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Abstract— In this paper we propose a general active audition
framework for auditory-driven Human-Robot Interaction
(HRI). The proposed framework simultaneously processes
speech and music on-the-fly, integrates perceptual models
for robot audition, and supports verbal and non-verbal
interactive communication by means of (pro)active behaviors.
To ensure a reliable interaction, on top of the framework
a behavior decision mechanism based on active audition
policies the robot’s actions according to the reliability of
the acoustic signals for auditory processing. To validate the
framework’s application to general auditory-driven HRI, we
propose the implementation of an interactive robot dancing
system. This system integrates three preprocessing robot
audition modules: sound source localization, sound source
separation, and ego noise suppression; two modules for auditory
perception: live audio beat tracking and automatic speech
recognition; and multi-modal behaviors for verbal and non-
verbal interaction: music-driven dancing and speech-driven
dialoguing. To fully assess the system, we set up experimental
and interactive real-world scenarios with highly dynamic
acoustic conditions, and defined a set of evaluation criteria. The
experimental tests revealed accurate and robust beat tracking
and speech recognition, and convincing dance beat-synchrony.
The interactive sessions confirmed the fundamental role of the
behavior decision mechanism for actively maintaining a robust
and natural human-robot interaction.

I. INTRODUCTION

Socially intelligent robots must be able to autonomously

interact with humans in natural environments by means

of active perception and interactive communication. Active

perception depends on a dynamic coupling between

perception and behavior, where the robot sensing coordinates

its actions while its actions should adapt to improve its

perception of the environment [1]. Interactive communication

can be verbal, through spoken and natural language, or

non-verbal, through embodied expressive behaviors. In

combination, both these forms of communication when

coordinated by active perception enable robots to exchange

information with their human partners while engaging in

turn-taking interactions and robustly responding to the shared

environment.
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When driven by audition, the creation of such socially

intelligent robots capable of interacting with humans in real-

world scenarios implies the integration of i) Computational

Auditory Scene Analysis (CASA) algorithms, able to

robustly localize, identify and continuously process live

acoustic signals [2]; ii) the design of autonomous (pro)active

behaviors, able to react or deliberate according to the

robot’s auditory perception of the environment; and iii) the

conduction of a robust and natural interaction by policing

the robot’s behaviors according to the principles of active

audition [1]. Hence, in this paper we propose a general

active audition framework for auditory-driven HRI, which

i) simultaneously processes speech and music on-the-fly, ii)

integrates perceptual models for robot audition, iii) supports

verbal and non-verbal interactive communication, and iv)

integrates a behavior decision mechanism based on active

audition, which coordinates the robot’s actions according to

the reliability of the acoustic signals for auditory processing.

To validate the framework’s application to general

auditory-driven HRI, we propose the implementation of an

interactive robot dancing system. The implemented system

integrates three preprocessing robot audition modules: Sound

Source Localization (SSL), Sound Source Separation (SSS),

and Ego Noise Suppression (ENS); with two parallel

modules for auditory perception: live Audio Beat Tracking

(ABT), and Automatic Speech Recognition (ASR). In

addition, the system integrates multi-modal behaviors for

verbal and non-verbal interaction, respectively through

speech-driven dialoguing and music-driven dancing; and

proactive behaviors to ensure a reliable auditory processing.

To fully assess the system, we set up experimental and

interactive real-world scenarios with highly dynamic acoustic

conditions, and defined a set of evaluation criteria. The

overall results confirm the application of the proposed

framework to general auditory-driven HRI.

II. RELATED WORK

Auditory-driven interactive robotic systems range from

musical [3] and dancing robots [4] to conversational

agents [5]. These are applied in different social contexts such

as entertainment, pedagogical, and therapeutic scenarios.

On research with dance-interactive robots, Kozima et al.

investigated the role of rhythmic engagement and the effects

of “interactional synchrony” in human-robot interactions

applied to education and child care [4]. By exploring the role

of imitation on embodied non-verbal communication, Tanaka

et al. used QRIO, an infant-size entertainment humanoid
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from Sony, for developing a dancing robot that could also

interact with children in educational settings [6].

