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Abstract

Dance movements are a complex class of human behavior which convey forms of non-verbal and subjective
communication that are performed as cultural vocabularies in all human cultures. The singularity of dance forms imposes
fascinating challenges to computer animation and robotics, which in turn presents outstanding opportunities to deepen
our understanding about the phenomenon of dance by means of developing models, analyses and syntheses of motion
patterns. In this article, we formalize a model for the analysis and representation of popular dance styles of repetitive
gestures by specifying the parameters and validation procedures necessary to describe the spatiotemporal elements of
the dance movement in relation to its music temporal structure (musical meter). Our representation model is able to
precisely describe the structure of dance gestures according to the structure of musical meter, at different temporal
resolutions, and is flexible enough to convey the variability of the spatiotemporal relation between music structure and
movement in space. It results in a compact and discrete mid-level representation of the dance that can be further
applied to algorithms for the generation of movements in different humanoid dancing characters. The validation of our
representation model relies upon two hypotheses: (i) the impact of metric resolution and (ii) the impact of variability
towards fully and naturally representing a particular dance style of repetitive gestures. We numerically and subjectively
assess these hypotheses by analyzing solo dance sequences of Afro-Brazilian samba and American Charleston, captured
with a MoCap (Motion Capture) system. From these analyses, we build a set of dance representations modeled with
different parameters, and re-synthesize motion sequence variations of the represented dance styles. For specifically
assessing the metric hypothesis, we compare the captured dance sequences with repetitive sequences of a fixed dance
motion pattern, synthesized at different metric resolutions for both dance styles. In order to evaluate the hypothesis of
variability, we compare the same repetitive sequences with others synthesized with variability, by generating and
concatenating stochastic variations of the represented dance pattern. The observed results validate the proposition that
different dance styles of repetitive gestures might require a minimum and sufficient metric resolution to be fully
represented by the proposed representation model. Yet, these also suggest that additional information may be required
to synthesize variability in the dance sequences while assuring the naturalness of the performance. Nevertheless, we
found evidence that supports the use of the proposed dance representation for flexibly modeling and synthesizing
dance sequences from different popular dance styles, with potential developments for the generation of expressive and
natural movement profiles onto humanoid dancing characters.

1 Introduction
The process of generating human-like motions plays a
key role in robotics, computer graphics, computer
games and virtual reality systems. The modeling and
generation of expressive and natural forms of human

motion has an impact on our knowledge about human
behaviors and on the application of this knowledge in
science and technology. Dance movements are a com-
plex class of human motions that offer infinite forms of
expressiveness and modes of nonverbal communication
that are distributed in cultural vocabularies enriched
with interactions with music and other modalities.
These characteristics impose fascinating challenges to
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robotics and outstanding opportunities to deepen our
understanding about the phenomenon of dance.
In [1], Naveda and Leman proposed a topological spa-

tiotemporal method to analyze the relationships between
gesture, space and music in popular dance styles charac-
terized by repetitive movement patterns in synchrony
with temporal regularities in music. In [2], we explored
this method of analysis to model a mid-level dance repre-
sentationa and synthesize beat-synchronous dance
sequences of Afro-Brazilian samba. This article extends
the latter by making use of the proposed representation
model to investigate two hypotheses: that (i) there is a
minimum and sufficient temporal metric resolution
required to represent a style of repetitive dance gestures,
and that (ii) spatiotemporal variabilityb is an essential
quality that relates to expressiveness in dance, and conse-
quently to more naturalness in a dance display. In addi-
tion, this article proposes an alternative method to
synthesize the spatiotemporal variability observed in the
recorded dance performance from an improved formali-
zation of the representation. By also proposing improved
quantitative metrics of similarity and variance we com-
pare the real dance performances against synthesized
dance sequences of the analyzed dance style, using differ-
ent parameters as independent variables (i.e., different
parameterizations). Finally, this article introduces strate-
gies to manipulate our representation model in order to
reproduce these dance styles onto different humanoid
dancing characters. The method was applied to two dif-
ferent popular dance styles characterized by repetitive
gestures, in particular the Afro-Brazilian samba and the
American Charleston dances.
The article is structured as follows: the remainder of this

section describes the concept of musical meter, refers to
previous spatiotemporal representations of dance gestures
and introduces methods in recent literature used for mod-
eling and synthesizing dance movements onto robotic and
computer animation characters based on captured dance
movements. Additionally, it summarizes the proposed
method for analyzing and representing dance sequences of
popular dance styles and the evaluation methods used for
assessing the proposed representation model according to
the stated hypotheses. Section 2 specifies the details of the
recording, analysis and representation of popular dance
motion data tested on Afro-Brazilian samba and American
Charleston. It additionally describes means to parameter-
ize our representation model and re-synthesize variations
of the analyzed dances from it, also offering a solution to
synthesize the same level of variability observed in the
recorded dances. Section 3 describes our evaluation
method as the procedures undertaken for assessing and
validating our representation model according to the sta-
ted hypotheses. Section 4 presents and discusses the
achieved results in accordance with these hypotheses, and

presents some paths for future work, namely introducing
strategies to manipulate our representation model towards
generating dance sequences onto different humanoid dan-
cing characters. Finally, Section 5 summarizes and con-
cludes this article.

1.1 Related work
A number of studies have used recordings of human
movement in an attempt to investigate how expressiveness
and meaning can be attached to artificial motion profiles
of robotic and computer animated characters (e.g., [3-6]).
However, the manipulation of pre-recorded sequences of
movements is time-consuming and highly dependent on
the context in which the movement was recorded, which
narrows the range of applications and interactions.
From a psychophysical perspective, a great part of the

experience of motion can be described by the dimensions
of space, which is considered the medium for the deploy-
ment of movement, and by the time, which is considered
the medium for segmentation and synchronization of
movement [1]. One could then attempt to model and gen-
erate dance movements by means of generative algo-
rithms, but modeling expressiveness depends on deeper
knowledge on the nature and structure of dance behaviors.
This kind of knowledge would involve models for biome-
chanics, kinematic representations of dance displays, and
multimodal interactions, which are not easily formalized
from an algorithmic perspective nor easily implemented
from the viewpoint of applied robotic applications.
State-of-the-art applications in robotics and computer

animation frequently use symbolic dance representations
made of primitive motions synchronized with music [7].
Primitive motions represent characteristic postures (key-
poses) of a given dance style. These are typically selected
from the movement by identifying sudden trajectory
changes in the motion profile. For example, [3,8] segmen-
ted movement sequences of real Japanese folk dancers
according to the minimum velocities of their end-effectors’
(hands and feet) trajectories. The resulting key-poses were
clustered and interpolated a posteriori for generating var-
iations of the captured dance. Similarly, [9] extracted
motion key-poses by means of motion rhythm and inten-
sity features calculated from local minima in the motion
signal (stop motions), which were based on the Laban’s
concept of “weight effort” [10]. On the other hand, [4,11]
generated rhythmic motion patterns, such as dancing and
locomotion, by clustering and interpolating unlabeled
MoCap segments as “motion beats”. Motion beats corre-
sponded to moments of rapid change in the motion signal,
given by zero-crossings of the second derivative of all
joints’ orientation. After retrieving motion features and
different musical cues, e.g., beats, pitch, intensity and
chord progression, methods for matching and aligning
the dance movement with music typically apply signal
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alignment and optimization techniques, such as time-
warping [4,6], dynamic programming [5], and genetic algo-
rithms [11].
The majority of these studies seem to be mainly cen-

tered on a linear concept of time and a strictly determinis-
tic concept of gesture (e.g., fixed key-poses). In other
words, time is always represented as a monochronic
sequence and movements are often represented as fixed
poses in space. Such a concept of time might contrast
with the structure of musical time, which is usually based
on concurrent temporal regularities (see the concept of
meter in the next section) and has a strong influence on
the structure of traditional and popular dance styles.
Literature in the field of dance ethnology and gesture/
movement analysis points out that the universe of dance
and movement extrapolate the notion of precision in
space [1,12] and that reasoning in dance is much more
diverse than the key-pose paradigm [13]. As such, a more
comprehensive modeling of dance should involve more
flexible (i.e., variable) representations of the use of space
while manipulating time according to temporal cues of the
musical rhythm. In great part of the popular or traditional
dances, gestures are often deployed through synchroniza-
tion with events in music, which are traditionally orga-
nized by the musical meter. The question is how both
space and musical meter can be articulated in a compact
and parameterizable representation of a dance perfor-
mance situated in a particular dance style, and how to re-
synthesize dance sequences from the latter representation
model. These processes should induce the observed level
of naturalness, expressiveness and musical synchronization
of the original movement, while keeping the overall spatio-
temporal structure of the analyzed dance style.

