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Abstract— In this paper we propose the integration of an
online audio beat tracking system into the general framework of
robot audition, to enable its application in musically-interactive
robotic scenarios. To this purpose, we introduced a state-
recovery mechanism into our beat tracking algorithm, for
handling continuous musical stimuli, and applied different
multi-channel preprocessing algorithms (e.g., beamforming, ego
noise suppression) to enhance noisy auditory signals lively
captured in a real environment. We assessed and compared
the robustness of our audio beat tracker through a set of
experimental setups, under different live acoustic conditions
of incremental complexity. These included the presence of
continuous musical stimuli, built of a set of concatenated
musical pieces; the presence of noises of different natures
(e.g., robot motion, speech); and the simultaneous processing
of different audio sources on-the-fly, for music and speech. We
successfully tackled all these challenging acoustic conditions and
improved the beat tracking accuracy and reaction time to music
transitions while simultaneously achieving robust automatic
speech recognition.

I. INTRODUCTION

When listening to various auditory scenes one must
simultaneously process and understand different sound
sources mixed together into a single audio cocktail while
dealing with noises of different natures [1]. To reproduce
this kind of complex reasoning in artificial machines, such
as robots, Computational Auditory Scene Analysis (CASA)
algorithms must be able to localize, separate and enhance
various kinds of continuous acoustic signals (e.g., speech,
music) in real unconstrained (i.e., noisy) environments while
applying signal processing algorithms on-the-fly according
to specific perceptual tasks. Thus, musically-aware robots
interacting with humans in real-world scenarios must address
the same concerns of CASA while applying real-time Music
Information Retrieval (MIR) algorithms.

In this paper we introduce a state-recovery mechanism
into our online beat tracker in order to rapidly recover from
signal losses and abrupt music transitions in continuous
musical stimuli. Furthermore, we propose to integrate
an audio beat tracking algorithm [2] with different
multi-channel preprocessing strategies (e.g., Sound Source
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Localization (SSL), Sound Source Separation (SSS), ego
noise suppression) to enhance the quality of the captured
audio signal. We assess the robustness and performance of
the proposed audio beat tracking system through a set of
live experimental setups with different acoustic conditions
of incremental complexity to verify its applicability and
compatibility into the general framework of robot audition.

II. RELATED RESEARCH

Robotic musical instruments have been designed for
decades by creative scientists from art and entertainment
industry, which make use of sensorimotor algorithms and
proper mechanical designs recurring to motors, solenoids
and gears to create multiple forms of music [3]. Musically
expressive robots are however a more recent story, that sets
back to the 80’s with the first instrument robotic players
[4]. Since then, worldwide researchers are determined to
apply all kinds of “off-the-shelf” human control interfaces
(e.g., acceleration sensors, sonars, infra-reds, and wireless
gesture controls) towards building fully autonomous robots
and entire robotic bands [5] that can act together and interact
with human musicians and dance performers. Yet, this so-
called “robotics musicianship” [6] is still taking its first steps
and more effort is still needed to be put on fundamental
qualities of musical interaction (e.g., improvisation/imitation,
expression/emotion, anticipation/synchronization) and most
especially on robust real-time reasoning of high-level musical
qualities for robot audition (e.g., beat, tempo, meter,
pitch, genre, tonality, texture, melody) in real-world noisy
scenarios. Only a few attempts have been made recently to
implement and assess these perceptual musical modules in
live conditions and most of them do not go beyond note onset
detection, tempo and beat tracking in simplified/restrictive
conditions. Weinberg et al. [7] and Mizumuto et al. [8]
followed different approaches for online beat tracking on
human drum performances. Both methods were applied
for human-robot musical ensembles in order to detect the
human’s drum-beat and lead their robots into synchronized
and/or improvised interactions through drum [7] or theremin
[8] performances. Murata, Mizumuto, Otsuka et al. [9]–[11]
took a step further and used two different beat trackers for
processing live musical signals while stepping [9], scatting
[9], beat-counting [10], and singing [9], [11] in synchrony
(i.e., through feedback-control) to the musical beat [9], [10],
tempo [9] or score position [11]. In order to suppress the
robot’s self-voice from the captured auditory signals, all
authors used a one- [10], [11] or two- [9] channel versions
of a semi-blind Independent Component Analysis (ICA)-

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 992



based adaptive filter that performs spectral subtraction on
the captured (mixed) audio based on the clean signals of
the generated voice. Similarly, Otsuka et al. [12] applied
the same beat tracking procedure with ICA-based filter they
previously used in [11] to synchronize a theremin playing
robot while suppressing the generated theremin sounds.

