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This paper addresses the problem of minimizing the scheduling length (make-span) of a
batch of jobs with different arrival times. A job is described by a direct acyclic graph
(DAG) of parallel tasks. The paper proposes a dynamic scheduling method that adapts
the schedule when new jobs are submitted and that may change the processors assigned
to a job during its execution. The scheduling method is divided into a scheduling strategy
and a scheduling algorithm. We also propose an adaptation of the Heterogeneous Earliest-
Finish-Time (HEFT) algorithm, called here P-HEFT, to handle parallel tasks in heteroge-
neous clusters with good efficiency without compromising the makespan. The results of
a comparison of this algorithm with another DAG scheduler using a simulation of several
machine configurations and job types shows that P-HEFT gives a shorter makespan for a
single DAG but scores worse for multiple DAGs. Finally, the results of the dynamic sched-
uling of a batch of jobs using the proposed scheduler method showed significant improve-
ments for more heavily loaded machines when compared to the alternative resource
reservation approach.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A heterogeneous computer cluster is defined in this paper as a set of processors connected by a high speed network, with
different processing capacities. The cluster is a dedicated machine as in [1,9,22], as opposed to a geographically dispersed,
loosely connected grid. Such clusters can be private clusters of an organization, but also they can be the nodes of a grid infra-
structure, which can only provide good performance if at least the end clusters also have good performance. This paper con-
centrates on optimizing the makespan of a batch of jobs that may arrive at the heterogeneous cluster scheduler at different
times.

The task scheduling problem is to allocate resources (processors) to the tasks and to establish an order for the tasks to be
executed by the resources [9,22]. In this context, there are two different types of task scheduling: static and dynamic. Static
strategies define a schedule at the compile or at launch time based on the knowledge of the processors’ availability and the
tasks to execute. The aim is usually to minimize the schedule length (or makespan) of the tasks [1,10,11,14,22].

Dynamic strategies, on the other hand, are applied when the arrival times of the tasks are not known a priori, so the system
needs to schedule tasks as they arrive [9,13,21]. We consider non-preemptive tasks, so that only the tasks waiting to be exe-
cuted and the newly arrived tasks are considered in the re-scheduling. In this paper, the aim of dynamic scheduling is to min-
imize the completion time of a batch of tasks, as in [13,21]. Real world applications where such a batch of jobs can occur are
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found in the processing of image sequences, where objects contained in the frames are identified and followed along frames.
The objects’ shapes may vary along frames, and the problem is therefore known as deformable object tracking [18]. This prob-
lem has applications in video surveillance, microscopic imaging processing, and biomechanical analysis. In this context, a
multiple job (or DAG) environment may be, for example, the input from several cameras forming a batch of jobs whose pro-
cessing time should be minimized. The jobs are therefore related, and only the collective result is meaningful.

Dynamic strategies can aim also to minimize some global performance measurements related to the system’s quality of
service (QoS) [9]. The optimization of performance measurements related to the service quality for a dynamic multi-user
environment, where jobs are unrelated, is outside the scope of this paper. However, this is another important problem that
will be considered in a future work.

The parallel task model, or mixed-parallelism, combines task and data parallelism at the same time. Data parallelism is
common in many scientific applications that are based on linear algebra kernels, for example, and it can exploit heteroge-
neous clusters as reported in [2]. Also, many applications are described by DAGs, where the edges represent the task prece-
dence as well as the communication load between tasks. However, DAGs with many branches implicitly have tasks that can
be executed in parallel, thus resulting in a mixed-parallelism if a single task is assigned to more than one processor. Mixed-
parallelism has been widely reported in the literature [1,5–8,12,23].

In this paper, we first present a new adaptation of HEFT [22] for parallel task DAGs on a single heterogeneous cluster,
called P-HEFT (P stands for parallel tasks). We then compare the results of this algorithm with those of another mixed-par-
allel scheduler, the Heterogeneous Parallel Task Scheduler (HPTS) [1], using a simulation of several machine configurations
and job types.

We present results that compare the resource reservation policy [15,25] to the one proposed here, which carries out a
global management of the machine and allows a floating assignment of processors to the jobs, leading to better makespans
when seeking to minimize the completion time of a batch of jobs.

