
This article was downloaded by: [b-on: Biblioteca do conhecimento online IPB]
On: 09 June 2012, At: 03:46
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Production Research
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tprs20

High-level Petri nets for the process description and
control in service-oriented manufacturing systems
J. Marco Mendes a , Paulo Leitão b c , Armando W. Colombo d e & Francisco Restivo a c
a Faculty of Engineering of University of Porto, Porto, Portugal
b Department of Electrical Engineering, Politechnic Institute of Braganca, Braganca,
Portugal
c LIACC - Artificial Intelligence and Computer Science Laboratory, Porto, Portugal
d Schneider Electric Automation GmbH, Seligenstadt, Germany
e University of Applied Sciences Emden/Leer, Emden, Germany

Available online: 04 Aug 2011

To cite this article: J. Marco Mendes, Paulo Leitão, Armando W. Colombo & Francisco Restivo (2012): High-level Petri nets for
the process description and control in service-oriented manufacturing systems, International Journal of Production Research,
50:6, 1650-1665

To link to this article: http://dx.doi.org/10.1080/00207543.2011.575892

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tprs20
http://dx.doi.org/10.1080/00207543.2011.575892
http://www.tandfonline.com/page/terms-and-conditions

International Journal of Production Research
Vol. 50, No. 6, 15 March 2012, 1650–1665

High-level Petri nets for the process description and control

in service-oriented manufacturing systems

J. Marco Mendesa*, Paulo Leitãobc, Armando W. Colombode and Francisco Restivoac

aFaculty of Engineering of University of Porto, Porto, Portugal; bDepartment of Electrical Engineering, Politechnic Institute
of Braganca, Braganca, Portugal; cLIACC -Artificial Intelligence and Computer Science Laboratory, Porto, Portugal;
dSchneider Electric Automation GmbH, Seligenstadt, Germany; eUniversity of Applied Sciences Emden/Leer, Emden,

Germany

(Received 18 June 2010; final version received 15 March 2011)

The use of service-orientation principles in manufacturing systems is a promising solution to achieve
modularity, flexibility, re-configurability and interoperability. Crucial issues in these service-oriented systems
are the description and co-ordination of the execution of the services offered by the distributed entities.
This paper introduces an integrated approach for the design, analysis, validation, simulation and process
execution of service-oriented manufacturing systems, using the High-level Petri net formalism as the formal
language to describe the system behaviour. The use of the proposed approach contributes to achieving
an easier and faster development of these solutions and provides the basis to support modularity and
re-configurability.

Keywords: flexible manufacturing systems; reconfigurability; service-oriented systems; High-level Petri nets

1. Introduction

The current tendency in manufacturing is to achieve the requirements imposed by global markets that demand
customised and high quality products at lower prices with very short delivery times through modularity, flexibility
and re-configurability. This new class of manufacturing systems requires the existence of distributed and modular
control entities that collaborate to accomplish distributed control activities, while being able to self-organise to drive
evolvable organisation structures. In fact, reconfigurable systems, instead of incorporating all the flexibility once
at the beginning of their life cycle, incorporate basic process models that can be rearranged or replaced quickly
and reliably (Mehrabi et al. 2000).

Traditionally, design and manufacturing activities have taken place sequentially rather than simultaneously
leading to inefficient and time consuming iterations between design and manufacturing stages (Shukor and Axinte
2009). Moreover, since the introduction of the programmable logic controllers (PLC) in the early 1970s, significant
efforts have been made to overcome the original PLC’s limitations in terms of decentralised usage, aiming to address
the topics of modularity and re-configurability. New manufacturing paradigms and emergent technologies, which
take advantage of the newest mechatronics, information and communication technologies are being researched
and applied to increase the modularity, flexibility and re-configurability, such as multi-agent systems (MAS)
(Wooldridge 2002), holonic manufacturing systems (HMS) (Deen 2003) and recently service-oriented architectures
(SoA) (Jammes and Smit 2005a).

MAS are characterised by decentralisation and parallel execution of activities based on autonomous entities,
called agents. These systems have the capability to respond promptly and correctly to change, and differ from the
conventional approaches due to their inherent capabilities to adapt to emergencies without external intervention
(Wooldridge 2002). In a similar way, HMS are pyramidal systems based on the concept of holon. A holon is a part
of a manufacturing system that is made up of sub-ordinate parts and in turn is part of a larger whole. SoA are
centred in the notion of service-orientation, i.e. the entities provide their functionalities and skills in the form
of services that may be searched, requested and used by other entities (Melzer 2007).

The work on MAS, HMS and SoA provides a good framework for the new generation of control systems in the
sense that they support re-configurability and agility quite naturally. In this work, SoA systems are used to develop

*Corresponding author. Email: marco.mendes@fe.up.pt

ISSN 0020–7543 print/ISSN 1366–588X online

� 2012 Taylor & Francis

http://dx.doi.org/10.1080/00207543.2011.575892

http://www.tandfonline.com

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

modular and reconfigurable manufacturing control systems, taking advantage of its capabilities of encapsulation,
modularisation and interoperability. The resulting solutions are made of control entities that work together and use
service-orientation as their main co-ordination mechanism. In such distributed systems based on services,
aggregation and co-ordination methods are required, from the basic specification to the more complex engineering.
Particularly, the challenge is how to describe the processes that regulate the system behaviour and how to
synchronise and co-ordinate the execution of the services offered by distributed entities to achieve the desired
behaviour. A possible solution is to use Web Services Business Process Execution Language (WS-BPEL) (OASIS
2007), but it only specifies interactions among Web services and does not consider the internal logic of software
components and services. Additionally, it is heavily based on Web services technology, business-oriented and with
weak validation features. Other solutions that have been applied are based on 61131-3 languages (Bonfatti et al.
1995, Erickson 1996, IEC 2003) and IEC 61499 function blocks (Lewis 2001) with the objective of adapting
industrial standards to SoA. For the flexibility and expandability of the event-driven system software, programming
paradigms such as a Petri net are useful, excelling in the expression and analysis of dynamic system behaviour
(Kurihara et al. 2002). Similar to Petri nets, TNCES (timed net condition/event systems) are used for modelling
interaction-aware services (Popescu and Lastra 2008).

