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Abstract—In this paper, we propose a method that can identify
challenging music samples for beat tracking without ground
truth. Our method, motivated by the machine learning method
“selective sampling”, is based on the measurement of mutual
agreement between beat sequences. In calculating this mutual
agreement we show the critical influence of different evaluation
measures. Using our approach we demonstrate how to compile
a new evaluation dataset comprised of difficult excerpts for
beat tracking and examine this difficulty in the context of
perceptual and musical properties. Based on tag analysis we
indicate the musical properties where future advances in beat
tracking research would be most profitable and where beat
tracking is too difficult to be attempted. Finally, we demonstrate
how our mutual agreement method can be used to improve beat
tracking accuracy on large music collections.

Index Terms—Beat tracking, selective sampling, evaluation,
ground truth annotation.

I. INTRODUCTION

The task of automatic extraction of beat times from music
signals is a mature research topic within music information
retrieval (MIR). The aim of a beat tracking system is to
recover a sequence of time instants consistent with how a
human might tap their foot in time to music. Used in this
way beat trackers have become standard tools within other
MIR problems (e.g. structural segmentation [1], chord detec-
tion [2], music similarity [3]) by enabling “beat-synchronous”
analysis of music. While many different techniques have been
presented for beat tracking, in particular over the last five
years (e.g. [4], [5], [6], [7], [8], [9]), analysis of beat tracking
accuracy reveals there has been little significant improvement
over the method of Klapuri et al [10] from 2006 which
is still widely considered to represent the state of the art.
One reason for this apparent stagnation might be that beat
tracking has simply reached the upper limit of performance
(the so-called “glass-ceiling” effect) and no further gains in
performance are possible. Perhaps a more likely explanation
lies in the data used to evaluate beat trackers. We believe the
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continual re-use of existing datasets (e.g.[10], [11], [6]) has
led to a (somewhat) inevitable over-fitting of beat tracking
algorithms to the limited data which is available. Furthermore,
within these existing databases, there is a bias towards musical
styles considered easier for beat tracking, including: rock, pop
and electronic dance - genres typically characterized by clear
percussive content and steady tempi. This imbalance towards
easier musical styles means that challenging excerpts, where
beat tracking algorithms fail, are typically treated as outliers
and little effort is made to determine how to process them.

Given the hypothesis that a glass ceiling in beat tracking
exists due to a lack of diversity in annotated data, an appro-
priate strategy would be to annotate more musical examples.
However the manual annotation of beat locations can be
extremely difficult and time-consuming. Therefore it makes
sense to restrict annotation to music examples which are in
some way informative for the beat tracking problem. To this
end our approach is to focus on the selection of musical
pieces that are shown to be difficult for current state of the
art systems. Since the goal is to subsequently derive ground
truth annotations, this estimation of difficulty must be achieved
without any ground truth annotations.

While some effort has been made to estimate rhythmic
difficulty, this has typically been limited in scope focusing
on measures of beat strength [12], [13]. Furthermore these
methods have not been used for the selection of music samples
to annotate. A related study of difficulty in beat tracking by
Grosche et al. [14] considered local properties of compositions
that cause beat trackers to stumble, whereas our interest is in
the global properties of musical excerpts.

In machine learning research, selective sampling approaches
have been proposed to select informative samples in absence of
ground truth [15]. In this paper, we follow the Query by Com-
mittee concept [16] and assign a degree of difficulty to a given
piece by measuring the mean mutual (dis-)agreement (MMA)
between a set of state of the art beat tracking approaches. In
effect, when there is no consensus among the beat tracking
algorithms we consider that the music example in question
might be difficult. When assembling our committee of beat
trackers, we take into account that the committee should be
characterized both by high accuracy and diversity [17]. Similar
concepts have been evaluated in the domain of speech process-
ing [15], and Mandel et al. [18] presented an approach which
includes user interaction to identify informative samples for
training a music retrieval system. However, to our knowledge,
selective sampling has not yet been applied in the evaluation
of music signal processing tasks like beat tracking.

