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Abstract—In this paper we propose an audio beat tracking
system, IBT, for multiple applications. The proposed system in-
tegrates an automatic monitoring and state recovery mechanism,
that applies (re-)inductions of tempo and beats, on a multi-
agent-based beat tracking architecture. This system sequentially
processes a continuous onset detection function while propagating
parallel hypotheses of tempo and beats. Beats can be predicted in
a causal or in a non-causal usage mode, which makes the system
suitable for diverse applications. We evaluate the performance
of the system in both modes on two application scenarios:
standard (using a relatively large database of audio clips) and
streaming (using long audio streams made up of concatenated
clips). We show experimental evidence of the usefulness of the
automatic monitoring and state recovery mechanism in the
streaming scenario (i.e., improvements in beat tracking accuracy
and reaction time). We also show that the system performs
efficiently and at a level comparable to state-of-the-art algorithms
in the standard scenario. IBT is multi-platform, open-source and
freely available, and it includes plugins for different popular
audio analysis, synthesis and visualization platforms.

Index Terms—Audio beat tracking, musical rhythm, beat-
synchronous applications.

I. INTRODUCTION

A common and often unconscious response when listening
to music is to tap one’s foot in time to the beat. The compu-
tational task which aims to replicate this behavior is known
as beat tracking. The identification of beat times from music
signals can be addressed in one of two ways, either through
predictive or descriptive beat tracking [1]. Predictive beat
tracking is conceptually closer to the human behavior as beat
times are estimated in a causal fashion, i.e., predicted in real-
time while listening/analyzing the musical input. Descriptive
beat tracking, on the other hand, places no such requirement
of causality, permitting the algorithm to have access to the
entire musical input prior to determining beat locations.
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While the earliest beat tracking algorithms operated in
real-time [2], [3], many algorithms developed since (e.g.,
[1], [4], [5], [6], [7]) have opted for the descriptive route,
since offline algorithms are empirically more accurate than
predictive algorithms [8], [9], and since offline applications
using beat trackers do not require beats to be estimated in a
predictive manner.

Perhaps the most common use for descriptive beat trackers
within Music Information Retrieval (MIR) research is to
enable temporal processing in musical time. This so-called
“beat-synchronous” processing is a key component in music
analysis tasks including chord recognition and musical struc-
ture estimation [10], music summarization [11] and cover song
detection [12], to name but a few. Real-time beat tracking al-
gorithms are applied in situations where a descriptive, “offline”
algorithm would be ineffective, i.e., when causal processing is
a necessary requirement. Some example applications include:
generative composition and remixing music on-the-fly [13],
adaptive audio effects [14], or synchronization with live drum-
ming [15]. For a review see [14, Ch.6].

Both offline and real-time systems share the same musical
issues with regard to successful beat tracking, namely i)
selecting a meaningful metrical level and phase at which to
tap the beats, ii) being able to prevent unwarranted switching
between levels (and phases), and iii) the ability to track
changes in tempo and timing. However, real-time systems are
subject to further “functional” issues. These include: i) noise
robustness, ii) computational efficiency, iii) reaction time, and
iv) causality. Our goal is towards a specific application, that
of general Robot Audition [16] in the context of interactive
robot dancing [17]. Since all of the functional issues apply
for a dancing robot interacting on a real-world scenario we
consider this one of the most challenging situations for a beat
tracking algorithm. Interestingly, a beat tracking application in
the line of robot dancing first appeared in Goto’s early work
– the virtual dancer Cindy [18].

The standard practice in offline beat tracking is to evaluate
performance on a database of audio files as large as possible,
where each file has ground truth beat locations annotated by
a musical expert. While this scenario is of some interest for
real-time systems, it is also useful to explore real-time specific
situations for evaluating online beat trackers. One such method
is the “streaming” scenario, first proposed by Collins [19]. It
involves testing beat tracking performance on musical excerpts
which are concatenated without any gaps. For our intended
interactive robot dancing application the streaming task is
important since it can not only demonstrate performance in
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terms of beat accuracy: the number of correctly estimated
beats under some evaluation metric, but also allows for the
measurement of reaction time: how quickly the beat tracker is
able to forget musical information from the previous song and
adapt to the next. Since the concatenation of music can lead to
abrupt (and unnatural) changes in tempo and phase we believe
it is a special beat tracking condition which must be accounted
for in the design of the beat tracking algorithm. Our strategy is
to incorporate an intelligent state recovery functionality in our
agent-based beat tracker, which is able to detect when the beat
structure has changed and hence to re-induce and recover the
system as quickly as possible with more reliable hypotheses
of beat and tempo.

This kind of application-oriented approach raises an in-
teresting issue regarding the extent to which a beat tracker
optimized for a particular task will fail in other situations. In
the context of our paper, we consider whether a streaming-
adapted version of our beat tracker will perform poorly when
evaluated in a non-streaming situation and similarly how a
“standard” version performs on the streaming task when this
additional functionality is removed. Results indicate that, while
this is the case, given appropriate knowledge of both types of
application it is possible to modify our algorithm so that it
is effective in both conditions. In this sense, our approach is
towards a generic beat tracking algorithm applicable in diverse
musical contexts.

The remainder of this paper is structured as follows: Sec-
tion II describes the modules of the proposed audio beat
tracking system architecture, and gives insights on its prac-
tical use and available implementations. Section III describes
the proposed evaluation methodology for both standard and
streaming scenarios. Section IV describes the calibration of
the proposed Automatic Monitoring Mechanism (AMM). Sec-
tion V presents and discusses the overall results achieved for
both streaming and standard evaluations. Finally, Section VI
concludes the paper and presents directions for future work.