This paper considers a kind of High-level Petri net for the description and co-ordination of process behaviour
in service-oriented automation systems, taking advantage of the powerful theoretical foundations of this formalism,
which are completely based on the functional analysis theory. The proposed approach contributes to the
development of modular, collaborative and re-configurable service-oriented manufacturing systems by providing
important features, namely the formal specification and configuration of control models, the easy composition of
individual devices to build more complex systems and the integration of decision-making to support the conflict
resolution. It also supports the design, analysis, validation and simulation of the system behaviour during the design
phase and before its deployment into the operation phase.

The remainder of the paper is organised as follows: Section 2 overviews the concept of service-oriented
automation and particularly the main foundations of service-oriented control architecture for reconfigurable
production systems. Section 3 presents the kind of High-level Petri net used in this work and discusses its advantages
as a formal language for the process description and co-ordination in service-oriented systems. Section 4 introduces
a methodology to develop High-level Petri net based service-oriented control systems. Section 5 describes the case
study scenario used to illustrate the applicability of the proposed concepts and Section 6 describes the application of
the proposed High-level Petri net based service oriented control to the experimental case study. Finally, Section 7
rounds up the paper with the final conclusions.

2. Service-orientation for reconfigurable production systems

Service-orientation paradigm is a promising approach to introduce modularity and re-configurability in the
development of manufacturing control systems. This section briefly presents the basic concepts of service-oriented
systems and their promising application to the automation field, and overviews the basic architectural concepts of
a service-oriented production control system that will be later used to host the High-level Petri net process
controllers.

2.1 Service-oriented systems

The SoA paradigm is an abstract concept of a software architecture based on the idea of encapsulating resource
functionalities as services that can be offered, searched and used by other entities (the service requesters)
(Melzer 2007), without knowing their underlining implementation. For this purpose, providers publish the services
they want to offer in a service registry, and requesters search the services they want to use.

In these systems, a pertinent question is about how services interact. Service composition (Peltz 2003) is the
combination of single services and all the interaction patterns between them. Commonly, terms such as service
orchestration and choreography are used for this purpose. Orchestration is the practice of sequencing and
synchronising the execution of services, which encapsulate business or manufacturing processes (Jammes et al. 2005,
Jammes and Smit 2005b). An orchestration engine implements the logic for workflow-oriented execution and
sequencing of atomic services, and provides a high-level interface for the composed process. Service choreography
is a complementary concept, which considers the rules that define the messages and interaction sequences that must

International Journal of Production Research 1651

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

occur to execute a given process through a particular service interface. Some technologies used in orchestration and
choreography are Web Services Description Language (WSDL) for the abstract description of the services
interfaces, Simple Object Access Protocol (SOAP) for messaging and communication, and Universal Description,
Discovery and Integration (UDDI) for registry and discovery of services.

The SoA paradigm was originally applied in electronic commerce and business systems, using Web services
technology, but is being progressively adopted by other fields. The SoA principles fit well with collaborative
automation, in the sense of autonomous, re-usable and loosely-coupled distributed components, supporting
the vertical enterprise integration, from sensors and actuators level to the strategic level. The SIRENA Project
(Jammes and Smit 2005b) has contributed for the visibility of the SoA-based automation by providing Web Services
at device level through the extension of the SoA paradigm into the realm of low-level embedded devices, such as
sensors and actuators. The feasibility of this approach has been demonstrated through a proof-of-concept
implementation based on the Devices Profile for Web Services (DPWS), a device-oriented subset of the Web services
protocols.

Since then significant research has been going on covering the engineering of such systems, including the
modelling, semantic description and collaboration. Some research projects, such as the EU FP6 SOCRADES
(http://www.socrades.org/) contributed to the applicability of service-orientation principles in industrial automa-
tion. The current EU FP7 IMC-AESOP project (http://www.imc-aesop.eu) is expected to envision, design,
implement and demonstrate an SoA approach for monitoring and control of process control applications.

2.2 Reconfigurable service-oriented manufacturing control

The demand for manufacturing systems that exhibit a high degree of re-configurability imposes strong requirements
on the way the systems are designed, installed, operated and re-configured (Mendes et al. 2008). A service-oriented
manufacturing control system was designed to address this challenge, built upon modular, distributed and simple
mechatronic control entities, working under the service-orientation principles, i.e. providing a set of services
that represent their internal functionalities. The architecture identifies several types of entities that participate in the
control, as illustrated in Figure 1 (Mendes et al. 2008): Mechatronic, Process Manager, Intelligence Support and
Product Manager entities.

Mechatronic entities combine the mechanical, electronic and software components, allowing the local control
of the physical device according to a process model that describes a sequence of actions, for instance reading the
status of a sensor or starting the execution of a robot program. Smart Mechatronic entities are extensions
of Mechatronic entities that have embedded their own intelligent capabilities to support decision-making and
exception handling. In more complex systems, it is necessary to have entities that provide global process
co-ordination mechanisms. The Process Manager entities provide this kind of mechanisms, being able to co-ordinate
the execution and sequencing of atomic services based on a process description. A Process Manager entity can also
offer aggregated services of higher value, made of individual ones. The Intelligence Support entities provide decision
services to support flexibility, indirection, conflict resolution and unexpected situations in the logic process control,
for instance deciding which alternative resources services should be chosen. Product Manager entities are
responsible for managing the products execution, providing information about how to execute the products, based
on the product and process models.