Despite the interactive concepts of these approaches both

disregarded the problems inherent to robot audition, such

as the effects of noise, the consideration of multiple sound

sources, or the simultaneous processing of different acoustic

modalities (e.g., music and speech) [2]. By taking motor

noise into account for building musically-interactive robots,

Oliveira et al. [7] utilized a template-based ego noise

suppression scheme to suppress motor noise generated from

periodic motions of humanoid robots while estimating the

beat-times of musical pieces on-the-fly. On an interactive task

requiring the simultaneous speech recognition of multiple

speakers, Nakadai et al. [8] created a robot referee for

rock-paper-scissors sound games. Their robot applied sound

source localization and separation as a preprocessing to ASR,

and made use of a Masking Feature Theory (MFT) algorithm

for masking out unreliable features for speech recognition.

Postulating that whenever possible and needed a listening

robot should also actively improve its auditory processing,

Nakadai et al. proposed the concept of active audition,

which studies strategies to increase the Signal-to-Noise

Ratio (SNR) of the acoustic signals for robot audition [1].

In this pioneering work in the field, a humanoid robot

was designed to actively move its head for aligning its

microphones orthogonal to the processed sound source.

Later, and envisioning HRI applications, Okuno et al.

combined real-time active audition mechanisms with a visual

multiple-tracking system to create a robot receptionist and

a party companion robot [9]. Their active audition strategy

relied on sensorimotor control for focusing attention on each

individual human speaker.

By considering either the principles of active and robot

audition, in this paper we propose a general framework for

auditory-driven HRI applications. Based on this framework,

we implemented an interactive robot dancing system capable

of: i) dancing to the beat of the music; ii) understanding and

responding to human speech commands; and iii) keeping a

natural and robust interaction. The latter involved iv) dealing

with auditory noise sources of different natures; v) handling

continuous acoustic stimuli; and vi) actively ensuring a

reliable auditory processing.

III. ACTIVE AUDITION FRAMEWORK

The proposed active audition framework, depicted in

Fig. 1, comprises a set of bottom-up layers composed of:

• Sensing: corresponds to the physical environment

composed of interactive agents and sound sources (e.g.,

a robot, a human interactor, the spatial environment),

live acoustic signals (e.g., musical stimuli, human

speech, robot speech, and robot ego noise), and robot

sensors (e.g., microphones and motor encoders) to

acquire situated information about the agents’ body and

the acoustic environment.

• Filtering: corresponds to low-level processing

mechanisms (e.g., SSL, SSS, and ENS) applied to the

captured auditory signal for enhancing its quality and

reliability as a preprocessing to the Perception layer.

• Perception: corresponds to high-level perception

models applied to enhanced auditory signals towards

specific perceptual tasks (e.g., ABT and ASR). This

layer outputs high-level features (e.g., musical beats,

action commands) that conduct interactive behaviors

through the Behavior layer.

• Binding: this layer is responsible for transforming a set

of confidences provided by perceptual models, which

give information about the reliability of the acoustic

signals, into cost functions; and for combining them into

pseudo-continuous fitness functions that determine the

policies for the behavior decision.

• Mediation: this layer is responsible for assuring a

meaningful human-robot interaction while regulating

the acoustic signals based on the assigned fitness

functions. It acts as an arbiter that coordinates the

robot’s behaviors (i.e., actions) on-the-fly necessary to

maintain interaction and/or request specific actions to

improve the acoustic conditions.

• Behavior: this layer comprises the repertoire of all

the robot behaviors (e.g., dancing, speaking, decreasing

the music volume) used for maintaining interaction or

improving the acoustic conditions.

The proposed active audition framework represents a

general conception that can be extended with additional

auditory perceptual modules, new behaviors, and improved

mediation of the interaction. This mediation can combine

additional cost functions and consider new policies with the

objective of enhancing the reliability of auditory processing.

IV. INTERACTIVE ROBOT DANCING SYSTEM

Based on the general active audition framework described

in Fig. 1, we developed an interactive robot dancing system

that integrates a set of functional modules, described below.

A. Preprocessing robot audition modules

1) Sound source localization: The SSL module is

responsible for determining the location of each individual

sound source based on a multi-channel microphone input.

The integrated SSL implementation is based on the MUltiple

Signal Classification (MUSIC) algorithm [10].

2) Sound source separation: The SSS module is

responsible for splitting the mixed audio signal into the

individual sound sources discriminated by the SSL. The

integrated SSS implementation is based on Geometric High-

order Decorrelation-based Source Separation (GHDSS) [11].

