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Multi-periodic inventory control problems are mainly studied by employing one of two
assumptions. First, the continuous review, where depending on the inventory level, orders
can happen at any time, and next the periodic review, where orders can only be placed at
the beginning of each period. In this paper, we relax these assumptions and assume the
times between two replenishments are independent random variables. For the problem
at hand, the decision variables (the maximum inventory of several products) are of inte-
ger-type and there is a single space-constraint. While demands are treated as fuzzy num-
bers, a combination of back-order and lost-sales is considered for the shortages. We
demonstrate the model of this problem is of an integer-nonlinear-programming type. A
hybrid method of fuzzy simulation (FS) and genetic algorithm (GA) is proposed to solve this
problem. The performance of the proposed method is then compared with the performance
of an existing hybrid FS and simulated annealing (SA) algorithm through three numerical
examples containing different numbers of products. Furthermore, the applicability of the
proposed methodology along with a sensitivity analysis on its parameters is shown by
numerical examples. The comparison results show that, at least for the numerical examples
under consideration, the hybrid method of FS and GA shows better performance than the
hybrid method of FS and SA.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction and literature review

The continuous review and the periodic review are the main applied policies in multi-periodic inventory control models.
However, the underlying assumptions of these models restrict their proper use in real-world environments. In continuous
review policy, one has the freedom to act anytime and place orders based upon the available inventory level. While in
the periodic review policy, the user is allowed to place orders only in specific and predetermined times.

Two of the widely employed periodic review policies are the so-called (R,T) and (R,nT) policies. In the first one, at fixed
predetermined intervals, T, the inventory is reviewed and an order is placed accordingly. The order quantity is determined by
. All rights reserved.
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subtracting the on hand inventory from a predetermined value R. If this policy is used in an n-echelon inventory system, it is
called (R,nT) policy. Further, the economic order quantity (EOQ) model along with the (r,Q) policy are the two other major
periodic review inventory systems, where in the former the purchaser desires to determine the optimal quantity of the order
while in the latter the optimal values of the reorder point and order quantity are sought.

There is substantial research reported in the literature in the area of multi-periodic inventory control. Some of these
works are summarized in Tables 1 and 2. Table 1 (except for Taleizadeh et al. [39]) shows the main research efforts in
the stochastic environment dealing with (R,T) and (r,Q) systems in which demand and lead-time are considered stochastic
variables. The main constraints shown in these works are service level [30,39], order quantity [3], and joint order [13,33].
Although the decision variables such as order quantity, inventory level, reorder point and period length are similar, various
assumptions have been made and different models and procedures have been proposed. For example Chiang [6] and Bylka
[3] considered emergency orders, Feng and Rao [14] assumed non-zero lead-time, Eynan and Kropp [13] employed variable
shortage cost, Mohebbi [29] used a discrete-pattern demand, and Qu et al. [33] considered an integrated inventory transpor-
tation system.

Table 2 shows the main research efforts in the fuzzy environment performed on EOQ and economic production quantity
(EPQ) models. In this category, the main constraints are budget [8,41], space [28,34,41], and service level [41]. While the
decision variables are similar to the ones in the stochastic environment, the demand and inventory costs are considered fuz-
zy variables. In some of these research undertakings such as [19,26,34] production rate, price, and deterioration rate are con-
sidered fuzzy variables as well.

A careful observation of the works listed in Tables 1 and 2 reveals that while separate emphasis has been devoted to the
stochastic nature of demand and lead-time, some real-world constraints of the systems have not been investigated simul-
taneously. For example, no work is reported where both demand and lead-time are probabilistic. Furthermore, some con-
straints have been partially studied, the decision variables have been considered integer, and constraints such as budget
and space have not been investigated.

In addition, many researchers have successfully used meta-heuristic methods to solve complicated optimization prob-
lems in different fields of science and engineering. Some of these meta-heuristic algorithms are: fuzzy simulation [41,44],
genetic algorithms [2], harmony search [23,17,40–43], simulating annealing [1,39,44], ant colony optimization [10], neural
networks [15], threshold accepting [11], Tabu search [20], and evolutionary algorithm [22,41].

This paper first extends the periodic review works in both stochastic and fuzzy environments such that the replenishment
intervals become random and demands assume a fuzzy nature. Then, it presents a hybrid algorithm to solve the problem. To
be more specific, the extended model assumes a stochastic replenishment, i.e., stochastic period length, multiple products
that are stored in a single capacity-constrained warehouse, fuzzy customer demand, and integer decision variables. Since
the time between two replenishments includes the time required to order, the time needed to provide or produce items
and the transportation time, the stochastic replenishment assumption is closer to reality than the usual assumption of a
deterministic period length. Furthermore, there are many situations in practice where the customer demand is fuzzy, espe-
cially in manufacturing where due to the machine breakdowns, shortage of raw materials, and fluctuating rate of noncon-
forming production, and so on, the demand for on hand inventories of parts and subassemblies can be considered fuzzy. The
hybrid algorithm consists of a GA for inventory control optimization and a method for fuzzy simulation to evaluate different
solutions in the genetic optimization process.