1.2 Spatiotemporal representation of musical meter and
dance
A significant part of dance styles depends on the structure
of musical meter, which organizes dance choreographies,
the timing of the gestures, and the music structure itself.
The concept of musical meter captures the idea that
rhythm and temporal regularities are organized as hier-
archical structures in music, resembling a hierarchical
structure of beats and metric levels depicted as a grid, as
represented in Figure 1a. In this representation, the estab-
lishment of temporal regularities caused by past and pre-
sent events (metric accents) reinforce or conflict with the
metric structure [14,15].
The concept of meter proposed by Lerdahl et al. [14] is

expressed in the structure seen in Figure 1a. It indicates
that meter is organized in hierarchies composed of layers
(vertical axis) of periodic and symmetric metric accents
distributed through time (horizontal axis). However,
when dance gestures are synchronized with musical
meter, it can be said that the meter becomes integrated
with dance in the spatiotemporal domain. Because dance
and music share the same time domain, regular events in
the musical tessiture are reflected as regularities in the
use of space. Figure 1b illustrates the process in which
metric accents are projected onto the dance trajectories
in the spatiotemporal domain.
Spatiotemporal representations of dance are not new

and several forms of representation have been proposed so
far. Figure 2 shows a chronological prospect of some of
these representations, which denote a long term effort to
represent dances. Note that, given the complexity of dance
engagement, none of the approaches managed to provide
a complete solution for a representation of the dance
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Figure 1 Spatiotemporal representation of musical meter and dance: (a) Hierarchical representation of the structure of meter (based on
[14]), with a period of 2 beats. From top to bottom, each hierarchical metric level is subdivided or grouped in other levels. (b) Spatiotemporal
representation of metric accents in a dance gesture.
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structure. For example, the lack of systematic representa-
tion of all body articulations in time (e.g., the first and
third graphs [16,17] in Figure 2), the lack of representation
of cross modal interactions with music and other modal-
ities (e.g., fourth and fifth graphs [18,19] in Figure 2), the
absence of representations of the variability of the dance
gesture (e.g., the first, second and third graphs [16,17,20]
in Figure 2) and the lack of structural models, at some of
the representations in Figure 2, indicate how the represen-
tation of dance is often complex. Thus, in order to render
expressive beat-synchronous dance movements we needed
to extend the existing representations into a novel spatio-
temporal model (see Section 2.2) that would consider all
of the following: (i) the possibility of resynthesis of original
motions; (ii) encoding motion trajectories and musical
time (meter) in the same representation; (iii) accounting
for the variability of dance sequences; (iv) support of
multi-modal parameterizations for assessing different
hypotheses.

1.3 Method
The method, depicted in Figure 3 involves analysis and
representation of dance sequences and the evaluation pro-
cedures necessary to validate the proposed representation
model. The analysis and representation are applied to
motion capture recordings of dance performances of pop-
ular dance styles and the process of validation compares
different parameters applied to the representation model
according to a set of evaluation criteria. The parameteriza-
tion of the representation model, related to the chosen
metric resolution and representation of variability, com-
pose our set of independent variables used to test hypoth-
eses that assess the feasibility of our model towards fully
and naturally representing a dance style of repetitive
gestures.

The processes of analysis and representation include four
stages: (i) data acquisition, (ii) data analysis, (iii) parameter-
ization of the representation model, and (iv) the final repre-
sentation of the dance style. The process of validation
involves the synthesis of dance sequences from different
choices of parameters, and the comparison against the cap-
tured dance sequence through a set of evaluation criteria.
Our evaluation method consists of numerical and subjec-
tive assessments. In the numerical evaluation we consider
the degree of variance and correlation of both synthesized
and captured joint trajectories in relation to the conse-
quent dimensionality and level of reduction provided by
the representation model. In the subjective assessment we
evaluated the degree of similarity between captured and
synthesized dance sequences by asking fifteen subjects to
measure their subjective similarity. The dance perfor-
mances of Afro-Brazilian samba and American Charleston
were synchronized to their respective music styles. These
dances were recorded with a MoCap system and the musi-
cal pieces were manually annotated by experts.

2 Dance movement analysis and parameterizable
spatiotemporal representation
2.1 Recording procedures
The recorded dances were performed by two professional
female dancers, one specialized in Afro-Brazilian dances
and other in old/traditional dances. The first dancer per-
formed simple dance gestures in samba-no-pé style,
which is the most recognizable and popular sub-style of
the Afro-Brazilian samba dances. The second dancer per-
formed dance gestures in the basic American Charleston
style. After a few trial runs without any limitations, the
dancers were instructed to dance the standard steps of
the style without exhibiting improvisations, turns or
embellishments.

Tomlinson
1795

Jensenius
2006

Palazzi & Shaw
2009

Saint-Léon
1852

Laban
1947

Figure 2 Five different spatiotemporal representations of the dance gesture: (a) Tomlinson [16] proposed representations that guide steps
distributed in the dance floor; (b) Saint-Leon and Pappacena [20] developed a mixture of musical score and figurative descriptions of key-poses
to represent music and dance in the same process; (c) Laban [49] developed the labanotation method, perhaps the most disseminated form of
dance notation; (d) Jensenius [18] developed a representation based on video recordings whose pixels are collapsed and inform about
movement in time; (e) Palazzi and Shaw [19] used videogrammetry to create a set of 3D video representations of dance.
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The musical stimulus used in the samba recording was
composed of looped samples of a samba percussion
ensemble (surdo, tamborim and caxixi) sequenced at 80
BPM (beats-per-minute). The musical stimulus used in
the Charleston recording was composed of phrases of
Charleston music exhibiting a mean tempo of 111 BPM.
2.1.1 Motion capture data acquisition
The dance recordings of samba and Charleston were
respectively performed in Brazil and Belgium, both with
an 8-camera MoCap system setup (Optitrack/Natural
Point [21]). The dance movements were recorded at a
frame rate of 60 Hz and upsampled to 100 Hz in the
editing phase. The motion data was synchronized with
the musical stimulus used in the recording and the
motion trajectories of each recorded dance sequence
were normalized in relation to the centroid of the body,
frame per frame. This process subtracted the effect of
the movement of the whole body on the trajectories of
the limbs. The sequences were imported into Matlab
and edited using the MoCap Toolbox [22]. This process
resulted in one dance sequence of samba and one other
of Charleston, both synchronized to music, to be further
analyzed.
2.1.2 Annotation data
The musical sequences were manually annotated by
experts and all metric accents (here described as time
points and classes of musical levels) classified using
Sonic Visualizer [23]. From the beat annotation we

derived both a macro level (by downsampling it into
bars of 2 beats) and micro levels of the musical meter
(by upsampling it into half-beat, quarter-beat, and
eighth-beat levels). These levels encompass the resolu-
tion of the metric parameters that are used to parame-
terize our dance representation model, considering bar
levels (i.e., the size of the metric cycles in which the
meter is decomposed) of 2 beats for samba and 4 beats
for Charleston. Previous knowledge about the Jazz
(which includes the Charleston dance styles) and Afro-
Brazilian culture (which includes the samba dance
styles)c indicate that their couple music forms have the
metrical characteristics indicated in this study, more
specifically the organization of the subdivisions of the
beat in 1/4th beat divisions in both styles and the metri-
cal properties mentioned before. A schematic descrip-
tion of these metric levels (hereafter named metric
classes) in the time/metric domain is shown in Figure 1
and Figure 4.