3) Ego noise suppression: Upon each separated audio

signal (i.e., music and speech), contaminated with ego

noise from the robot’s actuators, we apply ego noise

suppression to separately enhance each sound source. The

integrated implementation is based on the template-based

ego noise suppression mechanism described in [12]. Using

instantaneous joint status data, of the actuators’ velocity and

position, this method estimates the ego noise data from a

large dataset of audio templates recorded in advance, and
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Fig. 1. Implemented interactive robot dancing system based on the proposed active audition framework.
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Fig. 2. Beat-synchronous
robot dancing generation.

applies spectral subtraction on each separated audio spectrum

to refine each independent acoustic signal. Moreover, in order

to prevent dominant peaks in the audio signals caused by

unpredictable bursting shudder noises generated by loose

mechanical parts of the robot (see [7] and [13]), we

reinforced the template-based ego noise suppression scheme

with a power filter set with a high empirical threshold.

B. Auditory perception modules

1) Automatic speech recognition: The ASR module is

based on Julius, an open-source large vocabulary real-time

ASR engine [14]. It makes use of feature vectors with 13

static Mel-Scale Log Spectrum (MSLS) features, 13 delta

MSLS features, and 1 delta power feature, all calculated

on-the-fly. The ASR acoustic model is decoded through a

real-time context-dependent Hidden Markov Model (HMM)

algorithm. This algorithm calculates a confidence about

the correctness of each recognized word given by the

scoring function of the recognizer’s confusion network. This

confidence function, c fS(n), is used by the system’s behavior

decision mechanism (see Section IV-D) as a measure of

reliability of the acoustic signal for speech processing.

2) Ego noise measurement: The level of ego-motion

noise, E(n), generated by the robot’s actuators is proportional

to the velocity of its moving joints. Thus, we compute E(n)
as the mean velocity of all the robot’s joints, v j, at frame n:

E(n) =
1

J

J

∑
j=1

v j(n), (1)

where J is the total number of joints (i.e., the degrees-

of-freedom (DoF)) provided by the robot. This measure

represents a confidence function, c fE(n), that informs the

system’s behavior decision mechanism about the reliability

of the acoustic signal for any auditory perceptual task

regarding the level of ego noise “contamination”.

3) Beat tracking: For performing live ABT over the

separated music signal we used IBT, a multi-agent-based

online beat tracker first proposed in [15]. This module’s

architecture is composed of: an audio feature generator

that parses the audio signal into a mid-level rhythmic

feature; followed by an agents induction function, which

(re-)generates new sets of hypotheses regarding possible

beats and tempi; and followed by a multi-agent-based

tracking algorithm. This algorithm assigns new hypotheses

to agents, proceeds to their online ranking and killing, and

outputs beats from the current best agent on-the-fly without

prior knowledge (i.e., without look-ahead) on the incoming

signal. In addition, IBT integrates a confidence mechanism

responsible for continuously monitoring the beat tracking

analysis of the signal based on abrupt changes in the score

evolution of the current best agent [13]. This confidence

function, c fM(n), represents a measure of the reliability of

the separated music signal for the task of audio beat tracking,

to be used by the system’s behavior decision mechanism. On

request, IBT can either regenerate its pool of agents with

newly induced hypotheses of beat and tempo, or reset itself

by killing all existing agents and restarting the system with

a new set of induced hypotheses.

C. Interactive robot behaviors

1) Non-verbal communication – music-driven dancing:

We designed three distinct robot dance motions to be driven

by the musical beat predicted by the ABT. Each is described

by cyclic dance step transitions within two manually

defined key-poses, which are interpolated in beat-synchrony

by an online point-to-point cubic spline interpolator. All

movements were designed a priori to be performable on

“beat-time” while providing a smooth dancing performance.