II. SYSTEM DESCRIPTION

IBT (standing for INESC Porto Beat Tracker) is the pro-
posed tempo induction and beat tracking algorithm, first
described in [20]. It is inspired by the multi-agent tracking
architecture of BeatRoot, where competing agents process
parallel hypotheses of tempo and beat [1]. IBT differs from
BeatRoot’s strategy by identifying beat times in a predictive
manner through causal decisions over incoming input data,
instead of making descriptive decisions after the whole data
has been analyzed. In order to improve the noise-robustness
and efficiency of the algorithm, IBT processes continuous
input data rather than discrete onsets. Further, IBT overcomes
some of BeatRoot’s limitations by considering multiple types
of rhythmic deviations (i.e., timing and/or tempo) within a
musical piece instead of only considering tempo deviations;
and applies a penalizing scoring to bad beat predictions to
contradict the algorithm’s tendency to favor faster tempi.

Hence, as depicted in Fig. 1, IBT’s algorithm follows a top-
down architecture composed of: i) an audio feature extraction
module that parses the audio data into a continuous feature

Fig. 1: IBT block diagram.

sequence assumed to convey the predominant information
relevant to rhythmic analysis; followed by ii) an agents in-
duction module, which (re-)generates a set of new hypotheses
regarding possible beat periods and phases; followed by iii)
a multi-agent-based beat tracking module, which propagates
hypotheses, proceeds to their online creation, killing and
ranking, and outputs beats on-the-fly and/or at the end of
the analysis. To handle abrupt changes in the musical signal
more rapidly and robustly, in real-time contexts (e.g., data
streaming), the system also extends [1] and [20] by integrating
iv) an automatic monitoring mechanism. This mechanism is
responsible for supervising the beat tracking analysis of the
signal to the necessity of recovering the state of the system
through re-inductions of beat and tempo.

All the parameters of the algorithm, described in the follow-
ing sections, were empirically chosen to optimize performance
and stability of the system under different conditions.

A. Audio Feature Extraction

Estimating beat times from audio signals calls for an
intermediate low-level representation exhibiting musical ac-
centuation through time [8]. Previous beat tracking models
[3], [1] attempted to infer beats from a discrete note onset
layer requiring peak-picking algorithms to retrieve plausible
rhythmic events from onset detection functions [21]. Consid-
ering that this post-processing may induce undesirable errors,
besides being susceptible to noise distortions [22], recent beat
tracking systems infer the beats from the onset detection
functions themselves [8], [9], [4]. In order to emphasize salient
note onsets most of these functions rely on spectral features
such as energy/magnitude changes (e.g., spectral flux), phase
deviations, or combinations of both [9]; either referring to
the whole spectrum or to specific psychoacoustic frequency
ranges [2], [8]. Based on a comparative study, which eval-
uated different onset detection functions for beat tracking
[23], we selected the spectral flux as our mid-level rhythmic
descriptor. It provides a good trade-off between accuracy and
computational demands. The spectral flux measures magni-
tude variations across all frequency bins, k, of the signal’s
spectrum, X(n, k), along consecutive analysis frames, n. Our
implementation computes the time-frequency representation of
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the signal through a Fast Fourier Transform (FFT), using a
Hamming window envelope with w = 1024 samples (23.2 ms
at a sampling rate of Fs = 44100 Hz) and 50% overlap. As
proposed in [24], the spectral flux is calculated using the L1-
norm over a linear magnitude, which is half-wave rectified,
HWR(x) = x+|x|

2 , to retain only increasing variations in the
magnitude spectrum (emphasizing onsets rather than offsets):

SF (n) =

w
2 −1∑

k=−w
2

HWR(|X(n, k)| − |X(n− 1, k)|). (1)

A circular buffer, with twice the length of the induction
window I , accumulates consecutive frame values of the spec-
tral flux in order to keep an up-to-date continuous function,
SF → [0, 2I]. To remove spurious peaks while retaining the
most salient, a low-pass second-order Butterworth filter (with
a normalized cutoff frequency of ωn = 0.28 rad/s) is applied
to the accumulated SF at every time-step of the analysis. This
filter is applied in both forward and reverse directions resulting
in an S̃F → [0, 2I] window with zero-phase distortion.

B. Agents Induction

This module is responsible for (re-)inducing the system’s
agents with multiple hypotheses of beat positions and tempo.
The process makes use of an induction window with fixed-
length built of incoming spectral flux values.

The induction modes of operation are user-definable and
range from single to reset or regen. In single mode
the induction is only run at the very beginning of the signal’s
processing to set up the first set of agents. In both reset and
regen modes the system is induced at the beginning of the
analysis and whenever requested to be re-induced with new
hypotheses of beat and tempo. Moreover, in the reset mode
all previously existing agents are killed from the system and
no continuity is implied on the score of the newly created
agents. These new scores are processed inside the considered
induction window as if the beginning of a completely new
musical piece is being analyzed. If the system is operating in
regen induction mode, all previously existing agents are kept
and the new agents are scored in proportion to the score of
the best agent at the time. This aims to minimize the effect
of unnecessarily re-inducing the system. Hence, the pool of
agents is repopulated while still relying on the previous best
hypotheses. However, since re-inductions of the system are
primarily oriented for tackling continuous music streams (build
on a concatenated set of non-related musical pieces), no effort
is made to avoid common beat tracking discontinuities (e.g.,
switching of the chosen metrical level or switching between
on- and off-beat) among excerpts of the same signal before
and after new inductions of beat and tempo.

1) Period Hypotheses Estimation: The process of period
(tempo) induction typically consists of extracting salient
integer-related periodicities organized into a hierarchical met-
rical structure underlying in the mid-level audio representa-
tion [25]. Different methods have been proposed for discrimi-
nating periodicities from audio features, either directly selected
from symbolic event lists [1], after peak-picking continuous

periodicity functions; computed over discrete onset trains [3];
or calculated upon continuous onset functions [4].