2.2 Analysis and parameterizable spatiotemporal
representation of the dance movement
Our representation model is build upon a method that
analyzes the spatiotemporal relationships between music
and use of space in popular dance styles [1]. This
method, denominated Topological Gesture Analysis
(TGA), maps the structure of musical gestures into
topological spaces.
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Figure 3 Workflow of the method: (a) dance analysis and representation, and (b) validation of the proposed representation model according
to different hypotheses.
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As depicted in Figure 4, the TGA method relies on a
projection of musical cues (here, metrical classes–see
Figure 4a) onto trajectories (see Figure 4c), which, by

definition, generates a combined spatiotemporal repre-
sentation using musical and choreographical informa-
tion. Considering that the use of space in dance is

Figure 4 Projection of musical cues (metric classes) onto the dance trajectories. Firstly, (a) the annotation of metric structure of the (b)
music is synchronized with the MoCap recording. These cues are projected onto (c) the movement vectors (in the example, right hand
movements) as different classes of points (e.g., 1st beat, 2nd beat–respectively described as 1 and 2 in the figure). Finally, (d) the point clouds
are discriminated using LDA analysis which guarantees the separation of point-clouds into (e) topologies. In this study we assumed a spherical
distribution for the point clouds whose radius is defined by the average of the Euclidean distances from all points of the class to the mean.
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organized according (or in synchrony) to the projected
musical cues it is likely that the projection of points
generate clusters in space, or point clouds (Figure 4d),
which can be clustered, discriminated and organized in
different geometries or representations [24]. Since we
assumed that the modalities of audio and movement are
intrinsically interdependent and synchronized, we pro-
jected a set of W annotated metric classes, decomposed
into C metric cycles and matching Q = W * C time
points in the audio, onto the 3D trajectories of dance.
This resulted in a sequence of metric classes, M = [m1, .
. ., mW, . . ., m1, . . ., mW, . . . ], that match a set of
time-points in the audio given by T = [t1, . . ., tQ]. Sub-
sequently, they are projected onto a set of Q 3D points,
P, given by the 3d coordinates of the motion trajec-
tories, Z, occurring at the time-points of T, such as P =
[[Zx(t1), Zy(t1), Zz(t1)], . . ., [Zx(tQ), Zy(tQ), Zz(tQ)]].
The set of points P results in point clouds that charge

the dance space with musical qualities, defining geometries
that we call gesture topologies (see Figure 4e). In short,
they inform how the relationships between the gesture of
the dancer and the respective musical characteristics are
performed in space. Since we are interested in how the
dancer uses the space in relation to classes of the musical
meter (half-beat, 1 beat, 2 beats, etc.), i.e., how the dancer
performs in beat-synchrony, we discriminated the 3d
points of P into W point clouds (i.e., one point cloud
Xmper metric class m), X = [Xm1 , . . . , Xmw ] , by clustering
the points according to their represented metric class,
such as X = [P (t ≡ m1), . . ., P (t ≡ mW)]; where P (t ≡ m)
represents all 3d points whose time occurrence match the
considered metric class m. To improve the discrimination
of these regions (see Figure 4d) we used linear discrimi-
nant analysis (LDA) [25] which guaranteed higher separa-
tion between classes of point-clouds by calculating the
between class variability through the sample covariance of
the class means. From the separation of the classes we dis-
carded the set of points, L = [Lm 1 , . . . , LmW ] , from X that
could not be discriminated in the LDA, such as
X′ = X − L = [X′

m 1
, . . . , X′

mw′ ] , where W’ corresponds to

the number of classes of W that are represented by at least
one point of X after discrimination. Ultimately, from the
discriminated point clouds, X’, we delimited W’ topological
regions (i.e., W’ topologies) given by uniform spherical dis-
tributions. The radius of each spherical distribution, Vm, is
defined by the mean of the Euclidean distances, Ex′

m,i,μm ,
of all the Impoints represented in the given point cloud of

class m, X′
m = [x′

m,1, . . . , x′
m,Im

], to the 3d centroid (i.e.,

center of mass μm) of its distribution (see Figure 4e):

Vm =
4
3

π

(
1
Im

Im∑
i=1

Ex′
m,i,μm

)
. (1)

The described process was replicated for each of the
dancer’s joint motion trajectories such that the complete
TGA representation conveys one mean 3d value and the
radius of the spherical distribution for each metric class
and each of the 20 joints of the considered body model
(see the considered body model description on Figure 5a.
As described, this dance model offers a compact repre-

sentation of the dance movement in relation to the musi-
cal meter, being at the same time able to describe the
dance according to different levels of the musical meter
(different temporal resolutions), and flexible to convey
variability of the gestures in space. In addition, the model
can be parameterized in different ways since it is able to
provide different variations of the same dance representa-
tion, which may specifically differ in terms of the consid-
ered metric resolution (i.e., by the number of considered
metric classes–see Figure 4a) and in the consideration
and discrimination of spatiotemporal variability (e.g.,
Figure 4e), where spherical distributions are considered
to represent variability). Figure 6 illustrates the final
spherical distributions for the left hand of a dancer pro-
vided by a spatiotemporal representation model of samba
dance parameterized with quarter-beat resolution and
with variability.

2.3 Synthesizing dance sequences
Our TGA model of the dance performances represents a
set of discrete metric classes which intrinsically delineate
likelihoods of key-poses in space, describing pseudo-
unlimited variations of the fundamental postures charac-
teristic of the analyzed dance style. The process of synth-
esis consists in generating and concatenating closed-loop
cycles of the key-poses underlying in the TGA model,
with or without variability, and interpolating them
according to the represented musical meter, at the cho-
sen metric resolution. Consider the example illustrated in
Figure 7: while a representation parameterized with a
1-beat resolution (“beat resolution”) enables the synthesis
of dance sequences with one key-pose interpolated
within the time-interval, Δt, of one musical beat (i.e., two
different key-poses per metric cycle of two beats), a reso-
lution of quarter-beat provides four key-poses for the
same duration (i.e., eight different key-poses per two-beat
metric cycle). The musical beat-synchrony is therefore
implicitly projected into the gesture itself by assigning
each synthesized key-pose to specific key-frames in the
music, respectively representing each of the annotated
metric classes in the time domain.
Alternatively, the representation can be parameterized

with or without variability, by respectively considering or
ignoring the radii of the spherical distributions repre-
sented in the TGA model (see Figure 4e). Therefore, the
synthesis of dance sequences without variability is built
by concatenating repeated sequences of a fixed dance
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pattern, composed by the same set of key-poses. In this
case, the set of repetitive key-poses is build on the cen-
troids of the TGA distributions for each joint at each
metric class. The method of synthesizing full-body key-

poses with variability is described in detail in Section
2.3.1. For both alternatives, the synthesized key-poses are
interpolated in complete dance instances as described in
Section 2.3.2.

