. The Information Gain is

a based Entropy method that takes into account the lower

value of entropy, high information gain value, to choose

the root of the calculated tree.

This type of criterion is used to calculate the root of a

tree that maximizes the Ratio Gain. Hence, the final tree

is the result of an iterative process that calculates the next

attribute to use, taking into account the previous one. So,

while the tree is constructed, the number of instances is

reduced due to the fact of previous attributes limitations

and produced leafs. Hence, with this parameters it is pos-

sible to modulate a consistent Decision Tree that fulfills

the goals of this project.

EXPERIMENTS

The RapidMiner 5 was the framework used to run the ex-

periments with different C4.5 algorithm parameters. It is

the most Data Mining framework tool used (KDnuggets,

2010), allowing the creation of Data Mining models, and

using the implementations of most relevant algorithms

for different types of domains, like classification, clus-

tering and item set mining.

The Minimal Gain parameter is the minimum value of

Gain Ratio that should occur in an attribute to be cho-

sen for tree expansion, and Minimal Leaf Size parameter

is the minimum number of instances that a leaf should

have in the Decision Tree. These were the two parame-

ters tested to reach a good Decision Tree representation

for growth conditions deduction. These parameters vari-

ation produces different numbers of nodes and leafs in

Decision Trees, and should neither be too high, nor too

low, due to the difficult interpretation of its representa-

tion.

Chlamys Farreri and Crassostrea Gigas species were

tested, and the relation between the Number of Nodes,

Minimal Gain and the Minimal Leaf Size will be pre-

sented.

Related to Chlamys Farreri species, it can be seen from

Figure 3 that best results are provided from the variation

of Minimal Leaf Size value between 25 and 100 and Min-

imal Gain value equal to 0.01 or 0.03. Value of Minimal

Leaf Size equal to 10 with Minimal Gain equal to 0.03

and 0.01 produces a very high number of nodes, which

is neither a good visual representation, neither easy to

deduce the conditions that promote a certain growth.

Figure 3: Chlamys Farreri: Number of Nodes

From figure 4 it is easy to see that the best results

of Crassostrea Gigas Decision Tree are for Minimal leaf

size between 30 and 50, with any value of Minimal Gain.

A good result could also be obtained with Minimal Leaf

Size value equal to 10, but only with Minimal Gain equal

to 0.001.

RESULTS

Each species has its own growth information in separated

datasets. For each species analysis, it will be presented

the relations of dataset labeled attributes.

An important observation that has to be made before

the tables analysis (Tables 1 thru 4), is that low values of

instances per conditions (set of rules that satisfy a certain

label: Good or Bad), do not discard the confidence inher-

ent to it. The purpose of this paper is to find the circum-
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Figure 4: Crassostrea Gigas: Number of Nodes

stances that could determine a certain growth, indepen-

dently of their number of instances. We are looking for

the specificity that water conditions could provide, sepa-

rating the two labels of associated growth. Another con-

sideration that should be made, is relatively to maximum

and minimum values, generated by the simulation frame-

work, from each attribute analyzed. The presented tables

will not represent these values, so we assume that when a

situation like NO3 < 4.5 and NO3 > 4.5, the NO3 values

should variate between its minimum possible value and

4.5, and between 4.5 and its maximum possible value,

respectively.

This analysis had two different intentions: Make a

qualitative evaluation of most significant attributes, and

compare two totally independent analysis: the Decision

Tree results, in which could be validated the computer

results, with the dataset visual analysis. Due to length

restrictions of the paper only the computer analysis will

be done.

Chlamys Farreri

As said earlier, a dataset was generated to obtain this type

of results. The number of instances that dataset contains

is 15 042, being 7724 (51%) labeled as Bad Growth,

and 7318 (49%) labeled as Good Growth. This dataset

follows the Java implementation metrics, being: Thresh-

old=0.015 and the Derivative Factor=1.

Figure 5 represents the Chlamys Farreri Decision Tree,

with the parameters: Minimal Size for Split=2, Minimal

Leaf Size=40, Minimal Gain=0.01, Maximal Depth=20

and Confidence=0.25.

From Figure 5 an analysis was made having originated

two different tables. One of them tells about a Good

growth conditions, Table 1, and the other Bad growth

conditions, Table 2.

Regarding Table 1, if Nitrate (NO3) levels are above

the 4.586 and Phytoplankton above 0.138 a good growth

will occur. To ensure this growth, the POM values should

be above 2.218. These water conditions should benefit

the Chlamys Farreri species growth.