According to [22] there are no solid conclusions on which
periodicity function (e.g., autocorrelation function (ACF),
comb filterbank) is most effective for meter analysis, and
whether one should process independent frequency bands,
integrated a posteriori, or process the feature spectrum as a
whole. Based on these considerations, and given the real-time
requirements of our algorithm, IBT’s period estimation uses
the ACF, by taking advantage of its simplicity and efficiency.
The decision on the “correct” metrical level was left to the
tracking mechanism. We calculated the unbiased ACF of the
spectral flux’s induction window, A(τ), along time-lags τ , as:

A(τ) =

I∑
n=0

S̃F (n)S̃F (n+ τ), (2)

where S̃F (n) is the smoothed spectral flux value at frame n,
and I is the length of the induction window. The periodicity
function is then parsed by an adaptive peak-picking algorithm
to retrieve K global maxima, whose time-lags constitute the
initial set of period hypotheses P :{

Pi = arg maxτ (A(τ)) , i = 1, ...,K

A(τ) > δ · rms(A(τ))
T

, (3)

where δ is a fixed threshold parameter, empirically set to 0.75,
and T is the chosen tempo range, at a 6 ms granularity. As with
most periodicity functions, the clarity of the ACF measurement
depends on a rather stable tempo across a given induction
window. If no salient periodicities can be extracted, K default
periods are assigned (e.g., 120, 100, 160, 80, 140 bpm (beats-
per-minute)).

2) Phase Hypotheses Selection: For each of the Pi period
hypotheses, M phase hypotheses, φj

i (where j is the index of
the phase hypotheses for the i-th period hypothesis), are con-
sidered among possible phase locations. In order to maximize
the suitable starting offsets, these phases are assigned with
fixed positions starting at the beginning of the induction win-
dow and spaced by ceil(Pmax

M ) (where Pmax is the maximum
admitted period) until the end of it. For each period hypothesis,
Pi, we generate an isochronous sequence of beats (a “beat train
template”, Γj

i ) of constant period for each possible phase, φj
i ,

such as Γj
i (γ

j
i ) = φj

i + γj
i Pi : γj

i = 0, · · · ,Υj
i ; where Υj

i is
the total numbers of beats in Γj

i . For each Pi we then select the
beat train template that best fits the spectral flux represented
in the considered induction window. For this purpose, a raw
score, srawi,j , is computed for every Γj

i template by calculating
the sum of ∆s(errorji ) scores for every γj

i :

srawi,j =

Υj
i∑

γj
i=0

∆s(errorji ) : error
j
i = mγj

i
− Γj

i (γ
j
i ), (4)

where ∆s(errorji ) is calculated as defined in (13) of Sec-
tion II-C. It measures the time deviations, i.e., errorji , between
each beat time, bp = Γj

i (γ
j
i ), in the chosen train template and

local maxima, mγj
i
, in the spectral flux within a two-level

tolerance window, represented by Tin and Tout (see Fig. 2).
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By retrieving the highest srawi,j for each Pi we select the best
suited phase per period hypothesis. This results in K period-
phase hypotheses, (Pi, φi), and their respective srawi scores.

3) Agents Setup: The final induction step is to compute and
rank a score for each hypothesis. At first, and as proposed in
[1], in order to favor candidates whose periods present metrical
(i.e., integer) relationships with others, we defined a relational
score, sreli , to each agent, given by:

sreli = 10 · srawi +

K∑
k=0
k 6=i

r(nik) · srawk . (5)

The sreli of each agent considers both the agent’s own raw
score, srawi , weighted by 10, and the raw scores, srawk , of all
other K − 1 agents weighted by r(nik):

r(nik) =


6− nik, if 1 ≤ nik ≤ 4

1, if 5 ≤ nik ≤ 8

0, if otherwise
, (6)

where nik = Pi

Pk
: Pi >= Pk ∨ nik = Pk

Pi
: Pi < Pk

is the integer ratio between each pair of period hypotheses,
(Pi, Pk), with a tolerance of 15%. This weighting factor is
intended to favor single, duple, triple, or quadruple metrical
relationships among the agents’ periods, up to a maximum of
r(nik) = 6. Ultimately, we define the final agents’ scores si,
for the single and reset induction modes of operation, as:

si =
sreli

max(srel)
·max(sraw). (7)

In the regen induction mode of operation these si are
additionally normalized by the score of the best agent, sb,
at the time-frame nr of the new induction request:

si = si · sb(nr). (8)

The estimated hypotheses, (Pi, φi, si), can now be used to
initialize a set of K new beat agents, which will start their
beat tracking activity, as described in the following section.

C. Beat Tracking

The most common tracking strategies for beat estimation
make use of oscillating filters [2], [8], probabilistic models
[8], autocorrelation methods [4], [9], or multi-agent systems
[3], [1]. The high performance of BeatRoot [1] on an im-
portant comparative evaluation study [26] combined with its
computational efficiency and algorithmic simplicity made it a
convincing methodology to pursue for IBT. However, given the
better performance of more recent approaches (e.g., [9], [27],
[7]) we attempted to overcome some of BeatRoot’s limitations
(see Section II) while extending it to causal beat predictions.

