
TLP 11 (4–5): 611–627, 2011. C© Cambridge University Press 2011

doi:10.1017/S1471068411000202

611

A structured alternative to Prolog with simple
compositional semantics

ANTÓNIO PORTO

LIACC/Department of Computer Science, Faculty of Sciences, University of Porto, Portugal
(e-mail: ap@dcc.fc.up.pt)

Abstract

Prolog’s very useful expressive power is not captured by traditional logic programming
semantics, due mainly to the cut and goal and clause order. Several alternative semantics
have been put forward, exposing operational details of the computation state. We propose
instead to redesign Prolog around structured alternatives to the cut and clauses, keeping the
expressive power and computation model but with a compositional denotational semantics
over much simpler states—just variable bindings. This considerably eases reasoning about
programs, by programmers and tools such as a partial evaluator, with safe unfolding of calls
through predicate definitions. An if-then-else across clauses replaces most uses of the cut,
but the cut’s full power is achieved by an until construct. Disjunction, conjunction and until,
along with unification, are the primitive goal types with a compositional semantics yielding
sequences of variable-binding solutions. This extends to programs via the usual technique of
a least fixpoint construction. A simple interpreter for Prolog in the alternative language, and
a definition of until in Prolog, establish the identical expressive power of the two languages.
Many useful control constructs are derivable from the primitives, and the semantic framework
illuminates the discussion of alternative ones. The formalisation rests on a term language with
variable abstraction as in the λ-calculus. A clause is an abstraction on the call arguments,
a continuation, and the local variables. It can be inclusive or exclusive, expressing a local
case bound to a continuation by either a disjunction or an if-then-else. Clauses are open
definitions, composed (and closed) with simple functional application (β-reduction). This
paves the way for a simple account of flexible module composition mechanisms. Cube, a
concrete language with the exposed principles, has been implemented on top of a Prolog
engine and successfully used to build large real-world applications.

KEYWORDS: Prolog, Cut, Compositional semantics, Denotational semantics

1 Introduction

Practitioners of logic programming have always relied on Prolog’s cut for expressive

power, not just efficiency, although it destroys the logical reading of programs and,

even worse, is not amenable to a simple compositional reasoning. The ordering of

goals and clauses is also crucial in practice, not just for the meaning of cuts but

to get desired sequences of solutions, another departure from the ideal set-theoretic

semantics. Real programs also often rely on solutions being partial (rather than

612 A. Porto

ground) instances of a call. This aspect has been given extensive formal treatment in

the s-semantics approach (Bossi et al. 1994), and solution order has been captured

in an algebra over solution streams (Seres et al. 1999), but proposed formalisations

of the cut have serious problems for effective applicability. Most have the inherent

complexity of resorting to a detailed operational state, e.g. the decorated SLD tree

(Debray and Mishra 1988; Spoto 2000), success and failure continuations (de Bruin

and de Vink 1989) or a π-calculus version of such (Li 1994). Others are simpler but

at the cost of generality by restricting the use of cut, e.g. (Andrews 2003), where the

‘firm’ cut has just the power of (a limited form of) if-then-else.

In contrast to previous attempts at tackling these problems, our novel approach

avoids a direct characterisation of cut’s behaviour and offers instead a few linguistic

alternatives, which provide Prolog’s programming flavour but are compositional in a

simple semantic domain based on variable binding states. One such alternative is if-

then-else, whose semantics underpins most uses of the cut. Available in Prolog only

within a clause body, we can use it across several clauses, via a simple reformulation

of clause syntax yielding proper compositional abstractions. But if-then-else does

not capture the full power of Prolog’s cut, needed for more generic pruning of

solutions. For this we propose an until construct, that together with conjunction,

disjunction and unification provide the primitive ingredients of the formal machinery.

With these we can define other control constructs such as if-then-else, not or var,

and write a very compact interpreter for Prolog programs, thus showing, since

until is easily expressed in Prolog, the equivalent expressive power of the two

languages.

Our linguistic proposal is seemingly simple, both syntactically and (especially)

semantically. We regard it in relation to the cut as structured programming

historically stood to goto, making us firmly believe in its methodological impact on

good programming practice. The exhibited compositionality allows programmers to

reason locally, i.e. disregarding a goal’s context in the code, in terms of sequences

of variable binding solutions for the goal, from an initial variable binding setting.

Substantially eased is the task of writing important tools such as debuggers, abstract

interpreters or partial evaluators, as the unfolding of a call through its predicate

definition is sound, being context-independent, in contrast to Prolog.

Our design principles led us to implement a concrete language, called Cube, on

top of a Prolog engine and successfully use it, for a number of years and by many

programmers, to build complex real-world applications such as the online academic

management system at our previous Faculty (Porto 2003).

The formalism in the paper is relatively straightforward. We consider a term syntax

with variable scoping (abstraction), for a rigorous account of clause composition

and dynamic variable creation. A (goal) term denotes a behaviour function from an

initial setting—a variable scope and a substitution—into a corresponding outcome

capturing the stream of alternative solutions—a sequence of settings ending (if finite)

with a termination status of finite failure or divergence. This is recognisable as an

abductive semantics for valuations of goals’ variables, a natural way for programmers

to understand their code. Disjunction, conjunction and until correspond respectively

to notions of sum, product and pruning of outcomes. The semantics of programs

A structured alternative to Prolog with simple compositional semantics 613

with procedure definitions and calls is given (as usual) as the least fixpoint of a

suitable continuous call step transformer of program interpretations.

