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ABSTRACT 

Whenever new sequences of DNA or proteins have been decoded it is almost compulsory to look 

at similar sequences and papers describing those sequences in order to both collect relevant 

information concerning the function and activity of the new sequences and/or know what is 

known already about similar sequences that might be useful in the explanation of the function or 

activity of the newly discovered ones. 

In current web sites and data bases of sequences there are, usually, a set of curated paper 

references linked to each sequence. Those links are very useful since the papers describe useful 

information concerning the sequences. They are, therefore, a good starting point to look for 

relevant information related to a set of sequences. One way is to implement such approach is to 

do a blast with the new decoded sequences, and collect similar sequences. Then one looks at the 

papers linked with the similar sequences. Most often the number of retrieved papers is small and 

one has to search large data bases for relevant papers. 

In this paper we propose a process of generating a classifier based on the initially set of relevant 

papers. First we collect similar sequences using an alignment algorithm like Blast. We then use 

the enlarges set of papers to construct a classifier. Finally we use that classifier to automatically 

enlarge the set of relevant papers by searching the MEDLINE using the automatically 

constructed classifier. We have empirically evaluated our proposal and report very promising 

results. 
 

Keywords: MEDLINE, Classification, Information Retrieval System, Machine Learning, 

Ensemble Algorithms, Bioinformatics 

 

 

INTRODUCTION  

Molecular Biology and Biomedicine scientific publications are available (at least the abstracts) in 

Medical Literature Analysis and Retrieval System On-line (MEDLINE). MEDLINE is the U.S. 

National Library of Medicine (NLM), premier bibliographic database: contains over 16 million 



references to journal articles in life sciences with a concentration on Biomedicine. A distinctive 

feature of MEDLINE is that the records are indexed with NLM’s Medical Subject Headings 

(MeSH terms). MEDLINE is the major component of PubMed (Wheeler et al., 2006), a database 

of citations of the NLM. PubMed comprises more than 19 million citations for biomedical 

articles from MEDLINE and life science journals. The PubMed database maintained by the 

National Center for Biotechnology Information (NCBI) is a key resource for biomedical science, 

and is our first base of work. The NCBIs PubMed system is a widely used method for accessing 

MEDLINE. 

The result of a MEDLINE/PubMed search is a list of citations (including authors, title, journal 

name, paper abstract, keywords and MeSH terms) to journal articles. The result of such search is, 

quite often, a huge amount of documents, making it very hard for researchers to efficiently reach 

the most relevant documents. As this is a very relevant and actual topic of investigation we 

assess the use of Machine Learning-based text classification techniques to help in the 

identification of a reasonable amount of relevant documents in MEDLINE. The core of the 

reported work is to study the best way to construct the data sets and the classifiers from the 

starting set of sequences. 

These experiences were done using a set of positive examples associated to the 

sequences/keywords given by the user and a set of negative examples which is the focuses of this 

paper. The negative examples were generated in three different ways and we intend to show 

which is the best approach for our classification purpose. In our experiments we have used 

several classification algorithms available in the WEKA (Hall et al., 2009) tool including 

ensemble algorithms. We have also made some sensitivity tests to the pruning of attributes for 

attribute reduction. 

The rest of the paper is structured as follows. The section “An Architecture for an Information 

Retrieval System” presents the architecture for our information retrieval system and the 

following Section “The Local Data base” describes the local data base construction process and 

the pre-processing techniques used. Follows the related work and a section dedicated to the 

“Automatic Construction of data sets” that describes the different alternatives proposed to data 

set construction and the experiences we have done with different classifiers. We also include a 

section dedicated to classifier ensemble where we present our experiments using classifier 

ensemble methods and finally we conclude the paper. 

 

 

AN ARCHITECTURE FOR AN INFORMATION RETRIEVAL SYSTEM  

 

The overall goal of our work is to implement a web based search tool that receives a set of 

genomic or proteomic sequences and returns an ordered set of papers relevant to the study of 

such sequences. The initial set of sequences is supplied by a biologist together with a set of 

relevant keywords and an e-value
1
. These three items are the input for BioTextRetriever 

(Gonçalves & Camacho and Oliveira, 2011) as can be seen in Figure 1. Figure 1 presents a 

summary of our approach that we will now describe in detail. In the following description we use 

NCBI as the sequence Data Base. 

 

                                                           
1  A e-value is a statistic to estimate the significance of a match between 2 sequences 



 
Figure 1. Sequence of steps executed by BioTextRetriever when the user provides a set of initial 

DNA/protein sequences. 