While the basic concept of selective sampling for beat
tracking evaluation was introduced in [19], an important aspect
we consider in this paper is to what extent the musical prop-
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erties that make beat trackers fail coincide with the properties
that make tapping to a piece difficult for human listeners.
To this end we used the proposed MMA method to build
a dataset of samples that are problematic for beat trackers.
Listeners were then asked to tap the beat of those pieces
in a spontaneous manner, to describe the signal properties,
and eventually to determine ground truth beat annotations.
This data was used to investigate similarities and differences
between human listeners and automatic beat tracking. Results
demonstrate that among the files shown to be difficult for
beat trackers some were perceptually easy for human tappers,
while those files characterized by expressive timing and/or
quiet accompaniment were considered just as difficult. We
believe that the highest potential for improving beat tracking
technology lies in determining methods to address those files
that cause beat trackers to fail but which contain a perceivable
beat, rather than attempting to address those for which human
tappers also struggle to infer the beat.

The remainder of the paper is structured as follows. In
Section II, we motivate the usage of mutual agreement for
detecting difficult samples and address issues of evaluation
measures and the choice of beat tracking algorithms for mutual
agreement computation. In Section III, we use an existing
beat tracking database to determine system parameters for
the MMA computation, and demonstrate the validity of our
approach. In Section IV, we give details about a new dataset
compiled for this publication and the annotation process. In
Section V, we investigate the difficulty of the new dataset both
for automatic beat tracking and human listeners. In Section VI,
we describe the application of our MMA method to identify
and reject musical pieces where beat tracking will fail, and
furthermore demonstrate how beat tracking performance can
be improved directly by inspecting the properties of the beat
tracking committee. Finally, in Section VII we give a summary
of the principal findings and an outlook towards future work.

II. MUTUAL SEQUENCE AGREEMENT

Our approach is motivated by the Query by Committee
concept [16], and provides a method for selecting informative
data samples to add to existing training data. While most beat
tracking systems are optimized manually, we can compare this
optimization process with a learning process, and the current
state of the art can be considered a committee of learners that
can profit from selecting informative new training samples.

A graphical representation for estimating the difficulty of
a music sample for beat tracking when ground truth is given
is shown in Figure la. Here, a set of [N beat sequences is
calculated for a given sample using N different beat trackers.
These beat sequences are then compared with the given ground
truth of the piece using an evaluation measure, and the mean
ground truth performance of all beat trackers, MGP, on this
piece can serve as an estimate of its difficulty. Note that this
is different from calculating the mean performance of a single
beat tracker over an entire data set, which can serve as an
indicator of its individual performance.

However, when no ground truth is given, an unknown
sample might be labeled as “interesting” for beat tracking if
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(a) Ground truth given (b) no ground truth

Figure 1: Setups for determining difficulty of a sample for N = 4
beat trackers, (a) with and, (b) without ground truth.

a committee of beat trackers disagree in their estimates of
the beat. Hence, the beat sequences of the IV beat trackers
are compared with each other, creating a complete graph with
N(N—1)/2 mutual agreement values on its edges, as shown in
Figure 1b. The mean weight of the edges is equal to the mean
mutual agreement between the beat sequences, MMA, which
we investigate as a method for estimating the beat tracking
difficulty. When specifically referring to beat tracking outputs
we will use the notation BT-MGP and BT-MMA.

To use this technique for beat tracking we must address two
important decisions: first, which evaluation method to use to
compute the mutual agreements between committee members
and second which beat trackers to include in the committee.

A. Evaluation Measures

Our mutual agreement measure relies on the use of an
objective beat tracking evaluation method to determine the
relationship between pairs of beat sequences. The selection
of this evaluation method poses an immediate problem since
there is no commonly accepted technique for measuring beat
tracking performance. This lack of consensus has led to many
approaches being developed, each with differing parameters
and/or methodologies. For a review and further discussion,
see [20]. The variations among evaluation methods arise due
to differing hypotheses on how to address the localization
between beat times and annotations (e.g. by the use of toler-
ance windows), and how to contend with ambiguity over the
validity of metrically related sequences. The eventual choice of
a specific evaluation method is usually made in the context of
a particular application. For example, when evaluating a real-
time beat tracking system, a continuous relationship between
beats and annotations may be an important criterion [21]. Or,
for chord recognition, permitting many different interpretations
of the beat may be detrimental to chord detection accuracy [22]
hence it may be advisable to restrict the range of alternate
interpretations of the beat.