2 The cut, if-then-else and clause syntax

Consider this Prolog code for a predicate to delete repeated elements in a list (for

variable-tail lists we prefer the notation X.L to [X|L]):

dre(X.L, D) :- X in L, !, dre(L, D).
dre(X.L, X.D) :- dre(L, D).
dre([], []).

This is a fairly typical case of a definition whose understanding, although simple,

relies crucially on the order of clauses and the effect of the cut. Even a novice

Prolog programmer will recognise here the implicit pattern of an if-then-else, with

the if-then part stated in the first clause and else in the next one(s). Indeed, one can

replace the first two clauses with a single one having an if-then-else body:

dre(X.L, Y) :- X in L -> dre(L, Y) ; Y=(X.D), dre(L, D).

Although another alternative with cut and disjunction would work just as well,

dre(X.L, Y) :- X in L, !, dre(L, Y) ; Y=(X.D), dre(L, D).

we must realise that the if-then-else body can soundly replace appropriate calls

for dre when doing partial evaluation of a program, whereas the one with the cut

cannot, as the cut would apply to a different definition scope. One should, therefore,

definitely prefer a structural if-then-else to its unstructured implementation with

cut. For all but very simple definitions, however, it is inconvenient to trade multiple

clauses for one single clause body, following the general principle of keeping local

definitions concise in order to ease reasoning about program behaviour. What is

needed, then, is a more direct structural syntax for clauses that yields an if-then-else

meaning, giving us the expressive power to cascade if-then-elses across clauses. Here

is our concrete alternative syntax for the original first clause of dre:

dre(X.L, D) <- X in L <> dre(L, D).

We call this an iff-clause due to the analogy with a biconditional (under an

implication), in this case (X in L) → (dre(X.L,D) ↔ dre(L,D)). Procedurally,

if a call unifies with the head dre(X.L,D) and the (X in L) condition succeeds,

then solving dre(L,D) is the only way to solve the call; otherwise, the call’s

solutions must come from the next clauses. Such a clause therefore represents an

if-then-else statement abstracted on the else part, to be plugged with the statement

corresponding to the continuation of the definition. This compositionality for clauses

is formalised in the paper by considering an extended syntax incorporating variable

abstraction and application as in the λ-calculus. To make the abstract nature of

clauses even more apparent we introduce syntax to lump them under a single

occurrence of the procedure name, as follows (sugared syntax on the left, unsugared

on the right).

614 A. Porto

dre dre
:: X.L, D <- X in L :: X.L, D <- X in L

<> dre(L, D) <> dre(L, D)
.. X.L, X.D <- true

.. X.L, X.D <> dre(L, D) <> dre(L, D)
.. [], [] <- true

.. [], [] !. <> true

The programming style promoted by using clauses is to split the definition of a

procedure into cases, typically related to certain patterns of arguments. Given the

semantic possibility of multiple solutions, the central decision to be made when

thinking about a case is whether it should be exclusive, i.e. precluding subsequent

cases from being considered, or inclusive, when alternative solutions may come from

subsequent cases. In Cube this is expressed by choosing one of two clause formats, an

iff-clause A<-C<>B or an if-clause A<-B (akin to A:-B in Prolog), standing respectively

for an implicit if-then-else or a disjunction, with the else or second disjunct a

placeholder for the rest of the procedure definition. The choice is exemplified by

comparing a multi-solution procedure for producing members of a list with one that

just checks for membership of a given item (as in Prolog, H stands for H<-true).

member has_member
:: X._, X :: X._, X !
.. _.L, X <> member(L,X). .. _.L, X <> has_member(L,X).

The syntax promotes quick recognition of whether a clause is exclusive or inclusive,

through the presence or absence of a single occurrence of <> (or its sugared variant

!). The syntax remains very close to that of Prolog; the whole point is to provide a

much cleaner semantics, as the paper will show, with minor syntactic adjustments.

3 The true power of cut: until

The power of if-then-else, and therefore of iff-clauses, is enough to define many

other useful control constructs found in Prolog, such as once, not or var. If,

however, we want to define operations that can stop the production of solutions

after possibly more than one, if-then-else is no longer enough and we need a more

powerful until construct. A simple and instructive way to convey its meaning is to

write its definition in Prolog:

Solve until Stop :- Solve, (Stop, ! ; true).

The solutions for (Solve until Stop) are the initial ones of Solve for which Stop
fails, plus the first (if ever) for which Stop succeeds, and then no more. Notice that

we need to use a cut in a conjunctive disjunct of a disjunctive conjunct, precisely

the kind of context where a cut achieves its full power.

Having until as a basic primitive, along with conjunction, disjunction and

unification, we can implement if-then-else. We take this opportunity to propose the

notation (If -> Then -; Else), avoiding Prolog’s bad overload of “;” for both

disjunction and the else separator. We use until as an infix operator binding tighter

than the comma, i.e. (A until C, B) ≡ ((A until C),B). The implementation

A structured alternative to Prolog with simple compositional semantics 615

uses an auxiliary variable R to convey the result of the test (t for taking the ‘then’

branch, e (else) otherwise), bindable only once (X until true ≡ once X).

(If -> Then -; Else) <> (If, R=t ; R=e) until true,
(R=t, Then ; R=e, Else).

