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In this work, we present a technique to semi-automatically quantify the epicardial fat in non-contrasted computed
tomography (CT) images. The epicardial fat is very close to the pericardial fat, being separated only by the pericardium that
appears in the image as a very thin line, which is hard to detect. Therefore, an algorithm that uses the anatomy of the heart
was developed to detect the pericardium line via control points of the line. From the points detected an interpolation was
applied based on the cubic interpolation, which was also improved to avoid incorrect interpolation that occurs when the two
variables are non-monotonic. The method is validated by using a set of 40 CT images of the heart of 40 human subjects. In
62.5% of the cases only minimal user intervention was required and the results compared favourably with the results
obtained by the manual process.

Keywords: anatomical model-based segmentation; clustering; low-contrasted images; polynomial interpolation

1. Introduction

Obesity is recognised as an important risk factor for the

development of cardiovascular disease (Hubert et al. 1983;

Manson et al. 1990; Visscher et al. 2001). The quantification

of visceral fat (fat surrounding the internal viscera), in

contrast to the subcutaneous fat (deposited under the skin),

has been shown to correlate closely with the development of

atherosclerotic diseases and with the parameters of the

metabolic syndrome. Therefore, some methods (Jeong et al.

2007) have been developed in order to quantify the non-

invasive fat composition, assessing the total body fat and

visceral tissue. The visceral abdominal tissue is used for

quantification of visceral fat and Borkan et al. (1982)

described a method for performing this quantification using

computed tomography (CT) image data.

The epicardial fat, the object of this study, is a

deposition of visceral fat that surrounds the heart,

accumulating mainly in the atrioventricular and interven-

tricular grooves surrounding the epicardial coronary

arteries (Manson et al. 1990). Not much is known about

the true role and metabolic pathophysiology of epicardial

fat; however, recent data have suggested its involvement

in the development and progression of coronary athero-

sclerosis (Iacobellis et al. 2005). Epicardial fat produces

numerous cytokines and proteins associated with athero-

sclerosis (Mazurek et al. 2003). This coupled with the lack

of a real anatomical barrier between the tissue and the

coronary arteries suggests a pro-atherogenic effect directly

on the vessels.

The method presented here addresses the problem of

measuring the epicardial fat in non-contrasted CT images,

which is more difficult to measure than contrasted images.

The results show that the method is an improvement on the

traditional manual procedure by requiring less interaction

of a technician as well as by reducing the variability of the

results. Section 2 describes the quantification of the fat on

the heart using CT images. Section 3 analyses image

content in CT images. Section 4 reviews image

segmentation techniques. Section 5 describes the proposed

method for epicardial fat quantification. Section 6 presents

results and Section 7 conclusions.

2. Related work

CT has been used to quantify visceral fat for a long time

now. This evaluation is carried out using a single cut of the

abdominal CT. Along with recent developments in CT and

applications to the region of the heart, there has been an

increasing interest in quantifying the deposition of fat on

the heart. Some quantification processes have been applied

as shown by Gorter et al. (2008). However, these processes

are mostly manual requiring significant post-processing

time. Attempts to automate this task have had some

success and it is possible to quantify pericardial fat

automatically, as described by Dey et al. (2008). However,
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these methods measure the total fat on the heart, without

distinguishing the epicardial fat.

Clinical practice today uses either an automatic

measurement of the total fat without distinguishing the

epicardial one, or a manual segmentation method where an

operator selects points from the image belonging to the

pericardium that are then connected by a first-order

segment (Bandekar et al. 2006).

Due to the clinical interest in epicardial fat measurements

(see de Vos et al. 2008) and due to the lack of a method that

allows its automatic or semiautomatic quantification, this

paper presents a novel method that in some cases can

quantify the epicardial fat automatically and in others

requires only a minimal user intervention.

To the best of our knowledge, this is the first method

proposed to compute the epicardial fat in non-contrasted

CT images; preliminary results of this method were

presented by Figueiredo et al. (2009).