As depicted in Fig. 2, in order to ensure the desired beat-

synchrony, the robot dancing generator triggers new step

transitions at the time of each predicted beat event. In order

to overcome processing and communication delays between

the step transition request and the actual motion response,

the predicted time of each next beat event, b′n+1, is given by:
{

b′n+1 = bn +∆b−dn

∆b = bn −bn−1

, (2)

where ∆b is the current IBI (Inter-Beat-Interval) estimation

given by the time-difference of the last two beat events, bn

and bn−1, estimated by IBT and dn is the delay of the last
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robot motion response. This delay is re-calculated at the time

of every predicted beat event, bn, as follows:

dn = rn−1 −b′n−1, (3)

where b′n−1 is the timing of the previous beat event

prediction, and rn−1 represents the timing of the motion

response to the last step transition request. This response

timing is given by the time-frame, n, at which the robot

started moving in response to the last step transition request:

rn−1 = argn[E(n)] : E(n)> sthres, (4)

where E(n) represents the mean robot’s joints velocity at

time-frame n, given by (1), and sthres = 0.1 is an empirical

threshold value for E that marks the boundary at which the

robot is considered to be stopped or moving. Based on this

scheme, if the robot is moving at the time of a new step

transition request, the current, unfinished, step is immediately

transited to the next. If, on the other hand, the robot already

finished the current step, it halts until the time of the next

beat event prediction, before transiting to the next step. This

strategy assures the beat-synchrony of the motion despite the

motor-rate capabilities of the robot.
2) Verbal communication – speech-driven dialoguing:

The robot’s verbal communication is handled by a

Question/Answer (Q/A) dialogue management system based

on [8]. This dialogue manager receives dialog requests

from the ASR module, decides on dialog states, and

generates meaningful responses through action commands

sent to the behavior decision mechanism or speech responses

synthesized with VOCALOID.

D. Behavior decision mechanism

The behavior decision mechanism integrates the modules

of the last three layers of the framework (i.e., the Binding,

Mediation, and Behavior layers) and is responsible for

coordinating the human-robot interaction according to the

reliability of the acoustic signals for auditory processing.

This reliability is measured through the confidence functions,

c f (n), provided by the modules of the Perception layer, i.e.,

by the ASR, the ABT, and the ENS modules (see Section IV-

B). These respectively inform about the signal’s conditions

for speech, S, and music, M, processing, and about its level of

ego noise “contamination”, E. These functions are converted

into discrete costs, CY , according to empirically selected

thresholds, TY :

CY (n) =

{

1, if c fY (n)< TY

0, if c fY (n)≥ TY

, (5)

where Y = {M,S,E} represents the acoustic modality

considered by CY . Ultimately, these costs are weighted and

combined into fitness functions, FM(n) and FS(n). These

represent the policies which mediate different modalities

of interactive behaviors, i.e., respectively music-driven and

speech-driven (see Fig. 3), according to the reliability of the

acoustic signal for music, M, and speech, S, processing:
{

FM(n) =W S
MCS(n)+W M

M CM(n)+W E
MCE(n)

FS(n) =W S
S CS(n)+W M

S CM(n)+W E
S CE(n)

, (6)

where WY
X represents the discrete weight assigned to the cost

CY for the behaviors’ modality X . These weights assume

a measure of relevance about each cost for each specific

modality, enabling the representation of the policies into

general and extendable fitness functions. They permit the

disconsideration (e.g., setting the W S
M to zero since CS does

not inform about the reliability of the signal for music

processing) and/or the emphasis of specific cost functions

(e.g., giving higher weights for W M
M or W S

S since CM and

CS are the most relevant for their own modalities). Thus, in

our implementation the weights in (6) were set as: W S
M = 0,

W M
M = 2, W E

M = 1, W S
S = 2, W M

S = 0, and W E
S = 1.

These fitness functions can assume different levels of

fitnesses (i.e., decisions) that would trigger a different

class of behaviors for each interactive modality. According

to the deliberation of the assigned behaviors these can

be discriminated into a pseudo-continuous action-spectrum

ranging from active actions – low-priority responsive actions

generated to maintain the interaction; to proactive actions

– high-priority anticipative actions generated to assure a

reliable and robust interaction. These actions are depicted

in Fig. 3 for each specific modality of interactive behaviors.
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Finally, to reinforce the decision’s proactivity about the

speech-driven behaviors, whenever the ASR is not able to

recognize a speech command it assigns FS(n) = 2, regardless

of the current FS(n) value.

E. Software specifications

All of the system’s modules were implemented and

integrated into HARK (HRI-JP Audition for Robots with

Kyoto University). The robot control and communication

were handled by ROS (Robot Operating System). The

captured audio signals were processed at time increments

of 10 ms, using a Complex window of 512 samples and 32%

overlap for computing the audio spectrum. IBT was set with

an induction window of 5 sec in length, and constrained to

a tempo octave between 40 and 80 beats-per-minute (bpm).