The models developed in this research are useful for companies and manufacturers who are faced with uncertain de-
mands that do not follow a stochastic pattern. In other words, manufacturers who are unable to assume certain probability
distributions for the uncertain demands of their products can use fuzzy set theory to find suitable patterns. Additionally, the
proposed method is beneficial in situations where due to some limitations on the production capacity, the supply of the raw
material, and the like, the period length may be uncertain and the goods may not be delivered on time. As an example, when
demand increases and production capacity is limited, in case of breakdowns or late receipts of imported raw materials (when
delayed at customs) the lead-time and hence the cycle length increases. Another example involves sale representatives that
randomly visit retailers offering them product replenishments. The stochastic nature of these factors causes the period
length to be stochastic.

The rest of this paper is organized as follows. In Section 2, the problem along with its assumptions is defined. The problem
formulation comes in Section 3 after the parameters and the variables are defined. In this section, the single product problem
is first modeled and then it is extended to a multiproduct formulation. In the fourth section of the paper, a hybrid algorithm
is proposed to solve and analyze the problem at hand under special conditions. By incorporating a numerical example, the
solution method is investigated in Section 5. Section 6 contains a sensitivity analysis, and finally the conclusion and recom-
mendations for future research come in Section 7.
2. Problem definition and modeling

Consider a periodic-review inventory control model for one provider in which the period lengths are stochastic in nature,
i.e., the times between two replenishments are independent random variables following either Uniform or Exponential prob-
ability distribution. Triangular fuzzy variables are used to model the demands of several products, and the partial back-
ordering policy is employed for shortages, i.e., a fraction of unsatisfied demands is lost and the rest is back-ordered.



Table 1
Literature review in stochastic environment.

Author Periodic
review

Continuous
review

Multi
products

Constraint Discount Fuzzy
environment

Stochastic
environment

Partial
back-
ordering

Lost sale or
back-order

Solution
method

Decision variable Other considerations

Chiang [6] (R,T) ⁄ Demand B Dynamic
programming

Inventory level Emergency order

Mohebbi
and
Posner
[30]

(r,Q) Demand and
lead time

L Heuristic Order quantity Multiple
replenishment

Ouyang and
Chang
[32]

(R,T) Service
level

Demand Heuristic Review period

Feng and
Rao [14]

(R,nT) (r,Q) Demand B Heuristic Order quantity,
reorder point,
inventory level

Non-zero lead time

Bylka [3] (R,T) Order and
space

Demand ⁄ Heuristic and
Markov
process

Regular and
emergency order
quantity

Emergency order and
two suppliers

Chiang et al.
[7]

(R,T) ⁄ Demand B and L Dynamic
programming

Inventory level and
order quantity

Two models with back
ordering and lost sale

Eynan and
Kropp
[13]

(EOQ) ⁄ Joint order Demand B Heuristic Period length Variable shortage cost

Mohebbi
[29]

(r,Q) Demand L Software
(MATLAB)

Reorder point and
order quantity

Discrete demand and
unreliable supplier

Qu et al.
[33]

(R,T) ⁄ Joint order B Heuristic Rout, order quantity
and period length

Integrated inventory-
transportation system

Taleizadeh
et al. [39]

(R,T) ⁄ Service
level and
space

Period
length

⁄ Simulated
annealing

Inventory level
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Table 2
Literature review in fuzzy environment.

Author Periodic
review

Continuous
review

Multiproduct Constraint Fuzzy environment Lost sale
or back-
order

Solution method Decision va ble Other considerations

Chang
et al. [4]

(r,Q) Demand B and L Difuzzification and
heuristic

Lead time a order quantity Variable lead-time

Das et al.
[8]

(EOQ) ⁄ Budget and
space

Demand B Difuzzification and
heuristic

Order and s rtage quantities Time varying demand and
production rate

Hsieh [19] (EPQ) Demand,
production rate,
inventory costs

Heuristic and
Lagrangian

Production antity All of the parameters are fuzzy

Liu [25] (EOQ) Batch order Demand, inventory
costs

Possibility theory and
geometric
programming

Order quant y

Maiti and
Maiti
[26]

(r,Q) ⁄ Demand and price Fuzzy simulation and
genetic algorithm

Reorder poi , order quantity,
selling price frequency of
advertiseme ts

Two storages, advertisement,
single and multi objective

Mandal
and Roy
[28]

(EOQ) ⁄ Space Constraint goal,
inventory costs

Fuzzy geometric
programming

Order quant y Multi objective

Roy et al.
[34]

(r,Q) Space Deterioration rate Fuzzy simulation and
genetic algorithm

Order quant y Stochastic period length, two
storage facilities, time varying
demand

Taleizadeh
et al.
[41]

(R,T) ⁄ Budget, space
and service
level

Inventory costs Fuzzy simulation and
genetic algorithm

Inventory le l Partial back ordering and
incremental discount, stochastic
period length

Yao et al.
[46]

(EOQ) Demand Heuristic Order quant y

Chen et al.
[5]

(EOQ) Demand, inventory
costs

B Function principle Order and s rtage quantities
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Moreover, when demands are higher than replenishment levels, the back-ordered quantities in the previous cycle are carried
out to the next cycle. In situations in which demands are lower than replenishment levels, extra inventories are carried out to
the following cycle and are assumed to have an insignificant impact on the independence of the two periods.