1) Agents Operation: Using the initial (Pi, φi, si) induction
hypotheses, an initial set of K beat agents, representing
alternative hypotheses regarding beat positions and tempo, will
start to causally propagate predictions based on incoming data.
Each agent’s beat prediction, bp, is evaluated with respect to
its deviation (i.e., error) from the local maximum, m, in
the observed S̃F data within a two-level tolerance window
around bp; such that error = m−bp. This two-level tolerance

Fig. 2: Score function (thin line) around a beat prediction, bp, with
Pi = 120 bpm. Example of local maximum, m, in the spectral flux
(thick line) found in the considered inner tolerance window, Tin.

consists of an inner tolerance region, Tin ∈ [bp−T l
in, bp+T r

in],
where T l

in = T r
in = 46.4ms, for handling short period and

phase deviations; and an asymmetric outer tolerance region,
Tout ∈ [bp − T l

out, bp − T l
in[ ∪ ]bp + T r

in, bp + T r
out], with a

left margin T l
out = 0.2 · Pi and a right margin T r

out = 0.4 · Pi

(see Fig. 2). This allows for sudden changes in tempo or timing
to be followed. The asymmetry reflects the greater tendency
of tempo to decrease than increase [1]. Consequently, two
alternative scenarios arise. The first scenario corresponds to
a local maximum found inside the inner tolerance window.
In order for the agent’s (Pi, φi) hypothesis to adapt to the
observed prediction error, the agent’s period, Pi, and phase,
φi, are compensated by 25% of that error (limited by the
minimum, Pmin, and maximum, Pmax, admitted periods):{

Pi = Pi + 0.25 · error
φi = (φi + 0.25 · error) + Pi

, ∃ m ∈ Tin. (9)

The second scenario considers larger deviations, with local
maxima in the outer tolerance window. In this case, the agent
under analysis keeps its period and phase but, in order to
cope with sudden variations of tempo and timing, it generates
three children {C1, C2, C3}. These follow three alternative hy-
potheses [25], considering a possible timing deviation (C1) or
different degrees of tempo and timing (C2 and C3) deviations
of its own current hypothesis:

C1 :

{
PC1 = Pi

φC1 = (φi + error) + PC1

, ∃ m ∈ Tout, (10)

C2 :

{
PC2 = Pi + error

φC2 = (φi + error) + PC2

, ∃ m ∈ Tout, (11)

C3 :

{
PC3 = Pi + 0.5 · error
φC3 = (φi + 0.5 · error) + PC3

, ∃ m ∈ Tout,

(12)
where PC1 , PC2 , PC3 ∈ [Pmin, Pmax]. To remain competitive,
these new agents inherit 90% of their parent’s current score.

Ultimately, different situations may terminate an agent’s
operation, at any point of the analysis. These include:

• replacement – an agent is killed if it is currently the worst
in a pool of agents that has reached a maximum number
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(limited to 30 agents), and if its score is lower than a
newly created agent;

• redundancy – to increase the algorithm’s efficiency, an
agent is killed if it is duplicating the work of a highly
scoring agent i.e., if their periods differ by less than
11.6 ms and their phases by less than 23.2 ms;

• obsolescence – an agent is terminated if the difference
between its score and the best agent’s is greater than 80%
of the best score.

• loss – an agent is killed if it seems to be “lost”, suggested
by a high number (i.e., 8) of consecutive beat predictions
outside its inner tolerance window.

2) Agent Referee: To determine the best agent at each data
frame, a central Agent Referee keeps a running evaluation of
all agents at all times. This is conducted by scoring the beat
predictions of each agent with respect to its “goodness-of-fit”
for incoming spectral flux data.

The following score function, ∆s(error), is applied around
each beat prediction, bp, in order to evaluate the distance,
error, between bp and the local maximum, m, in the spectral
flux inside either the inner or the outer window (see Fig. 2):

∆s(error) =

{(
1− |error|

T r
out

)
· Pi

Pmax
· S̃F (m), if m ∈ Tin( |error|

T r
out

)
· Pi

Pmax
· S̃F (m), if m ∈ Tout

.

(13)
The Pi

Pmax
ratio is used to normalize the score function by

the agent’s period, Pi, as a way to deflate the score of faster
agents, which would otherwise tend to increase due to a higher
number of beat predictions (leading to a higher number of
score increments). The use of a negative score function when
a prediction misses by Tout assumes a penalizing position
(since there is always a maximum inside the tolerance window)
responsible for inhibiting the potential overrating of slower
agents caused by the period normalization by Pmax. There-
fore, good predictions are highly rewarded and bad ones are
also highly penalized. To avoid false positives at best agent
transitions (i.e., at the moments when the current best agent,
Ab, is replaced by another agent, A′

b), the first beat of A′
b

estimated as best agent is ignored if its time estimation is
less than 0.6Pb ahead the timing of the last beat estimated by
Ab (where Pb is the current period of Ab). Due to the causal
operation of the algorithm no action can be made to prevent
false negatives at transitions of the best agent.

3) Non-Causal Version: Whereas the causal processing of
the system retrieves the beats of the current best agent, at
any time-frame, in the non-causal version only the last best
agent is considered. This longterm decision distinguishes the
family of agents whose cumulative score prevails for the whole
piece. In this way, every agent keeps a history of their beat
predictions, attached to the one inherited from its parent, and
transmits it to future generations. In the case of a re-induction
of the system, all new agents inherit the history of the best
agent at the time of the new induction request. To prevent false
positives at transitions of the best agent, between agents of the
same family, the first beat of each newly created child agent
is ignored if its initial beat time prediction is less than 0.6Pf

ahead of the last beat time estimated by its parent (where
Pf is its parent’s current period). In addition, to prevent false

negatives the first beat of the new child is set as the next beat
time predicted by its parent if its initial beat time prediction
is 0.6Pf ahead of the last beat time estimated by its parent.

D. Automatic Monitoring Mechanism
To contend with situations that might require the state recov-

ery of our beat tracking system we investigated an automatic
monitoring mechanism to look for indications that the system
has lost track of a reliable beat prediction. By looking into the
system behavior while tracking a “hard” musical piece (see
Fig. 3) we observed that although many children are created
from the best agents throughout the analysis of the signal,
which suggests high dynamics in the music, most of these new
agents show a decrease in their scores from the moment they
are created until they die, and rarely prevail (see Fig. 3b). In
addition, there are moments where the best agent is repeatedly
replaced (e.g., Fig. 3 between 12-13 s and between 25-28 s)
and others where it takes too much time to change the best
agent while the analysis keeps losing reliability (e.g., Fig. 3
between 36-40 s). These suggest that although the system
demonstrates some ability to handle tempo/timing variations in
a musical piece, greater measures might be required to recover
from abrupt musical changes as those in a streaming context.