Figure 5 Process of key-pose synthesis with variability, from kinematic chains decomposition to the stochastic calculation of the
joints’ rotations. The top graph shows (a) the decomposition of the body model into five kinematic chains, and (b) the sequence of
propagation of stochastic processes along the kinematic chain of the character’s right arm. The bottom graph shows the proposed solution for
generating the key-pose of metric class m with variability, by replicating the same variability observed in the recorded dance. This process can

be implemented by (c) randomly calculating all key-pose’s joint rotations: starting from the anchor segment, sm
0 , at the spine, which links joint 1

to joint 10, to the chain extremity at joint 20, each joint position, pm
j , is randomly calculated inside its respective, Cm

j , by selecting a random

quaternion, qvsm
j , that describes a possible rotation of that joint segment, sm

j , around its base unity vector, �vsm
j , (given by the last segment

target vector, �v′
sm
j −1 ), circumscribed by Cm

j .

time domain New metric
 cycle of 2 beats

half-beat
resolution

1 2 3 4 1

beat
resolution

1 2 1

key-pose interpolation
(joint by joint)

quarter-beat
resolution

1 2 3 4 5 6 7 8 1

Δt = 1 beat

Δt

Δt = 1/2 beat

Δt = 1/4 beat

Figure 6 Spatiotemporal dance representation model of samba, parameterized with quarter-beat resolution and variability, within
two-beat metric cycles (i.e., dance represented by the spherical distributions of eight metric classes, which correspond to 1

4
resolution *

2beats): (a) point cloud representation of the dance gesture of the left hand; (b) point cloud after LDA analysis. Note that classes of points are
visually and linearly discriminated from each other; (c) representation of point clouds as homogeneous spherical distributions around the mean
trajectories of the left hand.
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2.3.1 Synthesizing key-poses with variability
The question of synthesizing key-poses with variability
from our representation model can be potentially solved
by, at every metric class, stochastically generating joint
coordinates/rotations that would satisfy both kinematic
constraints and their respective spherical distributions;
preserving both body morphology and the represented
spatiotemporal variability.
Contrarily to [2], the proposed solution is formulated

in quaternion algebra to be directly applied into robotic
and/or computer animated humanoid characters,
enabling an easier and more reliable manipulation of the
dance representation to be applicable onto different
humanoid body models. This process (depicted in Figure
5) involves an initial decomposition of the MoCap repre-
sentation of the human body into five kinematic joint
chains, derived from two anchor joints (hip, at joint 1,

and neck, at joint 11). At this stage every kinematic chain
is processed independently by calculating random joint
rotations confined by the represented TGA distributions.
The correspondent body segments are synthesized as the
norm of the given unity vectors according to the original
body model (as illustrated in Figure 5c). This process is
iteratively computed until all joints of each key-pose can
be successfully calculated while satisfying the propagated
kinematic constraints.
In order to ensure that the fixed geometry of the

human body is not violated in the process at any given
metric class, if one segment does not fit both TGA dis-
tributions at its joint extremities the algorithm points all
the following joint rotations (up to the chain extremity)
towards their respective TGA’s centroids. This occurs
when the choice of a random joint position at one seg-
ment extremity makes it impossible for the segment,
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Figure 7 Synthesis of dance sequences from representation models parameterized with different metric resolutions, within two-beat
metric cycles: concatenating closed-loop cycles of the represented key-poses (i.e., one different key-pose per metric class and one full set of
key-poses per metric cycle), and interpolating them according to the represented musical meter at different metric resolutions.
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with fixed length, to reach the other extremity’s distri-
bution. This restriction is mostly caused by the discrimi-
nation of the topologies at the dance analysis stage by
the use of the LDA. In this eventuality, the algorithm
retries the whole process from the beginning (i.e., from
the anchor joint of the considered kinematic chain and
metric class) and keeps trying to accomplish the whole
chain’s constraints and the represented spatiotemporal
variability for a maximum of 25 times (limited due to
the computational overload), saving the resulting key-
poses’ joint positions of each trial. This process is rea-
lized for every metric cycle of the desired dance
sequence, in order to ensure the highest degree of varia-
bility among them. Each cycle is therefore built by the
group of key-poses which, when summed, required the
lowest amount of forced joint positions (i.e., the lowest
amount of joint rotations set towards the centroid of
their respective TGA distributions).
The process of randomly calculating all joint’s rota-

tions (and consequently their 3d coordinates) inside
each body kinematic chain is described in detail as fol-
lows. As illustrated in Figure 5c, for every metric class,
m, the first step consists of determining the possible
variations of the quaternion, qv, (i.e., the 3d rotation of
a target unity vector, �v′ , around its base unity vector, �v )
defined between every two body segments. Every two
body segments are defined by the current segment, sm

j ,

which links the formerly assigned joint position, pm
j−1 , to

the current joint coordinates, pm
j , to be randomly calcu-

lated, and the previously processed segment, sm
j−1 , which

links pm
j−1 to the preceding joint position, pm

j−2 , in that

same kinematic chain. pm
j is generated from a rotation

quaternion, qvsm
j , randomly assigned inside the intersec-

tion cap, Cm
j , between the considered TGA distribution,

Tm
j , and a sphere, Jm

j=1 , centered on pm
j−1 with radius

equal to the current segment length, lj-1,j.
Initially, the base vector for calculating the orientation of

the spine segment that connects the two anchor joints of
the used body model (joint 1 to joint 10 in Figure 5a) is
considered to be fixed in space at �vsm

0
= (0, −1, 0) . This

anchor segment, sm
0 , is then considered as the initial base

vector of all kinematic chains. From this point on, every
generated target vector is used as the base vector of the
following segment, in a recursive process, up to the extre-
mity segment of the considered kinematic chain. As such,
starting from sm

0 , the possible variations of each segment

rotational quaternion, qvsm
j , are constrained by the former

calculated joint position, pm
j−1 , the former segment unity

vector, �v′
sm
j −1 , (i.e., the current base vector, �vsm

j ), and Cm
j .

The current joint rotation, qvsm
j , is therefore randomly

selected inside a spatial range confined by six extremity

quaternions, qvi
sm
j
, (one maximum and one minimum for

each spatial dimension, d = {x, y, z}). These six qvi
sm
j
are

indicated by the rotation of the current segment, sm
j ,

around its base segment vector, �vsm
j , towards each dimen-

sional extremity, Cext , of Cm
j , as follows (note that for sim-

plification we omitted the m index from all variables in
Equations (2) and (3), although all calculations are relative
to a specific metric class):⎧⎪⎨

⎪⎩
qvi

sj
= cos

(
αi

sj−1,sj
/2
)

+ �ui
sj

∗ sin
(
αi

sj−1,sj
/2
)

�v′i
sj

= �v′i
sj+1

= Ci
extj = pj−1 :

Ci
extj = {mind(Cextj) ∪ maxd(Cextj)}; i = 1, . . . , 6

(2)

where �ui
sj is the unity vector representing the 3d axis

of rotation between both segments, sj-1 and sj, towards

one of the Ci
extj , extremities, and αi

sj−1,sj is the corre-

spondent rotation, angle.
The second step consists of calculating a random qua-

ternion, qvsm
j , inside the spatial range described by the

six extremity quaternions, qvi
sm
j
, (calculated in Equation

(2)), as follows:⎧⎪⎨
⎪⎩

qv′
sj = q̄v̄sj ±

[
maxi

(∣∣q̄v̄sj

∣∣− ∣∣∣qvi
sj

∣∣∣) ∗ rand[0,1]
]

qvsj =
qv′

sj∥∥∥qv′
sj

∥∥∥
, (3)

where q̄v̄sj is the mean quaternion, representing a

rotation from the last calculated joint, position to the
center of the current spherical cap.
The third and final step consists of calculating the

current joint position, pm
j , based on the obtained target

rotation vector, �v′
sm
j
, the former calculated joint position,

pm
j−1 , and the current segment length, lj−1,j =

∥∥∥�v′
sm
j

∥∥∥ , as
follows:⎧⎪⎪⎨

⎪⎪⎩
pm

j = pm
j−1 + lj−1,j ∗ �v′

sm
j

: pm
j ∈ Tm

j

�v′
sj

=

(
qvsj∥∥∥qvsj

∥∥∥
)

∗ �vsj ∗
(

qvsj∥∥∥qvsj

∥∥∥
)−1

= �vsj+1

. (4)