 

 

In Step 1, the user (a biologist researcher) provides an initial of sequences, optionally a list of 

keywords, and an e-value. With these three items (sequences, keywords and e-value) and using 

the NCBI BLAST tool we collect a set of similar sequences together with the paper references 

associated to them. We could also use Ensembl with the same inputs because Ensembl may 

return a different set of papers references. However for the proposed work we have only used the 

NCBI database. 

With this list of paper citations we search for their abstracts in a local copy of MEDLINE (LDB 

– Local Database) (Step 3). For this we have previously preprocessed MEDLINE. Step 3 

searches and collects the following information in the pre-processed local copy of MEDLINE: 

pmid, journal title, journal ISSN, article title, abstract, list of authors, list of keywords, list of 

MeSH terms and publication date. 

For the scope of this paper we are considering only the paper citations that have the abstract 

available in MEDLINE. After Step 3 we have a data set of papers related to the sequences. We 

will take this set of papers as the positive examples for the full construction of the data set (Step 

4) but we need to get some negative examples. To obtain the negative examples we have three 

possible approaches.  

Thus this step is explained in detail in Section III.  

The following step, Step 5, is one of the most important steps of our work which is to Construct 

a Classifier using Machine Learning techniques that is explained in the next section. As a result 

of this step we have a full list of articles considered relevant by our classifier (Step 6). However, 

we need to present them to the biologist in an ordered fashion way. So Step 7 presents an ordered 

list of relevant articles to 

the biologist. Here we will develop and implement a ranking algorithm based on features such as 

the number of citations of the paper and the impact factor of the journal/conference where it was 

published. This paper focuses on the construction of the data sets highlighting the research from 

the different approaches to obtain the negative examples. According to the figure and for the 

purpose of this paper we focus on Step 4, although we have made a set of experiences with some 

classifiers to conclude what was the best approach. 

 

THE LOCAL DATA BASE 
 



We have downloaded 80GB (617 XML files) of MEDLINE 2010 from the NCBI website. Each 

XML file has information characterizing one citation. Among these characteristics we have 

considered the following ones: PMID - the PubMed Identifier; the PubMed Date; the Journal 

Title; the Journal ISSN that corresponds to the ISI Web of Knowledge ISSN; the Title; the 

Abstract of the article if available; the list of the Authors; the MeSH Headings list and the 

Keywords list. After download the files were preprocessed as follows. 

 

 

Pre-Processing MEDLINE XML files 

 

An independent step of our tool is to maintain a local copy of MEDLINE, that we will call Local 

Data Base (LDB). The LDB will enable efficient search of the paper and will have that relevant 

information of each paper in format adequate, the algorithm that constructs a chain is described 

further in this paper. 

The first step is to read the XML files and extract the relevant information to store in the LDB. 

Article’s title and abstract are preprocessed with “traditional” text pre-processing techniques. 

Next section presents the preprocessing techniques applied.  

 

Pre-Processing Techniques 

We have empirically (Gonçalves & Gonçalves & Camacho & Oliveira, 2010) evaluate which are 

the best combination of pre-processing techniques to achieve a better accuracy. Based on this 

previous study and with some more research in the meanwhile we have used the following 

preprocessing techniques. 

 

Document Representation 
Each paper with the information referred in the beginning of this section is encoded and stored as 

standard vector of term weights. However the text facts of a document (title and abstract) are 

filtered using text processing techniques and represented using the vector space model from 

Information Retrieval where the value of a term in a document is given by the standard term-

frequency inverse document frequency  

(TFIDF=TF*IDF) function (Zhou & Smalheiser & Yu, 2006), to assign weights to each term in 

the document. 

TF is the frequency of term in document 

and 

1
sin

log +=

htermcumentswitnumberofdo

collectioncumentnumberofdo
IDF  

 
 

 
Named Entity Recognition (NER) 
NER is the task of identifying terms that mention a known entity. We have used ABNER 

(Settles, 2005), which stands for A Biomedical Named Entity Recognition, that is a software tool 

for molecular biology that identifies entities in the biology domain: proteins, RNA, DNA, cell 

type and cell line. Although we have implemented this technique we have concluded that the 

identification of NER terms augments significantly the number of attributes instead of reducing 



them. We concluded that the use of NER increases strongly the number of terms which is a 

problem for the classifiers. Thus we did not use NER in the pre-processing phase. 