Our motivation for using a beat tracking evaluation method
is somewhat different, since our primary interest is not in
identifying where beat sequences agree with each other per
se, but rather in finding cases where they disagree. While
this disagreement could be measured in terms of ambiguity
in metrical level or beat phase, this is of limited use since
these beat sequences could be considered “somehow” related.
Of greater importance for our application is finding when the
beat sequences are completely unrelated. This is based on
our intuition that beat trackers are usually built out of similar

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.



This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

components, and therefore a significant lack of consensus in
their outputs should be indicative of something interesting
in the input signal. Based on this reasoning, the choice of
evaluation method may appear trivial, since we could simply
look for cases where the evaluation score was close to 0%
for any evaluation method. To explore this hypothesis further
we briefly address the properties of three evaluation methods
which cover the main types of techniques currently used.
For each we describe its basic functionality and indicate the
conditions under which a minimal accuracy score can occur.

F-measure [6]: Beats are considered accurate if they fall
within a +70ms tolerance window around annotations. Accu-
racy in the range 0% to 100% is measured as a function of the
number of true positives, false positives and false negatives. If
the beat sequences are tapped at metrical levels related by a
factor of two (but otherwise well aligned), this causes the score
to drop from 100% to 66.7%. A score of 0% can only occur
if no beat times fall within any tolerance windows. The most
likely scenario for this score is if the beat sequences tapped
in anti-phase (i.e. on the “off-beat”). Completely unrelated
beat sequences typically score around 25% by virtue of beats
arbitrarily falling within the range of tolerance windows [20].

AMLLt [11]: A continuity-based method, where beats are
accurate when consecutive beats fall within tempo-dependent
tolerance windows around successive annotations. Beat se-
quences are also accurate if the beats occur on the off-beat, or
are tapped at double or half the annotated tempo. The range of
values for AMLt is 0% to 100%. A score of 0% can only occur
if no two consecutive beats fall within the specified tolerance
windows. This is most likely the result of the beat sequences
being related by an unspecified metrical relationship, e.g. “2
against 3” [23]. As with F-measure, unrelated sequences do
not score 0%, being closer to 18% [20].

Information Gain [23]: Accuracy is determined by cal-
culating the timing errors between an annotation and all
beat estimations within a one-beat length window around the
annotation. Then, a beat error histogram is formed from the
resulting timing error sequence. A numerical score is derived
by measuring the K-L divergence between the observed error
histogram and the uniform case. This method gives a measure
of how much information the beats provide about the annota-
tions. The range of values for the Information Gain is 0 bits to
approximately 5.3 bits, where the upper limit is log, (K') for K
histogram bins. Maximal Information Gain is the result of all
beat error measurements falling within a single histogram bin,
hence the choice of K is important and should be neither too
large nor too small; K = 40 histogram bins is an appropriate
choice [23]. An Information Gain of O bits is obtained, in the
limit, when the beat error histogram is uniform, i.e. where the
beat sequences are totally unrelated.

Based on properties of these evaluation methods, the In-
formation Gain approach would appear most suited to our
purpose since it is the only method guaranteed to be close
to 0 only in the condition where the beat sequences have
no meaningful relationship. However, to confirm this empir-
ically we retain all three evaluation methods throughout the
subsequent analysis. In our notation, we will add a subscript
z € {F, A, D} for F-measure, AMLt and Information Gain,
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Figure 2: Ground truth annotations for two songs shown as dotted
vertical lines. Beat estimations for five algorithms are superimposed
as crosses. The tables list the ground truth performance according to
the three evaluation methods for each songs, and their mean. A and
F' are measured in % while D is measured in bits.

respectively, whenever a distinction is of importance (e.g. BT-
MMAp for BT-MMA using Information Gain).

To illustrate the differences in beat tracking outputs and
the effect of different evaluation methods we examine two
examples. The first, in Figure 2a, shows beat estimations that
strongly agree with one other. The third sequence tapped at
twice the tempo, causes an expected drop in F-measure but
the mean performance of all algorithms against the ground
truth is very high. However in Figure 2b, there is much less
agreement between the beat sequences and this is reflected in
the performance against the ground truth. Despite this mutual
disagreement, the mean performance of the algorithms for F-
measure and AML is still around 35%. While the Information
Gain (D) is measured on a different scale, it is much closer
to its theoretical lower limit.