Assuming all the produced items are sold, the costs associated with the inventory control system consists of holding,
back-order, lost-sale, and purchase costs. Furthermore, the warehouse space is considered a constraint and the decision vari-
ables are integer. We need to identify the maximum inventory levels in each cycle such that the expected profit is
maximized.

For the problem at hand, since the times between two replenishments are independent random variables, in order to
maximize the expected profit over the planning horizon one needs to consider only one period. Moreover, since the costs
associated with the inventory control system are holding and shortage (back-order and lost-sale), we need to calculate
the expected inventory level and the expected required storage space in each period. Before doing this, parameters and vari-
ables of the model are defined based on the works of Taleizadeh et al. [39,41,42]).

2.1. Defining parameters and variables of the model

For i = 1,2, . . . ,n, define the parameters and the variables of the model as
Ri
 Maximum inventory level of the ith product

Ti
 A random variable denoting the time between two replenishments (cycle length) of the ith product

hi
 Holding cost per unit inventory of the ith product in each period

pi
 Back-order cost per unit demand of the ith product

Wi
 Purchasing cost per unit of the ith product

Pi
 Selling price per unit of the ith product

Di
 Constant demand rate of the ith product

bi
 Percentage of unsatisfied demands of the ith product that is back-ordered

Ii
 Expected ith product inventory multiplied by the cycle time

Li
 Expected ith product lost-sale in each cycle

Bi
 Expected ith product back-order in each cycle

Qi
 Expected order size of the ith product in each cycle

fi
 Required warehouse space per unit of the ith product

F
 Total available warehouse space

Ch
 Expected holding cost per cycle

Cb
 Expected shortage cost in back-order state

Cl
 Expected shortage cost in lost-sale state

Cp
 Expected purchase cost

r
 Expected revenue obtained from sales

Z
 Expected profit obtained in each cycle
The pictorial representation of the single-product problem is given in Section 2.2. In Section 2.3, we first consider a single-
product problem, and then, the formulation to the multi-product modeling is extended in Section 2.4.

2.2. Inventory diagram

According to Ertogal and Rahim [12] and considering the times between replenishments stochastic variables, two cases
may occur. In the first case the time between replenishments is less than the time required for the inventory level to reach
zero (see Fig. 1), and in the second, it is greater (see Fig. 2) [39,41,42]. Fig. 3 depicts the shortages in both cases. In the above
figures, tDi

denotes the time at which the inventory of the ith product reaches zero.
t
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Fig. 1. Presenting the inventory cycle when TMin 6 T 6 tDi
.
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Fig. 3. Presenting shortages in two cases of compact back order and lost sales.
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2.3. Single product model with constant demand

In this section, we first model a single-product inventory problem with constant demand where stochastic replenish-
ments, back-orders, and lost-sales are allowed. Then, the model is extended in Section 2.4 to contain several products with
fuzzy demands.

2.3.1. Calculating the costs and the profit
In order to calculate the expected profit in each cycle, we need to evaluate all the terms in the following equation [12]:
Z ¼ r � Cp � Ch � Cb � Cl ¼ PQ �WQ � hI � pB� ðP �WÞL ð1Þ
Based on Fig. 3, L, B, I, and Q are evaluated by the following equations [39,41,42]:
L ¼ ð1� bÞ
Z TMax

tD

ðDT � RÞfTðtÞdt; tD < T 6 TMax ð2Þ

B ¼ b
Z TMax

tD

ðDT � RÞfTðtÞdt; tD < T 6 TMax ð3Þ

I ¼
Z tD

TMin

RT � DT2

2

 !
fTðtÞdt þ

Z TMax

tD

R2

2D
fTðtÞdt ð4Þ

Q ¼
Z tD

TMin

DTfTðtÞdt þ
Z TMax

tD

ðRþ bðDT � RÞÞfTðtÞdt ð5Þ
2.3.2. Presenting the constraints
Since the total available warehouse space is F, the space required for each unit of product is f, and the upper limit for

inventory is R, the space constraint will be
fR 6 F ð6Þ
In short, the complete mathematical model of the single-product inventory control problem with stochastic replenishments,
back-orders, lost-sales, and constant demand is
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Max Z ¼ ðP �WÞ
Z R

D

TMin

ðDTÞfTðtÞdt þ
Z TMax

R
D

ðRþ bðDT � RÞÞfTðtÞdt

" #

� h
Z R

D

TMin

RT � DT2

2

 !
fTðtÞdt þ

Z TMax

R
D

R2

2D
fTðtÞdt

" #

� pb
Z TMax

R
D

ðDT � RÞfTðtÞdt

" #
� ðP �WÞð1� bÞ

Z TMax

R
D

ðDT � RÞfTðtÞdt

" #
s:t: : fR 6 F ð7Þ

R P 0; and Integer
2.4. Multiproduct model with fuzzy demand

In the extending phase of the single-product model of Section 2.3 to the multiple product formulation of this section, the
demands are assumed fuzzy and in addition to the two cases of back-order and lost-sales, their combination is considered as
well.