The contributions of the present work are (a) a mixed-parallel version of HEFT [22] for heterogeneous clusters (P-HEFT),
(b) a characterization of P-HEFT and HPTS through extended simulations, (c) a first approach to scheduling multiple mixed-
parallel jobs dynamically and (d) an evaluation of the best approach, in terms of the makespan metric, to scheduling multiple
DAGs that arrive at different times.

This paper is organized as follows: Section 2 defines the scheduling problem and revises related work. Section 3 presents
the computational model used in this paper. Section 4 presents the dynamic scheduling method proposed in this paper. Sec-
tion 5 presents the results, and finally, Section 6 presents the conclusions and future work.
2. Problem definition and related work

The problem addressed in this paper is the dynamic scheduling of a batch of jobs, or applications, represented by directed
acyclic graphs (DAGs) on a distributed memory computer (i.e., a cluster). Prior works on dynamic scheduling for a single het-
erogeneous cluster consider independent tasks and assign one task to one processor (sequential tasks) [9,13,21]. In [21] a
genetic algorithm is implemented that can schedule a batch of independent tasks with a short completion time. Here in this
paper, each job is composed of a DAG with parallel tasks, which is a more complex problem. The use of a genetic algorithm is
not considered here because it would need to be reformulated to schedule dependent tasks, which would then increase the
time complexity of the algorithm.

In [13], the performance of an immediate versus a batch mode for a set of independent task scheduling heuristics was
compared; the batch mode showed better performance when minimizing the total schedule length. In [9], a set of indepen-
dent task scheduling heuristics was tested into maximize a quality of service (QoS) measurement defined as the value ac-
crued of completed tasks in a given interval of time. The value of a task is calculated based on the priority of the task and
the completion time of the task with respect to its deadlines.

For the problem of scheduling several DAGs on a heterogeneous cluster, i.e., multiple DAG scheduling, [25] presents solu-
tions for DAGs made up of sequential tasks. This is a static approach because the DAGs are known at the beginning of the
scheduling. The authors compare four variants of solutions that incorporate all DAGs into a super DAG to the fairness policy
that considers the DAGs individually. The aim was to optimize the overall makespan and to achieve fairness among DAGs.
Fairness is achieved if the slowdowns experienced by each DAG due to resource sharing are equal. Fairness is a QoS measure-
ment that results in higher-efficiency runs and has shown similar results in terms of overall makespan.

In [15] the former concept was extended to schedule multiple parallel task DAGs. The aim was again to minimize the
overall makespan using constrained resource allocations to obtain fairness among DAGs. The aim of the fairness measure-
ment is to allow shorter jobs and longer jobs equal access to resources. The DAGs are all known beforehand and are consid-
ered individually. Three policies based on three DAG metrics were proposed to obtain fairness. We compare the proportional
share based on DAG workload (PS-work), which has been called the best in terms of makespan, with our proposed solution
for multiple DAG scheduling.

This paper addresses a similar problem, i.e., that of scheduling multiple DAGs simultaneously, but we allow the DAGs to
arrive at different instants in time, which results in a more complex problem. The aim is to minimize the overall makespan
without considering fairness because the jobs are related in the sense that only the collective result is meaningful, as men-
tioned previously.
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Thus, the scheduling method proposed here has two parts, one related to the scheduling strategy and another to the
scheduling algorithm that determines a schedule for a given instant of time. The DAGs are integrated in a master DAG as
in [25], and in each scheduling instant the algorithm considers the tasks ready for execution from all jobs and applies
DAG scheduling. Therefore, the scheduling problem here can be expressed using a classical formula [10,19,20,22] as summa-
rized below.

A DAG is represented by G = (V,E), where V is the set of v nodes of the graph, representing the tasks to be processed, and E
is the set of e edges, representing precedence among tasks and communication costs. For each node vi, a start time (ST(vi))
and a finish time (FT(vi)) are defined; the scheduling length is given by maxi{FT(vi)}. Here, the DAG is the master DAG that
represents all active jobs. Therefore, the goal in scheduling a batch of jobs at any scheduling instant is to minimize maxi{FT(-
vi)}. This definition is valid for both homogeneous and heterogeneous machines and for both parallel tasks (executed on sev-
eral processors) and non-parallel tasks (executed on one processor).