In analogy to the LegoTM concept, grouping these elementary and inter-connectable entities allows for building
very complex systems, which are modular, reconfigurable and evolvable. In fact, the reconfiguration is achieved due
to the easy re-organisation of the entities and the services they provide, reflected by the modification of the
connections between the devices presented in the system.

The service-oriented entities use an anatomical-like structure, comprising several ‘organs’ (i.e. functional
modules), to provide a modular and event-driven design and deployment. The designed functional modules,
illustrated in the bottom right of Figure 1, are: Communication, Logic Controller, Decision and Exception Handler,
Device Interface and Event Router-Scheduler.

The Communication module is responsible for handling the interaction between the control entity and the other
entities, i.e. requesting and providing services. The Logical Controller module is responsible for managing the
process model that describes the entity’s behavior and for synchronising the specified actions, taking in
consideration the internal activities and the external events (e.g. services and I/O signals). The Decision and
Exception Handler module provides decision support for conflict resolution and unexpected situations. The Device
Interface module provides mechanisms to access the physical device, such as setting outputs or reading inputs. The

1652 J.M. Mendes et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

Event Router-Scheduler module, which can be compared with the nervous system of living beings in the sense of
carrying impulses from and to different organs, provides mechanisms to connect internal modules and to regulate
the operation of the control entity. Other modules can be included to perform other functionalities, it being only
necessary that they respect the rules specified by the Event Router-Scheduler module.

These modules are included in the control entity according to its needs and are possibly implemented using
different technologies. As an example, the inter-entity communication can be implemented using the SoA for
Devices (SOA4D) implementation of Device Profile for Web Services (DPWS) (OASIS 2009) or using any
other communication technology such as Common Object Requesting Broker Architecture (CORBA). For
more information on the architecture principles and how the entities are internally structured, please consult
Mendes et al. (2008).

3. High-level Petri nets approach to process description and control

In the previous section, the service-oriented manufacturing architecture and the internal structure of architectural
entities were described. However, the specification of the process description and control is needed, aiming to
achieve the co-ordination of service-oriented systems. Traditionally, the process control of such systems can be
defined in several languages, such as IEC 61131-3, IEC 61499 or WS-BPEL. However, it is clear that a more flexible
and powerful approach is necessary to support a low-cost and detailed design-implementation process of the service-
oriented manufacturing control systems, covering the specification, implementation, operation and reconfiguration
phases in an integrated manner. In the proposed control approach, a kind of High-level Petri net (ISO 2000),
tailored for service-oriented systems, is used as the kernel for the design, modelling, analysis, validation, simulation
and execution of process control in service-oriented systems. This section presents the main characteristics of this
kind of High-level Petri net and discusses its advantages over other approaches.

3.1 High-level Petri net formalism

Petri nets have recently emerged as a promising approach for modelling, simulating and analysing flexible and
automated manufacturing systems (Moore and Gupta 1996). The Petri net formalism, based on a well-founded

Figure 1. Reconfigurable service-oriented manufacturing control architecture.

International Journal of Production Research 1653

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

mathematical theory, has a very good capacity to graphically and formally represent and validate certain typical
relationships, such as concurrency and parallelism, synchronisation, resource sharing, mutual exclusion, monitoring
and supervision, which are typical specifications of manufacturing systems (Murata 1989, Zurawski and Zhou 1994).
A Petri net is a directed, bipartite graph, formally defined according to the following definition (Murata 1989).

Definition 1: A Petri net is a 5-tuple, PN¼ (P,T,F,W,M), where P¼ {p1, p2, . . . , pm} is a finite set of places,
T¼ {t1, t2, . . . , tn} is a finite set of transitions, F (P�T)[(T�P) is a set of arcs connecting places and transitions
(flow relation), W :F! {1, 2, 3, . . .} is a weight function associated to each arc, and M :P! {1, 2, 3, . . .} is the
marking of the Petri nets; note that P\T¼ 0 and P[T 6¼ 0.

In a Petri net each node is either a place or a transition. Tokens occupy places representing resources or states of
the system. The dynamic evolution of the Petri net, i.e. the change of a state or marking in the model, is described
through the enabling and firing rules, stated in the following definitions.

Definition 2: Considering .t as the set of input places for a transition t, this transition is enabled if and only if
8pi2 .t, m(pi)�w(t, pi), i.e. if each input place pi of the transition t is marked with at least w(pi, t) tokens, where
w(pi, t) is the weight of the arc from place pi to the transition t.

Definition 3: An enabled transition t fires reaching a new marking m by considering the rule,
m0(p)¼m(p)þW(t, p)�W(p, t), i.e. removing w(p, t) tokens from each input place p of the transition t, and
adding w(t, p) tokens to each output place p of the transition t.

The High-level Petri nets used in this work extend the ordinary Petri net formalism with additional features for a
more powerful representation of complex discrete event systems, notably considering timed transitions, stepwise
refinement, coloured representation, and associating transitions to service operations and I/Os, as illustrated in
Figure 2.

A modelled manufacturing system can comprise activities, represented by transitions, which take place at a much
faster (or slower) pace than others. Additionally, there may be a requirement for the introduction of transitions that
correspond to purely logical aspects of the system behaviour, which have no associated time (Colombo et al. 1997).
In these circumstances, two distinct types of transitions are considered:

. Immediate transitions, which fire in zero time, are used to model atomic activities, such as sending a
message.

Figure 2. Characteristics of the proposed high-level Petri net approach.

1654 J.M. Mendes et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

. Timed transitions, which have associated a delay time that specifies the amount of time that must elapse
before the transition fires, are used to represent time consuming activities, e.g. a robot operation; these
timed transitions have associated the notion of three-phase firing (Colombo et al. 1997).