Let eDi denote the fuzzy demand for the ith product. Then, an extension of (7) to include n products easily results in the
multiproduct model as
Max ZðRi; eDiÞ ¼
Xn

i¼1

½ðPi �WiÞQ i � hiIi � piBi � ðPi �WiÞLi�

¼
Xn

i¼1

ðPi �WiÞ
Z RieDi

TMini

ðeDiTiÞfTi
ðtiÞdt þ

Z TMaxi

RieDi

ðRi þ biðeDiTi � RiÞÞfTi
ðtiÞdti

264
375

8><>:
9>=>;

�
Xn

i¼1

hi

Z RieDi

TMini

RiTi �
eDiT

2
i

2

 !
fTi
ðtiÞdti þ

Z TMaxi

RieDi

R2
i

2eDi

fTi
ðtiÞdti

264
375

�
Xn

i¼1

pibi

Z TMaxi

RieDi

ðeDiTi � RiÞfTi
ðtiÞdti

264
375�Xn

i¼1

ðPi �WiÞð1� biÞ
Z TMaxi

RieDi

ðeDiTi � RiÞfTi
ðtiÞdti

264
375

s:t: :
Xn

i¼1

fiRi 6 F ð8Þ

Ri P 0; and Integer 8i ¼ 1;2; . . . ; n
In what follows, two probability density functions for Ti are assumed and hence two models are developed. In the first model,
Ti follows a uniform distribution, where the demands may occur in a finite and specific range (within an upper and a lower
bound). In the second model, Ti follows an exponential distribution, where the demands may increase sharply. This model is
suitable for seasonal or new products.

2.4.1. Ti follows a uniform distribution
In this case Ti follows a uniform distribution in the interval ½TMini

; TMaxi
�, i.e., Ti � U½TMini

; TMaxi
� and fTi

ðtiÞ ¼ 1
TMaxi

�TMini
.

Accordingly, (8) is changed to
Max ZðRi; eDiÞ ¼
Xn

i¼1

hi

6eD2
i ðTMaxi

� TMini
Þ

" #
R3

i �
Xn

i¼1

2ðPi �WiÞð1� biÞ þ pibi þ hiTMaxi

2eDiðTMaxi
� TMini

Þ

" #
R2

i

þ
Xn

i¼1

4ðPi �WiÞð1� biÞTMaxi
þ hiT

2
Mini
þ 2pibiTMaxi

2ðTMaxi
� TMini

Þ

" #
Ri

þ
Xn

i¼1

�hiT
3
Mini

eDi þ 3ðPi �WiÞðbiT
2
Maxi
� T2

Mini
ÞeDi � 3T2

Maxi
eDiðpibi þ ðPi �WiÞð1� biÞÞ

6ðTMaxi
� TMini

Þ

" #

s:t: :
Xn

i¼1

fiRi 6 F ð9Þ

Ri P 0; Integer; 8i ¼ 1;2; . . . ;n
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2.4.2. Ti follows an exponential distribution
If Ti follows an exponential distribution with parameter ki, then the probability density function of Ti is fTi

ðtiÞ ¼ kie�kiTi . In
this case, the model is derived as
Max ZðRi; eDiÞ ¼
Xn

i¼1

1
ki
½2eDið1� biÞðWi � PiÞ � pibi

eDi�e
� RieDi

� �
ki

þ 1
ki
½eDiðPi �WiÞ � hiRi� þ

hi
eDi

k2
i

1� e
� RieDi

� �
ki

0B@
1CA

8><>:
9>=>;

s:t: :
Xn

i¼1

fiRi 6 F ð10Þ

Ri P 0; and Integer 8i ¼ 1;2; . . . ;n
In the next section, a hybrid intelligent algorithm is introduced to find near optimum solutions of the formulated problems in
(9) and (10).

3. A hybrid intelligent algorithm

Since analytical solutions (if any) of the integer-nonlinear models in (9) and (10) are hard to obtain [16], a hybrid intel-
ligent algorithm of fuzzy simulation and genetic algorithm is developed in this section. Some related research that have em-
ployed the fuzzy simulation approach along with other meta-heuristic algorithms include [20,37,41,44]. In the next
subsection, a brief background in fuzzy simulation is given.

3.1. Some definitions in fuzzy environment

In this paper, we adopt the concepts of the credibility theory including possibility, necessity, credibility of fuzzy events,
and the expected value of a fuzzy variable as defined in [21,24,47–51].