Hence, we created an AMM that looks for abrupt changes
in the score evolution of the best agent. This monitoring runs
at time increments of thop = 1 s and it looks for the variation,
δsbn, of the current mean chunk of measurements of the best
score, sbn, in comparison to the previous, sbn−thop

, as follows:

δsbn = sbn − sbn−thop
: sbn =

1

W

W∑
w=n−W

sb(n− w), (14)

where n is the current time-frame, W = 3 s is the size
of the considered chunk of best score measurements, and
sb(n) is the best score measurement at frame n. A new
agents induction of the system (see Section II-B) is requested
if δsbn−1 ≥ δth ∧ δsbn < δth : δth = 0.03. The optimized se-
lection of these parameters is detailed in Section IV. To ensure
the steady state of the analysis the AMM halts for one full
induction window before considering new induction requests.

E. Practical Use
IBT was developed in C++ and is freely available, under

GPL licensing, in MARSYAS (Music Analysis, Retrieval and
Synthesis for Audio Signals)1. (At the date of writing, revision
4767.) The algorithm is multi-platform and includes four main
modes of operation, executable with the following commands:
$ ./ibt input.mp3 [causal mode (default)]

$ ./ibt -off input.mp3 [non-causal (offline) mode]

$ ./ibt -mic [live mode (data captured by microphone)]

$ ./ibt -a input.mp3 [play audio w/ clicks on beats]

To activate the AMM use the -i parameter, in any of the
former modes of operation, as exemplified:
$ ./ibt -mic -i "auto-reset" [live mode with AMM

and reset induction operation]

$ ./ibt -nc -i "auto-regen" input.mp3 [offline

mode with AMM and regen induction operation]

1available at http://marsyas.info/.
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Fig. 3: Evolution of the best agents’ proprieties (bold line) and children (branches) while causally tracking the beats of a piece of “Lost in
the Flood” by Bruce Springsteen, in the single induction mode of operation: (a) Best agents’ period; (b) Best agents’ score. The starting
points of the branches represent moments at which children were created from the current best agent, the asterisks the moments at which
the same children were killed, and the vertical dashed lines represent changes of the best agent.

1) Plugins: Different plugins have been created to wrap
IBT into audio analysis, synthesis and visualization platforms.
These include externals2 for Max/MSP and Pure Data (Pd), a
Vamp plugin2 for Sonic Visualiser; and a plugin3 for HARK
(HRI-JP Audition for Robots with Kyoto University) [28].

2) Existing Applications: Current offline applications that
make use of IBT include a DJ recommendation system for
the iPad [29] and a music recommendation application for
iTunes [30] that use offline tempo estimates to find rhythmic
similarities in music playlists. Real-time applications that use
IBT comprise a robot dancing system that synchronizes its
steps to beats on-the-fly [31], and an interactive robot dancing
system that simultaneously processes live music and speech
auditory signals [17]. The latter application is driven by IBT
running with the AMM for rapidly adapting to continuous
music stimuli that change on human request.

III. EVALUATION METHODOLOGY

We report on the performance evaluation of real-time beat
tracking in the context of a streaming scenario, and of on-
line/offline beat tracking on a standard scenario using a large
dataset of audio files. We compared different variants of IBT
with two state-of-the-art algorithms.

A. Datasets

1) Standard Dataset: The standard evaluation was run
on a dataset consisting of 1358 beat-labeled musical pieces,
most with steady tempi ranging from approximately 50 to
250 bpm, and comprising 10 different genres [25]. All data was
annotated by expert musicians. The audio data is not publicly
available for copyright reasons.

2) Streaming Dataset: The streaming evaluation used a set
of musical pieces from the former dataset concatenated into
two audio data streams: i) one for calibrating the system,
consisting of 51 concatenated pieces (i.e., 50 music transitions)

2available at http://smc.inescporto.pt/research/demo software/.
3available at http://winnie.kuis.kyoto-u.ac.jp/HARK/.

with a total length of 25 min, and ii) one for the actual system
evaluation, consisting of another 101 concatenated pieces (i.e.,
100 music transitions) across 50 min. To focus the streaming
evaluation on the specific ability of the system to cope
with abrupt signal transitions caused by immediate changes
between two musical pieces, the chosen pieces fulfilled a set
of three conditions depicted in Fig. 4a. To avoid big signal
variations (e.g., expressive timing), beyond the transitions
between two consecutive musical pieces, we first isolated data
with stable tempi by defining condition d1 – select data on
which the maximum Inter-Beat-Interval (IBI) variation did not
exceed the mean IBI of the piece by 40%:

d1 ≤ 0.40 : d1 =
max(IBI)−min(IBI)

mean(IBI)
. (15)

In order to evaluate the system fairly in a streaming scenario,
the second condition, d2, consisted of selecting only data
on which the default IBT scored 100% (with the selected
evaluation measure – AMLt – see Section III-B1). Finally,
a third condition, d3, selected, from the remaining data, only
musical pieces with tempi ranging from 81 to 160 bpm, to
match the tempo limits stipulated in our system. This was to
avoid switches of the metrical-level within the same piece of
music, which would also degrade the focus of this evaluation.