The restriction to a tempo octave was to avoid metrical-

level interchanges that would compromise the stability of

the system. This interval represents half1 of the tempo

range defined by the “preferred tempo-octave” (i.e., 80 to

160 bpm), which fits the majority of tempi distributions [16].

The restriction to low tempi was to respect the robot’s

1Considering the music tempo as a duple multiple of the actual perceptual
tempo is acceptable for binary meters.
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motor limitations (limited to ≈80 bpm) while dancing in

beat-synchrony. The template database for the ego noise

suppression module was built with the three dance motions

described in Section IV-C.1 generated at random tempi, also

in the range of 40 to 80 bpm, for a total of 5 min. The ASR

engine was configured with one acoustic-model in Japanese,

for the experimental testing of our system; and one other

in English, for the interaction session. The Japanese model

was trained with a corpus from the Japanese Newspaper

Article Sentences (JNAS) containing 60 hours of speech from

306 speakers (male and female). The English model was

trained with a corpus from the Wall Street Journal containing

206 hours of speech from 180 male and 181 female.

F. Hardware specifications

The implemented system was run on HRI-JP’s humanoid

robot HEARBO (see Fig. 2). HEARBO possesses an 8-

channel omni-directional microphone array on top of its

head. All audio signals were synchronously captured from

the 8 channels, at a 16 kHz sampling rate. The running

processes were distributed between two PCs, each possessing

an Intel i7 Quad Core CPU at 2.3 GHz and 16 GB of RAM,

and both connected to HEARBO via Ethernet.

V. EXPERIMENTAL SETUP

At first, we tested the implemented modules of our system

by recreating the real-world acoustic challenges implicated

in the proposed interactive scenario, but excluding the actual

human interaction. This testing scenario consisted of the

robot dancing for 10 min in beat-synchrony to a continuous

musical stimulus while simultaneously recognizing a set

of human utterances. The mixed auditory signal was

contaminated by the robot’s ego-motion noise. The musical

and speech stimuli were simultaneously played from 2

loudspeakers standing 1 m away and respectively at -60◦ and

60◦ from the robot position. The music signals were recorded

with a Music Signal-to-Noise Ratio (M-SNR) of -2 dB. The

speech signals were recorded with a segmental Speech SNR

(S-SNR) of -3 dB. For testing purposes, the dance motions

were generated in beat-synchrony to the musical stimuli

from the annotated beat times. Each dance motion was

continuously generated for 1
3

of the recording duration before

changing to the next. We recorded 8 audio signals, each

with 10 min, by using the speech from a different speaker

per recording. All recordings were processed in a noisy

room with the dimensions of 4.0 m x 7.0 m x 3.0 m and a

Reverberation Time (RT20) of 0.2 sec.

A. Auditory signals

1) Musical stimuli: To reproduce the realistic scenario of

continuous and dynamic musical stimuli, we used the audio

data stream described in [13]. This data consisted of a single

10 min audio file built of a set of 31 musical excerpts, with

20 sec each, concatenated without any gaps This reproduces

highly challenging timing and tempo transitions between the

excerpts. The selected musical pieces comprised 7 different

genres: pop, rock, jazz, hiphop, dance, folk, and soul;

with tempi ranging from 80 to 140 bpm, with a mean of

109±17.6 bpm; and all with a 4
4

meter.

2) Speech data: We recorded 8 audio files with the

utterances of 4 male and 4 female Japanese speakers used

in a typical human-robot interaction dialog, and previously

used in [13]. Each audio file comprised a set of 236 different

Japanese words concatenated into a continuous stream, with

a silence gap of roughly 1 sec between each of them.

B. Evaluation criteria

1) Beat tracking accuracy: To quantify the standard

performance of the live beat tracking on the music stream we

relied on the AMLt (Allowed Metrical Levels, continuity not

required), as described in [13]. Akin to [13], we considered

two variants of the AMLt: AMLts, which measures the

accuracy over the whole stream; and AMLte that simulates

the individual evaluation over the concatenated excerpts by

measuring the accuracy of the whole stream but discarding

the first 5 sec after each music transition.