Definition 1. Let n be a fuzzy variable with the membership function l(x). Then the possibility, necessity, and credibility
measures of the fuzzy event n P r can be represented, respectively, by
Posfn P rg ¼ sup
uPr

lðuÞ ð11Þ

Necfn P rg ¼ 1� sup
u<r

lðuÞ ð12Þ

Crfn P rg ¼ 1
2
½Posfn P rg þ Necfn P rg� ð13Þ
Definition 2. The expected value of a fuzzy variable is defined as
E½n� ¼
Z 1

0
Crfn P rgdr �

Z 0

�1
Crfn 6 rgdr ð14Þ
Definition 3. The optimistic function of a is defined as
nsupðaÞ ¼ sup½r Crfn P rgP aj �; a 2 ð0;1� ð15Þ
Definition 4. If ~n ¼ ða; b; cÞ is a triangular fuzzy number with center b, left width a > 0, and right width c > 0, then its
membership function has the following form
lðrÞ ¼

r�ðb�aÞ
a ; b� a 6 r 6 b

ðbþcÞ�r
c ; b 6 r 6 bþ c

0 : elsewhere

8><>: ð16Þ
Definition 5. For the fuzzy variable described in Definition 4, the credibility of the event Cr{n 6 r} is defined based on the
definition in (13) as
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lðrÞ ¼

0; r 6 b� a
r�ðb�aÞ

2a ; b� a 6 r 6 b
r�ðb�cÞ

c ; b 6 r 6 bþ c
1; elsewhere

8>>>><>>>>: ð17Þ
In this research, the triangular fuzzy variable is used to model the fuzzy demand.

3.2. Fuzzy simulation

A fuzzy simulation technique is employed to estimate the fuzzy demands. Denoting ~ni by eDi = ðeD1; eD2; . . . ; eDnÞ, l as the

membership function of eD, and li as the membership functions of eDi, we randomly generate Dk
i from the a-level sets of fuzzy

variables eDi, i = 1, 2, . . ., n and k = 1, 2, . . ., K as Dk ¼ Dk
1;D

k
2; � � � ;D

k
n

� �
and lðDkÞ ¼ l1ðD

k
1Þ ^ l2ðD

k
2Þ^; . . . ;^lnðD

k
nÞ, where a is a

sufficiently small positive number. Then, the expected value of the fuzzy variable is
E½ZðR; eDÞ� ¼ Z þ1

0
CrfZðR; eDÞP rgdr �

Z 0

�1
CrfZðR; eDÞ 6 rgdr ð18Þ
Provided that O is sufficiently large, for any number r P 0, Cr{Z(R,Dk) P r} can be estimated by
CrfZðR;DkÞP rg ¼ 1
2

Max
k¼1;2;...;O

flkjZðR;DkÞP rg þ 1� Max
k¼1;2;...;O

flkjZðR;DkÞ < rg
� �

ð19Þ
And for any number r < 0, Cr{Z(R, Dk) 6 r} can be estimated by
CrfZðR;DkÞ 6 rg ¼ 1
2

Max
k¼1;2;...;O

flkjZðR;DkÞ 6 rg þ 1� Max
k¼1;2;...;O

flkjZðR;DkÞ > rg
� �

ð20Þ
The procedure of estimating ZðR; eDÞ in (19) and (20) is shown in the following algorithm:

Algorithm 1. Estimating ZðR; eDÞ

1.
 Set E = 0 and initialize K and O.

2.
 Randomly generate Dk

i from a -level sets of fuzzy variables eDi; and set Dk ¼ ðDk
1;D

k
2; � � � ;D

k
nÞ
3.
 Set a = Z(R, D1) ^ Z(R, D2) ^ � � � ^ Z(R, DO), b ¼ ZðR;D1Þ _ ZðR;D2Þ _ � � � _ ZðR;DOÞ.

4.
 Randomly generate r from Uniform [a, b].

5.
 If r P 0, then E Eþ CrfZðR; eDÞ � rg. Otherwise, E E� CrfZðR; eDÞ � rg.

6.
 Repeat 4 and 5 for O times.

7.
 Calculate EðZðR; eDÞÞ ¼ a _ 0þ b ^ 0þ E� b�a

O .
3.3. Genetic algorithm

In the usual form of genetic algorithm (GA), described by Goldberg [18], the best solution is the winner of the genetic
game and any potential solution is assumed a creature determined by different parameters. Several authors have employed
GA to solve complicated inventory control problems. A selection of these works is demonstrated in Table 3.

In what follows the main characteristics of the genetic algorithm employed in this research are described.

3.3.1. Chromosomes
A chromosome, an important part of GA, is a string or trail of genes that is considered the coded figure of a possible solu-

tion (proper or improper). In this paper, the chromosomes are strings of the maximum inventory levels of the products (Rj)
that are integers [39,41,42]. Therefore, integer numbers are randomly generated in the closed interval [0,1000] to represent
the genes. Moreover, infeasible chromosomes, the ones that do not satisfy the constraints of the models in (9) and (10), are
not considered. For an 8-product system, the chromosome structure is given in Fig. 4.

3.3.2. Population
Each population or generation of chromosomes has the same size that is known as the population size denoted by N. Sim-

ilar to Taleizadeh et al. [39,41,42], 50, 100, and 150 are chosen as different population sizes of the GA algorithm of the current
research.

3.3.3. Crossover
In a crossover operation, mating pairs of chromosomes creates offspring. Crossover operates on the parents’ chromo-

somes with the probability of Pc. If no crossover occurs, the offspring’s chromosomes will be the same as their parents’



Table 3
Literature review of GA applications in inventory control.