Many scheduling algorithms were developed for the dynamic scheduling of DAGs, or workflows, for GRID systems. In [24]
a taxonomy is presented that classifies the GRID schedulers based on different aspects. These scheduler types are not suitable
in the context of this paper because their concerns are related to high-level issues, such as minimizing the data movements
due to the scheduling choice [16], rather than to the local cluster decisions of which the processors to use to execute each
task.

Steady-state scheduling is another approach to scheduling on heterogeneous systems, which aims to maximize the total
throughput by determining a periodic task allocation [3,4]. The targets were applications with very large numbers of atomic
and independent tasks, and the optimization was the steady-state throughput of each application. Here we are considering a
different problem, i.e., the minimization of the processing time of a batch of jobs (applications) represented by DAGs, where
each task can run on more than one processor (non-atomic tasks).
3. Computational model

The computational model allows us to estimate the execution time of each task on a heterogeneous distributed memory
machine. The processors used in a given task can be arranged in a grid (p,q) that optimizes its execution time. The processors
are connected by a switched network that supports simultaneous communications between different pairs of machines.

The communications required to complete a task are included in the computation time as a function of the processors
P = p � q used for that task [2]. The tasks in this work are linear algebra kernels that operate with matrix data, which are
common in many engineering problems.

The parameters considered are the processing capacity Si of the processor i (i 2 [1,P]) measured in Mflop/s, the network
latency TL measured in ls and the bandwidth x measured in Mbit/s. The total computation time is obtained by summing the
time Tcomm spent communicating and the time Tparallel spent in parallel operations. The time required to transmit a message of
b elements is Tcomm = TL + bx�1. The time required to compute the pure parallel part of the code without any sequential part
or synchronization time and with P processors is Tparallel ¼ f ðnÞ=

PP
i¼1Si. The numerator f(n) is the cost function of the algo-

rithm, measured in floating point operations, which depends on the problem size n. In summary, the computational model
considers a non-overlapping model of computation–communication, a one-port constraint for sending and receiving, a
homogeneous switched network and heterogeneous processors. Multi-core machines are modeled here as single nodes with
a single processing capacity. We suppose that there are no memory constraints, so the tasks have the available memory re-
quired to run on whatever processor is selected.

The optimal processor layout can be computed by introducing the Lagrange multipliers as in the computation of the best
processor grid for linear algebra kernels in [2].

For example, the tridiagonal reduction algorithm (TRD) on a grid (p,q) must transmit 2n(p � 1) + 4n2(pq � 1) data ele-
ments and has f(n) = 28n3. In our platform, the best layout is (1,q), so that the total processing time is Ttðn; p; qÞ ¼
TL þ 4n2ðq� 1Þx�1 þ 28n3Pq

i¼1
Si

. In Section 4.2, we use this computational model to obtain the optimal processing time and

the corresponding processing capacity for each task.
4. Dynamic scheduling method

The scheduling method is divided into two parts: a scheduling strategy and a scheduling algorithm. The scheduling strat-
egy defines the instants when the scheduling algorithm is called to produce a schedule based on the machine information
and the tasks waiting in the queue at the time it is called.

4.1. Scheduling strategy

The scheduling strategy determines the type of dynamic scheduling, i.e., immediate or batch mode, and the time when
the scheduling algorithm is called to produce a new schedule, which defines a scheduling cycle [9,21]. Here, we consider
the batch mode, which consists of rescheduling all ready tasks not yet processed along with the ready tasks of a newly
arrived job. The scheduling instants can be related to several scheduler characteristics, e.g., hardware availability changes,



Fig. 1. Batch mode scheduling strategy.
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updates to end time of completed tasks if the deviation from the estimate exceeds a specified threshold. These events are
expressed as ‘other event’. The scheduling strategy is shown in Algorithm 1.

Here, a new scheduling cycle starts only when a new job arrives. Other events, such as changes to processor availability or
the completion of a job, can be explored in the future to improve the scheduler. An incoming job is first inserted in a master
DAG and connected to the zero time root and exit nodes, so that it has the same priority as any other. At this instant, the
scheduler algorithm is called with the master DAG as input, and it reschedules all tasks from all jobs, including the tasks
scheduled before but not yet processed.