Ultimately, four different studies so far used audio beat
tracking in live experiments in the presence of robot motor
noise. The first two, presented by Yoshii, Murata et al. [9],
[13], applied a real-time beat tracker to synchronize the
stepping of a humanoid robot to the estimated beat-times of
captured musical stimuli. Yet, both assumed that the stepping
noise did not affect the beat predictions, since the motion was
in phase with the beat. The latter two studies, presented by
Grunberg et al. [14] and Oliveira et al. [15], applied different
strategies to suppress motor noise generated from random
[14] and/or periodic [14], [15] motions of humanoid robots,
while estimating the beat-times of a set of musical pieces
on-the-fly. For suppressing the motor noise from a single-
channel audio input, Grunberg et al. applied (and compared)
a static and an adaptive filter for spectral subtraction using
separate attenuation thresholds for each spectral frequency
bin. On the other hand, Oliveira et al. utilized a template-
based ego noise suppression scheme which associates joint
(motor) status data with ego noise data, recorded in advance,
to estimate the gains of spectral subtraction and obtain a
refined audio spectrum of the single-channel signal. Both
strategies were able to improve the noise-robustness of the
assessed beat trackers for application on musical performing
and dancing robots in live, real-world conditions.

In this paper, we propose to extend our latter approach [15]
for its application on musically-interactive robotic systems in
real-world acoustic scenarios. To this purpose, we assessed
the performance and robustness of our beat tracker under
different live acoustic conditions, and through different
CASA strategies for robot audition:
• Multiple audio sources of different kinds: use of SSL
and SSS methods to retrieve and separate the active sound
sources (i.e., music and speech) on-the-fly;

• Multiple noises of different natures: use of multi-
channel beamforming and multi-channel ego noise
suppression methods to improve the quality of the acquired
audio signal against stationary and non-stationary noises
of multiple natures (e.g., robot fans, robot motion, speech).

• Continuous musical stimuli of different musical
pieces: use of a state-recovery mechanism to recover the
beat tracker state whenever there is indications that the
tracking system lost track of reliable beat predictions (e.g.,
at transitions between musical pieces, or when the SSL
mechanism fails to detect the musical source).

• Multiple evaluation criteria of different tasks: assess
multiple perceptual tasks running simultaneously (i.e., beat
tracking and ASR).

III. SYSTEM OVERVIEW

As illustrated in Fig. 1, the proposed system architecture
is composed of three main functional blocks: i) a multi-

channel preprocessing block consisting of SSL, SSS, and
ego noise suppression algorithms; ii) a speech processing
block performing ASR; and iii) a music processing block
consisting of the integrated audio beat tracking system.
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Fig. 1. Overview of the system architecture.

A. Preprocessing and speech processing

In the preprocessing block, the recorded audio signals
are first subject to SSL, which passes the location of each
sound source to the SSS module. Because separated signals
still contain diffuse ego noise, we apply sound enhancement
relying on template-based multi-channel ego noise estimation
that utilizes the angular state of the robot joints. The
difference between the current ego noise suppression and
previous single-channel noise suppression system we used in
[15] is that it is able to separate the overall ego noise among
all separated sound sources. By doing so, spectral subtraction
can be applied on the audio spectrum of each individual
sound source (e.g., music, speech) using its corresponding
ego noise spectrum. The details of this block can be found in
our complementary paper [16]. In addition, a power threshold
filter was applied atop of this ego noise suppression scheme
for handling unpredictable robot noises (e.g., jittering).

The outputs of the preprocessing, namely the refined
speech and music spectra are sent to speech and music
processing blocks. In the speech processing block, we extract
13 static Mel-Scale Log Spectrum (MSLS) features, 13 delta
MSLS features and 1 delta power feature and send them to
the real-time ASR engine, which is based on Julius.