Another useful derived construct is unless, akin to until but failing rather than

succeeding after the stop condition holds. We implement it with a result variable

that is bound only upon a successful test, then causing final failure:

Solve unless Stop <> Solve until (Stop, R=f), R=s.

With unless we can write e.g. a clean local read-process repeat-fail loop:

(repeat, read(Item)) unless Item=end_of_file, process(Item), fail

To show that until really holds the full power of Prolog’s cut we write an interpreter

for Prolog in our cut-free language. The presentation is simplified by the use of iff-

clauses and unless, knowing that both are implementable with until. We assume a

unary procedure system for identifying system calls (true being one).

execute
:: G <> exec(G,R) unless R=fail.
exec
:: (A,B), R <> exec(A,RA), (RA=fail, R=fail ; exec(B,R))
.. (A;B), R <> exec(A,R) ; exec(B,R)
.. (!), R <> R=succ ; R=fail
.. G, succ <- system(G)

<> G
.. G, R <> (clause(G,B), exec(B,R)) unless R=fail.

The main idea is that exec may succeed with two results in its second argument:

succ signals true success, coming from the base true (a system call) or a cut’s initial

success; backtracking past a cut, though, actually succeeds again but with the fail
result; this fake success is propagated through conjunctions (from or bypassing the

second conjunct) and disjunctions (any branch), eventually exiting the exec(B,R)
call of a clause body B, at which point the unless condition succeeds for the

first time, immediately calling off the production of more solutions for G from any

pending choices in exec or clause (similarly for the top goal in the execute clause).

We now turn to the problem of formally characterising the compositional seman-

tics behind this reconstruction of Prolog along structured principles, aiming at a

precise and clear understanding of program behaviour.

4 Syntax

It helps in the formalisation to consider an abstract syntax embodying the structural

principles onto which the concrete syntax maps. We adopt a simple abstract syntax

that is universal, given its suitability to encode the syntax of various formal calculi

in the absence of predefined semantic roles for its constructs.

616 A. Porto

4.1 Terms

We use variables and a special null as basic terms, and three constructors: for pairing

two terms (which, together with the null, provide lists), for applying a constant to a

list (giving us rooted terms) and for abstracting a variable in a term (scoping).

Definition 1
The identifiers are a set of constants C and a totally ordered countably infinite set

V of variables disjoint from C. The terms are the smallest set T satisfying

T = {[]} ∪V ∪ (T×T) ∪ (C×L) ∪ ({λ}×V×T), (1)

where [] is the null, (t, t′) ∈ (T ×T) is a pair, (c $ l) ∈ (C ×L) is an application,

(λv ·t) ∈ ({λ} ×V ×T) is an abstraction, and the lists are the smallest set L ⊂ T
satisfying L = {[]} ∪ (T×L) .

Notice that formally a constant c ∈ C is not a term, but c in the concrete

syntax corresponds to the term c$ []. The familiar notation c(t1, . . . , tn) for structured

terms in the concrete syntax corresponds abstractly to c $ (t1, (. . . , (tn, []) . . .)), also

represented in our metalanguage by c $ [t1, . . . , tn], following Prolog’s tradition. This

inevitably reminds us of the univ (=..) system predicate in Prolog, which does indeed

correspond to the construction/deconstruction of an application term from/into its

two components.

Abstraction terms have the usual intrinsic syntactic property of scoped variable

capture, seen in the next definition.

Definition 2
The free variables t̂ of a term t ∈T are defined recursively as follows.

ĉ $ l = l̂ [̂] = ∅

â, b = â ∪ b̂ v̂ = {v} if v ∈V

λ̂v ·t = t̂ \ {v}.

In this universal syntax we are able to encode type-free λ-calculus terms using

{| λv · e |} = λv · {| e |} and {| (a)b |} = ({| a |}, {| b |}), predicate calculus formulae with

{| ∀vF |} = ∀ $ [λv ·{|F |}] (assuming ∀ ∈ C), etc., with no predefined semantics for

the syntax on its own. Only for a certain intended use—in context—may terms and

constants acquire a particular meaning, formalised in a semantics.

In the sequel we shall use both abstract and concrete syntax, according to

contextual convenience.

4.2 Clauses, procedures and programs

The true power of any programming paradigm comes from the ability to define

procedures and interpret certain expressions as procedure calls, so we proceed with

a syntactic characterisation of procedures in our framework.

A procedure definition is built from sequences of clauses (in the concrete syntax)

and captured in a single term (in the abstract syntax) that provides the semantics of

A structured alternative to Prolog with simple compositional semantics 617

calls to the procedure. We use certain terms to encode open (partial) definitions, such

as clauses, and a simple syntactical composition for building larger open definitions

from smaller ones. Closing an open definition is a simple operation.

The main intuition is that a procedure call is an application term with a root

constant and a list of arguments, whereas a closed procedure definition for the root

constant is an abstraction term to be applied (in the λ-calculus β-reduction sense)

to the call’s argument list, resulting in a term to be further evaluated.

For example, the following definition, taken as closed,

int :: 0
.. s(X) <- int(X).

associates int to the abstraction term λA·(A=[0]; λX·(A=[s(X)], int(X))).
The term is very reminiscent of Clark’s completion (Clark 1978), as should be

expected in this example. But whereas Clark’s construction always uses disjunction

when composing clauses, ours may use if-then-else rather than disjunction, when

composing exclusive rather than inclusive clauses. Let us look, then, at the process

of building a complete procedure definition.