The rescheduling of all tasks is feasible for low-complexity scheduling algorithms such as the ones used in this paper. In
fact, only the tasks ready to start, with no precedence, need to be rescheduled. The information from all tasks is used to com-
pute the critical path, but the scheduling algorithm can be implemented in such a way that it stops after a schedule is ob-
tained for ready tasks, thus reducing the time complexity of each schedule.

Regardless of which scheduling algorithm is used in the second step, no static reservation of processing nodes is made per
job. This is an important feature of the dynamic scheduler presented here because, as shown in the results section, it im-
proves the cluster performance in terms of the total schedule length. The difference in the static reservation schedule is that
if a job does not need that capacity at a given moment, the capacity will be made available for other jobs.
4.2. Scheduling algorithm

In the second part of the scheduling method, the scheduling algorithm is called to produce a schedule based on the infor-
mation available at that instant concerning the ready tasks and the machine information. Here, two algorithms for schedul-
ing DAGs on heterogeneous clusters are considered: an adaptation of HEFT [22] for parallel tasks, which we call P-HEFT, and
HPTS [1]. These algorithms are distinct from the work presented in [7,5,8,12,23] because there, monotonic tasks were used,
i.e., the processing time of a task does not increase if more processors are used. Our task model considers non-monotonic
tasks because they are more realistic for our target applications. In this model, there is a number p of processors for which
the execution time ti,p of task i is a minimum, i.e., ti,p < ti,p�1 and ti,p < ti,p+1. This is due to the communications inherent to the
parallel task model, similar to the Amdahl law for parallel data applications.

HEFT was proposed for scheduling non-parallel task DAGs on a heterogeneous cluster, and it achieved the minimum
makespan [22]. In [14], an adaptation of HEFT for parallel task DAGs to run on a heterogeneous multi-cluster platform of
Fig. 2. P-HEFT scheduling algorithm.
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homogeneous clusters, called M-HEFT, was evaluated and compared to other scheduling algorithms. The conclusion was that
M-HEFT achieved the minimum makespan, particularly if it limited a maximum of 50% of the processors to any given task
(M-HEFT-MAX50). However, it only achieved low rates of efficiency, below 20%. Because the aim of this paper is to minimize
the makespan independently of the efficiency reached, we proposed an adaptation of HEFT for our target machine, i.e., a sin-
gle heterogeneous cluster.

The scheduling algorithms applied to the global DAG are based on the list scheduling technique [10] with the following
steps: (a) determine the available tasks to schedule, (b) assign a priorities to them and (c) until all tasks are scheduled, select
the task with the highest priority and assign it to the processor that allows the earliest start time. For parallel tasks, the last
step selects not one processor but several processors that allow the earliest start times [1]. Note that in this step, we refer to
the tasks that result from all jobs.

Two attributes frequently used to define the tasks priorities are the t-level (top-level) and the b-level (bottom-level). The
t-level of a node ni is defined as the length of the longest path from an entry node to ni (excluding ni). The b-level of a node ni

is the length of the longest path from ni to an exit node. The nodes of the DAG with higher b-level values belong to the critical
path.

The HEFT algorithm is a heuristic that schedules tasks by decreasing b-level values and assigns them to the processor that
allows the earliest finish time (EFT). The adaptation for parallel task DAGs, P-HEFT as shown in Algorithm 2, initially also
computes the average computation and communication costs, and it computes b-level once in step 2.

From lines 4 to 6, the algorithm determines the computational capacity that minimizes each ready task i, S�i , according to
the computational model assuming that the fastest processors are used. The number of processors is not important here, and
it is not registered. From steps 7 to 16, the algorithm schedules the ready tasks in decreasing order of b-level and assigns
processors that can start at the earliest start time. At step 10, the fastest processor available at t-level of task i (tli) is selected
or, in case there is no processor currently available, the first processor available after tli is selected. The last condition is
required to allow for the case when a later start time with more processors results in an earlier finish time. In this case, some
holes can appear in the schedule that are not filled by the algorithm. The value esti is the earliest start time of task i; it is the
Fig. 3. HPTS scheduling algorithm.
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maximum of tli and the finish time of the last task assigned to the selected processor k (AvailabilityTimek). At step 12, the
parameter limit is introduced to limit the amount of capacity assigned to a single task, as in [14]. When limit is less than
100%, we refer to the algorithm as P-HEFT-limit. At step 13, ti,p is the processing time obtained with the p processors selected
thus far. If the actual finishing time is less than that with the former solution, the algorithm stores the processor k in the
vector v that at the end will store the processors assigned to the task. At step 15, the assignment for task i ends if there
are no more processors to evaluate.