A top-down methodology is used to achieve a formal specification of the logic control structure, refining
the model to include more system operation details, and consequently reaching the control at physical level.
For this purpose, timed transitions are exploded into a detailed sub-Petri net, so that a large Petri net can be
obtained. By enabling the timed transition, the associated sub-Petri net is executed; the transition fires when
the sub-Petri net has reached the terminate state. In Figure 2, the transition Robot:PickPlace represents
the pick and place operation that is actually a sequence of different steps, modelled by its explosion into a
sub-Petri net.

In industrial manufacturing applications, Petri net models may become very complex and difficult to handle,
due to a set of Petri nets’ weak points (Vyatkin et al. 2001, Leitão et al. 2003). This is particularly true when the
system presents many instances of the same element (e.g. resources), being the model increased in terms of
structure and components, in a complex manner. Moreover, a process-based model does not usually fully
correspond to the control programming behaviour (Peng and Zhou 2003), due to the complexity that has
normally to be represented. The use of coloured Petri net (Jensen 1992) principles in the proposed High-level
Petri net specification, adds another dimension to the control and especially to the flux of information, compressing
the representation of the system elements and supporting the modelling of more complex and bigger systems
(Feldmann et al. 1996, Holloway et al. 1997, Colombo et al. 2001). For this purpose, function guards are associated
to the transitions, representing restrictions to the type of data value, i.e. coloured marks that a transition can move
during its firing.

Aiming to support the connection of the model to the ‘real world’, input events (e.g. a signal indicating the status
of a sensor or a service request to start the execution of a robot operation) or output actions (e.g. a signal to an
actuator or a notification of a service execution) can be connected to transitions. Special ports are then defined, to
link the control model represented by a Petri net to several communication standards (e.g. I/O interface, service
interface and other control models). In other words, the ports are specific gates to synchronise control models, being
in some cases also related to the physical connectivity of the entities. Transitions may only be activated by the
enabling rule of the Petri net and the input conditions guided by specific I/Os or messages (if any) of the port. As an
example, the execution of the Petri net process model illustrated in Figure 2 is behind a connection port that
is triggered when the input event is received and of course the Petri net is in a favourable state. The existence of ports
in the Petri net models also allows connecting several models together (since their ports match together). This
permits building bigger and more complex systems in a modular way, and providing interoperability between
control modules.

3.2 Advantages of using High-level Petri nets

The use of the High-level Petri net formalism over other methodologies, such as the referred WS-BPEL language,
can be discussed and compared. The main advantages of using High-level Petri nets as language for the process
description and control logic for service-oriented production systems are:

. Makes easier the system modelling and understanding by using a graphical and mathematical notation.

. Aggregates, composes and co-ordinates behaviour models in a modular way.

. Simplifies the validation, analysis and simulation of the control system during the design phase.

. Makes easier the detection of conflicts and unexpected situations; significant information extracted from
the Petri net structure, e.g. the set of T-invariants, can be used to support the decision-making.

. Drives and synchronises the run-time behaviour of the entities, achieving a powerful and effective control
mechanism, since the Petri nets are represented and manipulated internally as a set of matrices.

. Controllers are easy to design, implement, maintain and re-configure, reducing substantially the
development time when compared with the traditional approaches.

. Adapts interfaces to the real physical I/Os and services, via the description of the transitions.

In this work, one of the major requirements for the development of service-oriented automation systems was the
compliance and implementation based on the DPWS specification and framework. The choice of Petri nets over
other forms that are more standard in automation and/or SoA (e.g. IEC 61131-3 and WS-BPEL), besides the

International Journal of Production Research 1655

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

referred inherent advantages, is related to the lower complexity of the nets in terms of implementation and
the hypothetical better performance for device integration. Another advantage was the flexibility of the Petri nets’
implementation and availability of the source code to introduce new features that would not be possible when limits
are given by standards.

One of the first documented implementations of Petri net based sequence controllers was developed in the early
1980s by Hitachi Ltd (Murata 1986). It was successfully used in real applications to control parts on an assembly
system and to control an industrial robot. However, the use of High-level Petri net formalism is principally
recommended at the process control level, mainly due to the real-time constraints imposed by the lower device
levels, which normally use PLCs running IEC61131-3 programs. The main focus of this work is not the lower-level
control of physical devices (i.e. controllers to be embedded in Mechatronic entities) but essentially the
description and execution of the process control (i.e. to be embedded in the Process Manager entities).
Meanwhile, envisaging supporting the vertical integration, the proposed engineering approach supports the
implementation of High-level Petri net engines for the entire range of enterprise control levels, from business levels
to the hardware device level.

4. Methodology to develop High-level Petri net based service-oriented control

In the proposed approach, High-level Petri net formalism is used as formal language to describe and execute the
behaviour of automation systems. Concretely, logic controller modules, embedded in (Smart) Mechatronic and
Process Manager entities, are engines that interpret and execute behavioural process models expressed in High-level
Petri nets. They are responsible for co-ordinating and synchronising the services’ execution of the whole process
until it reaches the desired goal.

The engineering methodology used to develop such High-level Petri net service-oriented controllers introduces
several innovation aspects, such as the integration of modelling, analysis, validation and execution tasks. This leads
to a reduction of the development time and cost, supporting also the capability to model the system behaviour from
the high-level control abstraction to the hardware control level. The proposed methodology comprises three
different phases or stages, notably the modelling, the analysis and validation, and the deployment and execution,
as illustrated in Figure 3.

The following sections describe the methodology phases.

Figure 3. Methodology for the development of high-level Petri net based service-oriented manufacturing systems.

1656 J.M. Mendes et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

4.1 Modelling

An important key issue in the development of High-level Petri net based service-oriented control systems is the
specification and configuration of the High-level Petri net control models, namely their description, co-ordination,
composition and synthesis. In this article the modelling of Petri nets is based on the fundaments expressed in
Mendes et al. (2009a) and Mendes et al. (2010).