 

Handling Synonyms  
We handle synonyms using the WordNet (Fellbaum, 1998) to search for similar terms, in the 

case of regular terms, and used Gene Ontology (Ashburner, 2000) to find biological synonyms. 

If two words mean the same then they are synonyms, so they could be replaced by one of them in 

the entire MEDLINE (title and abstract fields) without changing the semantic meaning of the 

term thus reducing the number of attributes. In this step we have replaced all the synonyms 

found by one synonym term thus reducing the number of terms. 

 

Dictionary Validation 
A term is considered a valid term if it appears in available dictionaries. We have gathered several 

dictionaries for the common English terms ( such as Ispell and WordNet) and for the medical and 

biological terms (BioLexicon (Rebholz-Schuhmann et al., 2008), The Hosford Medical Terms 

Dictionary (Hosford, 2004) and Gene Ontology (Ashburner, 2000). The Hosford Medical Terms 

Dictionary consists of a file that contains a long list of medical terms. BioLexicon is a large-scale 

terminological resource developed to address text mining requirements in the biomedical 

domain. The BioLexicon is publicly available both as an XML-formatted term repository and as 

a relational database (MySQL) and it adheres to the LMF ISO standards for lexical resources. 

We have also used the Gene Ontology available files that are related to genes, enzymes, 

chemical resources, species and proteins. We have processed each of these resource files in order 

to have a simple text file with one term per line. 

Our approach is in the sense that if a term appears in one of these dictionaries it is a valid term, 

otherwise, it is not a valid term, so we remove it from the collection of terms. 

The application of these technique is fundamental in attribute reduction once a lot of terms that 

have no biology, medical and normal significance are discarded. 

 

Stop Words Removal 
Stop Words Removal removes words that are meaningless such as articles, conjunction and 

prepositions (e.g., a, the, at, etc.). These words are meaningless for the evaluation of the 

document content. We have used a set of 659 stop words file. 

 

Tokenization 
Tokenization is the process of breaking a text into tokens. A token is a non empty sequence of 

characters, excluding spaces and punctuation. 

 

Special Characters Removal 
Special character removal removes all the special characters (+,-,!,?,.,,,;,:,=,&,#,%,$,[,],/,<,>,") and 

digits. 

 

Stemming 
Stemming is the process of removing inflectional affixes of words reducing the words to their 

stem (the words computer, computing and computation are all transformed into comput), which 

means that three different terms are transformed into only one term thus reducing the number of 

attributes. We implemented the Porter’s Stemmer Algorithm (Porter, 1997). 



 

Pruning 
Using pruning we discard in the documents collection terms that either appear too rarely or too 

frequently. 

 

 

 

RELATED WORK 

There are some work being done on biological and biomedical document classification. Some of 

them applied to MEDLINE document classification and other databases. 

 

The work of (Sehgal, 2011) tries to automate the process of adding new information to TCDB 

database (Transport Classification Database) that is a web free access database 

(http://www.tcdb.org) about comprehensive information on transport proteins. The authors 

restricted themselves to the 

documents in MEDLINE. The main goal is to highlight the use of Machine Learning techniques 

outperforms rules created by hand by a human expert. To train the classifier they have used a set 

of MEDLINE documents referred TCDB as positive examples and have selected randomly also 

from MEDLINE a set of negative examples.  

 

The authors in (Imambi & Sudha, 2011) describe a new model for text classification using 

estimating term weights which improves accuracy classification according to the authors 

experiences. Documents are represented as vectors of terms with their normalized global 

frequency. Global weights are functions that count how many times a term appears in the entire 

collection and the normalization process compensates the discrepancies in the lengths of the 

documents. They have 

used 1000 documents from PubMed; 600 documents for the training data set and 400 for the test 

data set. All these documents belong to four categories with MeSH terms related to Diabetes 

melitus. The authors compare the different weighting methods: local-binary, local-log, local df 

and global relevant. They concluded in this study that global relevant weighting method achieves 

a higher precision. In our own work we have also used all normalized global frequency. 

 

BioQSpace (Divoli et al., 2005) is a GUI where users can query abstracts from PubMed using an 

embedded search facility. BioQSpace performs pairwise similarity calculations between all the 

abstracts based on a set of individual attributes namely: structure, function, disease and 

therapeutic compounds word list obtained from MeSH terms, word usage, PubMed related 

articles, publication date among others. These attributes are given more or less importance 

according to the weight attributed by users. A clustering algorithm is used to group abstracts that 

are very similar. 