For concatenating the selected musical pieces into con-
tinuous data streams two constraints were also applied. As
illustrated in Fig. 4b, first each individual musical piece was
trimmed between the time-point, ti, of an arbitrary annotated
beat-time, bi, and the time-point, tf , given by:

tf = ti + bf + 0.25IBIf , (16)

where bf is the first annotated beat time 30 s after bi,
IBIf = bf+1 − bf , and bf+1 is the next annotated beat time
after bf . This procedure avoids swapping between the on- and
off-beat at the transition of musical excerpts [19]. To provide
different levels of difficulty in the reaction at transitions
between excerpts, we randomly organized the data stream to
ensure a minimum 10% tempo difference between consecutive
excerpts (see Fig. 4c). In both the calibration and evaluation
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Fig. 4: Building the streaming datasets: (a) Data selection from
the standard dataset; (b) Trimming a musical piece to constitute an
excerpt of the data stream; (c) Concatenating the excerpts into a
continuous data stream with some random tempo change at music
transitions in the range of [10.0-54.4]%. The vertical dashed lines
represent annotated beat times.

streams, the tempo deviations at excerpt transitions varied
in the range of [10.0-54.4]%. The annotation sequences for
the streams were respectively mapped according to these
operations.

B. Evaluation Measures

1) Standard Evaluation Measures: For the standard beat
tracking evaluation, different metrics exist for measuring the
performance of a beat tracker relying on groundtruth beat
annotations [32]. To keep a broad evaluation with different
levels of tolerance in terms of continuity and ambiguity of
the algorithm’s beat predictions, and for supporting a proper
benchmarks of the system we considered four quantitative
beat tracking evaluation measures [9]: CMLc (Correct Metrical
Level, continuity required), CMLt (Correct Metrical Level,
continuity not required), AMLc (Allowed Metrical Levels,
continuity required), and AMLt (Allowed Metrical Levels,
continuity not required). The CMLc and CMLt respectively
quantify the longest number of continuously correct beat esti-
mations and the total amount of correctly estimated beats, at
the annotated metrical level and phase. The AMLc and AMLt
respectively consider the same continuity conditions but allow
for metrical and phase ambiguities, i.e., they consider beat
estimations at half and double the rate of the annotation, or
at the off-beat (π-phase error) as also correct. These measures
consider a tolerance window around each annotated beat time
of ±17.5% the length of the considered IBI [8]. In addition,
they discard the initial 5 s of the musical piece.

We also measure the algorithm’s computational efficiency
by calculating the ratio of the computational time, ct, to the
length, len, of the file, f , across all F musical pieces in the
test dataset. This so-called real-time factor, RTf , is given by:

RTf =
1

F

F∑
f=1

ct(f)

len(f)
, (17)

where F is number of files in the test database.
2) Streaming Evaluation Measures: For the proposed

streaming evaluation we used a measure of reaction time
combined with a standard beat tracking evaluation measure.

To quantify the standard performance of our system on the
data streams we relied solely on AMLt, as the most permissive
measure from those in Section III-B1 and therefore most
adequate to assess a streaming scenario. The AMLt discarded
the first 5 sec after all excerpts’ transitions in the data stream.

The reaction time at music transitions was measured as [19]:

rt = br − tt, (18)

where br is the first beat-time, in seconds, of the first four
consecutive correctly estimated beats in the current musical
excerpt; and tt is the timing of transition from the previous
musical excerpt to the current (which matches the first beat-
time, ti, in the current excerpt). The identification of correct
beats followed AMLt, at the allowed metrical levels and
phases. A transition is considered successful if the system
could recover track of the beats at some point after transiting
to the considered musical excerpt.

C. Benchmark Algorithms

For the two proposed evaluation scenarios we compared the
performance of different configurations of our beat tracking
system with two existing state-of-the-art algorithms.

For the streaming evaluation, IBT was configured with dif-
ferent induction modes of operation, automatically requested
via the AMM of the system or at pre-defined/random moments
of the analysis. These IBT variants will be referred to as:

• IBT-single: IBT running on single induction mode;
• IBT-reset@transitions|IBT-regen@transitions:

IBT respectively on the reset and regen induction
modes of operation, requesting re-inductions of the
system exactly one induction window after the time-
points of each annotated music transition;

• IBT-reset@random|IBT-regen@random: IBT respec-
tively on the reset and regen induction modes of op-
eration, requesting re-inductions of the system at random
time-points of the analysis in the range of [1.2-15] s;

• IBT-reset@automatic|IBT-regen@automatic: IBT
respectively on the reset and regen induction modes
of operation, requesting re-inductions of the system au-
tomatically when demanded by the AMM.

In addition, we selected one of the best reported real-time
beat trackers for interactive musical systems: Stark et al.’s real-
time beat-tracker [33], implemented in C/C++, which we will
refer to as SDP. To minimize the risk of switching between
metrical levels in the real-time analysis of each musical piece,
we restricted every variant of IBT to one tempo octave in
the range of 81 to 160 bpm, as in SDP [33]. Moreover, IBT’s
induction window length was set to 5 s.

In the standard evaluation we tested the same al-
gorithms evaluated in the streaming scenario (except
IBT-reset@transitions and IBT-regen@transitions

which do not apply) but we additionally considered their
non-causal variants for a more broad and generic assessment.
For the non-causal version of SDP we used its offline Sonic
Visualiser plugin [34]. We also tested Dixon’s BeatRoot [35].
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Fig. 5: Evolution of the best agents’ score (bold line) throughout the
causal analysis of the calibration data stream, for different induction
modes of operation: (a) single; (b) reset; (c) regen. The full
vertical lines represent the transition times between excerpts, and the
dashed vertical lines represent re-induction request times.