The processing capacity required to achieve the optimal processing time t�i;p, for task i and considering the p fastest pro-
cessors, is defined as S�i ¼

Pp
j¼1sðjÞ. It is obvious that if slower processors are used, because not all concurrent tasks can be

executed on the fastest processors, the capacity that achieves the minimum time for task i is less than S�i . Because more pro-
cessors are required to obtain S�i , more communications and consequently more processing time would result; therefore, the
minimum processing time achievable will be certainly higher than the estimated t�i;p.

In HPTS algorithm, shown in Fig. 3, the while cycle at step 3 refers to all tasks of the Master DAG. In step 4, the ready tasks
are those whose predecessors have finished processing. From step 5 to 8, the algorithm determines the computational capac-
ity that minimizes each ready task S�i according to the computational model and by assuming that the fastest processors are
used. Again, the number of processors is not important here, and it is not registered. If the machine capacity Smax is exceeded,
the capacity assigned to each task is limited to the relative weight of each task. From steps 9 to 17, the algorithm schedules
all ready tasks and assigns them to the predetermined processing capacity. On step 12, the fastest processor available at t-
level (tli) is selected for task i, but if there are no processors available to start at tli, the first processor available after tli is
selected, as in Algorithm 2. From steps 18 to 27, the algorithm tries to correct the last schedule by assigning more processors
to the tasks that have a higher b-level. The computation of the b-level on step 18 and 26 uses t�i;p for the tasks on upcoming
levels (not processed yet) and the time computed on steps 14 and 25 for tasks of the present level. The algorithm halts if the
task with minimum b-level is in the highest b-level set (hbl). At step 25, the computation times of tasks r and hbl(w) are re-
evaluated considering the new set of processors made available by the transference of the fastest processor from the set as-
signed to task r to the set assigned to task hbl(w). The time complexity of P-HEFT is the same as that of HEFT; therefore, Algo-
rithms 2 and 3 are O(u2 � P) [1,22] for a set U with u tasks and a machine with P processors.
5. Results and discussion

In this section, we evaluate and compare the performance of the scheduling algorithms P-HEFT and HPTS when schedul-
ing a single parallel task DAG using an extensive simulation setup. Then, the simulation results of the dynamic scheduling
method are presented and compared to the alternative of resource reservation per job [15]. Finally, we present the results of
a real problem in a real system.

The metrics used for comparison are the schedule length (makespan) and the efficiency. The makespan is the finish time
of the last task and is the most relevant metric in this work because the aim is to minimize it. Another important metric
when comparing parallel implementations is the efficiency. In a heterogeneous cluster, the efficiency does not consider
the number of processors used in the computation; instead it considers the power used. For a heterogeneous environment,
the number of processors is ambiguous information. The efficiency is then computed as in [14], i.e., as the ratio of the total
work in the sequential application execution on the fastest processor to the total work of the parallel application. The total
work is computed as the sum of the products of the processing times used on each processor scaled by the ratio of the pro-
cessor speed to the fastest one. Higher values of efficiency indicate better resource utilization.

5.1. Parallel machine

The clusters used in the simulations are generated with 10, 20, 30, 40 and 50 processors, and we assume a 100 Mb/s
switched network and a latency of 50 ls. The main characteristic of the network is that it allows simultaneous communi-
cations between different pairs of machines. For parallel tasks, this is an important characteristic because to complete a task,
the processors (group) involved have to exchange data. In general, when taking into account the amount of communication
involved, we need to ensure that inside the group there are no communication conflicts. It would be very difficult to syn-
chronize communications in different parallel tasks if there were conflicts to be avoided.