Author Area Variables Gene represents Initialization Mutation Crossover Stopping
criteria

Hybrid by Other considerations

Roy et al. [34] Integrated
production
inventory system

Cycle length, maximum
inventory level

Product type Random
generation

Randomly by
using mutation
probability

Single point Maximum
iteration
number

Fuzzy logic Fuzzy genetic algorithm is
proposed

Suer et al. [38] Capacitated lot size
problem

Production quantity,
human resource
requirement, etc.

Product type Random
generation

Randomly by
using mutation
probability

Multiple
chromosome

Maximum
number of
generation

– Multiple chromosome
crossover is proposed

Shahabudeen
and
Sivakumar
[36]

Kanban system Number of Kanban and
extra cards

Number of
Kanban and
extra cards

Random
generation

Order based shift
mutation

Single point Maximum
number of
generation

– GA compared by simulated
annealing and performed
better

Roy et al. [35] Inventory model
with deterioration
items

Order quantity, cycle
length

Product type Random
generation

Randomly by
using mutation
probability

Single point Maximum
number of
generation

Fuzzy
simulation

Necessity and possibility
theories are considered

Nachiapan and
Jawahar
[31]

Vendor managed
inventory

Sales quantity of each
buyer

Sales quantity
of buyers

Random
generation

Randomly by
using mutation
probability

Single point Maximum
number of
generation

– GA based heuristic is
proposed

Taleizadeh
et al. [42]

Inventory model
with random period
length

Maximum inventory
level

Product type Random
generation

Randomly by
using mutation
probability

Two point
crossover

Maximum
number of
generation

Pareto and
TOPSIS
selections

TOPSIS is used to rank the
Pareto

Taleizadeh
et al. [43]

Newsboy inventory
system

Order quantity Product type Random
generation

Randomly by
using mutation
probability

Two point
crossover

Maximum
number of
generation

Goal
programming

GA solved a multi
objectives problem
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Fig. 4. The structure of a chromosome.

jR 120 78 130 105 78 140 86 90

M=6   

jR 105 75 130 100 66 140 91 84 

jR 120 78 130 105 78 140 91 84 

jR 105 75 130 100 66 140 86 90

Fig. 5. The single-point crossover operation.
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[45]. Fig. 5 depicts a single-point crossover operation in which Rj shows the chromosome containing the maximum inventory
levels of the products and the break point is chosen at M = 6 [39,41,42].

In this research, a single point crossover with different probabilities (Pc) of 0.6, 0.7, and 0.8 is utilized. Note that infeasible
chromosomes do not move to the new population.

3.3.4. Mutation
Mutation is the second operation in GA to explore new solutions by operating on each chromosome resulted from the

crossover operation, where genes are replaced with randomly selected numbers within the boundaries of the parameter
[16,27]. To do this, a random number RN between (0,1) is generated for each gene. If RN is less than a predetermined muta-
tion probability Pm, then the mutation occurs in the gene. Otherwise, it does not. The usual value of Pm is 0.1 over the num-
bers of genes in a chromosome. In this research, 0.010, 0.015, and 0.020 are chosen as different values of Pm. Note that
infeasible chromosomes resulted by this operation do not move to the new population [39,41,42]. Fig. 6 depicts a mutation
operation in which Pm is chosen to be 0.01 [39,41,42].

3.3.5. Objective function evaluation
In a maximization problem, the more adequate the solution, the greater the objective function (fitness value) will be.

Therefore, the fittest chromosomes will take part in offspring generation with a larger probability. The fuzzy simulation
of Section 3.2 is used to evaluate the objective function of this research [39,41,42].

3.3.6. Selection
Selection plays a central role in GAs by determining how individuals compete for survival. Selection weeds out the bad

solutions and keeps the good ones. This can be performed by proportional fitness selection that assigns a selection proba-
bility in proportion to the fitness of the given individual. The tournament selection is the most commonly used method,
in which a number of randomly picked individuals are compared to each other [9]. The fittest individual is then selected
to be a part of the next generation. The tournament size determines how many individuals are to be compared per selected
population. Because of the randomness of the selection method, most techniques, including traditional recombination and
mutation operators, cannot guarantee the survival of the current best solution. In this research, Elitism is used to provide
guarantee by explicitly selecting the best individual or group of individuals. The implementation of these two techniques
leads to duplicates of good individuals [9].

In this paper, we move the five best solutions to the next generation as elites. After each generation, solutions are checked
for feasibility in terms of satisfying the constraint. If the constraint is satisfied, the corresponding chromosome will immi-
grate to the next population, otherwise the solution will be removed, and the generation will continue until a sufficient num-
ber of chromosomes are produced.
jR 120 78 130 105 78 140 86 90 

RN 0.573 0.003 0.008 0.284 0.743 0.972 0.007 0.824 

jR 120 75 140 105 78 140 80 90 

Fig. 6. A sample of mutation operation.



Table 4
General data.