IV. AUTOMATIC MONITORING MECHANISM CALIBRATION

The parameters for IBT’s automatic monitoring mechanism
were calibrated using the calibration data stream. This cali-
bration optimized the W = 3 s, thop = 1 s, and δth = 0.03
parameters used in (14), by recurring to the AMLt results of
the streaming evaluation as the objective function. These were
tested under the following acceptable ranges: W ∈ [1.0, 10.0] s
and thop ∈ [0.0,W ] s, in increments of 1.0 s; and δth ∈
[0, 0.15], in increments of 0.01. A full-scale optimization of
these parameters, through a more exhaustive search, is left for
future work. Fig. 5 depicts the evolution of the best score while
causally beat tracking the calibration data stream, for different
induction modes of operation set with the optimal parameters:
single (Fig. 5a), reset (Fig. 5b), and regen (Fig. 5c). The
full vertical lines represent the transition times between each
two concatenated musical pieces, and the dashed vertical lines
represent request times for re-inductions of the system. Note
that the time difference between the musical transitions and the
actual induction requests are ideally separated by the length of
the induction window, in order to re-induce the system only
upon the data of the new musical piece.

IBT operating on the optimal reset induction mode (see
Fig. 5b) successfully requested a re-induction of the system
on 92% of the music transitions of the calibration streaming,
with 4 false negative and 2 false positive requests. The missing
4 transitions are the result of the rapid self-recovery of the
system which neglected a re-induction request, as depicted by
the quasi-continuous increase of the best score before and after
these transitions (e.g., 695 s). On the other hand, IBT operating
on the regen induction mode (see Fig. 5c), calibrated with the
same parameters, successfully induced the system on all music
transitions, but with 16 false positive re-induction requests.
The high number of false positive requests is the result of
the system not resetting after a re-induction. This keeps the
previous best agent in command and may result in a new re-
induction if it is not rapidly replaced by one of the new agents.

V. RESULTS AND DISCUSSION

This section presents and discusses the overall results
achieved for both streaming and standard evaluations. All
tests were run on a Core2Duo 2.8 GHz Linux 32-bit machine.

TABLE I: Streaming evaluation results on the data stream with 101
concatenated musical excerpts (100 transitions) with approximately
30 s each vs. the results on the same 101 individual excerpts (Excrp).
The number in parentheses refers to the standard deviation of the
mean reaction time, rt. ST refers to number of successful transitions
and NInds to the number of requested inductions of the system.

Data Algorithm ST NInds rt(s) AMLt(%)

E
xc

rp IBT-single NA NA 5.0 (0.0) 100.0
SDP NA NA 5.1 (1.0) 97.5

E
va

lu
at

io
n

D
at

a
St

re
am

IBT-single 61 1 4.8 (6.3) 32.2
SDP 99 1 5.4 (3.7) 80.5
IBT-reset@transitions 100 101 3.8 (1.8) 98.7
IBT-reset@random 100 382 3.8 (2.3) 93.3
IBT-reset@automatic 100 107 3.2 (1.6) 97.2
IBT-regen@transitions 97 101 4.7 (2.4) 89.1
IBT-regen@random 100 376 7.0 (4.6) 79.8
IBT-regen@automatic 100 142 4.7 (3.0) 91.3

Given the stochastic nature of the IBT-reset@random and
IBT-regen@random variants their results on both evaluation
scenarios refer to the mean among ten runs of each test.

A. On Streaming Evaluation

Table I presents the results of the calibrated IBT variants
on the evaluation data stream. These results are compared to
the performance of IBT-single and SDP on the same 101
individual excerpts (Excrp), without being concatenated.

As expected, IBT-single performs poorly on the stream-
ing data. It can only successfully handle abrupt music tran-
sitions of the streaming dataset in 61% of the transitions,
only scoring 32.2% in AMLt. This is a significant drop in
performance when compared to the 100% IBT-single scored
over the individual excerpts contained in this data. Its mean
reaction time falls below the 5 s used for induction but it
reveals a standard deviation of 6.3 s which would result in
potentially high reaction times at music transitions. A similar
scenario also arose with SDP which revealed a decrease of
17.0 percentage-points (pp) in AMLt when compared to its
performance on the individual excerpts, and also showed high
mean reaction time. When applying the system’s state recovery
at the moments requested by the AMM, we could enhance
these results almost to the level achieved on the individual
excerpts. In this condition, IBT’s performance was 97.2%
when reseting the system at detected transitions (i.e., with
IBT-reset@automatic) and 91.3% when regenerating it,
with IBT-regen@automatic. These were only surpassed by
1.5 pp when given the precise timings of transition for the al-
gorithm to reset itself (i.e., with IBT-reset@transitions).
The same improvement did not happen when giving the
times of transitions for regenerating the system (i.e., with
IBT-regen@transitions), leading to a decrease of 3 suc-
cessful transitions (97 of the total 100) and a mean 1.2 pp re-
duction in AMLt when compared to IBT-regen@automatic.
This suggests that at some music transitions the previous best
hypotheses still prevail to the end of the new piece. To contend
with this situation, IBT-regen@automatic keeps requesting
new inductions if the system cannot rapidly get reliable beat
hypotheses, as suggested by its 42 false positive re-induction
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TABLE II: Standard evaluation results on the standard dataset.

Algorithm
Overall Scores (%)

Causal Non-Causal
CMLc CMLt AMLc AMLt CMLc CMLt AMLc AMLt

IBT-single 38.0 46.1 53.2 66.4 43.8 50.2 62.9 73.5
SDP 41.7 47.3 61.6 71.0 46.8 50.8 69.3 75.9
BeatRoot NA NA NA NA 29.0 35.7 64.8 70.8

IBT-reset@random 34.2 44.6 47.6 63.3 39.4 47.7 56.0 68.8
IBT-reset@automatic 36.8 45.3 51.2 64.5 40.3 47.8 57.3 69.4

IBT-regen@random 36.4 46.1 50.9 65.8 43.6 50.0 62.6 73.2
IBT-regen@automatic 37.9 46.4 52.8 66.4 42.9 49.5 62.0 72.9

requests. Although the adaptation to new excerpts might get
delayed IBT-regen@automatic can still handle all the music
transitions with improved accuracy.