The processor speeds for a given cluster are given by a uniform probability distribution. The fastest processor is fixed to
the value of 400 Mflop/s, and the minimum is defined by the heterogeneity of the cluster. We considered 5 values for the
heterogeneity: 0, 0.2, 0.5, 1 and 2. For example, a heterogeneity of 1 will generate speeds from 200 Mflop/s to 400 Mflop/
s uniformly. Although the dynamic algorithm was designed to work on heterogeneous machines, homogeneous cases will
also be considered.

5.2. DAGs and tasks

The DAGs used in the simulation setup were randomly generated using the program in [17]. This DAG generator was also
used in other related works, such as [7,14,15]. There are four parameters that define the DAG shape: width, regularity, den-
sity and jumps. The width is the number of tasks on the largest level. A small value results in a chain DAG. The regularity is
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related to the uniformity of the number of tasks in each level. The density is related to the number of edges between two
levels of the DAG. These parameters may vary between 0 and 1. The jump parameter indicates that an edge can go from level
l to level l + jump. A jump of 1 is an ordinary connection between two consecutive levels.

In this paper, we consider applications with 10, 20, 30 and 50 tasks. The tasks constituting the DAGs are linear algebra
kernels, i.e., tridiagonal factorization (TRD), matrix Q computation, QR iteration and correlation (C). The size of each task
is randomly generated in the interval [200,1200]. We recall that the tasks are non-monotonic, and to estimate the processing
time of each task, the computational model described in Section 3 is used. Table 1 shows the intra-task communication and
computational weights of the tasks, as well as the best processor layout. To each of the DAG edges is assigned an inter-task
communication cost proportional to the size of the output data of the predecessor tasks, which is related to data redistribu-
tion [2]. All data are assumed to be double values of 8 bytes.

5.3. Single DAG scheduling

Here we present the results of the P-HEFT algorithm proposed in this paper and compare them to those of the HPTS algo-
rithm [1]. The DAGs generated use the values of 0.1, 0.2 and 0.8 for the width, 0.2 and 0.8 for the regularity and density, and
1, 2, and 4 for the jump parameter. For each combination of these parameters, we generate 3 DAGs, giving 33 � 22 = 108 com-
binations. This number of DAGs is used for each DAG size of 10, 20, 30 and 50 tasks, giving 108 � 4 = 432 combinations. For
the cluster, we consider 5 types of heterogeneity, i.e., 0, 0.2, 0.5, 1 and 2, with 5 different dimensions of 10, 20, 30, 40 and 50
processors, and we generate 5 machines for each combination, giving 53 = 125 different clusters. Because we run each DAG in
each cluster, we have 432 � 125 = 54,000 runs. Fig. 4 shows the average results, per machine size, obtained for the makespan
and efficiency.

The label P-HEFT refers to Algorithm 2, and P-HEFT-50 denotes the results from P-HEFT when we limit the machine
capacity to a maximum of 50% for each task. In fact, this simple limitation results in improved performance, as noted in
[14]. The difference is not relevant above 30 processors and is zero above 40 because for these machine sizes no task needs
more than 50% of the machine, so both give the same solution. On average, HPTS requires 4.9% more processing time. On the
other hand, HPTS is, on average, 11% more efficient than P-HEFT-50, which means that HPTS has better resource usage. This
is an important characteristic when scheduling multiple DAGs, as shown below.

The results reported for M-HEFT [14], an adaptation of HEFT for parallel task scheduling on a heterogeneous multi-cluster
platform of homogeneous clusters, proved to be the best for the makespan, but with a significant decrease in efficiency. One
important result of this paper is that the parallel task version of HEFT proposed here produces the best makespan for a single
DAG without significantly penalizing the efficiency.
Table 1
Task communication and computational weight and corresponding best processor layout; here, for
QR, the convergence rate c is considered to be 1.