B. Audio beat tracking

The used online audio beat tracking system, IBT, was first
proposed in [2] and used in [15]. The algorithm is based on
a multi-agent architecture composed of (see Fig. 1): i) an
audio feature extraction module that parses the preprocessed
audio data into a mid-level rhythmic feature; followed by ii)
an agents induction module, which (re-)generates the initial
and new sets of hypotheses regarding possible beat periods
and phases; and followed by iii) a multi-agent-based beat
tracking module, which propagates hypotheses, proceeds
to their online creation, killing and ranking, and outputs
beats on-the-fly without prior knowledge (i.e., without look-
ahead) on the incoming signal. In addition, the current
implementation of IBT extends the one used in [15] by
integrating iv) a state-recovery mechanism responsible for
supervising the beat tracking analysis of the signal and, if
needed, recover the state of the beat tracker by resetting the
multi-agent system with re-inductions of beat and tempo.
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This mechanism, created to contend with situations that
might require the state recovery of our beat tracking system
(e.g., music transitions in a continuous data stream), looks
for abrupt changes in the score evolution of the current best
agent (which leads the system’s current beat predictions) as
an indication that the algorithm had lost track of reliable
beat hypotheses. This monitoring runs at time increments
of thop = 1s and it looks for the variation δ sbn of the
current mean chunk of measurements of the best score sbn
in comparison to the previous sbn−thop , as follows:

δ sbn = (sbn−sbn−thop)∗sbn : sbn =
1

W

W

∑
w=n−W

sb(n−w), (1)

where n is the current time-frame, W = 3s is the size of the
considered chunk of best score measurements, and sb(n) is
the best score measurement at frame n.

IV. EXPERIMENTAL SETTINGS

A. Hardware specifications
Our experiments were run on HEARBO, a humanoid

robot from Honda Research Institute Japan (HRI-JP)
(see Fig. 2(a)). HEARBO integrates an 8-channel omni-
directional microphone array on top of its head (see
Fig. 2(b)). All audio signals were synchronously captured
from the 8 channels, at a 16 kHz sampling rate. All
recordings and evaluation procedures were processed on an
Intel Core i7 quadcore PC at 2.3 GHz, with 16 GB of RAM.
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Fig. 2. HRI-JP humanoid robot HEARBO.

B. Software specifications
All system’s modules were implemented and integrated

into HARK (HRI-JP Audition for Robots with Kyoto
University). The robot control and communication were
handled by ROS (Robot Operating System). The dataflow of
the whole system was run at time increments of 10 ms, using
a Complex window of 512 samples and 32% overlap (i.e.,
hop size of 160 samples) for computing the audio spectrum.

The SSL was based on MUltiple Signal Classification
(MUSIC) [17], and for SSS we applied Geometric High-
order Decorrelation-based Source Separation (GHDSS) [18].

For template subtraction we used a spectral floor of 0.1.
IBT was set with an induction window of 5 sec in length,

and constrained to a tempo octave ranging from 80 to
160 beats-per-minute (bpm), which falls within the “preferred
tempo-octave” and fits the majority of tempi distributions
[19]. This restriction was to avoid metrical-level interchanges
that would compromise the beat tracking evaluation. Finally,
according to eq. (1) a new induction of the system is
requested if δ sbn−1 ≥ 0∧δ sbn < 0.

C. Auditory signals

1) Musical stimuli: To reproduce the realistic scenario
of continuous musical stimuli, we concatenated a set of
individual musical excerpts into a music stream without any
gaps. We selected 31 beat-annotated music excerpts from
the dataset used in [2]. (Note that the selected data was
different from the one used in [15].) The data comprised
7 different genres: pop, rock, jazz, hiphop, dance, folk, and
soul; with tempi ranging from 81 to 140 bpm, with a mean
109±17.6 bpm, and all with a 4

4 meter. So that the evaluation
focuses on the specific ability of the system to cope with
abrupt signal changes, caused by transitions between musical
pieces, the 31 pieces were selected from a sub-set of data
restricted by the following two conditions:
• Stable data: musical pieces with low varying tempi
among all Inter-Beat-Intervals (IBI), on which the
maximum IBI variation did not exceed the mean IBI by
more than 40%.

• Reliable data: music files on which IBT scored 100% in
beat tracking accuracy, with AMLt (see Section IV-E).

To maximize the disturbing effect of the music transitions,
the selected pieces were trimmed and concatenated
considering two conditions:
• Abrupt shifts of beat-timing at transitions: each individual
musical piece was trimmed between the time-point ti of
an arbitrary annotated beat-time and the time-point given
by t f = ti +b f +0.25IBI f , where b f is the first annotated
beat time 20 s after ti, IBI f = b f+1 − b f , and b f+1 is the
first annotated beat time after b f .