The logic control model using High-level Petri nets is designed in a bottom-up manner according to the process
behaviour that is intended to describe and control, such as robots and conveyors. Each model represents all possible
discrete states of such a resource and also all the functions that this resource is able to expose as services, for instance
move-piece, pick-part and transfer-pallet. The High-level Petri net model is dependent on the physical resource
it represents (e.g. the behaviour associated to a conveyor is certainly different from the behaviour associated to a
robot), and the type of operation the physical resource performs (e.g. an industrial robot can perform different
operations, such as handling, welding or painting). The identification of the patterns associated to usual operations
allows building a library of High-level Petri net models that can be re-used later, simplifying the development
of modular solutions. In these models, the services representing time-consuming processes are associated to
transitions of Petri net models. Note that the concept of ports is used here to define a logical endpoint for the service
and to associate it to the connection points of physical devices.

The development of modular service-oriented manufacturing systems requires the composition of individual
High-level Petri net models into a co-ordination model, and consequently the composition of services. This task
follows the same rules of configuring a required resource’s layout, i.e. taking into account, among others, the
competition, concurrency and shared resources behavioural relationships. The result is a High-level Petri net model
of the whole system. The aggregation and composition by connecting control modules using the High-level
Petri net formalism is simplified through the use of interfaces, ports and a semi-automatic matching between them
(with ontologies and semantics playing a crucial role). The connection of control models must obey to a set
of reliable rules:

. Each model should have a compatible port interface to be connected to; not only a set of matching
operations but also a complementary functionality (e.g. transfer in and transfer out services).

. A connection can only be established after an agreement between the involved partners; in a more complex
scenario it may involve some negotiation.

. The connection itself needs ‘glue’ that corresponds to the communication that establishes, among others,
a message synchronisation pattern for the communication.

Figure 4 represents an example where two Petri nets (PN1 and PN2) are composed via the addition of
composition logic, resulting in the composed Petri net PN1[2. The generated new Petri net model is the composition
of several smaller ones, where individual models are maintained in their distributed units and synchronised together
via the network.

When the composition is done, new inter-logic is generated. In this example, two transitions from different
models are matched by connecting them via a place (and corresponding arcs). Additionally, the direction is also
needed (e.g. t2 from PN1 is the input of t1 from PN2). This approach, in addition to simplifying the development
of greater models, also facilitates the synchronisation of models viewed as singular entities.

The design of more complex systems requires that some processes should be co-ordinated hierarchically, for
example, to aggregate services based on individual ones. The Process Manager entities provide co-ordination and
aggregation of atomic services, and support the complex process flow and interaction of services in the system,
according to the process model or its synthesis based on smaller ones.

4.2 Analysis and validation

Analysis and validation of systems is crucial, not only to prove that they are free of errors, but also to test if they
perform the desired specifications. Using the powerful theoretical foundations of High-level Petri net formalism,
a formal analysis and validation of the designed service-oriented automation system can be performed. In fact, the
designed High-level Petri net models, including the information about the system operation (e.g. process plans,
resources, layout and control laws), will constitute a computational model that can be easily analysed, validated and
simulated in the design phase. This allows performing different experiments under distinct scenarios and proceeding
into the implementation phase only after the verification of the system correctness.

International Journal of Production Research 1657

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

Basically, two types of analyses can be made using the Petri net theory: the qualitative and the quantitative
analysis.

The qualitative analysis, based on the structural analysis of the model, allows verifying its structural and
behavioural properties, extracting conclusions about the functionality of the system, such as the existence of
deadlocks, the bounded capacity of resources, the conservativeness, the possible control sequences and the existence
of structural and behavioural conflicts in the system (Feldmann et al. 1996). These desirable specifications can be
verified by analysing the reachability tree or applying linear algebra methods (see Murata (1989) and Zurawski and
Zhou (1994) to get detailed information about how to extract properties from Petri net models). Additional analysis
can be performed by obtaining the T- and P-invariants from the incidence matrix. The analysis of P-invariants
allows confirming mutual exclusion relationships among places, functions and resources involved in the model
structure, and the analysis of the T-invariants allows the identification of work cycles. The analysis and validation
of coloured Petri nets is mainly performed through the analysis of P- and T-invariants analysis (Jensen 1992).

Since this work considers the hierarchical refinement of models, it is important to guarantee that after replacing
a timed transition by a more refined sub-net, the large Petri net preserves its live and bounded properties. Vallete has
proven that using stepwise refinement, all the properties of a large Petri net can be deduced from the analysis of the
initial Petri net and each one of the sub Petri nets (Vallete 1979).

The quantitative analysis allows simulating the system behaviour, therewith checking the system compliance
with specified performance indexes, such as the lead time to produce a product, the throughput of the system and
the percentual use of the resources. The information extracted from the temporal evolution of the High-level Petri
net control model reflects the temporal sequence of the system operation, being easy to discover cyclic evolution and
the existence of bottlenecks. This analysis allows to reproduce abnormal conditions (or at least, conditions that
cannot be easily created in real world) to debug the system behaviour.

The analysis of High-level Petri net control models, both quantitative and qualitative, allows validating the
specifications of the system’s behaviour, verifying the correctness of the models and verifying if the models fulfil
the desired specifications. It is also possible to refine strategies or specifications of the system, detecting errors and
mistakes before implementing the real production system. Only if the control model verifies all necessary properties
(structural and behavioural), is it possible to be sure that the model is correct from the functional point of view
and can be seen as a virtual representation of the system. In this case, the control model is ready to be used in the
execution phase, i.e. interpreted and executed by a High-level Petri net based engine.

4.3 Deployment and execution

The High-level Petri net control models, designed and validated in previous phases, should at this stage be deployed
into a controller platform to be executed.

Figure 4. Composition of Petri nets PN1 and PN2 resulting in PN1[2.