 

(Frunza & Inkpen & Tran, 2011) describe a methodology to build an application capable of 

identifying and disseminating health care information using a Machine Learning approach. The 

main objective of their work is to study the best information representation model and what 

classification algorithms are suitable for classifying relevant medical information in short texts. 

They have used 6 different Machine Learning algorithms. The authors concluded that naive 



Bayes performed very well on short texts in the medical domain and that adaboost had the worst 

result. 

 

In (Dollah & Seddiqui & Aono, 2010) the authors present an approach for classifying a 

collection of biomedical abstracts downloaded from MEDLINE database with the help of 

ontology alignment. Although this work classifies MEDLINE documents it is based on ontology 

alignment which is out of our scope. 

 

LigerCat (Sarkar et al., 2009) stands for Literature and Genomic Electronic Resource Catalogue, 

and it is a system for exploring biomedical literature through the selection of terms within a 

MeSH cloud that is generated based on an initial query using journal, article, or gene data. The 

central idea of LigerCat is to create a tag cloud showing an overview of important concepts and 

trends associated to the MeSH descriptors. LigerCat aggregates multiple articles in PubMed, 

combining 

the associated MeSH descriptors into a cloud, weighted by frequency. LigerCat does not apply 

any Machine Learning techniques for paper classification as we present in our study. 

 

 

AUTOMATIC CONSTRUCTION OF DATA SETS 

 

Constructing the Data Sets 

 

In order to solve our problem that is given a set of genomic or proteomic sequences return a set 

of related sequences and papers with relevant information for the study of such sequences, we 

need to obtain first of all the articles associated with the given set of sequences and construct the 

data set to give to the classifier. Figure 2 illustrates sequence of steps included in 

BioTextRetriver. The empirical work repeated in the paper concerns the construction of a data 

set (Step 4). 

 

 

 
Figure 2. Data Set Construction 

 

 

The input of our work is a set of sequences given in the FASTA format. We use the netblast-

2.2.22 tool that perform a remote blast search at the NCBI site. We have embedded this 

application into our code and automatically have access to both, the original sequences and the 

set of similar sequences retrieved by BLAST. 



These results show us the similar sequences and the evalue associated with each of the retrieved 

sequence. The e-value is a statistic to estimate the significance of a match between two 

sequences. The e-value is an input that is given us by the biologist. We relax this threshold value 

in order to obtain the negative examples based on the e-value as we can see in Figure 3. The 

positive examples are the one’s that are lower than the e-value previously specified by the 

biologist. We establish a “no man’s land“ zone and after that zone we collect the negative 

examples. 

 

 
Figure 3. How positive and near-miss (negative) examples are obtained. ev is the e-value threshold to 

obtain the positive examples. α and β are parameters for the cut off of the negative examples. 

 

The positive examples are the set of papers associated with the set of sequences with e-value 

below the respective threshold. In this study we have empirically evaluated three different ways 

of obtaining the negatives examples. We now explain the alternatives. 

 

Near-Miss Values (NMV) 
To obtain the Near-Miss Values (NMV) we collect the papers associated with the similar 

sequences that have evalue above the threshold but close to that. In Figure 3 there is a strip gray 

to better discriminate what are positive examples and negative examples. The examples in the 

right most box contains near-miss negative examples because they are not positives but have a 

certain degree of similarity with the sequences. This works on the examples that have a 

minimum number of negative examples. If we do not have any negative examples with this 

approach, or if the negative examples are few, we can follow one of the following approaches: to 

use MeSH Random Values or to use Random Values. In our experiments we have considered e-

value = 0.001 and we have relaxed it to 1, 2 and 5. We have relaxed to these different values to 

obtain more negative examples. The articles associated to the similar sequences with e-value less 

then 0.001 are considered positive; the articles associated to the similar sequences that have e-

values greater then 0.001 and e-values less then 0.001 plus 10% are considered in the gray strip 

so they are not considered positive or negative; the articles associated with to the similar 

sequences with e-values greater then 0.001 plus 10% are considered negative examples (near-

miss values). 

 

MeSH Random Values (MRV) 
This alternative to generate negatives is adopted when we do not have sufficient number of 

negative examples for the classifier to learn. The negative examples are obtained combining the 



near miss values, if they exist, with some random examples generated from the LDB. But, these 

MRV examples must have the maximum number of MeSH terms from the positive examples. At 

the end the number of negative examples is equal to the number of positive examples. 