2) Reaction time (rt ): To measure the reaction time, rt ,

at each music transition we also followed [13] and defined

rt = |br − tt | as the time difference, in seconds, between the

timing of the transition, tt , and the first beat-time, br, of the

first four continuously correct beats in the considered musical

excerpt. In addition, a music transition was considered

successful if the system could recover track of the beats at

some point after transiting to the current musical excerpt.

3) ASR accuracy: The ASR accuracy was measured in

terms of average Word Correct Rate (WCR), which is defined

as the number of correctly recognized words from the test

set divided by its total number of instances.

4) Dance beat-synchrony: For measuring the beat-

synchrony of the generated dance, we also used the proposed

variants of the AMLt score: AMLts and AMLte. These

compared the time-alignment of the annotated beat times of

the musical stream (which were also used for synchronizing

the robot motion in the experimental tests) with the timings

of the dance step transitions. To retrieve the timings of

the dance step transitions we applied a “valley-picking”

algorithm on the mean velocity signal, given by (1), and

retrieved the timings of the mean velocity minima.

C. Compared variants of the system

In order to assess the proposed system under the presented

experimental conditions, the ABT and ASR accuracies

were measured using different input signals, resultant from

applying different preprocessing strategies:

• 1Ch: audio captured from a single (frontal) microphone;

• 1Ch+ENS: 1Ch refined by ENS;

• 8Ch: separated signals by applying SSL and SSS on the

audio captured from an 8-channel microphone array. The

separated speech and music signals are respectively sent

to the ASR and beat tracking modules;

• 8Ch+ENS: 8Ch refined by ENS.

In addition, to observe the effect of regulating the acoustic

environment for beat tracking purposes, we compared

the performance of IBT over a non-regulated acoustic
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signal, IBT-default, against the IBT performance over a

regulated acoustic signal, IBT-regulated, through requests

to regenerate or reset the beat tracker when facing unreliable

acoustic conditions for music processing (see Section IV-D).

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental results

All results represent the mean over the 8 recordings (one

per speaker as described in Section V). Fig. 4 presents the

mean dance beat-synchrony results, in terms of AMLts and

AMLte scores, for the whole recording (Fig. 4a), and the

distribution of the AMLte score in function of the musical

tempo in increments of 5 bpm (Fig. 4b).
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Fig. 5 presents the mean ASR results for all variants of the

system. Fig. 6 presents the overall beat tracking accuracy for

IBT-default (red) and IBT-regulated (blue) in terms of

AMLts (dark) and AMLte (light) scores (Fig. 6a), and in terms

of mean reaction time and number of successfully handled

transitions in the tested music data stream (Fig. 6b).
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Fig. 6. Beat tracking accuracy: (a) Mean AMLt scores: AMLts (dark) and
AMLte (light); (b) Mean reaction time (rt ) and standard deviation among
the music transitions, and total number of successful transitions (on top).

B. Discussion

1) On the dance beat-synchrony results: As observed

in Fig. 4a, our algorithm for generating beat-synchronous

robot dancing motions was able to reproduce up to 67.7%

of overall beat-synchrony, in terms of AMLts score (i.e.,

when continuously considering the whole 10 min music data

stream), and up to 75.9% in terms of AMLte score, when

discarding the first 5 sec after each music transition. The

8.2 percentage points (pp) difference among these results

is justified by the abrupt beat and tempo changes within

music transitions that demand abrupt variations in the robot

motor velocities at these instants. This compromise the

motion’s beat-synchrony until it reaches a stable state. When

analyzing the dance beat-synchrony in relation to the musical

tempo (Fig. 4b) we observed high discrepancies between

low and high tempi, in the order of 20 pp difference in

AMLte score, with a performance threshold at around 65 bpm

favoring higher tempi. The performance differences can be

explained by the way we retrieve the timings of the dance

step transitions, determined by the mean velocity minima.

It is more accurate to detect peaky velocity transitions

demanded by higher tempi (i.e., by faster transitions) than

flat velocity transitions demanded by lower tempi (i.e., by

slower transitions). Despite the results of Fig. 4b, we argue

that the robot dancing motions perceptually appeared less

synchronous to the beat at high tempi. This can be justified

by the faster transitions, which generate quasi-continuous

motions that makes it difficult to perceptually acknowledge

the step transitions occurring with the beat. Additional

subjective discussion on this issue is left for future work.