1658 J.M. Mendes et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

The real-time execution of High-level Petri net control models, aiming to achieve the control of service-oriented
systems, requires that an interpreter, i.e. the Logic Controller embedded in Smart Mechatronic and Process
Manager entities, can evolve their state and control the associated ports (services and I/Os), by setting actions and
responding to external events. For this purpose, the engine should detect the enabled transitions, which may only be
activated according to the enabling rule of Petri nets, and especially considering all input events connected to the
transition. The transition firing corresponds to the firing rule of the High-level Petri nets and the setting of
the actions associated with the fired transition (e.g. setting I/Os or notifying the execution of a service). After that,
the process model has to be updated to reflect the current state of the system.

Being able to define the services in the control entities, thoughts have to be carried about how and where the
control models should run. The High-level Petri net based Logic Controller module should be portable in the sense
of being included in software applications, embedded into PC or micro-controller devices and primarily in the
proposed modular structure of a service-oriented entity, performing the logic control behaviour of the automation
system. Simpler devices may embed already pre-compiled High-level Petri nets instead of having an interpreter,
since the logic and communication themselves don’t require to be changed at runtime. It is important to mention
that other controlling mechanisms, such as using IEC 61131-3 programming languages, can be used in parallel by
different devices. The only requirement is that the communication should guarantee the interoperability and
synchronisation between the different and distributed control mechanisms with the employment of Web services.

5. Description of the case study scenario

The specification of the High-level Petri net approach to drive the process control in service-oriented systems will be
illustrated using an experimental case study scenario. It is based on the FlexLink� Dynamic Assembly System 30,
depictured in Figure 5, which combines flow-oriented production control and modular automation with ergonomic
manual assembly solutions, providing flexibility and versatility.

The case study only considers the upper part of the transfer system, made of nine transfer units (conveyors)
of the unidirectional and cross types. The unidirectional transfer unit provides an input and an output port, and the
cross transfer unit provides transfers not only in the longitudinal but also in transversal axis. Moreover, the cross
transfer unit may be seen as a composition of two devices, namely a unidirectional transfer unit and a lifter with

Figure 5. Layout of the transfer system: (a) real system, (b) virtual representation.

International Journal of Production Research 1659

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

directional transfer capabilities. Each transfer unit has a RFID (radio-frequency identification) reader/writer for
identifying the pallets and transmitting information to them.

The pallets enter in the system through the transfer unit 4 and are conveyed using alternative paths to achieve the
two workstations associated to the transfer units 2 and 8. These transfer units have the possibility to halt the pallet
during the required amount of time for its processing. Lastly, the pallets are routed outside through the transfer unit
6.

This case study scenario will be used to accommodate a service-oriented control system, serving to illustrate
its specification and configuration, where the control is based on single High-level Petri net models that can be set
together to balance the overall operation of the transfer system.

6. Experimental validation

Aiming to illustrate the applicability of the proposed methodology for the development of High-level Petri net based
service-oriented control system, a control solution was designed for the described experimental case study.

6.1 Description and synthesis of the control model

The identification of the entities that are part of the system’s behaviour is crucial. Figure 6 represents the mapping
of the transfer units into service-oriented control entities, resulting in nine Mechatronic entities. In case of using
Mechatronic entities without the Logic Controller, additional Process Manager and Intelligent Support entities
must be used as controlling supervisors.

The expected behaviour of each unidirectional and cross transfer unit, constituting Mechatronic entities, needs
to be specified, using High-level Petri net control models.

The unidirectional transfer unit provides two ports (In and Out) to be connected to other devices, such as similar
transfer units, and a port to set and read the outputs/inputs of the device interface. The logic that controls the three
ports is done by a High-level Petri net model represented in Figure 7.

The expected behaviour is basically related to set ON or OFF the motor m1 according to the external requests
(e.g. start the transfer service) and the status of the sensor (which indicates that a pallet is available after a transfer
in operation). The two transfer ports can also be used to synchronise the transfer in and transfer out of pallets.
The High-level Petri net control model for units 2 and 8 considers a special transition that can be used to represent
the time execution during the workstation’s operation.

A more complex device is the cross transfer unit, depicted in Figure 8. It has six different transfer ports (of In and
Out types) and one device port. With the lifter unit down and using the motor m1 it is possible to transfer pallets
from port 1 to port 4. When the lifter is up, the transfer from port 2 to port 6 is done using the motor m2 and the

Figure 6. Control entities and global behaviour description.

1660 J.M. Mendes et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

transfer from port 3 to port 5 is done by setting the motor m2 with reverse polarity. The movement of the lifter
is done via the motor m3, using two sensors (s3 and s4) to indicate if the lifter is up or down.

Transfer units 1, 3, 4, 6, 7 and 9 are deployed using the control logic represented in Figure 8. Most of them (1, 3,
7 and 9) only require one path of the several available, the others being deactivated. On the other side, units 4 and 6

Figure 8. High-level Petri net control model for the cross transfer unit.

Figure 7. High-level Petri net control model for the unidirectional transfer unit.

International Journal of Production Research 1661

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

are made of several routing possibilities and the control model has now different options to receive and route

a pallet (for simplification, only the logic of ports 2 and 4 is present in Figure 8, the others being done in a similar
way). At this stage, a decision is required to choose one among different options that are described in the High-level

Petri net control model. For instance, a special Decision and Exception Handler module (or in alternative

an external Intelligent Support entity) may provide the necessary decision support, for example based on
the identification of the pallet (given by the RFID reader in the middle of the transfer unit) and in the production

plans.
A synthesised control model can be easily elaborated to represent the complete case study behaviour by

composing the individual High-level Petri net models designed for the transfer units, as illustrated in Figure 9.
As previously described, the solution uses the models as building blocks and connects them together according

to the external visible ports.
This transport system has different routing options for the pallets that can populate it. The main options are

transporting pallets to the desired workstations and passing through the system to another one that is connected

(e.g. when it is not necessary to execute any workstation service over the pallet). This involves the presence
of conflicts in the control, namely by supplying different paths for the pallets. The monitor places, presented in each

individual High-level Petri net model, are responsible for regulating the shared resources, forbidding the access of
a pallet to an occupied transfer unit. A further remark is the deactivation of some control branches of the cross

transfer units in the scenario, namely the ones in the corners, i.e. 1, 3, 7 and 9.