Product 1 2 3 4 5 6 7 8

hi 2 2 2 2 2 2 2 2
pi 5 5 5 5 5 5 5 5
Pi 100 100 100 100 150 150 150 150
bi 0.5 0.9 0.9 0.5 0.5 0.9 0.9 0.5
fi 3 3 3 3 6 6 6 6
Wi 70 70 70 70 70 70 70 70
Di (7,10,13) (7,10,13) (7,10,13) (7,10,13) (18,20,22) (18,20,22) (18,20,22) (18,20,22)
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3.3.7. Stopping criterion
The last step in a GA is to check whether the algorithm has found a solution that is good enough to meet the user’s expec-

tations. Stopping criterion is a set of conditions such that when satisfied, hints at a good solution.
In this research, since the population sizes of 50, 100, and 150 are used, it is better to stop the algorithm until a maximum

number of 500 evaluations (MN = 500) are performed [39,41,42].
In short, the steps involved in the GA algorithm used in this research are

1. Set the parameters Pc, Pm, and N initialize the population randomly (the individuals should satisfy the constraints)
2. Evaluate the objective function for all chromosomes based on Flowchart (1)
3. Select an individual for mating pool by tournament selection method using elitisms
4. Apply crossover to each pair of chromosomes with probability Pc

5. Apply mutation to each chromosome with probability Pm

6. Replace the current population by the resulting new feasible population (before replacing the old population, the feasi-
bility of the newly generated chromosomes is checked and reproduction will continue until a sufficient number of
required chromosomes is obtained)

7. Evaluate the objective function
8. If the stopping criterion is met, stop. Otherwise, go to step 4.

In order to demonstrate and evaluate the performance of the proposed hybrid intelligent algorithm, in the next section we
present three numerical examples that were originally used in Ertogal and Rahim [12]. In these examples, two cases of the
uniform and the exponential distributions for the time between two replenishments are investigated. To validate the results
obtained, an existing hybrid method of FS and SA [44] is employed as well.
4. Numerical examples

Consider two multiproduct inventory control problems with different numbers of products. The first one has eight prod-
ucts, where its general data is given in Table 4. Tables 5 and 6 show the parameters of the uniform and the exponential dis-
tributions used for the times between two replenishments, respectively. The total available warehouse space is 4800, and
Table 7 shows different values of the parameters of the GA method. In this research all different combinations of the param-
eters of GA (Pc, Pm and N) given in Table 7 are employed and using the Max (Max) criterion the best combination of the
parameters has been selected. Moreover, K = 15 and O = 100 are considered in the fuzzy simulation procedure. All runs
are performed using MATLAB on a Pentium4 computer with 2.2 GHZ coreduo2 processor.

In order to show the effectiveness of the proposed hybrid method of FS and GA in solving the complicated inventory prob-
lem of this research, Taleizadeh et al.’s [44] hybrid method of FS + SA is also employed to solve the numerical examples.

Tables 8 and 9 show the best results of the two approaches. The best combinations of the GA algorithms are shown in
Table 10. Furthermore, the convergence paths of the objective-function values of the FS + GA and FS + SA algorithms for uni-
form and exponential distributions are shown in Figs. 7–10.

The results in Tables 8 and 9 show that the hybrid FS + GA method provides a better near-optimal solution in terms of the
objective-function value. Moreover, from Figs. 7 to 10, one can observe that more generations and iterations are required to
reach the best result in the case of uniform compared to exponential distribution.

In the first numerical example, to compare the performances of the two hybrid methods, while the number of runs in each
example is set at 25 for both methods; the sample means of the CPU times in reaching the best solution in exponential
Table 5
Data for uniform distribution.

Product 1 2 3 4 5 6 7 8

TMini
20 20 50 50 20 20 50 50

TMaxi
40 40 70 70 40 40 70 70



Table 6
Data for exponential distribution.

Product 1 2 3 4 5 6 7 8

ki 1/30 1/30 1/60 1/60 1/30 1/30 1/60 1/60

Table 7
The parameters of the GA method.

Pc Pm N

0.6 0.010 50
0.7 0.015 100
0.9 0.020 150

Table 8
The best result for Ri by FS + GA algorithm.

Distribution Product ZðR; eDÞ
1 2 3 4 5 6 7 8

Uniform 53 70 84 56 13 88 236 291 39,400
Exponential 67 32 11 105 299 14 23 379 168,820

Table 9
The best result for Ri by FS + SA algorithm.

Distribution Product ZðR; eDÞ
1 2 3 4 5 6 7 8

Uniform 188 3 41 109 197 51 93 268 36,366
Exponential 54 10 129 10 245 18 75 357 151,550

Table 10
The best combination of the GA parameters.

Numerical example with Pc Pm N

Uniform distribution 0.6 0.01 100
Exponential distribution 0.6 0.015 100
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Fig. 7. The convergence paths of the best result by FS + GA in uniform example.
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distribution case are 9.35 and 9.59 s for FS + GA and FS + SA methods, respectively. The corresponding sample variances are
0.25 and 0.27. In the uniform case however, the sample means are 10.59 and 11.31 with the sample variances of 0.62 and
0.65, respectively. This shows that the proposed hybrid method has better performance in terms of the CPU time to reach the
best result in both distributional cases.