Regarding Table 2, if NO3 levels are between 1.093

and 4.586, a bad growth will occur. To ensure this

Figure 5: Chlamys Farreri Decision Tree

Table 1: Good Growth: Chlamys Farreri

Leaf Confidence Total Conditions

NO3 > 4.586

Good 98.0 1419 Phytoplankton > 0.138

BoundarySPM > 22.862

Good 94.6 1499 NO3 ≤ 0.548

Phytoplankton > 0.001

NO3 > 4.586

Good 84.0 1514 Phytoplankton > 0.138

BoundarySPM < 22.862

POM > 2.218

growth, the POM value should be below 2.218. These

water conditions should worsen the growth of Chlamys

Farreri species.

Crassostrea Gigas

The next analysis lies in the Crassostrea Gigas species,

and dataset description. The number of instances of the

dataset is 19 991, being 10 397 (52%) labeled as Bad

Growth, and 9594 (48%) labeled as Good Growth. This

dataset follows the Java implementation metrics, being:

Threshold=0.02 and the Derivative Factor=1.

Figure 6 represents the Crassostrea Gigas Decision

Table 2: Bad Growth: Chlamys Farreri

Leaf Confidence Total Conditions

Bad 99.3 467 NO3 > 4.586

Phytoplankton = 0.138

Bad 98.6 4006 1.093 < NO3 < 4.586

POM > 2.961

NO3 > 4.586

Bad 87.3 133 Phytoplankton > 0.138

BoundarySPM ≤ 22.862

POM ≤ 2.21
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Table 3: Good Growth: Crassostrea Gigas

Leaf Conf. Total Conditions

Good 83.3 48 POM = 0.949

NO3 ≤ 0.336

POM = 0.949

Good 64.5 31 NO3 > 0.336

Phytoplankton > 0.297

BoundarySPM > 16.171

Good 54.6 18787 0.949 < POM ≤ 4.630

Table 4: Bad Growth: Crassostrea Gigas

Leaf Conf. Total Conditions

Bad 100.0 69 POM ≤ 0.725

POM = 0.949

Bad 99.2 258 NO3 > 0.336

Phytoplankton ≤ 0.297

Bad 88.4 190 POM > 4.630

Tree with the parameters: Minimal Size for Split=2,

Minimal Leaf Size=10, Minimal Gain=0.001, Maximal

Depth=20 and Confidence=0.25.

Figure 6: Crassostrea Gigas Decision Tree

Two different tables were generated when analysing

Figure 6. One of them tells about a Good growth con-

ditions, Table 3, and the other Bad growth conditions,

Table 4.

Regarding Table 3, if POM values are between 0.949

and 4.630 a good growth will occur. To ensure this

growth, the SPM values should be below 16.171. These

water conditions should benefit the Crassostrea Gigas

species growth.

Regarding Table 4, if POM values are higher than

4.630 and lower than 0.725, a bad growth will occur.

Low values of phytoplankton reinforce this growth. The

reported water conditions will worsen the growth of

Crassostrea Gigas species.

CONCLUSIONS

As bivalves are marine and freshwater mollusks, it is ob-

vious that with more pure water - less solid particulates

- the bivalves have better conditions to growth healthy

and rapidly. By the analysis made previously, it can be

deduced that water conditions influence the growth of bi-

valves.

This approach aims the creation of new information

about how water conditions should be to promote a

healthy and fast growth of the analyzed species, being

useful to know in which zones the bivalve should be

seeded, and which are the conditions that aquaculture

producers should afford to benefit the quality of its crops.

NO3 levels and POM values are important attributes

for the Chlamys Farreri species growth. These two in-

dicators should be controlled to provide guidance to bi-

valve physiology. High levels of water quality (NO3) and

low levels of particulates (water pollution) are needed to

produce a beneficial growth. We can see that relatively to

the growth of this species, the levels of NO3 are inversely

related.

POM and Phytoplankton are the most important at-

tributes for the Crassostrea Gigas species growth. We can

conclude that some medium values of POM can benefit

its physiology, as much as high values of Phytoplankton.

This medium values of POM could be justified by some

oyster species life cycle are composed by an attachment

to a rocky surfaces, that have some levels of impurity.

Phytoplankton describes the environment quality that are

important to any species growth, as Crassostrea Gigas.

The results of this study don’t accrue only for the bi-

valve production, but also for the public health. Since the

bivalve make part of humans feeding habits, the more

quality these species have, the more quality life we are

giving to people. With this work, producers can eval-

uate better the water conditions that promote the species

physiology, together with water quality for the ecosystem

health and the final consumer.

The application of Decision Tree shown to be a power-

ful tool to attribute analysis and its behavior and relation

with other attributes, and more specifically, the C4.5 al-

gorithm. Also, the Decision Tree is a very intuitive way

to deduce the attribute behavior, and representation tool

due to its simple and direct presentation. The C4.5 algo-

rithm has demonstrated to be a powerful tool in datasets

of continuous attribute, having different flexible param-

eters that can provide a better solution comparing with

different approaches from Decision Tree based.
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