 

Random Values (RV)  
The last approach is to generate just randomly the negative examples from our LDB in a number 

equal to the number of positive examples. We guarantee that in this set there is no positive 

example. 

 

 

 

 

COMPARING THE ALTERNATIVES TO DATA SET CONSTRUCTION 

 

Data Set Characterization 

For, this study we have generated several data sets based on sequences that belong to six 

different classes, with the following distribution: 

• RNASES: 2 sequences 

• Escherichia Coli: 5 sequences 

• Cholesterol: 5 sequences 

• Hemoglobin: 5 sequences 

• Blood Pressure: 5 sequences 

• Alzheimer: 5 sequences 

We have also used three different relaxation values for the e-value (1, 2 and 5). If the user enters 

an e-value of 0.001, then the positive examples are the ones that have e-value less or equal to 

0.001. And the negative examples are the one’s greater then 0.001. But as we can see in Figure 3 

we leave a gray strip to better separate the positive from the negative examples. This strip is also 

defined by the user. For these examples we have defined a strip of 10% of the number of not 

similar sequences. So the negative near-miss examples are the one’s that are greater then 0.001 

plus 10% of the of the number of not similar sequences and lower than e-value relaxation value 

(1, 2 or 5 in our examples).  

The main idea of this study is to study the best way to construct the negative examples based on 

our experiences. The distributions of positive and negative examples are show in the following 

Section. 

 

Experimental Results 

 

In our experiences we have used a set of algorithms available in the WEKA (Hall et al., 2009) 

tools and that are listed Table 1. 

  

Acronym Algorithm Type 

ZeroR Majority predictor Rule learner 

smo Sequential Minimal Optimization Support Vector Machines 

rf Random Forest Ensemble 

ibk K-nearest neighbors Instance-based learner 



BayesNet Bayesan Network Bayes learner 

j48 Decision tree (C4.5) Decision tree learner 

dtnb Decision table / naïve bayes hybrid Rule learner 

AdaBoost Boosting algorithm Ensemble learner 

Bagging Bagging algorithm Ensemble learner 

Ensemble Selection Combines several algorithms Ensemble learner 

Table 1. Machine Learning Algorithms used in the study. 

 

The data sets used are characterized in Tables 2 and 3. Table 2 characterizes data sets for which 

the negative examples are made only of near miss examples. Table 3 characterizes the data sets 

for which there were not enough negative examples and therefore we have used the MRV and 

RV strategies. 

Tables 4, 5 and 6 show the accuracy results obtained using the classifiers of Table 1. Accuracy 

results were obtained performing a 10-fold Cross Validation. 

The results tables show very promising results. Almost all values are weighing above the naive 

classifier of predicting the majority class. We can also say that the use of near miss values 

outperforms in most of the common data sets the other two strategies for generating negative 

examples. This finding is in the line of the use of near miss examples in Machine Learning. 

 
Data Sets NA Positive E. Negative E. Total E. 

T11 539 18 11 29 

EC15 276 22 22 44 

EC45 321 72 48 81 

BP12 470 70 28 98 

BP25 441 63 31 94 

C35 246 20 14 34 

Table 2. Characterization of data sets with enough near miss examples for learning. 

 

 
Data Sets NA Positive E. Negative E. Total E. 

S12 1602 128 128 256 

ALZ11 544 24 24 48 

C15 423 12 12 24 

C21 354 8 8 16 

C45 583 20 20 40 

C55 583 20 20 40 

H11 1461 120 120 240 

H21 396 13 13 26 

Table 3. Characterization of data sets for which there were no, or not enough, near miss examples. 

Negative examples where randomly selected (see text). The size of the negative sample is equal to the 

number of positive examples. 

 

 
Data Set ZeroR smo rf ibk BayesNet j48 dtnb 

T11NMV 53.84 98.035 (5.3) 96.51 (8.49) 97.39 (6.65) 75.35 (11.7) 86.71 (13.3) 73.75 (12.35) 

EC15NMV 46.72 95.63 (7.60) 95.00 (7.81) 96.60 (6.57) 77.10 (10.83) 80.87 (11.58) 82.31(10.76) 

EC45NMV 56.99 64.4 (9.47) 62.76 (9.57) 61.99 (9.63) 64.96 (7.91) 62.76 (9.25) 65.50 (7.08) 

BP12NMV 66.93 95.34 (4.65) 95.14 (4.33) 94.32 (4.73) 84.33 (6.81) 88.30 (6.55) 86.47 (6.82) 

BP25NMV 64.93 91.76 (5.46) 92.67 (4.96) 91.42 (6.10) 80.30 (8.84) 85.75 (6.62) 83.38 (6.95) 

C35NMV 57.60 92.05 (9.83) 92.55 (9.55) 93.22 (8.48) 80.17 (11.70) 83.27 (10.62) 81.28 (11.72) 



Table 4.  Accuracy results in datasets using near misses as negative examples (NMV). 