B. Choice of committee members

In the first phase of this research project, implementations
of various beat tracking algorithms were collected including
those freely available online and others kindly provided by
the authors of the systems on request. In total we compiled
an initial committee of 16 beat trackers listed in Table I.

In practice, this required considerable effort to install appro-
priate system components and operating systems necessary to
make all of the algorithms run. Furthermore there was both
considerable variability in the computational complexity of the
algorithms, with some algorithms slower than the fastest by
up to two orders of magnitude, and large variation in beat
tracking performance (see Section III). Towards making the
results of this paper more easily reproducible we propose a
method to select a subset of these algorithms. The selected
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algorithms should be characterized by good performance, but
at the same time care should be taken to include approaches
that complement each other. The goal is to obtain a small
but diverse committee, where each implementation is publicly
available and not too demanding in terms of execution time.
To find a subset of the N = 16 beat tracking algorithms
we make use of an oracle method. The first stage in this
method is to run all beat tracking algorithms on an existing
annotated dataset recording the per track performance of each
algorithm. The first member of the committee is the algorithm
which performs best in the mean across the entire dataset. The
next member to enter to the committee is determined by an
iterative method. Each remaining algorithm is taken in turn
and it is combined with those currently in the committee —
in this case just the first algorithm. The oracle performance
is recorded by selecting the most accurate algorithm per track
in the dataset. Whichever of the remaining algorithms gives
the greatest improvement in oracle performance is the next to
enter the committee. This procedure is iteratively continued
until all beat trackers have been included. We can then look at
the order in which the algorithms entered the committee and
the improvement in performance achieved by their inclusion.
We can determine a subset by fixing the number of committee
members at the point where improvements offered by addi-
tional members is small. A choice of beat trackers guided by
this strategy takes into account both accuracy and diversity.

III. APPLYING MMA TO AN EXISTING DATASET

The largest dataset for beat tracking evaluation to date was
introduced by Gouyon [24]. It contains a total of 1360 excerpts
from different styles of music and will be referred to as
Datasetl throughout this paper. We use Dataset] to investigate
the accuracy and diversity of the available 16 beat trackers.
Based on these results we will i) select our committee of beat
trackers ii) give a proof of concept for our MMA method to
assess difficulty for automatic beat tracking and iii) determine
the most appropriate evaluation method.

A. Accuracies of potential committee members

In Table I the individual ground truth performance of each
of the 16 beat trackers is given for Datasetl. In order to
compare the beat trackers, a one-way ANOVA followed by
a series of t-tests with level of significance of a = .05 was
performed. Tukey’s HSD adjustment was used to account for
the effect of multiple comparisons. The most accurate beat
tracking results without statistically significant differences are
depicted in boldface.

It can be seen from Table I that a subset of beat trackers
perform significantly better than most of the others. The
set of best beat trackers varies slightly depending on the
evaluation measure which is applied. Comparing the individual
accuracy values of the approaches with the mean of all
beat trackers shown in the last row of Table I we can see
that some approaches perform worse than the mean for all
evaluation measures. When looking towards finding a subset
of committee members we recall the need for accuracy in beat
tracking, since poorly performing beat trackers can lead to an
over-estimation of difficulty — where all files appear difficult.

Table I: Ground truth performance of each individual BT on
Datasetl. Bold numbers indicate best performances.