3. Non-contrasted CT image data

The images obtained by CT have, in general, a resolution

of 12 bits per pixel, allowing 4096 grey levels which in CT

represents numbers ranging from 21000 to 3095. This

grey scale was created especially for CT imaging and is

called Hounsfield units (HU). On this scale, as shown in

Figure 1, water has a value of 0 HU, air 21000 HU, the

cortical bone þ1000 HU and the fat occupies a range of

around 2100 HU according to Borkan et al. (1982) and

Yoshizumi et al. (1999).

The distinction between fat and other tissues is made

through different levels of attenuation of the different

tissues and consequently through HU in the image. There

are several studies (Borkan et al. 1982; Yoshizumi et al.

1999) published on the correlation between HU and fat

deposition. These studies indicate that fat has a density

between 250 and 2150 HU, or between 230 and

2190 HU. In this research and following other publi-

cations on the quantification of fat, specifically in the heart

(Dey et al. 2008), the range of 230 to 2190 HU was used.

The image from the non-contrasted CT is shown in

Figure 2. The pericardium appears as a thin line,

identifiable mainly at the anterior region of the heart, as

shown by (a) labels. Label (d) represents the region that

includes the muscle and the heart chambers. Labels (b)

represent the epicardial fat and label (c) is the adipose tissue.

These later regions of fat are very close to each other and only

the pericardium which is a very thin barrier separates them. It

is not always easy to identify and follow the pericardium

throughout its full length due to its thinness.

To evaluate the possibility of segmenting the

pericardium based on HU, a set of 104 samples was

taken from a set of 10 images. Also a set of 100 samples

was taken for the cardiac muscle from the same 10 images.

Figure 3 shows the values obtained for each structure.

Statistically, the pericardium samples have a mean of 213

HU and a standard deviation of 31 HU; the cardiac muscle

samples have a mean of 38 HU and a standard deviation of

23 HU. The Pericardium is closer to the fat intensities that

are in the 230 to 2190 HU range.

Figure 1. HU scale.

Figure 2. Original image: (a) the pericardium; (b) the epicardial
fat; (c) the pericardial fat and (d) muscle and cardiac cavities.

Figure 3. Intensity values in HU for a set of samples of the
pericardium and cardiac muscle.
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On an average, the cardiac muscles have higher

intensity than the pericardium; however, there is a

substantial overlap that prevents an automatic method to

be based on intensity segmentation. Once the pocket of fat

separates the cardiac muscle from the pericardium, if

one starts a region growing algorithm (Pham et al. 2000; Ma

et al. 2010) inside the cardiac muscle, it will stop on

the pericardium fat, without joining the pericardium

pixels. This approach is used in the algorithm presented

in Section 5.

In the process to quantify the epicardial fat today, the

pericardial line is selected manually. However that line is

often not visible for its full length and, therefore, the

operator has to connect several short pericardium

segments, and guess some points, in order to delineate

the line fully. Obviously, there is an intrinsic error

associated to this procedure and, therefore, an experiment

to quantify the inter-observer variability was carried out.

A set of 40 images were segmented for epicardial fat

quantification by 3 expert operators. Table 1 shows

individual results and the mean value of fat for each image.

For each image Ii, with 1 # i # 40, the mean

measurements among operators mi was computed; and

for each operator j, for j ¼ {1; 2; 3}, the relative error is

given by eji ¼ ðmji 2 miÞ=mi. The measurement of image Ii
by operator j was mji. The mean relative error of all

eji ¼ 5.6% and standard deviation ¼ 4.8%. This results in

a maximum inter-operators relative deviation of 10.4%.

We concluded that the present procedures for

epicardial fat quantification can have differences among

operators as high as 10.4%. Therefore, on evaluating the

results of the algorithm proposed in this paper, a result that

differs up to 10.4% from the mean value obtained for each

image ðmiÞ is acceptable.