• Significant tempo differences at transitions: the
concatenated excerpts were randomly organized while
ensuring a ratio of tempo between consecutive excerpts
in the range of [10-54.4]%.

This process resulted in a continuous music data stream
with a total length of ≈10 min consisting of 31 excerpts
(i.e., 30 transitions) of ≈20 sec each. We generated a beat
annotation sequence for the created data stream by mapping
and concatenating the annotated beats of each excerpt
accordingly.

2) Speech data: The speech data was recorded by us and
consisted of 8 audio files with the utterances of 4 male and
4 female Japanese speakers used in a typical human-robot
interaction dialog. Each audio file was constituted by a set
of 236 different Japanese words concatenated into continuous
streams, with a silence gap of ≈1 sec in between them.

D. Periodic dance motions

For measuring the effect of ego-motion noise in its most
challenging condition we considered robot dancing motion,
as the most complex kind of musically expressive movement.
To this purpose, we created 3 different periodic dance
motions. Each of them was defined by 2 key-poses to
be successively interpolated (i.e., transited) during motion
generation. In order to increase the disturbing effects of
the robot’s ego noise, the dance motions were designed to
simultaneously move 6 joints: the shoulders pitch and yaw,
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and the elbows pitch (see Fig. 2(a)); each with a rotational
variation in the range of [10-20]◦ to maximize the number
of transitions. During recordings the dance motions were
continuously generated into a full dance sequence by using a
uniform number of periodic repetitions of the 3 dances. The
periodic dances were generated at random tempi (i.e., random
velocities) in the octave of 40 to 80 bpm, which represent the
maxima motor-rate frequencies achievable by our robot.

E. Evaluation criteria

1) Beat tracking accuracy: The beat tracking accuracy
was measured against the beat-annotation (i.e., groundtruth)
of the generated music data stream. We relied on the
AMLt (Allowed Metrical Levels, continuity not required), as
described in [20], for being the most permissive continuity-
based beat tracking evaluation measure that considers beats
estimated at double and half the tempo, or in the off-beat
(π-phase error) as also correct. This metric considers the
total number of correct pairs of estimated beats with a
tolerance of ±17.5% around each pair of annotated beats.
To better identify the effect of the music transitions in the
beat tracking accuracy, we propose two variants of AMLt:
AMLtstream, which measures the accuracy over the whole
stream, discarding the initial 5 secs of data needed for the
first induction of the system; and AMLtexcerpts that simulates
the evaluation over all individual excerpts by measuring the
accuracy of the whole stream but discarding the first 5 secs
after each music transition.

2) Reaction time (rt ): This metric measures the time of
reaction taken to recover from music transitions. It is defined
as the time difference, in seconds, between the timing of the
transition and the beat-time of the first four continuously
correct estimated beats in the considered musical excerpt.
In addition, a transition is considered successful if rt is less
than the duration of the considered musical excerpt, i.e., if
the system is able to recover the track of the beat at some
point after transiting to the current musical excerpt.

3) ASR accuracy: Speech recognition results are given
as average Word Correct Rate (WCR), which is defined as
the number of correctly recognized words from the test set
divided by the number of all instances in the test set.
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Fig. 3. Experiments for the four proposed real-world acoustic conditions.

V. EXPERIMENTS AND RESULTS

As illustrated in Fig. 3, we created four real-world
experimental conditions to lively assess our audio beat
tracking system in incremental levels of acoustic complexity:
• Experiment1: live audio beat tracking.
• Experiment2: simultaneous live audio beat tracking and
automatic speech recognition.

• Experiment3: live audio beat tracking during robot
dancing motion.

• Experiment4: simultaneous live audio beat tracking and
automatic speech recognition during robot dancing motion.
In all experiments the musical stimulus was played from

a single loudspeaker standing at -60◦ and 1 m away from
the robot position. The music signals were recorded with
decreasing Music-Signal-to-Noise Ratio (M-SNR) among the
four experiments, using the recording of experiment1 as
a baseline: M-SNR= 1dB for experiment2, M-SNR= 0dB
for experiment3, and M-SNR= −2dB for experiment4. For
the experiments using speech stimuli (i.e., experiment2,
and experiment4) we played it from a second loudspeaker
standing at 60◦ and also 1 m away from the robot. The
speech signals were recorded with a segmental-Speech-SNR
(S-SNR) of 0dB on experiment2 and −3dB on experiment4.