Task type Comm. weight Comp. weight (f(n)) Grid(p,q)

TRD 4n2(q � 1) 28n3 (1,q)
Q 0.5n2(q � 1) 23n3 (1,q)
QR cn2(p � 1) 56n3 (p,1)
C 2n2(q � 1) 84n3 (1,q)
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Fig. 4. Schedule length (makespan) and efficiency obtained for single DAG scheduling with P-HEFT and HPTS; for all machine sizes DAGs with 10, 20, 30 and
50 tasks were used.
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5.4. Dynamic scheduling of multiple DAGs

Here we present the results of the scheduling method for the dynamic case where jobs arrive at different times. The three
scheduling algorithms were tested for the same set of machine configurations and for the same set of 12 jobs. To generate
random arrival, we insert a new job when 40% of the estimated optimal execution time (obtained when the job runs exclu-
sively on the machine) of the last job has elapsed. For the first job, this will be true because it runs exclusively; all other jobs
will take more time to complete than the optimal time estimated, but we still insert a new job after 40% of the optimal time
of the last job has elapsed. Depending on the job length, there could be many concurrent jobs.

We used 3 sets of 12 jobs each. Each set was made up of DAGs with 10, 20 and 30 tasks. The 12 DAGs were selected from
the set of 108 used in Section 5.3 so that the full range of values for width, regularity and density were represented. For the
jump parameter, only the value 1 was used.

As before, we used 5 levels of heterogeneity, i.e., 0, 0.2, 0.5, 1 and 2, with 5 different dimensions of 10, 20, 30, 40 and 50
processors. Five machines for each combination were generated giving 53 = 125 different clusters. For each of the 125 clus-
ters, we ran the 3 sets of 12 DAGs, giving 3 � 125 = 375 runs. Fig. 5 shows the average results, for each machine size, for the
makespan and efficiency.

The results for P-HEFT-50 and P-HEFT maintain the same relationship as for single DAG scheduling, i.e., P-HEFT-50
achieved a lower makespan but higher efficiency. This result is particularly visible for smaller and therefore saturated ma-
chines. For larger machines, where there are sufficient processors that no task will require more than 50% of the machine
power, P-HEFT-50 is equivalent to P-HEFT.

For multiple DAG scheduling, Fig. 5 shows that HPTS has better performance than the other two algorithms. This was ex-
pected because HPTS has higher efficiency levels, which is favorable when the machine has higher load levels. In fact, this is
consistent with the improvement achieved by P-HEFT-50 over P-HEFT, which is only due to the limitation of 50% of the ma-
chine capacity for a single task. The HPTS algorithm also implements a limitation of resources per task at steps 5 to 7 (Algo-
rithm 3), but instead of a blind limitation of 50%, the limitation is proportional to the dimension of the tasks ready to be
scheduled.

5.5. Resource reservation versus non-reservation

Here we present results of the comparison of the scheduling method proposed in this paper, corresponding to the non-
resource reservation policy, with the alternative of resource reservation [15]. It is important to mention that the aim in [15]
was different from our aim, which was to minimize the completion time of a batch of jobs. The comparison is justified to
show that, for our aim, the method proposed here achieved better performance than the available alternative. We considered
the HPTS algorithm for scheduling.

The method in [15] is static and all DAGs are available at time zero; therefore we applied our dynamic method also
assuming this condition. In this case, only the non-reservation policy of our method that does not assign a fixed set of pro-
cessors to a job will be different from the method of [15]. Results for the dynamic case, as described in Section 5.4, are also
presented, similar to [9], which compared the dynamic method to the static methods available. In this case, the arrival times
of all tasks are known a priori for the static method.

Several alternatives are presented in [15] that balance the fairness of resources among jobs against the average makespan.
Because our interest is primarily in minimizing the makespan, we selected the version PS-work (proportional share) that
shares resources proportionally to the work of each job and achieves the shortest average makespan.
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Fig. 7. First and last frames of an example image sequence from computed tomography (CT).
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Fig. 6 shows the results for the same 3 sets of 12 DAGs and conditions described in the former Section 5.4. When all jobs
start at time zero, there is a significant difference when the machine is heavily loaded, corresponding to up to 20 processors
in this case. With 50 processors, the PS-Work version achieves better results as expected when more processors are avail-
able; also in these cases, because there are enough processors to use, the disadvantage of static reservation starts to become
irrelevant. The results with 10 processors for PS-Work were not computed because the method assumed that there were
more processors than jobs, which in fact was not true. For the dynamic case, Fig. 6(b), where tasks arrive at different times,
shows that the dynamic algorithm achieves better results as expected.