2.3.2 Motion interpolation between key-poses
In order to synthesize complete dance instances from
the synthesized key-poses, we generated continuous
joint trajectories by recurring to motion interpolation
techniques. Motion interpolation (or blending) is a
highly discussed topic in computer animation and
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robotics literature. Interpolation functions typically
blend point-to-point positions (e.g., key-poses) or
motion primitives into continuous trajectories according
to a set of kinematic and/or dynamic constraints. These
functions can be applied both in the time [11] or fre-
quency [26] domains, to joint/links coordinates or rota-
tions, and assume various forms, ranging from slerps
[11] to hierarchical B-splines [27], B-spline wavelets
[28], and piecewise [5] spline functions.
Considering our application, we selected a linear point-

to-point joint coordinates interpolation between key-
poses. Although this method does not ensure that the geo-
metry of the humanoid body model is fixed along the
whole synthesized motion sequence (see Section 3.2 for
the imposed body error), it is computational inexpensive
and provides the required reliability to validate our dance
representation model. Yet, the use of this representation
model for the generation of dance movements onto com-
puter animated or robotic characters would imply the use
of more sophisticated interpolation functions. (Further dis-
cussion on this topic is outside the scope of this article,
and left for future work–see Section 4.5.)
In detail, continuous dance motion trajectories are

synthesized by interpolating all synthesized key-poses in
the order of the represented metric structure, along all
metric cycles of the dance sequence at the defined resolu-
tion. In such a way, the beat-synchrony observed in the
recorded dance is implicitly translated into the interpo-
lated dance sequence.
The motion transition between postures, within all W

metric classes, is generated by interpolating each joint
independently. As such, all joint coordinates, pjx,y,z , are
interpolated between W consecutive pairs of key-frames,
[{t0, t1}, . . ., {tm, tm+1}, . . ., {tW, t0}], (the interpolation
knots) pointed by consecutive pairs of metric classes, m,
by means of a piece-wise cubic spline interpolant, I,
over each joint coordinate dimension, jd, given by (fol-
low Figure 8):

I =
[
Ik
(
jx
)

, Ik
(
jy
)

, Ik
(
jz
)]

, (5)

where m = 0, . . ., W -1; k = 0, . . ., W; d = {x, y, z};
jdÎ [{t0, t1}, . . ., {tm, tm+1}, . . ., {tW, t0}];
and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Im(jd) = c0 + c1(jd − pm
jd

) + c2(jd − pm
jd

)2 + c3(jd − pm
jd

)3

Im(jd) = Im−1(jd)
I′m(jd) = I′m−1(jd)
I′′m(jd) = I′′m−1(jd)
I′′0(jd) = I′′W(jd) = 0

. (6)

3 Experiments and validation procedures
This section describes the evaluation method for validat-
ing the proposed representation model using recordings

of samba and Charleston dance, which were recorded
and preprocessed as described in Section 2. The pro-
posed evaluation consists of three sections: (i) experi-
mental setup, and (ii) numerical and (iii) subjective
evaluations.

3.1 Experimental setup
The experiments consist of numerical and subjective
assessments that evaluate the capacity of the TGA
model to represent repetitive displays of popular dance
styles according to the proposed hypotheses. The
numerical evaluation includes measures of similarity,
variance, level of reduction, and dimensionality that aim
to describe how dance sequences, synthesized from dif-
ferently parameterized representations and of distinct
dance styles (i.e., samba and Charleston), differ from the
captured data and among each other, and furthermore
what gain can be obtained in terms of data compression
by the use of the proposed representation model. Ulti-
mately, it measures the overall body size error imposed
by our simplistic inter-polation method. The subjective
evaluation consist of subjects’ assessment over the visual
similarity between the synthesized and captured dances.
Both these processes aim to investigate the optimal set

of parameters (i.e., the optimal parameterization) neces-
sary to represent each dance style, and consequently to
identify the minimum amount of information necessary
to reliably describe them by means of a compact spatio-
temporal representation, thus validating our model in
respect to the proposed hypotheses.
3.1.1 Hypotheses
In order to validate the proposed representation model
we relied upon two hypotheses: metric resolution and
variability. The remainder of this article addresses the
validity of these hypotheses by proposing a set of para-
meterizations and evaluation criteria to assess our repre-
sentation model.
The confirmation of the hypothesis of metric resolution

should imply that the quantity or density of metric
classes has a positive impact on a full and natural
description of the represented dance. In other words,
there should be a minimum and sufficient temporal
metric resolution required to satisfactorily represent the
dance style, leading to the optimal similarity between
synthesized and captured dances. In order to test this
hypothesis, we varied the metric resolutions (indepen-
dent variable) of the synthesized dance sequences in four
levels: beat, half-beat, quarter-beat, and eighth-beat
resolutions.
The confirmation of the hypothesis of variability

should imply that spatiotemporal variability in the system
lead to more perceived naturalness and, consequently,
more similarity with the captured dance. We accessed
the impact of this hypothesis by comparing dance
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sequences synthesized from representations parameter-
ized with spatiotemporal variability (as described in Sec-
tion 2.3.1) with others built of repetitive sequences of a
fixed pattern (by assuming the centroid of the TGA dis-
tributions for each joint and metric class).
3.1.2 Assessed parameterizations
Table 1 shows the eight parameterizations applied to the
proposed representation model for validating it in respect
to the stated hypotheses. These different parameterizations
were individually applied to the TGA representation
model of each dance style and respectively synthesized
into dance sequences to be numerically and subjectively
evaluated against their respective captured dances. In addi-
tion, we also included an excerpt of the captured dance
sequence of each dance style off-set by one metric cycle
(i.e., by one bar), hereafter denominated “original”
sequence. To ensure that all synthesized sequences are
also aligned with the captured dance sequence the initial
frame of these sequences is mapped to the first metric
class of a metric cycle.
The numerical evaluation assesses dance sequences of 15

s synthesized from all the eight parameterizations described
in Table 1 applied to the TGA representation model, plus
the “original” sequence, against the captured sequence of
each dance style. Due to time con-straints the subjective

assessment only considers the most relevant sequences for
measuring the effect of inducing spatiotemporal variability
in the dance representation model. These consist of 30 s
dance sequences synthesized from the four parameteriza-
tions presented in bold in Table 1 applied to the TGA
representation model, plus the “original” sequence.

3.2 Numerical evaluation
3.2.1 Level of similarity
In order to evaluate the level of similarity between the
captured and the synthesized dance sequences we
looked into the literature for measures of interdepen-
dence (synchrony) between signals [29]. From the stu-
died metrics we selected the correlation coefficient,
rs1,s2 , which, quantifies the linear time-domain correla-
tion between two signals. Between two motion trajectory
signals, s1 and s2, it can be formulated as follows:

rs1,s2 = ∑N, J, D
n=1,j=1,d=1 [(s1(n, j, d) − s̄1(j, d))(s2(n, j, d) − s̄2(j, d))]√∑N,J,D

n=1,j=1,d=1 (s1(n, j, d) − s′1(j, d))2
∑N, J, D

n=1j=1d=1 (s2(n, j, d) − s̄2(j, d))2
, (7)

where N is the length of the signals (set to 1500
frames - corresponding to 15 s sequences at 100 fps), J
is the total number of joints of the considered body
model (J = 20), D is the number of considered spatial
dimensions (D = 3, for the 3d space), and s̄1 and s̄2 are
the mean frames across all J and D for s1 and s2, respec-
tively. This metric translates both period and phase
interdependence between s1 and s2, resulting in a maxi-
mum of rs1,s2 = 1 in the presence of identical signals.
3.2.2 Degree of variability
In order to measure the degree of variability observed in
each dance sequence we looked for the spatiotemporal
variability observed between the motion trajectories of
each individual metric cycle composing the whole dance
sequence. Therefore, we split each dance sequence into
several excerpts corresponding to individual metric
cycles. The 15 s samba sequences, at 80 BPM, were split
into ten complete metric cycles of 2 beats each, whereas
the 15 s Charleston sequences, at 111 BPM, were split

Figure 8 Generating one movement cycle of the right hand joint by orderly interpolating the discrete joint positions calculated for all
defined metric classes at different resolutions.