6.2 Analysis and validation of the control model

The modelling of the process behaviour for the individual devices, and posterior composition, was performed by
using the Continuum Development Studio (CDS) software tool (Mendes et al. 2009b). CDS, which is based on an

extensible Document/View framework, provides an engineering tool for service-oriented automation entities and
devices, for example, supporting the visual description, analysis, simulation and deployment. The analysis and

validation of the synthesised High-level Petri net service-oriented control model was also performed with CDS tool.
Figure 10 illustrates the structural and behavioural analysis of the synthesised control model.

This structural analysis shows that the designed High-level Petri net model is live, which guarantees the deadlock

freeness, i.e. the execution of a sequence of movements of a pallet in the transport system is done without stopping in
an undetermined intermediate state. It is also possible to verify that the Petri net model is:

. Reversible, which means that the model returns to the initial state, through well defined work cycles in the
execution of a sequence of pallet movements.

. Conservative, which means that once in the transfer system, the tokens representing pallets do not

disappear nor are new tokens created.
. Bounded, which means that the number of pallets in the system is limited to the maximum value of m, due

to the existence of a monitor place that regulates the available pallets in the system.

Figure 9. Synthesis of the complete control for the case scenario.

1662 J.M. Mendes et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

The analysis of the T- and P-invariants allows validating several systems’ specifications, namely:

. The set of P-invariants describes the mutual exclusion presented in each control model of the transfer units,
showing that, in a certain moment of time, a pallet can only occupy one of the systems’ transfer units.

. The set of T-invariants of the synthesised model for the transfer system describes possible sets of
operations. Translated into the system topology it may refer to all possible routing sequences of pallets
along this system.

. The work cycles represented by the set of T-invariants illustrates the sequences of possible operations,
supporting the decision-making system to achieve the best and shortest path between two locations.

The model may consider deadlock situations due to the presence of circular paths if all transfer units are
simultaneously occupied by pallets. The overlapping conflicts of these paths support the resolution of these issues
by activating alternative ways to route some pallets.

The quantitative analysis requires the introduction of the time parameter associated to the transitions. For this
purpose, deterministic distribution times have been used, since the system is composed of real hardware/software
components with deterministic time behaviour. The token game simulation performed in the CDS tool allows
to verify the evolution of the system behaviour and to extract performance indexes. As an example, it is possible
to verify how the system behaves when different routings are selected to convey the pallets.

6.3 Deployment and execution of the control model

With the CDS it is possible to deploy the designed control model into a service-oriented device running a Petri
net engine. The Petri net file is combined with device and service information (that are represented in the model) to
generate deployment files, which are uploaded to a network-connected device. The device is then ready to request
and/or be requested services in the network according to the designed model.

The examples described in this case study are based on mechanisms for the pallet transfer, but the same control
solution can be extended to other control purposes and modular automation processes, in the sense of building more

Figure 10. Structural analysis of the control model using the CDS tool.

International Journal of Production Research 1663

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

complex systems. As an example, the transfer units can be connected to other transfer units or compatible devices,
such as cross transfer units and robots with transfer capabilities. The simplicity and extensibility that the High-level
Petri net approach offers in the service aggregation and composition contributes to achieve more modular, scalable
and reconfigurable automation control solutions.

7. Conclusions

The paper introduces a High-level Petri net based approach for the process description and co-ordination of service-
oriented manufacturing systems, aiming to achieve modularity, flexibility and re-configurability. The proposed
approach constitutes an integrated methodology to develop these service-oriented systems, allowing the analysis,
validation and simulation during the design phase before the deployment phase. It also supports the execution of
these systems by powering logic controllers that interpret and run High-level Petri net process behaviour models,
which co-ordinate the services provided by the distributed entities.

Using elementary High-level Petri net based control entities it is possible to build systems, which can be grouped
to constitute larger and more complex systems. This feature allows the easy development of complex systems and
supports its reconfiguration and the evolution during its life-cycle. Special attention was devoted to the features
of the kind of High-level Petri nets used to develop the control models, and the procedures for their analysis and
simulation, contributing to achieving the demand for modularity, flexibility and re-configurability. The proposed
approach introduces important innovations, namely the formal specification and configuration of control models,
the easy aggregation of individual devices to build more complex systems.

Future work is being devoted to the integration with 2D/3D engineering tools to support an even easier design
of service-oriented manufacturing systems and to the integration of High-level Petri net kernels with DPWS to be
embedded in portable controllers. Evaluation of the proposed work is intended to follow the implementation on real
industrial equipment as well as qualitative and quantitative comparison to existing solutions.

Acknowledgements

The authors would like to thank the European Commission and the partners of the EU ICT FP7 projects ‘ArchitecturE for
Service-Oriented Process – Monitoring and Control’ (IMC-AESOP) and ‘Co-operating Objects Network of Excellence’
(CONET) for their support.

References

Bonfatti, F., Gadda, G., and Monari, P.D., 1995. Re-usable software design for programmable logic controllers. ACM

SIGPLAN Notices, 30 (11), 31–40.
Colombo, A.W., Carelli, R., and Kuchen, B., 1997. A temporised Petri net approach for designing, modelling and analysis

of flexible production systems. International Journal of Advanced Manufacturing Technology, 13 (3), 214–226.
Colombo, A.W., Neubert, R. and Schoop, R., 2001. A solution to holonic control systems. Proceedings of the 8th IEEE

international conference on emerging technologies and factory automation, 15–18 October 2001 Antibes-Juan les Pins,

France. Piscataway, NJ: IEEE, 489–498.
Deen, S., 2003. Agent-based manufacturing: Advances in the holonic approach. Berlin/Heidelberg: Springer-Verlag.
Erickson, K., 1996. Programmable logic controllers. IEEE Potentials, 15 (1), 14–17.