A clause stands for (a base case of) a partial definition—an abstraction term

abstracting away the argument list and the alternative continuation of the definition,

plus any local variables, under which we find either a disjunction or an if-then-else,

respectively for if-clauses or iff-clauses, as this general translation shows:

a1, . . . , an <- B λA·λD·(λv1 · · · λvk ·(A=[a1, . . . , an],B) ; D)

a1, . . . , an <- C <> B λA·λD·(λv1 · · · λvk ·(A=[a1, . . . , an],C -> B -; D))

with v1, . . . , vk the variables in each clause. Take as an example the following two

clauses for a binary procedure:

X, a <- r(X).
1, b <> true.

The if-clause is equivalent to the following partial definition

p1 = λA·λD·(λX·(A=[X,a], r(X)); D) ,

while the iff-clause represents this other one

p2 = λA·λD·(A=[1,b] -> true -; D) .

The effect of putting one clause after another can be defined as a generic syntactic

composition of partial definitions,

p′ after p = λA·λD·((p • A) • ((p′ • A) • D)),

where (λx·t) • a stands for the replacement by a of all free occurrences of x in t, i.e.

the equivalent of applying the β-rule in the λ-calculus to (λx.t)a.

In our example we can compose in two ways:

p2 after p1 = λA·λD·(λX·(A=[X,a], r(X)); (A=[1,b] -> true -; D)) ,

p1 after p2 = λA·λD·(A=[1,b] -> true -; (λX·(A=[X,a], r(X)); D)) .

618 A. Porto

Typically clauses are composed in their textual order. In a modular version of

the language one may wish to compose a generic definition after a more specific

one (defaults after overriding exceptions) or the other way around (specific cases

uncovered by general ones).

Closing a partial definition is simple. With fail ≡ a=b,

close p = λA·((p • A) • fail) .

After closing a definition, the abstraction of the definition’s continuation has

vanished. There is one outer abstraction on the argument list, and any remaining

abstractions are for local clause variables.

A program is formally a mapping from constants to appropriate abstraction terms

standing for closed procedure definitions. Cases for different argument arities under

the same constant are possible, as in Prolog; grouping them together, rather than

by constant/arity pairs, is just a technical convenience.

5 Semantics

We are interested in defining denotational semantics for our terms, capturing their

solution-producing behaviour when invoked as goals (tasks, we prefer to call them).

What are the basic intuitions for defining the semantics? A task generally has

variables, and its behaviour results in solutions for them, expressed as constraints

on the variables’ possible valuations (as ground terms), a notion we call a setting.

A task is launched in the context of an initial setting (a previously executed task

may share some of the variables) and any solution is a possibly more constrained

setting satisfying the initial one. A task may produce more than one solution, in a

well-defined order. The sequence of solutions may be infinite, or else the task ends

up by either finitely failing or diverging in the search for more solutions.

5.1 Settings, outcomes and behaviours

For constructing our semantic domain, then, we wish to define a setting providing

partial information on some variables’ possible valuations. It should satisfy the very

abstract characterisation we gave in (Monteiro and Porto 1998) of a structure with

a partial order of entailment and consistency completeness, adequate for arbitrary

constraint logic programming languages. In this paper we restrict ourselves to a

Prolog-like language handling only identity constraints through unification, and

define settings accordingly.

Formalising a setting of identity constraints may vary in the degree of abstraction.

In the WAM (Äıt-Kaci 1991) implementation of Prolog we can see settings as

accumulated equations of variables to terms, but these are too concrete. Striving

to approach full abstraction, we opt instead for substitutions expressing the solved

form of those equalities, actually the view commonly held by programmers. However,

our settings will formally differ from standard substitutions, to cater for two needs

(clarified ahead): ideal infinite terms, and an explicit scope of variables.

A structured alternative to Prolog with simple compositional semantics 619

Definition 3
The ideal terms IT are the largest (not smallest) solution set for T in equation (1).

Definition 2 of free variables carries over from T to IT by assuming the smallest

set satisfying the equations. The substitutions Σ are the mappings σ : V → IT from

a finite set of variables V ⊂fin V to ideal terms where they do not occur free,

v′ ∈ σ̂(v) ⇒ v′ -∈ dom(σ), and not mapping a variable to a smaller one (they are

totally ordered), σ(v) ∈ V ⇒ v > σ(v). Considering σ̂ = { σ̂(v) | v ∈ dom(σ) } the

free variables of a substitution σ ∈ Σ, the settings S are the pairs V:σ of a variable

scope V ⊂fin V and a substitution σ ∈ Σ under the scope, with dom(σ) ∪ σ̂ ⊆ V .

The difference IT \ T between ideal and regular terms are the so-called infinite

terms. Their possible appearance in substitutions reflects most Prolog implemen-

tations, that by omitting the expensive occurs check in unification may generate

solutions corresponding to infinite rational trees, as indeed proposed by Prolog’s

inventor (Colmerauer 1993). The definition of substitution conveys the idea that

the implicit equations are sufficiently unfolded into a ‘solved form’. For example,

the mapping σ = {X= f(Y), Y= a} is not a substitution, as the domain variable Y
occurs in σ(X). The requirement on variable order aids in the determinacy of settings,

by following the WAM’s policy when binding a pair of free variables.