Table 1 Assessed parameterizations for validating the
proposed representation model in respect to the stated
hypotheses

Parameterization Metric resolution Spatiotemporal variability

Fixed-1 Beat None

Fixed-2 Half-beat None

Fixed-4 quarter-beat None

Fixed-8 Eighth-beat None

Variability-1 Beat Spherical distribution

Variability-2 Half-beat Spherical distribution

Variability-4 quarter-beat Spherical distribution

Variability-8 Eighth-beat Spherical distribution

The numerical evaluation considers all the present parameterizations whereas
the subjective assessment only considers the parameterizations in bold.
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into seven complete metric cycles of 4 beats each. To
measure the spatiotemporal variability between the
motion trajectories, sc, delimited by each metric cycle, c,
we calculated the mean variance, v̄s , among all joints, J,
and spatial dimensions, D, of sc. v̄s is measured in
square millimeters (mm2) and calculated across all
frames, Nc, of each scbetween all metric cycles of the
considered sequence’s signal, s, as follows:

v̄s(mm2) =

∑Nc ,J,D
n=1,j=1,d=1

√
1

C − 1

∑C
i=1 (sc(n, j, d) − s̄c(n, j, d))2

J · D · Nc
,

(8)

where s̄c is the mean value of the considered dimen-
sion, {n, j, d}, across all metric cycles of s, and C is the
total number of metric cycles described in s.
3.2.3 Dimensionality
The dimensionality, Dim(J,S,T), of each parameterized
representation model was measured as the number of
spatiotemporal arguments used to describe the full-body
3d trajectories of the whole dance sequence, according
to the defined parameterization. It is described in terms
of the number of joints, J, considered in the used body
model, the number of spatial arguments, S, needed to
represent the dance motion (in the case of the TGA
spherical representation it implies a 3d centroid and the
radius, if emulating variability, for each distribution),
and the used temporal resolution, W, (i.e., number of
metric classes used in the TGA representation):

Dim(J, S, W) = J · S · W. (9)

3.2.4 Reduction
The consequent Reduction of each synthesized dance
sequence measures the degree of data compression of the
used representation model, by comparing the dimension-
ality of the synthesized sequence, Dims(J, Ss, Ws), with that
of the captured dance, Dimo(J, So, Wo). This
is always dependent on the length, N, (in frames) of

the synthesized sequence, as follows:

Reduction =
Dimo(J, So, Wo)
Dims(J, Ss, Ws)

· N. (10)

This criterion represents a measure of e ciency and
compactness of our representation model under the dif-
ferent applied parameterizations.
3.2.5 Interpolation error
We measure the overall interpolation error imposed by
our interpolation method in terms of mean body size
differences between the synthesized and captured body
models. It is calculated as follows:

ei(%) =

⎛
⎝1 −

1
N ∗∑N

n=1

∑J−1
js=1

∣∣∣pn
s − pn

jS+1

∣∣∣∑J−1
jb=1

∣∣∣pn
jb

− pn
jb+1

∣∣∣
⎞
⎠ .100, (11)

where pn
js are the 3d coordinates of the given joint, js,

for the considered frame number, n, of the synthesized
sequence, s, and pn

jo are the same 3d joint coordinates in
the original (i.e., captured) body model, b.

3.3 Subjective evaluation
In the subjective assessment we asked fifteen subjects
(seven Brazilians and eight non-Brazilians) to evaluate
dance sequences of samba dance only. The restriction to
samba on the subjective evaluation was meant to avoid
bias in the evaluation, since the reliance on different
cultural backgrounds could lead to uncontrollable bias
on the comparison between samba and Charleston. The
subjective assessment over Charleston, and other dance
styles, will be considered in future work.
In the training phase of the inquiry we described the

experiment using a training example and a demonstra-
tion of human samba. In the assessment, the subjects
were presented to two series of the five dance sequences
(i.e., ten trials) described in Section 3.1.2. These
included four sequences, each synthesized from one of
the four parameterizations displayed in bold in Table 1
applied to our representation model, plus the “original”
sequence. In order to evaluate the degree of subjective
similarity between the five assessed dance sequences
and the captured dance, we run a user-oriented evalua-
tion over each selected parameterization by randomly
displaying the captured dance sequence followed by one
of its synthesized versions (or the “original” sequence)
or vice-versa. After each trial we asked the subjects (1)
to indicate which of the two sequences they considered
to be the captured sequence and (2) to grade, from 1 to
5, the level of similarity between the considered cap-
tured sequence and the synthesized or the “original”
one.
All dance sequences were displayed through a graphic

animation of the dance movement synchronized with
the used musical stimulus by using an interface based
on the dance analysis suite (DAS) software [30]. The
visual representation of the human body, displayed in
Figure 9, contains a stick figure description of the body
model and a clean graphical environment.

4 Results, discussion and future work
In this section we present and discuss both numerical
and subjective results (from Table 2 and Figure 10,
respectively) according to the accuracy of our represen-
tation model on reliably representing a particular dance
style in respect to the proposed hypotheses.

4.1 Numeric results
Every dance sequence was synthesized ten times from
the same parameterized representation model, and for
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both dance styles. This aimed to improve the results’
precision given the stochastic elements present in our
algorithm, which is responsible for injecting spatiotem-
poral variability into the syntheses. The mean results
across the ten dance sequences synthesized from each
differently parameterized representation are presented in
Table 2. Figure 11 exemplifies the comparison between
an excerpt of the captured sequence of Charleston
(straight line), and synthesized sequences of Charleston

with (dashed line) or without (dotted line) variability,
extracted from the trajectories of the right hand joint
(joint 19), for all considered metric resolutions (see
Table 1). The “original” sequence is unique per dance
style and thus only evaluated once for each style.
Note that the small error imposed by our interpola-

tion method, with a mean of 1.54% among all assessed
sequences (see Table 2), ensures a good approximation
of the synthesized body with the captured, especially at
higher metric resolutions. Its reliability is additionally
supported by the high correlation verified between the
synthesized and captured dance sequences, even sur-
passing the results of the “original” sequence. Such
results validate the application of our simplistic interpo-
lation method for evaluation purposes.
The fact that all the dance sequences synthesized

without variability ("fixed” parameterizations) present
some degree of variability among metric cycles
(although all sets of synthesized key-poses are the same
for all concatenated metric cycles) can be explained by
the slightly different time-length of each metric cycle,
which results in slightly different interpolated motion
trajectories. This effect is greater at lower metric resolu-
tions because the interpolation function has less knots
(i.e., less key-poses) which increase the variation of the
synthesized motion trajectories among metric cycles
with different lengths. The same outcome is intrinsically

Figure 9 DAS visualization of a synthesized samba dance
sequence synchronized to music.