In terms of reaction time, the highest results were
obtained by IBT-reset@automatic, even surpassing
IBT-reset@transitions by a mean of 0.6 s. This reveals
that an automatic monitoring of the beat tracking analysis
might generate re-induction requests more suitable to the
needs of the system, decreasing the reaction time at abrupt
transitions. For this purpose, IBT over-requests re-inductions
if the system fails to get reliable beat hypotheses, without
compromising its performance, and it does not request any
re-induction if it can rapidly handle the given transition by
itself. With such automatic reseting IBT could even surpass
the reaction time obtained in the individual excerpts, by
1.8±1.6 s, which also suggests that IBT does not require the
whole 5 s induction to induce reliable beat hypotheses.

Ultimately, a random choice of moments for requesting new
inductions of the system seems to lead to worse results in both
AMLt and reaction time, in all conditions, besides the mean
279 more re-induction requests than actual music transitions.

B. On Standard Evaluation
Table II presents the standard evaluation results on the

standard dataset. On this dataset, the causal variants of IBT
could run the whole data with a mean RTf = 3.1% of the total
dataset duration, whereas the non-causal variants of IBT could
run it with a mean RTf = 3.5%. On the other hand, the SDP

could compute the same dataset with a RTf = 1.7%. Although
IBT’s computational time is slightly higher than SDP’s, all
the variants of its algorithm are still highly efficient making it
suitable for generic real-time applications.

As observed, the causal version of IBT-single nearly
matches the results achieved by SDP with a mean difference
of 4.5 pp across all evaluation measures. Furthermore, the
causal IBT-single seems to be more prone to discontinuities
than SDP as suggested by the bigger differences between
IBT-single’s CMLc and CMLt results, by more 2.5 pp than
SDP’s, and between the AMLc and AMLt results, by more
3.8 pp. This is justified by the sequential operation of IBT
without making any high-level effort to keep continuity on
its causal beat predictions, contrarily to SDP that makes use
of overlapped windows of the input feature while enforcing
dependency among successive estimates of the tempo [33].

Despite the significant operational differences, the non-
causal version of IBT-single obtained similar results to

BeatRoot in terms of AMLc and AMLt. Yet, IBT-single
scored more 2.7 pp on AMLt which we argue to be the most
suited measure for evaluating offline beat tracking systems (it
seems more critical for offline applications to get the highest
number of correctly estimated beats than keeping continuity
within the whole beat sequence). Besides, the 1.9 pp decrease
in AMLc can be justified by the BeatRoot’s bias towards
faster metrical levels, which makes it less prone to miss beats
(e.g., by inhibiting the switching between on-beat and off-
beat). These results were also competitive with SDP’s although
with a mean decrease in performance of 4.4 pp across both
measures. However, regarding the CMLc and CMLt results,
IBT-single outperformed BeatRoot by a mean 14.8 pp,
with a mean decrease of 1.8 pp against SDP. The big differ-
ences of both IBT’s and SDP’s CMLc and CMLt results in
comparison to BeatRoot’s are justified by their restrictions
to the 81-160 bpm octave. This covers a high percentage of
the pieces’ tempo from the standard dataset which leads to a
bias in the determination of the correct metrical level.

Regarding the other variants of IBT we observed
similar results but with slight differences between
IBT-reset@automatic and IBT-regen@automatic,
for both causal and non-causal operations. Both the causal
and non-causal IBT-reset@automatic shown a mean
reduction of 3.9 pp across all measures in comparison to
IBT-single, whereas this difference was minimized to
respectively 0.1 pp and 0.8 pp with IBT-regen@automatic.
The differences are justified by the potential lost of continuity
when completely reseting the system on unnecessary requests
for recovering more reliable beat hypotheses. This undesired
effect is reduced by the IBT-regen@automatic variant
which regenerates the system when requested but keeps
the existing agents, leaving major decisions to be taken a
posteriori by the tracking mechanism.

Akin to the results on the streaming data, both
IBT-reset@random and IBT-regen@random variants ob-
tained the worst results on most evaluation measures. This
reflects the importance of regenerating the system specifically
in the moments where it indicates to be lost, otherwise it would
be preferable to let it handle the data changes by itself.

C. Additional Results

Additional comparative results on the audio beat tracking
and tempo estimation accuracies of IBT can be found re-
spectively in [20], [27] and [20], [36]. An assessment of the
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noise-robustness of the algorithm under live conditions in the
presence of motor noise from a dancing robot is described in
[37]. Further, [17] evaluates IBT on a live streaming scenario
also “contaminated” by speech noise from a human speaker.

VI. CONCLUSIONS AND FUTURE WORK

We propose a beat tracking system for multiple applications
by applying an automatic monitoring and state recovery mech-
anism to an agent-based beat tracking architecture. Different
variants of the implemented system were evaluated in different
musical contexts regarding standard and streaming scenarios,
in both causal and non-causal conditions. Benchmarks of these
variants reveal improvements in beat tracking accuracy and
reaction time when applying the automatic state-recovery of
the system on streaming data. The beat tracking accuracy
and efficiency on standard data were with the level of the
compared state-of-the-art algorithms, in both causal and non-
causal operations. Moreover, specific variants of the developed
algorithm are optimal to specific contexts of applications.
However, the IBT-regen@automatic contends with different
operational requirements by balancing reactivity, stability and
performance of the system.

IBT is multi-platform, open-source and freely available
and it includes plugins for different popular audio analysis,
synthesis and visualization platforms. In the future we intend
to investigate how the reaction time can be tuned by changing
the length of the induction window. Moreover, besides being
able to more rapidly react to music transitions, we also plan
to investigate if the online monitoring of the system can
intrinsically act as a measure of running confidence that would
reset the system whenever external noises (e.g., robot motion)
interfere with the real-time beat tracking predictions [38].
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