4. Medical image segmentation techniques

Several surveys specific for medical image segmentation

were published (Pham et al. 2000; Ma et al. 2010),

classifying algorithms into several classes. Here, we consider

three types of algorithms, namely, threshold techniques,

clustering techniques and anatomical model-based segmen-

tation, also called Atlas-guided segmentation.

4.1 Threshold techniques

These types of algorithms are based on the hypotheses that

different structures, representing either organs or tissues,

have different intensity levels or gradient magnitudes on

the image, so that selecting pixels in a given range would

result in the segmentation of a specific structure. This is

especially applicable in high-contrasted images where the

structures are well defined and have a significant

homogeneous intensity. Figure 3 shows that the pericar-

dium and the cardiac muscle have pixel intensities in the

same range, which make the direct use of this technique

difficult. Edge-based algorithms consider the gradient

magnitude to segment structures, being successful in

identifying intensity transitions that commonly occur at

the border of structures. One widely used edge-detector

algorithm is the Canny edge detector (Canny 1986).

Figure 4 shows the result of this algorithm applied to a

non-contrasted CT image. We can see that there are some

well-delineated boundaries such as the heart shape but in

the region of interest, in this case, the pericardium area,

there is not a regular shape which makes the definition of a

structure based only on this information difficult.

Another algorithm that belongs to the threshold

technique class is the region growing algorithm as

described by Adams and Bishop (1994). The algorithm

Table 1. Epicardial fat measured by three different operators.

Operator 1
(mm2)

Operator 2
(mm2)

Operator 3
(mm2)

Mean
(mm2)

12,464 13,174 13,362 13,000
5790 5581 5790 5720
6224 6479 5916 6206
4996 5783 5271 5350
7322 8747 8048 8039
5713 5215 6264 5731
3594 4077 3647 3773
4145 4685 3551 4127
6094 6974 7087 6718
4980 7251 7212 6481
4592 6040 5714 5449
3886 3519 3591 3665
8463 10,133 9925 9507
4976 5079 5802 5286
8416 9423 9695 9178
11,465 13,137 16,845 13,816
8832 10,467 10,610 9970
2548 2705 2872 2708
8751 11,025 11,284 10,353
13,073 13,876 14,063 13,671
10,213 14,838 11,338 12,130
6463 7239 7053 6918
7506 7931 8679 8039
14,302 14,290 13,423 14,005
7217 6779 6651 6882
16,834 15,376 15,317 15,842
8493 8610 8153 8419
12,920 14,580 14,109 13,870
12,871 15,366 14,498 14,245
9897 11,288 10,608 10,598
9048 9011 9683 9247
1412 1465 1517 1464
831 946 1070 949
693 746 730 699
1154 984 1000 1045
1327 1443 1621 1461
1182 1119 1179 1159
1454 1531 1494 1492
3971 3889 4044 3968
1030 1017 1045 1051
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selects pixels, in the neighbourhood of a seed pixel, which

have the same intensity or only differ to a small specific

amount. This is applied iteratively until no pixels are left.

This is useful to identify structures that are homogeneous,

with no texture or have small intensity differences in the

interior compared with the structure of the boundaries.

However, the structure must have a well-defined boundary

in the image. This is the case of cardiac muscle that is

surrounded by fat as shown in Figure 2. It will allow the

removal of this structure from the image as explained in

Section 5. The drawback of this algorithm is that it

requires a seed pixel to start.

4.2 Clustering techniques

Clustering algorithms perform classification of data

without using training data (Pham et al. 2000). They are

designated as unsupervised classification techniques.

Here, the k-means algorithm is used, k being the number

of clusters to obtain in the result, to analyse the

characteristics of the pericardium line in the image.

The k-means algorithm was applied to the image where the

cardiac muscle had been removed and we concluded that

the pericardium line had the highest pixel values in the

image. When classifying the pericaridum line in a different

set of classes, it has the majority of its pixels in the last and

higher intensity classes.