Now we come to the notion of outcome, to express the deterministic result of

executing a task in the context of a given setting, as a sequence of solutions and

termination status. For example, the task member(1.X,Y) launched in the setting

{X, Y}:{X=[2]} yields a first solution {X, Y}:{X=[2], Y=1}, then after backtracking

a second one {X, Y}: {X= [2], Y= 2}, and if retried again finitely fails. A semantics

based on sequences of solutions is not new, having been proposed for algebraic logic

programming (Seres et al. 1999); ours differs in the form of those solutions (settings)

and the inclusion of termination status.

Definition 4
The outcomes are O = Of ∪ Os, with Of = {∅,∞} the final outcomes and Os the

successful outcomes—the greatest set satisfying Os = { s.o | s ∈S, o ∈ O }.

The symbols ∅ and ∞ represent the final outcomes of, respectively, finite failure

and divergence. A successful outcome is a non-empty sequence of solutions, either

infinite or terminated by a final outcome.

We want to capture the variability of settings in which a task is executed, affecting

its outcome. It becomes relevant to define the entailment relation on settings, to

support the intuition that the outcome of a task can only have solutions with equal

or stronger constraints than the setting at the start, i.e. entailing it.

Definition 5
For any ideal term t and substitution σ, let t[σ] denote the ideal term obtained by

replacing in t any occurrence of a variable v ∈ dom(σ) ∩ t̂ by σ(v). The entailment

σ′ 1 σ between substitutions is defined by σ(v)[σ′] = σ′(v) for every v ∈ dom(σ) ⊆
dom(σ′). For settings, V ′:σ′ 1 V:σ whenever V ′ ⊇ V and σ′ 1 σ. We say that o ∈ O
is an outcome upon a setting s ∈ S, written o 1 s, if all the solutions entail it, i.e.

with S(o) denoting the set of settings in o we have s′ ∈ S(o)⇒ s′ 1 s.

620 A. Porto

Just before finally defining behaviours for tasks, we remark that the setting in

which a task is executed must have a scope covering the task’s free variables, but

possibly also some other variables from the task’s original lexical scope (typically

a program clause). It becomes convenient to index behaviours by sets of variables

covered by, rather than equal to, the scopes of the involved settings.

Definition 6
SV = {V ′:σ ∈S | V ⊆ V ′ ⊂fin V } are the settings covering V . The behaviours are

B =
⋃

V⊂finV BV , with BV , the behaviours for V , being the mappings β : SV → O
from settings covering V to outcomes upon them, i.e. such that β(s) 1 s.

The denotational semantics for terms, taken as tasks, is a mapping [[.]] : T→ B
into behaviours for the terms’ free variables, i.e. [[t]] ∈ Bt̂ . Notice that, according

to the given definitions, the denotation of a task yields outcomes for initial settings

whose scope is a superset of the task’s free variables. The denotation mapping

[[.]] must satisfy certain equations for a class of special terms T∗ that have a

predefined compositional way of being interpreted as tasks, whereas the other terms

are interpreted in the context of a given program. We now proceed to introduce

the members of T∗, along with their fixed denotation equations. To lighten the

presentation we use concrete infix operator syntax (rather than abstract) for such

terms.

5.2 Disjunction

The denotational semantics of a disjunctive term (a;b) ∈ T∗ is given through a

semantic sum operation ⊕ : O× O→ O, as follows.

[[a;b]](s) = [[a]](s)⊕ [[b]](s) ∞⊕ o′ = ∞
∅ ⊕ o′ = o′

(s.o)⊕ o′ = s.(o⊕ o′)

Each disjunctive subterm is evaluated in the same initial setting—the essence of the

backtracking process that implements this semantics. Failure of the first disjunct

leads to collecting the solutions of the second, and divergence of the first naturally

extends to the whole disjunction.

5.3 Conjunction

For the semantics of a conjunctive term (a,b) ∈ T∗ we use a semantic product

operation ⊗ : O×B→ O that relies on the sum, as follows.

[[a,b]](s) = [[a]](s)⊗ [[b]] ∞⊗ β = ∞
∅ ⊗ β = ∅

(s.o)⊗ β = β(s)⊕ (o⊗ β)

The evaluation of the second conjunct is performed upon each solution of the first

(yielding stronger solutions). As expected, both failure and divergence of the first

are absorbing.

A structured alternative to Prolog with simple compositional semantics 621

5.4 Until

The intended behaviour of a term (a until b) ∈ T∗ is to provide the solutions of

a but checking, upon each one, whether b has a successful outcome, in which case

the corresponding solution is the last to be provided. This is achieved by a pruning

operation 6 : O×B→ O, as follows.

[[a until b]](s) = [[a]](s)6 [[b]] ∞6 β = ∞
∅ 6 β = ∅

(s.o)6 β =

∞ if β(s) = ∞
s.(o6 β) if β(s) = ∅
s′.∅ if β(s) = s′.o′

Notice how the first successful solution s′ of the pruning condition is taken as the

final global solution (it entails the solution s for the pruned task), discarding further

solutions from both the condition (o′) and the pruned task (o). As expected, failure

of the pruned task and divergence of either task are absorbing.

5.5 Unless and if-then-else (revisited)

Although from the perspective of minimal semantic ingredients unless and if-then-

else are not primitive constructs, being definable through until, it is enlightening

to see them defined directly in our semantic framework.