Table 2 Correlation coefficient, rs,o, between the joint trajectories of the assessed dance Sequence, s, and the captured
dance sequence, o, and mean variance, v̄s , among the metric cycles composing the assessed sequence in relation to
the dimensionality, Dim, and level of reduction, Reduction, of its respective representation model

Style Sequence rs,o v̄s(mm2) Dim(J,S,W) Reduction ei(%)

Samba

Original 0.86 646.84 (846.86) 20 × 3 × N 0 NA

Fixed-1 0.46 (0.00) 133.12 (527.68) 20 × 3 × 2 = 120 0.50 × N 2.11

Fixed-2 0.81 (0.00) 60.45 (314.44) 20 × 3 × 4 = 240 0.25 × N 1.08

Fixed-4 0.89 (0.00) 24.56 (66.47) 20 × 3 × 8 = 480 0.13 × N 0.31

Fixed-8 0.88 (0.00) 13.73 (31.96) 20 × 3 × 16 = 960 0.06 × N 0.62

Variability-1 0.41 (0.01) 539.59 (683.64) 20 × (3 + 1) × 2 = 160 0.38 × N 1.61

Variability-2 0.77 (0.01) 258.50 (406.60) 20 × (3 + 1) × 4 = 320 0.19 × N 0.23

Variability-4 0.87 (0.00) 131.52 (166.68)52 20 × (3 + 1) × 8 = 640 0.09 × N 0.09

Variability-8 0.87 (0.00) 64.94 (91.46) 20 × (3 + 1) × 16 = 1280 0.05 × N 0.10

Charleston

Original 0.87 3772.72 (5793.63) 20 × 3 × N 0 NA

Fixed-1 0.74 (0.00) 157.14 (540.80) 20 × 3 × 4 = 240 0.25 × N 5.82

Fixed-2 0.87 (0.00) 21.27 (77.07) 20 × 3 × 8 = 480 0.13 × N 2.31

Fixed-4 0.90 (0.00) 6.89 (16.33) 20 × 3 × 16 = 960 0.06 × N 1.93

Fixed-8 0.89 (0.00) 7.07 (18.18) 20 × 3 × 32 = 1920 0.03 × N 2.53

Variability-1 0.73 (0.01) 319.27 (336.48) 20 × (3 + 1) × 4 = 320 0.19 × N 4.60

Variability-2 0.86 (0.00) 241.19 (275.32) 20 × (3 + 1) × 8 = 640 0.09 × N 1.11

Variability-4 0.89 (0.00) 88.40 (156.87) 20 × (3 + 1) × 16 = 1280 0.05 × N 0.19

Variability-8 0.89 (0.00) 26.16 (65.19) 20 × (3 + 1) × 32 = 2560 0.03 × N 0.05

The mean error caused by the used interpolation method in each synthesized dance sequence is given by ei. The numbers in parentheses refer to the standard
deviation of, respectively, the mean rs,oand the mean v̄s across the ten synthesized dance sequences for each applied parameterization.
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present in the degree of variability measured in the “ori-
ginal” and all “variability” synthesized sequences, since
all dance sequences of each style share the same meter
in the time-domain.

4.2 Subjective results
A box plot with the overall statistical results of question
(2) (see Section 3.3) for samba is presented in Figure 10.
A box plot provides a graphic visualization of the
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Figure 10 Overall statistical results for the subjective evaluation over the level of similarity of each synthesized dance sequence, plus
the “original” sequence, of samba to the captured dance sequence.
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statistical properties of the data [31]. The explanations
in the graph indicate that the “the notches surrounding
the medians provide a measure of the rough significance
of differences between the values. Specifically, if the
notches about two medians do not overlap in this dis-
play, the medians are, roughly, significantly different, at
about a 95% confidence level.” [32].
The depicted results are discussed in detail in the fol-

lowing Section 4.3 and Section 4.4.

4.3 The impact of metric resolution
When comparing the results of Table 2 in terms of
metric resolution, we observed that the metric level con-
sidered in the representation model plays a fundamental
role in describing and representing the analyzed dance,
which seems to not vary according to the dance style, as
observed by the similar trend of rs,oamong the synthe-
sized sequences of both samba and Charleston. For
synthesized dance sequences of both dance styles we
observed a non-linear relationship between resolution
and similarity with the captured dance which indicates
that when the representation model drops to a certain

threshold of numerical resolution (in the whole process)
it compromises the geometry and shape of the dance
motion trajectories. As observed in the rs,oresults of
Table 2 (in bold), this saturation threshold seems to be
defined by a quarter-beat resolution for both samba and
Charleston.
For both samba and Charleston dances, there is an

overall agreement between numerical and subjective
evaluations that a correct parameterization of our repre-
sentation model feasibly reproduces the captured dance
in terms of similarity. From a numerical point of view
(see Table 2), we could synthesize dance sequences of
each particular dance style, with or without variability,
with an average accuracy of 0.89 ± 0.01 correlation
points. These even outperformed the similarity between
excerpts of the same captured dance sequence (i.e., the
captured vs the “original” sequence), by a maximum dif-
ference of 0.03 points. Yet, this was contradicted by the
subjects’ responses over samba (see Figure 10), by attri-
buting to the “original” sequence the maximum similar-
ity, of 5 points, with the captured dance, and
outperforming the best synthesized dance sequence by,

original
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Figure 11 Captured (straight) versus synthesized trajectories of the right hand joint (joint 19) for four metric cycles (delimited by the
vertical lines) of dance sequences of Charleston. The synthesized trajectories are generated from representations parameterized with
(dashed) or without (dotted) variability, at the following metric resolutions: (a) beat–"variability-1"/"fixed-1"; (b) half-beat–"variability-2"/"fixed-2";
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on average, 1 point. This suggests that subjective rea-
soning may play an important factor while evaluating
similarity between dance patterns. These factors could
be related with the cognitive attention to specific body
parts for determining the dance style or with the influ-
ence of the non-ecological elements of the set up of the
experiment (e.g., the use of a stick figure, backgrounds
and computer simulations).
Although we achieved similar optimal correlations

with dance sequences synthesized from representations
of both dance styles, it seems that there is a minimum
temporal metric resolution required to fully represent
each dance that does not seem to depend on the ana-
lyzed style, at least among samba and Charleston. As
presented in Table 2, for both samba and Charleston
the optimal solution was achieved with a quarter-beat
resolution (i.e., by the “fixed-4” and “variability-4” para-
meterizations). Since we observed no positive effect on
increasing the resolution above quarter-beat for both
dance styles (see Table 2) it seems that there is also a
sufficient (i.e., maximum) metric resolution required to
fully, and consequently naturally, represent a particular
style of repetitive dance gestures.
As a final remark, we verify that metric resolution has

a direct impact on the dimensionality of the proposed
representation model by proportionally decreasing the
compactness of our representation with the increase of
the resolution. The results of Table 2 suggest that the
numerical structure and subjective impact of the ana-
lyzed dance style may be feasibly reproduced by a com-
pact representation model, with a reduction of
information in the order of 13% or 6% the size of the
dance sequence, for samba and Charleston respectively.
The differences in reduction (by a factor of two) is due
to the segmentation of samba in compasses of two beats
and of Charleston in compasses of four beats, which
means that a representation of Charleston requires two
times the number of metric classes required by samba
for encompassing the same metric resolution.

4.4 The impact of variability
The impact of introducing variability in the proposed
representation model towards improving the naturalness
and similarity of the represented dance style with the
captured dance was specifically measured by the numer-
ical correlation and degree of variance, presented in
Table 2, and the subjective reasoning of the inquired
subjects, presented in Figure 10. The numerical results
indicate that the variability imposed by the proposed
stochastic method negatively affected the similarity
between the synthesized joint trajectories and the cap-
tured ones, with an average decrease in correlation of
0.02 ± 0.02 points against dance sequences synthesized