Figure 5(b) shows that using four classes, we cannot

distinguish the pericardium data from the fat. With 20

classes, we can successfully isolate some pixels of the

pericardium although other pixels are also selected.

Figure 5(c) shows the 19 class of a 20 k-means

segmentation. And Figure 5(d) shows the last class of the

same segmentation. Clearly, class 20 is the one that contains

the majority of the pericardium pixels. The algorithm

proposed in this paper considers this characteristic.

4.3 Anatomical model-based segmentation

Anatomical model-based segmentation as described by

Arata et al. (1995) uses anatomic knowledge to guide the

segmentation. Currently, the model is constructed from

several samples of the structures that we want to segment.

Due to the variability of the sample data, the anatomic

model is presented with statistical parameters in order to

take into account the natural anatomic variation of the

structure among human subjects. Here we used a simpler

approach that is related to this technique, which consists of

searching for points in the pericardium area that have the

highest values, as explained below.

5. Fat quantification method

The process to measure epicardial fat automatically

was separated into two steps. First, the image is

preprocessed to remove any data that could interfere

with the detection of the pericardium, and the second step

is the segmentation of the pericardium and the subsequent

quantification of fat.

The images in this study were first prepared following

the method described by Dey et al. (2008) that

removes all other structures apart from the heart, as shown

in Figure 6(a).

5.1 Preprocessing algorithm

The preprocessing step of the algorithm to segment the

pericardium is based on the fact that different tissues have

different HU, mainly the fat and the muscle. The fat HUs

are considered to range from 230 to 2190 HU (Dey et al.

2008). Figure 7 shows the steps for the preprocessing

algorithm. First, a region growing technique to detect the

cardiac muscle is initiated with the centre pixel of the

image as seed. If the seed is outside the intensity range of

Figure 4. (a) Initial image; (b) edge detection with Canny algorithm.

J.G. Barbosa et al.4
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the cardiac muscle then each pixel from the first line of

eight neighbours are considered, sequentially, to be the

seed. The process continues to the second line of

neighbours and so forth until a pixel is in the intensity

range required. The experience showed that the seed point

is the centre pixel or one on the first line of neighbours.

The second step consists in a threshold to remove high-

intensity points because they do not represent the muscle

but calcifications; the threshold removes points above 100

HUs. The third step uses a mean filter to reduce noise; a

kernel of dimension 3 £ 3 was used. Figure 6(b) shows the

result of the region growing step that starts in the centre of

the image and grows until it reaches the epicardial fat that

has different intensities (HU). This pocket of fat also

prevents the pericardium line from being removed.

Figure 6(c) shows the image after removing the cardiac

muscle. This image still has some artefacts that are removed

by the threshold filter without affecting the fat and the

pericardium line. Figure 6(d) shows the final result after

applying the threshold and a mean filter for noise attenuation.

The pericardium is a very thin line on the image of

Figure 6(d), which makes its segmentation difficult.

Despite the great interest to quantify only the epicardial fat

as described in Mazurek et al. (2003) there is no method to

do it automatically. The pericardium is surrounded by fat

that has lower intensity levels on the image. It is this

difference in intensity, among other characteristics, such

as the pericardial line being set mainly in the anterior

region of the heart and its rounded appearance in the image

that the segmentation algorithm is based.

5.2 Segmentation algorithm

According to the results shown in Figure 5(c) and (d), the

higher values remaining in the image will belong mainly to

the pericardium or the pixels surrounding it. With the

reference in the centre of the image, the segmentation

algorithm sweeps the anterior region from 08 to 1808

registering the higher intensity points in each direction every

58 as shown in Figure 8(a). For each of these main directions

the maximum point on the directions from258 toþ58with a

step of 18 is computed. From these points the mean and

standard deviation of the coordinates are computed, as

illustrated in Figure 8(b) where Pm is the mean position.

Since the pericardium has no abrupt transitions, mean points

that exceed a given standard deviation were rejected. In this

study, the maximum standard deviation allowed for thePm to

belong to the Pericardium was found, experimentally, to be

10. Higher values would select points outside the

pericardium and lower values would result, in most cases,

in very few points being selected. Figure 9 shows the

application of the algorithm.