All recordings were processed in a noisy room
environment with the dimensions of 4.0 m x 7.0 m x 3.0 m
and a Reverberation Time (RT20) of 0.2 sec. For training our
ASR module we used matched acoustic models trained with
a Japanese Newspaper Article Sentences (JNAS) corpus with
60-hours of speech spoken by 306 male and female speakers.

The template database for ego noise suppression was
created by generating 5 min of the 3 periodic dance motions
at random tempi, as described in Section IV-D.

A. Compared variants of the system

In order to demonstrate the capability of the proposed
system under the presented experimental conditions we
evaluated and compared the beat tracking and ASR
accuracies using different input signals, resultant from
different preprocessing strategies:
• AF: audio stream file.
• 1C: audio captured from a single (frontal #1 – see
Fig. 2(b)) microphone.

• CE: 1C refined by ego noise suppression.
• FB: audio signal after applying fixed beamforming on the
audio captured by an 8-channel microphone array.

• FE: FB refined by ego noise suppression.
• SS: separated audio signal, captured from an 8-channel
microphone array.

• SE: SS refined by ego noise suppression.
In addition, to clearly observe the effect of the state-

recovery mechanism to contend with continuous musical
stimuli, we simultaneously assessed three variants of IBT:
• IBT-default: IBT with a single induction on the
beginning (i.e., first 5 sec) of the signal’s analysis.

• IBT-transitions: IBT applying the state-recovery of
the system exactly, and only, at the time-points of each
annotated music transition.

• IBT-recovery: the implementation of IBT using the
state-recovery mechanism as proposed in Section III-B.

B. Results

1) Audio beat tracking: Fig. 5 presents a 20 sec excerpt
of the 1C music only signal for experiment1 (Fig. 5(a))
and of the 1C (Fig. 5(b)) and SE (Fig. 5(c)) signals of
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Fig. 4. Beat tracking results: (a) AMLt score: AMLtstream (dark) and AMLtexcerpts (light); (b) Reaction time (rt ) and number of successful transitions atop.

the same 20 sec excerpt for experiment4. Fig. 5(b) and
Fig. 5(c) additionally respresent the beats estimated by
IBT-recovery (in red), respectively under 1C and SE

conditions, against the groundtruth (in yellow). Moreover,
Fig. 5(c) depicts two important situations: i) a reaction time
of ≈2 sec for recovering from a music transition (see 159-
161 sec), and ii) a set of beats getting affected (see 164-
167 sec) after an unpredictable jittering noise (occurred at
163 sec), when no power threshold is applied atop of ego
noise suppression. Fig. 4 presents the beat tracking AMLt
scores and reaction time results achieved among all variants
of the system, for all experiments. The results of experiment2
and experiment4 represent the mean among the 8 speakers.

2) ASR: Fig. 6 presents the mean word correct rate for
the ASR among the 8 speakers achieved on experiment2
(Fig. 6(a)) and experiment4 (Fig. 6(b)), by applying different
preprocessing strategies.

VI. DISCUSSION

A. On handling continuous musical stimuli

The overall results suggest that a continuous musical
stimuli scenario is a highly challenging situation for real-
time beat tracking systems to contend. As observed in
Fig. 4, IBT-default performed poorly in all experiments,
and even on the audio stream file (AF) itself. Across
all experiments and preprocessing variants of the system,
IBT-default managed to handle only a mean of 76% of
the music transitions, at a mean rt of 6.8±5.4 sec. This
resulted in a mean score of 32.6% in AMLtstream and
42.8% in AMLtexcerpts, which is a significant drop when
compared to the 100% score obtained over the audio files of
each selected excerpt in the stream. Yet, when introducing
the state-recovery mechanism, in the audio stream file
and in experiment1 IBT-recovery was able to recover
almost to the original 100% AMLtexcerpts score, and to the
level of IBT-transitions among all experiments and
preprocessing variants. Moreover, IBT-recovery in 1C

obtained a mean gain of 34.4 points (pts) in AMLtstream and
42.3 pts in AMLtexcerpts when compared to IBT-default,
and achieved a mean reaction time of 4.2±2.5 sec, and
100% successful transitions. This reaction time is even lower
than the one achieved with IBT-transitions under most
conditions and than the 5 secs that IBT requires for induction.