For unless we need a very simple variation on the pruning operator of until,
obtained by replacing, in the last line of the definition above, s′.∅ with just ∅.

The implementation of if-then-else given in Section 3 matches this definition:

[[if -> then -; else]](s) =

∞ if [[if]](s) = ∞
[[else]](s) if [[if]](s) = ∅
[[then]](s′) if [[if]](s) = s′.o

Ahead in Section 6 we discuss an alternative meaning adopted by other languages.

5.6 Unification—the prime mover

Any computational engine using the given compositional interpretation for the three

operators must also define the denotational semantics for some terms that act as the

basis for change, building stronger settings from previous ones. Here we assume as

basic just the operation of unification of two terms, captured syntactically by special

terms (a = b) ∈T∗.

[[a = b]](V:σ) =

∞ if U(a, b,σ) -→
∅ if U(a, b,σ)→ ⊥
(V:σ′)∅ if U(a, b,σ)→ σ′ ∈ Σ

The unification U(a, b,σ) of a and b under σ may succeed with an equal or stronger

substitution σ′ 1 σ, yield failure (⊥) or diverge (when unifying infinite terms). A

successful unification U(a, b,σ) → σ′ yields the least substitution σ′, in the partial

order of entailment, that makes a and b identical, a[σ′] = b[σ′]. We can formalise

622 A. Porto

unification by an inductive definition, adapting to our more ideal framework the

classical definition introduced by Robinson for the predicate calculus but without

the occurs-check, in the spirit of Colmerauer’s suggestion and in accordance with

most Prolog implementations, although not mandated by its standard (Deransart

et al. 1991). This being quite well known we omit the details.

Although abstraction terms are included in our syntax and implicit in clauses,

they never actually appear inside unification, if no explicit concrete syntax for them

is available. Otherwise unification has to handle also α-conversion equivalence.

5.7 Atomic terms

In our abstract syntax the only atomic terms are the variables v ∈ V and the null

[]. Since pairs were given the semantics of conjunction, the natural extension to lists

is to treat the null as special ([] ∈T∗), with the idle successful outcome:

[[[]]](s) = s.∅.
We equate true in the concrete syntax to the abstract null [].

Variables are also special (V ⊂ T∗), being interpreted under the setting. A

resulting free variable has no procedural meaning, yielding a finite failure outcome.

v ∈V ⇒ [[v]](V:σ) =

{
∅ if σ(v) ∈V
[[σ(v)]](V:σ) otherwise

This simple definition captures the quite useful higher-order feature of Prolog-like

languages exemplified by (build_task(Data,Task), Task, process(Data)),
where the Task variable is first bound to a term (sharing variables with a Data
pattern) that gets to be executed as a task (instantiating the Data to be processed).

5.8 Procedure call

The denotational semantics of a non-special term (p $ a) ∈T \ T∗, interpreted as a

procedure call, is parametric on a given program P , as follows:

[[p $ a]]P = [[P (p) • a]] .

We have seen that P (p), the closed definition for p in the program P , is always an

abstraction term whose outermost abstraction is on the argument list. Taking the

example of int in Section 4.2, a call int(s(a)) ≡ int $ [s(a)] results in applying

the int abstraction to the call’s argument list [s(a)], resulting in the task

([s(a)]=[0]; λX·([s(a)]=[s(X)], int(X)))

whose behaviour, since that of the first disjunct yields ∅ (unification failure), is the

behaviour of the inner abstraction λX·([s(a)]=[s(X)], int(X)). This term has

an implicit existential reading of X as a clause variable, and its launch as a task

starts by replacing the abstracted variable in the inner term, before executing it, with

a fresh new variable for the current setting—the analogue of using clause variants

in resolution—as defined next.

The denotational equation given above states the correctness of unfolding a

procedure call with its procedure definition. This is what makes, e.g. partial

A structured alternative to Prolog with simple compositional semantics 623

evaluation much easier for this structured language than for Prolog, where cuts

in procedure definitions make such unfolding unsound due to the scope extrusion

of the cuts.

5.9 Abstraction

Abstraction terms (λx · t) ∈ T∗ come from clause variable scoping in procedure

definitions. Invoked as tasks they give rise, as mentioned, to the creation of new

variables for the solutions of the clause case. Formally,

[[λv ·t]](V:σ) = [[(λv ·t) • V̌]](V ∪ {V̌ } :σ)

with V̌ being the function, implicitly defined by the countable order on V, that

returns the least variable greater than those in V . This justifies the need for the

scope in settings, formalising how the stack grows in the WAM implementation.

5.10 Fixpoint semantics

If a term’s structure is composed solely of special terms, the corresponding recursive

equations uniquely define the term’s denotational semantics. This is no longer the

case for procedure calls, because of the circularity introduced by recursive definitions.

The standard solution in logic programming is to define a mapping from programs

to continuous operators on the possible interpretations and give the semantics of a

program as the least fixpoint of its operator (van Emden and Kowalski 1976). We

will proceed likewise, but for our different semantic domain.

The interpretations I are the functions I : T → B that map each term into a

behaviour for its free variables, I(t) ∈ Bt̂ , and satisfy the equations given for special

terms when I is taken for [[.]]. Interpretations differ, then, in the behaviours of the

non-special terms, i.e. the procedure calls.