Figure 9(a) shows the original image and Figure 9(b)

the points detected. Only 15 points were selected to define

Figure 5. (a) Initial image; (b) k-means with four clusters; (c) cluster 19 of k-means with 20 clusters and (d) cluster 20 of k-means with
20 clusters.
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the pericardium. All others were rejected due to noise that

results in standard deviations greater than 10. However,

these 15 points are more than the minimum number

required to define the pericardium line correctly as shown

in Figure 9(c). This line is obtained by an improved spline

interpolation that can deal with repeated values on both

coordinates, as described below.

The fat quantification shown in Figure 9(d) is obtained

by considering all pixels below the pericardium line with

intensities in the fat range from 2190 to 230 HU.

5.3 Polynomial interpolation

The set of points coming from the segmentation algorithm

is sparse with irregular distances among them. A linear

interpolation would require many more points than the

ones coming from this process. The cubic interpolation is

the alternative, since it can be applied to any set of

consecutive points and has a second derivative greater than

zero, allowing for the specification of smooth curves. The

application of standard algorithms available in some

software packages and described, for example, in Press

et al. (1997) result in an erratic interpolation when the two

variables are allowed to be non-monotonic as shown in

Figure 10(a). The approach to overcome this problem was

to represent the curve y ¼ f ðxÞ parametrically as functions

of the free parameter d: y ¼ f 1ðdÞ and x ¼ f 2ðdÞ. The

parameter d on a given ðxi; yiÞ point is computed by the

accumulated distance between points from the first one

ðx0; y0Þ to ðxi; yiÞ, given by
Pi

j¼1kðxj; yjÞ2 ðxj21; yj21Þk.Figure 7. Preprocessing algorithm.

Figure 6. Preprocessing steps: (a) pre-selected image region; (b) muscle segmentation; (c) after muscle removal and (d) final image.

J.G. Barbosa et al.6

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
6
:
0
7
 
1
4
 
M
a
r
c
h
 
2
0
1
1



Now, a standard cubic interpolation can be applied

independently of the functions y ¼ f 1ðdÞ and x ¼ f 2ðdÞ.

The final curve shown in Figure 10(b) is obtained by

computing ðx; yÞ for a constant increment of d.

6. Results

The results of automatic quantification obtained were

compared with results obtained manually, which were

considered as reference values. However, a variability in

the manual measurements of 10.4% was obtained for the

same set of images by three different operators. This

variability will be considered as the acceptable variability

in the values automatically obtained when compared with

the values of the manual procedure.

A set of 40 images was used to develop and test the

algorithm. For training, 10 of these images were selected

where the pericardium was clearly identifiable, but with

different cardiac forms and distribution of fat. The results

of this set are represented in Table 2. There are four images

in which the system automatically detected the epicardial

fat. In the other six cases, the system automatically

Figure 8. Pericardium segmentation: (a) detection of maximum values along a direction from the centre and (b) computation of a
pericardium point.

Figure 9. Pericardium segmentation: (a) initial image; (b) points detected; (c) pericardium line after spline interpolation and
(d) fat quantification.

Computer Methods in Biomechanics and Biomedical Engineering 7
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detected much of epicardial fat although it needed a slight

correction. With this minor alteration the system became

well adjusted for the epicardial fat region. Table 2

compares the values obtained manually with the

segmentation algorithm described here. The manual

measurements are average values of three operators. The

column of points adjusted shows the adjustment required

by the user to obtain the presented result of the semi-

automatic algorithm.

Figures 11 and 12 show the results from the set of 10

cases. In the first case, no correction was required to

segment the pericardium correctly. In the second case,

only two points were moved because they were trapped on

a higher intensity region that did not represent the

pericardium line.