Similar results are obtained for the next two numerical examples containing 20 and 40 products. The summarized CPU
sample means in Table 11 show that, as expected, as the number of products increases, the required CPU time to reach the
best solution increases as well. Further, the proposed hybrid FS + GA provides better results in terms of the objective-func-
tion value and CPU time for both uniform and exponential cases of the two different problem sizes.

5. A sensitivity analysis

To study the effects of parameter changes on the best result obtained by the proposed method and the required CPU time,
a sensitivity analysis is performed to investigate the effect of increase or decrease of the parameters, one at a time, by 20%
and 40%. The parameters of the proposed method are the fuzzy demand (Di), the parameters of the distribution of the period
length (TMaxi

and ki), the crossover probability (Pc), the mutation probability (Pm), the parameters of the fuzzy simulation
algorithm (K and O), the number of products (NP), and the maximum number of the population sizes (MN). Table 12 shows
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Fig. 8. The convergence paths of the best result by FS + SA in exponential example.
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Fig. 9. The convergence path of the best result by FS + SA in the uniform example.
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Fig. 10. The convergence path of the best result by FS + SA in the exponential example.

Table 11
The summarized results of the second and the third numerical examples.

Example Uniform Exponential

FS + GA FS + SA FS + GA FS + SA

Objective
function value

CPU
time (s)

Objective
function value

CPU
time (s)

Objective
function value

CPU
time (s)

Objective
function value

CPU
time (s)

Second example (20
products)

106,450 31.24 93,320 34.36 373,250 28.18 332,780 29.76

Third example (40
products)

218,790 64.38 181,980 69.76 790,040 59.16 735,620 62.39

Table 12
The effects of the parameter changes on the objective-function value.

% Changes in parameters % Changes in

Uniform distribution Exponential distribution
Objective function Objective function

Di

+40 +34.38 +29.49
+20 +19.45 +16.82
�20 �17.46 �21.37
�40 �37.39 �34.79

TMaxi

+40 +21.45 –
+20 +13.67 –
�20 �11.4 –
�40 �19.49 –

ki

+40 – +17.45
+20 – +9.56
�20 – �8.57
�40 – �16.49
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the results of the sensitivity analysis on the sample mean of the 25 best results obtained for the uniform and exponential
distribution cases. The results in Table 12 show that there is a direct relationship between the objective-function value
and the changes in Di, TMaxi

and ki, that is, increase or decrease of these parameters cause the objective function value to
increase or decrease, respectively.

The numbers in Table 13 are the sample means of the 25 required CPU times to solve the problem. The relative percent-
ages of increase or decrease in average CPU time compared to the ones required to achieve the results of Table 5 are also



Table 13
The results of the sensitivity analysis on CPU time in FS + GA algorithm.

Parameters Uniform Exponential

Value Difference (%) Value Difference (%)

NP 20 +4 20 +10
30 +9 30 +23
50 +18 50 +34

O 10 �7 10 �7
50 �2 50 �2
150 +3 150 +3

K 5 �2 5 �2
10 �0.5 10 �0.5
20 +1 20 +1

Pc 0.6 � 0.6 �
0.7 +1 0.7 3
0.9 +6 0.9 +11

Pm 0.010 � 0.010 +5
0.015 +3 0.015 �
0.020 +6 0.020 +8

MN 750 +9 750 +6
1000 +12 1000 +8
1500 +17 1500 +11
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given. The results in Table 13 show that in all situations the average CPU time to solve the problem in a uniform case is larger
than that of the exponential distribution. Furthermore, the fuzzy simulation parameters, K and O, do not have much impact
on the CPU times. However, in both distributions, the CPU times are very sensitive to the changes in the number of decision
variables. Finally, the parameters of the GA have relatively mild impact on the required CPU time.

6. Conclusion and recommendation for future research

In this paper, a stochastic replenishment multiproduct inventory model was developed. Two integer-nonlinear program-
ming models for two cases of uniform and exponential distribution of the time between two replenishments have been pro-
posed. A hybrid method of FS and GA was developed to solve the problem and the results were validated by both a sensitivity
analysis and a comparison with an existing hybrid method of FS and SA. The comparison results showed that at least for the
selected numerical examples the proposed hybrid method of FS and GA had better performance in terms of objective-func-
tion values and required CPU time to obtain the best solution.

The models developed in this research can help the practitioners who are faced with uncertain demands that do not fol-
low a probability distribution. Moreover, the models are helpful in situations in which due to some limitations on the pro-
duction capacity, the supply of the raw material, and the like, the period length may be uncertain and the suppliers may not
be able to deliver the goods on time.

Some avenues for future works follow:

1. The demand or other parameters of the problem may take uncertain forms (stochastic or rough) as well.
2. Some other probability density functions rather than uniform and exponential may be considered for the time between

replenishments.
3. Some other meta-heuristic algorithms such as harmony search or particle swarm may be employed to solve the problem.
4. Fuzzy discount factor or fuzzy discrete delivery orders may be considered as well.
5. Differential evolution can be considered as an effective technique to solve the problem.
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