B. On handling multiple noise sources

As observed in the results of experiment2 (see Fig. 4),
and as expected, the disturbing effect of speech alone as a

noise source for audio beat tracking was rather small. For 1C
it caused a mean drop of 7.6 pts in AMLtstream and 8.9 pts
in AMLtexcerpts when compared to experiment1. In addition,
IBT-recovery’s accuracy was also slightly improved by
5.4 pts and 1.5 pts in AMLtstream and 5.5 pts and 0.9 pts in
AMLtexcerpts respectively with FB and SS. On the other hand,
the effect of music as a noise source for ASR greatly affected
its performance leading it to a poor word correct rate of
16.7%. Yet, we could significantly improve the ASR results
when applying fixed beamforming (FB), and an additional
improvement when applying sound-source localization and
separation (i.e., SS), to a total gain of 48 pts with the latter.

Regarding experiment3, and also as expected, ego-motion
noise played greater disturbance as a noise source for beat
tracking. In comparison to experiment1 IBT-recovery in
1C presented a drop of 23.0 pts in AMLtstream and 20.7 pts
in AMLtexcerpts. When only applying beamforming (i.e., FB)
we enhanced these results up to 4.0 pts in AMLtstream and
2.4 pts in AMLtexcerpts. Moreover, by additionally applying
ego noise suppression (i.e., FE) we outperformed 1C by
9.9 pts in AMLtstream and 8.4 pts in AMLtexcerpts.

Ultimately, in experiment4 we observed a similar trend as
in experiment3 across the different system’s variants. Yet, due
to the additional disturbance of speech the results dropped on
average 8.9 pts in AMLtstream and 9.2 pts in AMLtexcerpts in
1C, which is akin to the drop of experiment2 in comparison
to experiment1. Again, by applying beamforming we were
able to sum the enhancing effect achieved with the
same preprocessing on experiment2 and experiment3, to a
maximum of 7.5 pts in AMLtstream and 6.2 pts in AMLtexcerpts.
Furthermore, we overcame some of the disturbance caused
by ego-motion noise, by a maximum of more 1.4 pts in
AMLtstream and 2.3 pts in AMLtexcerpts, achieved in FE.
Although ego noise suppression improved the beat tracking
accuracy its effect was quite less significant than the obtained
in [15]. This is justified by the use of more complex (i.e.,
noisier) robot motions, at varying and unpredictable tempi,
that caused inaccuracies in the template predictions of our
ego noise suppression algorithm. In addition, the abrupt
motion transitions lead to enormous unpredictable noise
bursts caused by mechanical jittering and shuddering sounds
(Fig. 5(b) – 163 sec) that created spurious magnitude peaks in
the spectrum. Some of these peaks were successfully filtered
out by the power thresholding mechanism proposed in [15].

On the other hand, since ASR uses spectral features (e.g.,
MSLS), on which ego noise suppression is more effective, it
significantly improved the ASR accuracy by a mean 14.8 pts.
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C. On processing multiple audio sources simultaneously
In order to automatically and efficiently process multiple

audio sources of different natures, in a real-world scenario,
sound source separation and localization is needed. Although
SS greatly improved the ASR results on both experiment2
and experiment4, by on average 27.6 pts in comparison to
FB, the same trend did not occurred for the beat tracking
accuracy. This is justified by the occurrence of instantaneous
flaws in the SSL when detecting the musical source, which
generates source breaks that lead to time inconsistencies
causing gaps in the beat estimations and off-sets in the beat
tracking predictions, both penalizing IBT’s accuracy.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a state-recovery mechanism
into our beat tracking algorithm to deal with continuous
musical stimuli, and applied different multi-channel
preprocessing algorithms (e.g., beamforming, ego noise
suppression) to enhance the noisy auditory signals lively
captured in a real environment. By assessing and comparing
the robustness of the whole system through a set of
experimental live acoustic conditions, we confirm its
applicability into the general framework of robot audition.
On the most challenging conditions the proposed solutions
i) improved the default beat tracking accuracy to a total of
29.6 pts; ii) decreased the reaction time to music transition
up to 4.3 sec; iii) enhanced the noise robustness of the beat
tracker against speech and ego-motion noises by 9.8 pts; iv)
improved the ASR accuracy by 47.5 pts and v) efficiently
processed simultaneous audio sources of music and speech.
In the future, we plan to apply the integrated beat tracking
system into an interactive robot dancing system reacting
to continuous musical stimuli with synchronized dance
motions while responding to human speech commands.
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