The remaining 30 images were not used during

training in order to have a set of new images to evaluate

the effectiveness of the algorithm. In 11 images a

maximum of 2 points required adjustment; 4 images

required 3 points; and 2 images required 4 points to be

adjusted. Visually the pericardium was very hard to

identify in the other 13 images and consequently in most

cases the algorithm did not identify any point of the

pericardium or marked misplaced points. However, even

in these cases the parametric cubic interpolation allows a

faster and a more accurate manual segmentation than the

actual linear one because it requires less points to be

marked and describes the pericardium shape better. As

shown in Figure 13 only seven points were sufficient to

segment the pericardium.

7. Conclusions

Given the values obtained by the method presented in this

paper, we conclude that this method is not suitable to

operate in a fully automatic mode for all cases, since only

four cases were detected automatically (10% of the cases).

However, 52.5% of cases (21 out of 40) could be

segmented correctly with a small adjustment by the user in

setting up 2 or 3 points. The remaining cases consist of

images where it is ambiguous for a technician to identify

the pericardium line, which is the main reason for the

variability of measurements among operators, as shown in

Table 1; it is also the main limitation of the proposed

method. That is, the method is not able to infer

pericardium points from the heart anatomical model

information, since its success is mainly dependent on pixel

intensities.

The average error of the proposed method compared

to the manual one is around 4%, for the semi-automatic

segmentation (62.5% of cases). This is less than the

deviation observed on the epicardial fat quantification

Figure 10. Pericardium interpolation: (a) standard cubic interpolation and (b) resulted cubic interpolation of y ¼ f 1ðdÞ and x ¼ f 2ðdÞ.

Table 2. Comparison between manual and semi-automatic method.

Image no. Manual (mm2) Semi-auto (mm2) Difference (%) Points adjusted

1 1221 1211 0.86 0
2 687 686 0.04 1
3 770 705 8.44 0
4 1384 1321 4.58 2
5 2379 2379 0.00 2
6 2580 2501 3.07 2
7 608 662 8.96 0
8 1087 1170 7.53 0
9 1376 1422 3.28 2
10 1684 1590 5.60 2

J.G. Barbosa et al.8
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performed by different operators. There was a maximum

deviation of 8.96%, compared to the 10.4% inter-operator.

From the images shown, we conclude that the

automatic detection of the Pericardium on CT images

without contrast is a very difficult problem. This is clear

from the variations of the three operators when

measuring the same set of images. To improve the

results obtained, either manually or semi-automatically,

we need to use higher level algorithms that, for example,

use statistical data to define a starting pericardium line,

which is then adapted using image data. It will also

reduce user interaction even more by being able to infer

pericardium points. However, statistic-based algorithms

require a first step to collect data obtained by correct

segmentations of the pericardium. We intend to use the

method presented in this paper to feed a database of

Figure 11. (a) Manual segmentation and (b) automatic segmentation.

Figure 12. (a) Manual segmentation; (b) resulted cubic interpolation and (c) result after correction of two points.

Figure 13. (a) Manual segmentation original image with seven points marked manually and (b) resulted cubic interpolation.

Computer Methods in Biomechanics and Biomedical Engineering 9
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pericardium shapes in order to apply statistical methods

in our future work.

Even with the difficulties associated with the source

images where the pericardium line is not clearly visible,

the method proposed here allows an improvement in

the procedure, since it requires less interaction by the

technician and reduces the variability of results. Although

the method requires user interaction, which is reduced to

the last stage of the process to adjust a few points of

the pericardium line, it should be pointed out that the

method requires almost no parameter adjustments in any

of its stages. In fact, the parameters of the preprocessing

stage are simply based on HU of the tissues and in CT

data, there is not the problem of light conditions as in the

image acquisition, which is usually the main reason for

such parameter adjustments. Thus, the segmentation

algorithm stage may require the initial selection of the

maximum standard deviation to be considered. However,

the experience of this work showed that the value of 10

is a good trade off between correct identification of

pericardium points and the identification of just a few

points that would not represent the pericardium in all its

extension.
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