2) On the audio beat tracking results: From Fig. 6

we clearly observe that, in the presence of continuous

and dynamic musical stimuli, robust live music processing

algorithms require a running regulation of the acoustic

signal conditions, i.e., a running monitor that supervises the

acoustic signal for disturbances while requesting the recovery

of the system accordingly. This is reflected in an increase in

the beat tracking accuracy of 18.5 pp in AMLts and 22.5 pp

in AMLte, when comparing the IBT-regulated against the

IBT-default in the 1Ch recorded signal. This increase in

accuracy is proportionally reflected in a decrease of 1.6 sec

in the reaction time at music transitions, when comparing

both variants under the same 1Ch signal condition. Moreover,

IBT-regulated was able to recover from music transitions

with a mean reaction time of 4.9±2.0 sec across all signal

conditions, and without statistical significances among the

results (with a mean p = 0.76 ± 0.18). Ultimately, we

observed that IBT-default in 1Ch could only manage to

handle 23 out of the 30 music transitions in the data stream,

whereas IBT-regulated could handle 28 of them in the

same condition. When applying SSS after SSL (i.e., on the

8Ch signal) we improved beat tracking by 9.5 pp in AMLts
and 8.9 pp in AMLte, respectively up to 62.1% and 78.6%,

and IBT-regulated already handled all music transitions.

Finally, by applying ego noise suppression we improved

the beat tracking accuracy on 1Ch and 8Ch signals by on

average 1.2 pp in AMLts and 1.0 pp in AMLte. This resulted

in an optimal beat tracking performance, for 8Ch+ENS,

of 63.1% in AMLts and 80.0% in AMLte, and a mean

4.8±3.0 sec in reaction time. Although the ENS was still

able to slightly improve the beat tracking performance its

improvement was not statistically significant either for 1Ch

or 8Ch (respectively, p= 0.93 and p= 0.79). This is justified

by the fact that the ego-motion noise was synchronized

to the musical beat, which resulted in some of the beats

getting suppressed along with the motion noise, hence

decompensating the overall enhancement provided by ENS.

3) On the ASR results: As depicted in Fig. 5, the

application of SSL and SSS as preprocessing (i.e., the 8Ch

1083



signal) greatly improved the ASR results by on average

35.8 pp. When additionally applying ENS these results were

improved by 13.3 pp, achieving an optimal WCR of 58.5%.

VII. INTERACTIVE ROBOT DANCING SESSION

In order to test the proposed active audition framework

in a human-robot interactive situation, we set up a scenario

in which the humanoid robot must simultaneously dance

to the beat of the music and respond to human speech

commands related to the music it is listening to or to the

dance it is performing. To test the full capability of the

proposed framework to ensure a reliable interaction, the

defined scenario included the following requirements:

• Simultaneous music and speech processing;

• Live beat/tempo tracking to continuous musical stimuli;

• Dealing with multiple noise sources of different natures;

• Autonomous beat-synchronous robot dancing;

• Q/A dialoguing;

The interaction was set up in the same room described

in Section V. Akin to the experimental settings, the musical

stimulus was played from a single loudspeaker standing at

-60◦ from the robot’s position, and the human speaker stood

at 60◦ from it (see Fig. 7). Both were positioned 1 m away

from the robot. The musical volume was kept the same as

in the experimental tests. The human speaker also tried to

reproduce the S-SNR verified in the experimental tests. The

speech was performed in English. The dancing motions were

interchanged on human command. IBT performed in the

IBT-regulated mode. In order to optimize the accuracy of

the ASR and ABT, based on the previous results (see Fig. 5

and Fig. 6), both tasks were processed over the 8Ch+ENS

signal conditions. In order to clearly accompany the beat

tracking performance during interaction, the beats predicted

by the robot generated noise clicks through one of the room’s

speakers (far enough to not bias the robot’s beat estimations).

A. Musical stimuli

The musical stimuli used in the interaction comprised three

musical pieces of Japanese Pop music from the RWC Music

Database [17]. In addition, one of them was synthesized into

three different mood arrangements at different tempi. The

5 selected musical pieces comprised different tempi in the

range of [100-133] bpm. The music and/or mood changes

were requested by the human speaker at arbitrary moments

of the interaction. The names of the songs and singers were

provided in advance to the dialogue management system.