Feldmann, K., Schnur, C., and Colombo, A.W., 1996. Modularised, distributed real-time control of flexible production cells,

using Petri nets. International Journal of IFAC Control Engineering Practice, 4 (8), 1067–1078.

Holloway, L., Krogh, B., and Giua, A., 1997. Survey of Petri net methods for controlled discrete-event systems. Discrete-Event

Systems: Theory and Applications, 7 (2), 151–190.
IEC Standard, 2003. IEC 61131-3, Programmable Controllers – Part 3: Programming Languages.

ISO/IEC Standard, 2000. High-level Petri Nets - Concepts, Definitions and Graphical Notation. Final Draft International

Standard ISO/IEC 15909.

Jammes, F. and Smit, H., 2005. Service-oriented paradigms in industrial automation. IEEE Transactions on Industrial

Informatics, 1 (1), 62–70.
Jammes, F. and Smit, H., 2005. Service-oriented Architectures for Devices – the SIRENA view. Proceedings of the 3rd IEEE

international conference on industrial informatics, 10–12 August 2005, Perth, Australia, 140–147.

1664 J.M. Mendes et al.

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

Jammes, F., Smit, H., Lastra, J.L.M., and Delamer, I., 2005. Orchestration of service-oriented manufacturing processes.
Proceedings of the 10th IEEE international conference ETFA, 1, 19–22 September 2005, Catania, Italy, 617–624.

Jensen, K., 1992. Coloured Petri nets: Basic concepts, analysis methods and practical use. Monographs on Theorical Computer
Science, 1.

Kurihara, K. et al., 2002. Factory automation control software designing method based on Petri nets. International Journal of
Production Research, 40 (15), 3605–3625.

Leitão, P., et al., 2003. Formal specification of holonic control system ADACOR, using High-level Petri nets. Proceedings of the
1st IEEE international conference on industrial informatics, 21–24 August 2003, Banff, Alberta, Canada, 263–272.

Lewis, R., 2001. Modeling distributed control systems using IEC 61499 – applying function blocks to distributed systems.

Institution of Electrical Engineers, Stevenage, UK.
Marco, M.J. et al., Service-oriented control architecture for reconfigurable production systems. In: 6th IEEE International

Conference on Industrial Informatics, 2008, 13–16 July 2008, Daejeon, South Korea, 744–749.

Mehrabi, M.G., Ulsoy, A.G., and Koren, Y., 2000. Reconfigurable manufacturing systems and their enabling technologies.
International Journal of Manufacturing Technology and Management, 1 (1), 114–131.

Melzer, I. et al., 2007. Service-orientierte Architecturen mit Web Services [Service-oriented architectures with web services], 2nd
ed., Elsevier, Spektrum Akademischer Verlag.

Mendes, J.M., et al., 2010. Composition of Petri nets models in service-oriented industrial automation. Proceedings of the 8th
IEEE international conference on industrial informatics, 13–16 July 2010, Osaka, Japan, 578–583.

Mendes, J.M., et al., 2009. Customisable service-oriented Petri net controllers. Proceedings of the 35th annual conference of the

IEEE industrial electronics society, 3–5 November 2009, Porto, Portugal, 4341–4346.
Mendes, J., et al., 2009. Software methodologies for the engineering of service-oriented industrial automation: The continuum

project. Proceedings of the 33rd IEEE international conference on computer software and applications, 20–24 July 2009,

Seattle, Washington, 452–459.
Moore, K.E. and Gupta, S.M., 1996. Petri net models of flexible and automated manufacturing systems: a survey. International

Journal of Production Research, 34 (11), 3001–3035.

Murata, T., et al., 1986. A Petri net based controller for flexible and maintainable sequence control and its application in factory
automation. IEEE Transactions on Industrial Electronics, 33 (1), 1–8.

Murata, T., 1989. Petri nets: Properties, analysis and applications. IEEE, 77, 541–580.
OASIS Standard, 2007. Web Services Business Process Execution Language Version 2.0.

OASIS Standard, 2009. Devices Profile for Web Services Version 1.1.
Peltz, C., 2003. Web Services Orchestration. Hewlett Packard, Co.
Peng, S. and Zhou, M., 2003. Sensor-based stage Petri net modelling of PLC logic programs for discrete-event control design.

International Journal of Production Research, 41 (3), 629–644.
Popescu, C. and Lastra, J., 2008. Modelling interaction-aware services from an orchestration viewpoint. Proceedings of the

6th IEEE international conference on industrial informatics, 13–16 July 2008, Daejeon, South Korea, 780–785.

Shukor, S.A. and Axinte, D.A., 2009. Manufacturability analysis system: Issues and future trends. International Journal
of Production Research, 47 (5), 1369–1390.

Vallete, R., 1979. Analysis of Petri nets by stepwise refinements. Journal of Computer and Systems Science, 18, 35–46.

Vyatkin, V., Hanisch, H. and Ivanov, G., 2001. Application of formal methods for deep testing of controllers in holonic systems.
Proceedings IEEE international conference on information technology in mechatronics, 1–3 October 2001, Istanbul, Turkey,
53–58.

Wooldridge, M., 2002. An introduction to multi-agent systems. John Wiley & Sons.

Zurawski, R. and Zhou, M., 1994. Petri nets and industrial applications: A tutorial. IEEE Transactions on Industrial Electronics,
41 (6), 567–583.

International Journal of Production Research 1665

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
IP

B
]

at
 0

3:
46

 0
9

Ju
ne

 2
01

2