We define a partial order on interpretations based on that of outcomes,

I 8 I ′ ⇔ ∀t ∈T ∀s ∈St̂ I(t)(s) 8 I ′(t)(s) ,

the partial order on outcomes being the greatest relation that satisfies

o 8 o′ ⇔ (o = ∞) ∨ (o = o′ = ∅) ∨ (o = s.u, o′ = s.u′, u 8 u′).

Notice that having o 8 o′ with o -= o′ is possible only when o ends in ∞ after a

common (finite) prefix with o′. Intuitively this can be understood as o and o′ being

partial outcomes for the same task but with fewer computation steps available to

produce o, reflected in the divergence “termination”.

The call step transformer SP ∈ II for a given program P maps an interpretation

I into an interpretation SP (I) such that, for any non-special term (p $ a) ∈T \ T∗,

SP (I)(p $ a) = I(P (p) • a).

SP is continuous (we omit the proof) and has a least fixpoint which is the semantics

(the model) of the program P , satisfying the semantic equation for procedure calls.

624 A. Porto

5.11 Abduction

An interesting semantic insight is to interpret the behaviour of unification tasks as

performing abduction (Kakas et al. 1993). A setting V : σ can be thought of as a

theory Θ(V : σ) = { v=t | (v, t) ∈ σ } in a variable-free logic language where V are

considered Skolem constants interpreted in the realm of ideal terms, and the single

predicate symbol ‘=’ is interpreted under the standard equality axioms E. Whenever

[[a = b]](s) = s′.∅ we can see that Θ(s′) is a minimal consistent extension of Θ(s) such
that Θ(s′) ∪ E |= a=b, and if no such extension exists then [[a = b]](s) = ∅. We spot

here the hallmarks of abduction, and indeed the outcome solutions may be seen

as the abductive extensions that make true the equality statements implicit in the

unifications along the way.

The pruning semantics, interestingly, can establish another way of relating tasks

to abduction. Calls to the procedure (possible X <> not not X), and to (var X
<> possible X=A, possible X=b), are actually statements about abducibility in

the current setting, rather than requirements for abductive extension. The given var
definition reads directly as ‘it is currently possible to abduce equality of X to both a
and b’. This semantic dependency on the current setting, rather than a final solution,

clearly explains why conjunction is not commutative, e.g. (var(X),X=a).

6 Language design: alternatives and extensions

We presented until as the basic semantic ingredient for achieving the power

of Prolog’s cut, but in practice several derived constructs are available to the

programmer, such as not, once or if-then-else. The latter is pervasive, being the

implicit underpinning of exclusive clauses, the vast majority in real programs. The

meaning we took for if-then-else is expressed in its definition in Section 5.5—only

the first solution of the if condition, if it exists, is retained as initial setting for the

then part. Alternatively, the designers of, e.g. NU-Prolog (Naish 1986) and Mercury

(Somogyi et al. 1996) have chosen, on the grounds of it being more declarative

and logically sound, to use all solutions of the condition. This is just as easy

to define, using [[if]](s) ⊗ [[then]] instead of [[then]](s′) in the third case of the

definition. Our choice was pragmatic, being aligned with Prolog and validated by

usefulness in applications. We never encountered a real need for the supposedly

more declarative reading of if-then-else, even though consciously on the lookout

for it. We did provide in Cube a related otherwise construct yielding all solutions

of its if part, but also found it wanting of applicability. Interestingly, we point

out that while our reading of if-then-else can be implemented with unification,

conjunction, disjunction and until, this is not the case for the alternative reading.

It must be either provided as another primitive, or implemented with side-effects (to

remember that if had solutions). So, what does ‘declarative’ mean? One might argue

that ‘declarative’ is really about having a compositional semantics that is simple to

understand, whether this is based in predicate logic and set-oriented or based in

outcomes and sequence-oriented. Simple compositionality is what eases the task of

A structured alternative to Prolog with simple compositional semantics 625

reasoning about programs, by both human programmers and meta-level software

tools.

The constructions presented in this paper are just the essential core for a language

with real-world applicability, that must include several semantic extensions. A

paramount example is arithmetic. Following Prolog’s way we must consider a

(partial) denotation A[[.]] : T × S → T that interprets a term under a setting

as an arithmetic expression yielding a constant term representing a number, and

define

[[x is e]](s) =

{
[[x = y]](s) if A[[e]](s) = y

∅ otherwise

Another practical requirement is the ability to generate and handle exceptions.

For example, an exception is better than failure for the semantics of a free variable

task. The formalisation requires the introduction of a third type of final outcome,

the exception {t} ∈ Of with a term t ∈ T conveying contextual information.

The semantic equations handling exception in sum, product and pruning are

similar to those for divergence. A special task must be introduced to throw an

exception,

[[throw(t)]](V:σ) = {σ(t)}
and another one for catching it,

[[catch(task , exc, handler)]](s) = [[task]](s) 〈exc, handler〉 s

∅ 〈x, h〉 s = ∅ (s.o) 〈x, h〉 s = s.(o 〈x, h〉 s)

∞〈x, h〉 s = ∞ {t} 〈x, h〉 s =

{
[[h]](s′) if [[x = t]](s) = s′.∅
{t} otherwise

Yet another unavoidable extension, in practice, is to have internal side-effects.

The required change of the semantic domain is relatively simple, adding a persistent

state alongside the setting. Lacking space here, this has to be reported elsewhere.