 

 
Data Set smo rf ibk BayesNet j48 dtnb 

T11MRV 70.00 (24.28) 78.33 (16.76) 70.00 (24.28) 73.33 (23.83) 65.00 (25.40) 70.83 (21.96) 

S12MRV 88.37 (8.70) 91.82 (3.83) 54.78 (11.73) 98.05 (2.79) 98.05 (2.06) 97.29 (2.60) 

Alz11MRV 60.50 (23.86) 80.00 (23.09) 52.50 (30.84) 83.50 (20.82) 94.00 (9.66) 93.50 (14.15) 

C15MRV 43.33 (34.43) 58.33 (29.66) 50.00 (26.06) 33.33 (19.25) 76.67 (26.29) 61.67 (15.81) 

C21MRV 65.00 (41.16) 50.00 (40.82) 55.00 (36.89) 85.00 (33.75) 75.00 (42.49) 85.00 (33.75) 

C55MRV 52.50 (18.45) 65.00 (24.15) 52.50 (27.51) 80.00 (19.72) 82.50 (16.87) 75.00 (20.41) 

H11MRV 89.17 (6.17) 95.83 (5.20) 64.58 (17.60) 96.25 (4.14) 94.58 (5.22) 98.75 (2.01) 

H21MRV 38.33 (28.38) 66.67 (24.85) 50.00 (38.49) 81.67 (24.15) 78.33 (23.64) 81.67 (24.15) 

Table 5. Accuracy results in data sets using negatives randomly selected from MEDLINE with MeSH 

terms common to positive examples (MRV). 

 

 
Data Set smo rf ibk BayesNet j48 dtnb 

T11RV 84.17 (24.67) 94.17 (12.45) 53.33 (22.97) 94.17 (12.45) 94.17 (12.45) 97.50 (7.91) 

S12RV 86.09 (10.30) 92.66 (4.24) 51.92 (7.69) 96.91 (3.98) 97.68 (3.72) 98.05 (3.33) 

C15RV 76.67 (21.08) 68.33 (24.15) 50.00 (26.06) 90.00 (22.50) 90.00 (22.50) 93.33 (21.08) 

C21RV 85.00 (24.15) 80.00 (34.96) 55.00 (36.89) 85.00 (33.75) 85.00 (33.75) 100.00 (0.00) 

C55RV 60.00 (21.08) 82.50 (16.87) 50.00 (26.35) 97.50 (7.91) 95.00 (10.54) 97.50 (7.91) 

H11RV 88.75 (6.53) 94.17 (5.27) 66.25 (17.51) 95.42 (4.99) 96.67 (5.12) 99.17 (1.76) 

H21RV 75.00 (27.50) 91.67 (18.00) 60.00 (32.58) 88.33 (19.33) 91.67 (18.00) 85.00 (19.95) 

Alz11RV 80.00 (26.67) 88.00 (21.50) 51.00 (30.62) 88.00 (21.50) 94.00 (13.50) 95.50 (9.56) 

Table 6. Accuracy results in data sets using negatives randomly selected from MEDLINE (RV). 

 

 

Ensemble Classifiers 
 

An ensemble is a collection of models whose predictions are combined by weighted averaging or 

voting. According to (Dietterich, 2000) a necessary and sufficient condition for an ensemble of 

classifiers to be more accurate than any of its individual members is if the classifiers are accurate 

and diverse. 

An ensemble of classifiers is a set of classifiers whose individual decisions are combined in 

some way (majority or voting) to classify new examples. 

The main objective of ensemble classifiers is to achieve a better performance than the 

constituents classifiers. The literature (Opitz & Maclin, 1999), (Dzeroski & Zenko, 2004), 

(Homayouni & Hashemi & Hamzeh, 2010) refers that: 

• Combining predictions of an ensemble is often more accurate than the individual 

classifiers that make them up 

• The classifiers should be accurate and diverse 

• An accurate classifier is one that has an error rate of better than random guessing (known 

as weak learners) 

• Two classifiers are diverse if they make different errors on new data points 

We have used the most common Ensembles available in the WEKA tool: Bagging, AdaBoost 

and Ensemble Selection for performing the experiments. 