B. Interaction results

A video with a full robot dancing interaction session is

presented in our website2. Fig. 7 presents screenshots of

some key-moments of the interaction. Fig. 8 depicts the main

events that occurred during the presented interactive session:

(a) the direction of the acoustic sources (i.e., music at ≈-60◦

and speech at ≈60◦) detected by the SSL; (b) the robot joints’

angular position, in degrees; (c) the robot joints’ angular

2http://smc.inescporto.pt/wp-content/uploads/

2012/06/RoMan2012Demo.avi

velocity, in degrees/frame; (d) the Speech Decisions given

by the speech-related fitness function, FS(n); (e) the Music

Decisions given by the music-related fitness function, FM(n);
and (f) the actual interaction events given by the Human

speech commands (in black), the playing Music (in blue),

and the Robot speech responses (in red).

C. Discussion

The recorded human-robot live interactive session depicted

in Fig. 8 ran uninterruptedly for more than 2.5 min and was

replicated a few times. This demonstrates the robustness

of the implemented interactive robot dancing system on

tackling the present highly challenging conditions. Moreover,

as observed in the video, the human interactor was able to

enjoy from a natural interaction with the robot.

Specifically, we observed the capacity of the system to

handle perturbations in the acoustic signal. In terms of speech

processing, we observed two critical moments where the

behavior decision intervenes towards improving the noise

conditions for ASR. As illustrated in Fig. 8d, these occurred

at 70 sec, due to an unrecognized speech command despite

the Speech Decision to “Maintain Interaction” (FS = 0); and

at 79 sec, due to a Speech Decision to “Decrease Noise”

(FS = 2) resultant from a low confidence in the ASR engine.

In terms of music processing, from Fig. 8e we observed

several requests to regenerate/reset the beat tracker due to

the abrupt music transitions requested on human command,

or due to the contaminating noise sources of different natures

(i.e., ego-noise and human/robot speech). The higher number

of critical Music Decision events in comparison to critical

Speech Decision events is justified by the differences in the

resolution of both modalities (i.e., continuous music stimuli

against discrete speech commands).

In terms of responsiveness of the system, we observed

a latency in the speech response of around 3.0 sec, which

is justified by the computation of the HMM search of the

ASR module. The beat tracker revealed high reaction times

to music changes, up to a maximum of 11.0 sec, which

were significantly higher than in the experimental results,

where it revealed a maximum rt of 7.8 sec (see Fig. 6b).

These are justified by higher inconsistencies in the generated

dance motions at music changes due to relying on the beats

estimated by the beat tracker while it is attempting to recover.

These caused more abrupt and intense ego noise variations

which perturbed IBT’s recovery to the music transitions.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a general and extensible active audition

framework for auditory-driven HRI. This framework

simultaneously processes speech and music on-the-fly,

integrates perceptual models for robot audition, supports

verbal and non-verbal interactive communication, and

integrates a behavior decision mechanism based on active

audition for conducting a reliable human-robot interaction.

This framework was applied to an interactive robot dancing

system and assessed in both experimental and interactive

real-world scenarios. Experimental tests on the system
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(a) Human requests the robot
to start dancing [t=18 s].

(b) Robot provides the
musical tempo [t=29 s].

(c) Robot asks to repeat the
speech command [t=79 s].

(d) Human requests the robot
to change the mood [t=86 s].

(e) Human requests the robot
to change the music [t=102 s].

Fig. 7. Key-moments of the recorded robot dancing interactive session.
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Fig. 8. Illustration of the events occurring in the recorded robot dancing interactive session.

revealed accurate beat-synchrony of the generated robot

dance motions and improved beat tracking and ASR

accuracies. Tests on interactive robot dancing sessions

proofed the robustness of the proposed framework in the

presence of highly dynamic acoustic conditions. The overall

results confirmed this framework’s application to general

auditory-driven interactive robotic systems.

In the future we will assess the robustness and interactivity

of the developed interactive robot dancing system through

subjective evaluation. We should also extend the proposed

framework with additional robot audition modules, robot

behaviors and behavior decision policies. Finally, we will

improve the regulation of the acoustic signals by integrating

additional costs and more reliable confidence functions, and

test the framework in other auditory-driven HRI applications.
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