without variability, among all metric resolutions and for
both dance styles. The slight outperformance of the
dance sequences synthesized from representations para-
meterized without variability can be justified by the use
of repeated sequences of a fixed movement pattern
representing the mean joint trajectories among metric
cycles of the analyzed dance, which minimizes the dif-
ference against it. Yet, although the correlation with the
captured dances had been slightly compromised by
introducing variability in our representation model, we
observed a significant increase in variance in compari-
son to the dance sequences synthesized without it. The
mean variance ratio between the dance sequences
synthesized with variability and the ones without it is in
the order of 22.59 ± 12.87%, among all metric resolu-
tions and dance styles. Nevertheless, the results of Table
2 suggest that the induced variance is linearly dispropor-
tional to the parameterized metric resolution, which
reveals a trade-off between the degree of variability and
the degree of similarity with the analyzed dance. There-
fore, at the optimal metric resolution for each dance
style, we could only induce 20.33% and 2.34% of the
variance observed in the captured dance, respectively for
samba and Charleston. This can be justified by the use
of a rough representation of the observed spatiotem-
poral variability through the use of homogeneous sphe-
rical distributions in the TGA analysis. As such, the
validity of using a spherical approximation for repre-
senting the variability of the observed joint trajectories
depends on the uniformity of the analyzed dance style,
justifying the much lower proportion of variability
induced in the synthesized dance sequences of Charles-
ton than of samba (which is proportional to the differ-
ence in variance between the captured sequence of each
dance style). As observed in Table 2, the captured Char-
leston’s dance sequence exhibits approximately six times
the variance of samba’s whereas the optimally synthe-
sized dance sequence of Charleston exhibits approxi-
mately nine times less the variance of the optimally
synthesized dance sequence of samba.
Ultimately, regarding the subjective assessment over

samba (see Figure 10), we observed that the evaluation
of the “fixed-4” parameterization was consistently less
divergent than the one of “variability-4”, enforcing the
negative effect of the induced variability on feasibly
representing the analyzed dance style. An explanation
for this result may rely on the repetitive nature of the
captured dance, which might imply that periodicity is
considered by the subjects as a key factor in their
assessment. Another justification may be the reliance on
an incomplete representation of the observed variability
by the lack of relative information among the repre-
sented topologies. This factor, combined with the use of

Oliveira et al. EURASIP Journal on Audio, Speech, and Music Processing 2012, 2012:18
http://asmp.eurasipjournals.com/content/2012/1/18

Page 17 of 20



uniform spherical distributions, could potentially lead to
random combinations of movements that are perceived
as unrealistic.
Nevertheless, although the proposed representation of

variability was not convincing, and therefore the hypoth-
esis of variability could not be fully confirmed both in
numeric and subjective terms, there are enough consid-
erations to support the notion that variability may be a
fundamental quality to represent expressiveness of
movement and consequently the naturalness observed in
the performance of any particular dance style of repeti-
tive gestures. By looking into Table 2 and Figure 10, this
can be supported by the correlation “ceiling” at around
0.90 points for dance sequences of both dance styles
synthesized without variability, the great differences in
the variances measured in the synthesized and captured
dance sequences, and the 1 point subjective similarity
difference between the “original” and “fixed-4”
sequences of samba against its captured dance sequence.

4.5 Towards humanoid robot dancing
The topological map provided by the TGA concept in
the proposed dance representation model offers new
perspectives for further manipulation of the dance ges-
ture structure demanded by different motion retargeting
requirements, without compromising the spatiotemporal
structure of the original dance style. Such a parameteriz-
able representation, in combination with the use of a
motion synthesis method based on rotational quater-
nions and the use of a proper rotational joint interpola-
tion method (e.g., slerps), offers a means for retargeting
the captured dance trajectories onto different humanoid
morphologies while over-coming the kinematic con-
straints imposed by their body models. Such an applica-
tion can take advantage of the kinematic malleability of
the TGA representation and the flexibility of quaternion
algebra for synthesizing equivalent motion profiles
adjusted to the new body segments’ dimensions, and to
the verified kinematic constraints, in terms of degrees-
of-freedom and rotational limitations. A first approach
towards retargeting beat-synchronous samba dance
movements onto a simulated humanoid robot was
described in [33]. The presented method manipulates
and adapts the represented TGA topologies according
to the target humanoid morphology, in terms of seg-
ment lengths, the number of joints, and the joints’
degrees-of-freedom. From this morphologically adjusted
dance representation we synthesized closed-loop sets of
the represented key-poses (i.e., one set per metric cycle),
and interpolated them, using a sine interpolation func-
tion, according to the original musical meter in order to
replicate the beat-synchrony of the analyzed dance.
A full implementation in a real humanoid robot

requires further considerations that cannot be inferred

from the proposed representation model. These include
offline/online optimization (e.g., [34]) and/or dynamic
control techniques (e.g, [35]) for refining the generated
robot dance motion in order to ensure the humanoid’s
biped balance, avoid self-collisions, and overcome addi-
tional kinematic/dynamic constraints. Since the used
dance representation is fully integrated with a forma-
lized description of the music structure, an autonomous
beat-synchronous robot dancing system will also require
a real-time beat tracker (already developed in [36]) for
synchronizing the generated dance behaviors on-the-fly
to live musical stimuli. This beat-synchrony can be
reproduced at different resolutions according to the
metric parameterization of the TGA model. A design
for improving the real-time beat tracking performance
in the presence of ego-motion noise of a dancing robot
was already proposed and evaluated on [37]. A first
approach towards synchronizing humanoid robot dan-
cing movements to online musical stimuli was also
already implemented on [38].

5 Conclusions
In this study we proposed a parameterizable spatiotem-
poral representation of human dance movements applic-
able for the generation of expressive dance movements
onto different humanoid dancing characters. The pro-
posed dance representation model was assessed accord-
ing to two hypotheses, namely the impact of metric
resolution and the impact of variability towards fully
and naturally representing a particular popular dance
style built on repetitive gestures. The overall results vali-
date the use of the TGA model as a reversible form of
data representation, and consequently compression,
which indicates that it can be applied for motion analy-
sis and synthesis of musically-driven dance styles for
humanoid dancing characters.
The proposed method starts from information of the

captured dance, recorded with a motion capture system
combined with musical information, which is packed
into a spatiotemporal representation of the captured
dance movements in the form of a topological model
(TGA). This representation was re-synthesized into
dance sequences using different parameterizations and
compared against MoCap recordings of real perfor-
mances of popular dance styles, namely of samba and
Charleston. The results seem to confirm the hypothesis
that there is a minimum and sufficient temporal metric
resolution required to fully represent a particular popu-
lar dance style of repetitive gestures. Specifically, for the
analyzed dance styles of samba and Charleston, quarter-
beat representations offered both a sufficient level of
similarity to the captured dance while consequently
offering a great compression of the captured signal.
Smaller resolutions offer a decreasing reproduction of
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the analyzed dance with the trade-off of an increased
compression ratio. Concerning the impact of variability,
both numeric and subjective evaluations pointed to no
positive effects on considering spatiotemporal variability
into our representation model, and that the proposed
representation of variability, at the optimal metric reso-
lution, offers only some extent of the variance observed
in the analyzed dances. This can be justified by the use
of a rough and incomplete representation of the
observed spatiotemporal variability, by the use of homo-
geneous spherical distributions in the TGA model, and
by missing relative information among the represented
topologies. These could lead to random combinations of
movements that are perceived as unnatural and might
generate discrepant motion trajectories.
Further studies are needed in order to clarify the role

of spatiotemporal variability and the importance of spe-
cific body parts in the perception of expressiveness in
popular dance styles. In the future we should also verify
the applicability of the proposed representation model
and hypotheses on other popular dance styles, with dif-
ferent metrical structures (e.g., dances at the 3-beat bar
level of the Waltz music forms).

Endnotes
aDance representation and dance representation model
are used indistinctively throughout the article and refer
to a formalized description or “visualization” of the
dance by means of a systematic analysis of its spatiotem-
poral structure. bThe expression spatiotemporal variabil-
ity refers to the distribution of the positions in space
where the limbs of a dancer hit specific music cues in
time (thus, spatiotemporal variability in dance). It is well
known that dancers and musicians do not perform repe-
titive movements or events at the precise time points or
positions. Such variation is claimed to be related to per-
ceived expressiveness, naturalness and expertise and are
ubiquitous in human performances (see [39-43]). cFor
examples of previous studies that support this assump-
tion in Jazz see [44-46]; for studies in Afro-Brazilian
Music see [39,47,48]
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