(Kotsiantis and Pintelas, 2004)  states that bagging and boosting are among the most popular 

resampling ensemble methods that generate and combine a diversity of classifiers using the same 

learning algorithm for the base-classifiers. 



 

Bagging 
Bagging (Bootstrap aggregating) was proposed by (Breiman, 1996) and its basic idea is to 

generate several classifiers from a training set. These classifiers are generated independently. 

Bagging generates several samples from the original training data set using bootstrap sampling 

(Efron, 1996) and then trains a base classifier from each sample whose predictions are combined 

by a majority vote among the classifiers. 

 

AdaBoost 
In AdaBoost (Freund and Schapire, 1997) the performance of simple (weak) classifiers is 

boosted by combining them iteratively.  

Boosting methods re-weight in an adaptively way the training based on the values of the 

previous base classifier. 

Boosting is also a method based on combining several different classifiers. The main differences 

between Bagging and Boosting are: the way instance samples are generated, and the way final 

classification is performed. 

In Bagging, the classifiers are generated independently from each other. The Boosting method 

uses a more refined way to sample the original training set, where the samples are chosen 

according to the accuracy of the previously generated classifiers. Each classifier generation takes 

into account the accuracy of the classifiers generated in the previous steps. 

According to (Kotsiantis and Pintelas, 2004) boosting algorithms are considered stronger than 

bagging on noise free data. However, there are strong empirical indications that bagging is much 

more robust than boosting in noisy settings.  

 

Ensemble Selection 
Recently, ensemble selection (Caruana, 2004) was proposed as a technique for building 

ensembles from large collections of diverse classifiers. Ensemble selection uses more classifiers, 

allows optimizing to arbitrary performance metrics, and includes refinements to prevent 

overfitting to the ensemble training data a larger problem when selecting from more classifiers.  

 

 

Experimental Results with Ensemble Classifiers 
 

For the Bagging and AdaBoost classifiers we need to specify a base learner. We have used the 

experimental work with the base classifiers described previously. For each base classifier and 

data set we use the parameter combination that achieved best results. Each base classifier used in 

the ensembles use the best combination of parameters. We have also developed a wrapper for the 

ensembles that automatically tunes ensemble-level parameters. 

The Ensemble Selection algorithm allows us to specify the set of base learners as well as the best 

options for each individual learner. 

The following tables show the results obtained with WEKA’a ensemble classifiers: Bagging, 

AdaBoost and Ensemble Selection over the same data sets used in Tables 2 and 3. 

 

 

Data Set AdaBoost Bagging 
Ensemble 
Selection 



T11NMV 51.67 (27.72) 65.00 (22.84) 46.67 (26.99) 

EC15NMV 98.00 (4.22) 95.27 (6.58) 97.09 (4.69) 

EC45NMV 81.29 (7.90) 68.36 (12.76) 65.36 (12.14) 

BP12NMV 97.15 (3.81) 96.33 (3.51) 93.52 (3.85) 

BP25NMV 95.69 (3.50) 93.06 (5.11) 90.47 (4.50) 

C35NMV 94.56 (7.78) 92.33 (9.11) 90.11 (11.04) 

Table 7- Ensemble's Accuracy results in data set using near miss negative examples (NMV). 

 

 

 

 

 

Data Set AdaBoost Bagging 
Ensemble 
Selection 

T11MRV 73.33 (23.83) 75.00 (15.21) 75.83 (19.02) 
S12MRV 98.85 (1.86) 98.43 (2.777) 98.05 (2.79) 

Alz11MRV 94.00 (9.66) 91.50 (11.07) 87.50 (21.76) 
C15MRV 76.67 (26.29) 73.33 (25.09) 48.33 (30.88) 
C21MRV 85.00 (33.75) 85.00 (24.15) 85.00 (33.75) 

C55MRV 82.50 (16.87) 82.50 (16.87) 80.00 (19.72) 
H11MRV 98.75 (2.01) 99.58 (1.32) 96.67 (4.30) 
H21MRV 81.67 (24.15) 73.33 (23.83) 81.67 (24.15) 

Table 8 - Ensemble's Accuracy results in data sets using randomly selected examples sharing MeSH 

terms with the positive examples (MRV). 