5.6. Experimental results

In addition to the randomly generated DAGs here, we also present results from a real application, i.e., image registration
for 3D object reconstruction, executed on a real cluster. The method consists of defining the target object by its border in
each frame, as illustrated in Fig. 7, and between each two frames, the deformable object tracking algorithm [18] is computed
to find the corresponding points in two consecutive frames. Fig. 7 shows the first and last frames of a sequence of 21 images
taken from a CT scan of a human trunk. The object segmented is the left lung; we can see that the shape varies significantly
along frames.

The deformable object tracking algorithm is based on finite element analysis, and it requires the computation of the
eigenvectors of symmetric matrices. The aim is to obtain correspondences between the object points of images i and i + n.
The algorithm is divided into eigenvector computation and matrix correlation. The eigenvector computation is subdivided
into three operations: tridiagonalization, orthogonal matrix computation (matrix Q) and QR iteration. A job is created to rep-
resent the computation between each two consecutive frames. Fig. 8 shows the DAG and the tasks involved in a single job.
Note that the DAG considered here does not include the task of contour definition because the algorithm is problem-
dependent.

The proposed dynamic scheduling method is compared to the static processor allocation, i.e., PS-Work [14], when all jobs
start at time zero. The cluster has 10 processors with the following distribution of capacities, in Gflop/s: 3 with 0.4, 4 with 0.3
and 3 with 0.2. To reduce the number of variables influencing the result, the number of points per object is 300 in all frames,
so the matrices consist of 300 by 300 elements. The scheduling algorithm used is the HPTS.



Fig. 8. DAG structure of the deformable object tracking algorithm; TRD: tridiagonalisation; Ortho: orthogonal matrix computation; Corr: correlation matrix
computation.

Table 2
Performance results for the deformable object tracking algorithm.

Number of DAGs tstatic(s) tdynamic(s) Improvement (%)

4 9.12 10.16 �11.4
5 12.07 12.47 �3.3
6 14.11 12.47 11.6
10 28.51 18.73 34.3
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The experiment consists of executing 4, 5, 6 and 10 jobs simultaneously as described in Table 2.
These results are similar to the ones presented in Fig. 6(a), where all DAGs start at time zero. For 5 DAGs, the static ap-

proach can divide the cluster uniformly by the jobs with 2 machines each, totaling 0.6 Gflop/s and resulting in better per-
formance. This was also observed in the simulation for more than 50 processors. For 4 jobs, there are enough processors
per job, and the lower overhead is favorable for the static approach. When the machine is heavily loaded, the static reser-
vation degrades the performance, and the improvement of the dynamic algorithm can be very high, in this case 34.3%. This
behavior was also observed in Fig. 6(a) for 20 processors. Note that our target is not satisfied when all jobs start at time zero,
and therefore, the static algorithm is not viable to solve the scheduling problem as required.

6. Conclusions

In this paper, we have proposed a dynamic method for scheduling a batch of mixed-parallel DAGs on heterogeneous sys-
tems that arrive at different times. It improves the response time by allowing variation in the computing power (number of
processors) assigned to a job. It showed better performance than the resource reservation alternative for a wide set of ma-
chines, both homogeneous and heterogeneous, both for random generated DAGs and for a real world application.

To the best of our knowledge, ours is the first method to schedule multiple mixed-parallel jobs dynamically on hetero-
geneous clusters. A new version of HEFT for parallel task scheduling, called P-HEFT, was also proposed. This algorithm was
the best for the makespan of single DAG scheduling, although it had lower efficiency. For multiple DAG scheduling, the effi-
ciency of the scheduling algorithms reflects the capacity to share resources and, as it is the most efficient HPTS, it obtained
the best makespan for multiple DAG scheduling.

The dynamic method proposed does not require a fixed subdivision of processors. When scheduling a set of ready tasks,
the machine is viewed as a whole, independently of the groups of processors formed in the last level, thus allowing better use
of the machine and consequently achieving improvements in processing time when the machine is more loaded.

The aim, as defined before, is to minimize the completion time of a batch of jobs, which corresponds to many real-world
applications such as video surveillance, microscopic imaging processing, biomechanical analysis and image registration. Fu-
ture research will extend the scheduling method for the optimization of a performance measurement related to the quality
of service for a multi-user environment, where the objective function is the individual QoS measured by users rather than the
global processing.
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