7 Conclusions and further work

We have shown that the expressive power of Prolog can be captured with three

structural ingredients—disjunction, conjunction and until—plus unification, with a

simple compositional denotational semantics handling the deterministic sequential

nature of multiple solutions—equating variables to rational trees—and final out-

comes of finite failure and divergence. For the first time the equivalent of Prolog’s

cut has been given compositional semantics based solely on the state of variable

bindings. The semantics are quite naturally extended to deal with exceptions and

even side-effects, not presented here due to space limitations. It would be interesting

to cast the semantics in a co-algebraic account. We have also defined, but not yet

reported, a more concrete operational (step) semantics in terms of graph rewriting

that nicely formalises the so-called 4-port model introduced for Prolog debugging.

Procedures are composed from clauses with a redesigned syntax, corresponding to

abstractions of the alternative branch of either a disjunction or an if-then-else, the

626 A. Porto

latter being an ubiquitous programming construct that is implementable with until

(but not vice versa). We may, therefore, express if-then-else chains across clauses,

not just within one. The formalisation of clause composition uses an extended term

syntax with variable abstraction as in the λ-calculus. This paves the way for a more

ambitious endeavour to adapt the modularity style of contextual logic programming

(Monteiro and Porto 1989) to naturally and properly handle defaults and exceptions

and higher-order procedures, a great help for building complex applications. An

issue worth exploring is the possible combination of sequence-based semantics

with program parts having set-based semantics that can profit from computation

techniques such as tabling. Another is a classification of procedures and call patterns

according to their behaviour, and its impact on compilation.

The ideas in the paper have been turned into a practical alternative to Prolog,

easy to program and debug, and more readily amenable to partial evaluation,

important for compile-time optimisation of clean high-level declarative code. The

language—Cube—has been implemented on top of a Prolog system and heavily used

to good effect in building a sophisticated large real-world application (Porto 2003).

It incorporates several other features such as structural abstraction and application

(Porto 2002) for higher order and functional notation. We currently work on its

contextual modularity, for which we plan to write a modular partial evaluator.

References

Aı̈t-Kaci, H. 1991. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT.

Andrews, J. H. 2003. The witness properties and the semantics of the prolog cut. Theory
Practice Logic Programming 3(1), 1–59.

Bossi, A., Gabbrielli, M., Levi, G. and Martelli, M. 1994. The s-semantics approach:
Theory and applications. The Journal of Logic Programming 19/20, 149–197.

Clark, K. L. 1978. Negation as failure. In Logic and Databases (New York), H. Gallaire and
J. Minker, Eds. Plenum, 293–322.

Colmerauer, A. 1993. Prolog and infinite trees. In Logic Programming, K. Clark and S.-A.
Tärnlund, Eds. A.P.I.C. Studies in Data Processing, vol. 16. Academic, 231–251.

de Bruin, A. and de Vink, E. 1989. Continuation semantics for PROLOG with cut. In
TAPSOFT ’89; Proceedings of the International Joint Conference on Theory and Practice of
Software Development, J. Dı́az and F. Orejas, Eds. Springer, 178–192.

Debray, S. K. and Mishra, P. 1988. Denotational and operational semantics for Prolog.
Journal of Logic Programming 5(1), 81–91.

Deransart, P., Ed-Dbali, A. and Cervoni, L. 1991. Prolog: The Standard; reference manual.
Springer.

Kakas, A., Kowalski, R. and Toni, F. 1993. Abductive logic programming. Journal of Logic
and Computation 2(6), 719–770.

Li, B. Z. 1994. A pi-calculus specification of Prolog. In ESOP ’94 Proceedings of the 5th
European Symposium on Programming: Programming Languages and Systems. D. Sannella,
Ed. Springer, 379–393.

Monteiro, L. and Porto, A. 1989. Contextual logic programming. In Logic Programming,
Proceedings of the Sixth International Conference, G. Levi and M. Martelli, Eds. Lisbon,
Portugal, MIT, 284–299.

A structured alternative to Prolog with simple compositional semantics 627

Monteiro, L. and Porto, A. 1998. Entailment-based actions for coordination. Theoretical
Computer Science 192, 259–286.

Naish, L. July 1986. Negation and quantifiers in NU-Prolog. In Proceedings of the Third
International Conference on Logic Programming, London, UK, Springer, 624–634.

Porto, A. 2002. Structural abstraction and application in logic programming. In Functional
and Logic Programming, 6th International Symposium, FLOPS 2002, Proceedings, Z. Hu
and M. Rodrı́guez-Artalejo, Eds. Lecture Notes in Computer Science, vol. 2441. Springer,
275–289.

Porto, A. 2003. An integrated information system powered by Prolog. In Practical Aspects
of Declarative Languages, 5th International Symposium, Proceedings, V. Dahl and P. Wadler,
Eds. Lecture Notes in Computer Science, vol. 2562. Springer, 92–109.

Seres, S., Spivey, M. and Hoare, T. 1999. Algebra of logic programming. In Proceedings of the
1999 international conference on Logic programming. Massachusetts Institute of Technology,
Cambridge, MA, USA, 184–199.

Somogyi, Z., Henderson, F. and Conway, T. 1996. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Programming
29(1–3), 17–64.

Spoto, F. 2000. Operational and goal-independent denotational semantics for prolog with
cut. Journal of Logic Programming 42(1), 1–46.

van Emden, M. H. and Kowalski, R. A. 1976. The semantics of predicate logic as a
programming language. Journal of the ACM 23(4), 733–742.