 

 

Data Set AdaBoost Bagging 
Ensemble 
Selection 

T11RV 100.00 (0.00) 94.17 (12.45) 94.17 (12.45) 

S12RV 99.22 (1.65) 98.05 (3.33) 97.29 (3.65) 

C15RV 93.33 (21.08) 90.00 (22.50) 90.00 (22.50) 

C21RV 100.00 (0.00) 90.00 (21.08) 85.00 (33.75) 

C55RV 97.50 (7.91) 100.00 (0.00) 97.50 (7.91) 

H11RV 99.17 (1.76) 99.17 (1.76) 96.25 (4.99) 

H21RV 91.67 (18.00) 86.67 (21.94) 88.33 (19.33) 

Alz11RV 95.50 (9.56) 95.50 (9.56) 90.00 (19.44) 

Table 9 - Ensemble's Accuracy results in data sets using randomly selected examples (RV). 

 

A summary of the Accuracy results with all data sets and all algorithms, base algorithms and 

ensembles, can be found in Table 10. In Table 10 each cell is the average of the accuracies of 

each algorithm in all data set in the three “types” of data sets; using near misses (NMV); using 

randomly selected negatives sharing MeSH terms with the positive examples (MRV) and; using 

randomly selected negative examples (RV). 

 
Algorithms NMV MRV RV 

smo 89,54 63,40 79,81 

rf 89,11 73,25 86,54 

ibk 89,16 56,17 56,54 

BayesNet 77,04 78,89 92,37 

J48 81,28 83,02 93,00 



dtnb 78,78 82,96 96,23 

AdaBoost 86,39 86,35 97,05 

Bagging 85,06 84,83 94,20 

Ensemble Selection 80,54 81,63 92,32 

Table 10 - Algorithms accuracy average for NMVs, RMVs and RVs 

 

As a global result we can see that all algorithms have in general very good performance well 

above the majority class predictor (except for ibk in MRV and RV data sets). The results also 

suggest that generating randomly the negative examples produces better results. As expected 

ensemble learners have a more higher and uniform performance than base learners. 

 

 

Sensitivity Tests 
 
In some of the data sets the number of attributes is greater than the number of examples, which 

may cause the so called overfitting problem. As said previously the Ensemble Selection 

algorithm is known to perform well on avoiding overfitting. Apart from the use of such 

algorithm we investigate how performance (Accuracy) varies when reducing the number of 

attributes in the data sets. In fact we have pruned the attributes based on the number of positive 

documents they occur. For each original data set we have produced several version of it with 

increasing severity of pruning and apply the learning algorithms to those data sets. 
 

Figure 4 shows the effect of attribute reduction on accuracy for Ensemble Selection algorithm 

(left side of the picture) and for J48 (right side of the picture). In general our experiments show 

that the variation on ensemble algorithms seems to be smaller than on base algorithms. 

 

 

Figure 4 - Effect of attribute reduction. On the left side is Ensemble Selection algorithm and on 

the right side is J48. 

 

CONCLUSIONS  

 



This paper focuses on data set construction for posteriori classification of MEDLINE documents. 

Our study highlights the impact of three different ways to construct the data sets for posteriori 

classification. These three different ways are applied only to construct the negative examples. 

The first one is based on the concept of near miss values (NMV), which are examples that 

although negative are relatively close to the positive examples. The second approach is to use 

MeSH Random values (MRV) that is applied when we do not have enough negative near-miss 

examples (when negative examples are less than the number of positive examples) and add to 

this few or none examples some random negative examples from our LDB. However these 

examples are not just randomly selected, they must have some MeSH terms in common with the 

positive examples's MeSH terms that were previously processed. The last approach is to  

randomly select the negative examples from our LDB in equal number to the number of positive 

examples. However in the second and third approach we guarantee that in these random negative 

examples there aren’t any positive examples. 

We have generated several data sets with these different techniques. We have presented 

comparison tables, for these three techniques under study for six different categories: RNASES, 

Escherichia Coli, Blood Pressure, Alzheimer, Hemoglobin and Cholesterol. The categories were 

chosen by a biologist expert. These tables present the accuracy obtained performing a 10-fold 

cross validation and using different classification algorithms and the three different approaches 

(NMV, MRV and RV). 

We have applied a collection of base learners and also ensemble learners. From the results 

presented in the accuracy tables, we can say that the use of randomly selected examples (RV) 

achieves, overall, better accuracy. We can also remark that ensembles learners performed better, 

as expected, than base learners. 
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