BT AMLt (%)  F-measure (%) Inf. Gain (bits)
Aubio (AUB) [25] 50.6 494 1.58
Beatit (BIT) [26] 61.0 52.7 1.62
Beatroot (DIX) [6] 70.8 61.7 1.98
BeatUJaén (BUJ) [27] 41.6 33.9 1.18
Boeck (BOE) [8] 58.7 66.6 1.98
Davies (DAV) [5] 75.9 62.8 2.25
Degara (DEG) [9] 77.7 65.3 2.26
Ellis (ELL) [4] 60.0 55.1 1.76
Essentia (ESS) [28] 57.3 51.7 1.43
Hainsworth (HAI) [11] 59.6 51.1 1.84
IBT causal (IB1) [29] 58.0 55.2 1.67
IBT non-causal (IB2) [29] 73.8 60.5 1.92
Klapuri (KLA) [10] 71.7 65.5 2.32
Lee (LEE) [30] 26.4 48.8 1.09
Scheirer (SCH) [31] 49.0 56.2 1.69
Stark (STA) [21] 71.0 59.5 2.03
Mean 60.6 56.0 1.79

27t 1 s 10
(/)2.65 ”
g 26 =88 Lagy
g2.55 gSG %
5 24 an,‘“‘ 070;"

235 73; i

n

5 10 15 5 10 15
NUMBER OF BT IN ORACLE NUMBER OF BT IN ORACLE

(b) AMLt

5 10 15
NUMBER OF BT IN ORACLE

(a) Information Gain (c) F-measure

Figure 3: Development of the oracle scores for the three evaluation
measures. The performance of the chosen committee is depicted by
a cross and the vertical line marks the point with 5 BT in the oracle.

B. Selecting the committee

While in previous work [19] the way we chose the com-
mittee members was not documented, we now illustrate the
effect of choosing the committee members based on oracle
performances as described in Section II-B. The development
of the oracle scores are depicted in Figure 3. A saturation effect
can be observed when the number of beat trackers in the subset
increases, and we decided to limit the number of beat trackers
to five (as shown by the vertical dotted line). The order in
which algorithms entered the oracle slightly varied between
the evaluation measures. We initially decided to choose the
five beat trackers based on their average ranking obtained
from the three evaluation measures. This gave [KLA, DEG,
HAI, BOE, IB2]. This ranking results in a higher diversity
of approaches than by ordering according to ground truth
performance. For example, the DAV! algorithm is not among
the best five methods in the oracle. This is caused by similarity
between the DAV and DEG algorithms which share the same
input feature and tempo detection method. Therefore, once

'Note, we use an improved version of the original algorithm [5] which is
implemented as a Sonic Visualiser plugin.
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DEG has entered the committee DAV offers little additional
improvement. However the fundamentally different methods
of HAI and the BOE, which are less accurate overall, are able
to increase the diversity of the committee.

Despite the improvement offered by HAI and BOE, we
chose to exclude these approaches from the committee on
the grounds of portability, computation time and public avail-
ability. Instead, we use the widely available approaches of
Dixon (DIX) [6] and Ellis (ELL) [4]. Their inclusion leads to
non-significant decrease in oracle performance (marked by a
cross in Figure 3) by 0.63%, 0.13% and 1.15% for Information
Gain, AMLt, and F-measure, respectively. We hope that the
chosen committee: [KLA, DEG, IB2, DIX, ELL] will enable
other researchers to most easily reproduce results presented in
this paper.

C. MMA computation

After the selection of committee members, mutual agree-
ment between the sequences obtained from the 5 beat trackers
were computed using the three evaluation measures described
in Section II-A. Then, for each evaluation measure, mutual
agreements for a particular piece were summarized in a mutual
agreement histogram with 11 bins spanning the whole range of
values of the particular evaluation measure (e.g. 0% to 100%
for AMLY). In the left column of Figure 4 these histograms
are depicted for Dataset]l. The histograms are sorted by their
BT-MMA value for each evaluation method. Dark colors in
the histogram plots indicate a high population of the specific
histogram bin. In the right column of Figures 4, scatter plots
of BT-MMA against mean ground truth performance BT-MGP
are shown. For our application, BT-MMA should predict BT-
MGP at least for difficult pieces. These are located at low
BT-MGP values, while easier pieces are found at higher BT-
MGP values, i.e. in the region where the beat trackers perform
well in the mean for a specific sample.

Comparing the scatter plots for the three evaluation mea-
sures we can observe that the BT-MMAp in Figure 4b is
characterized by the highest correlation with the BT-MGP.
This correlation is particularly strong for low BT-MMAp
values, which indicates that low BT-MMAp can reliably
predict low ground truth performance. The other two scatter
plots (Figures 4d and 4f) show an increased correlation only
for high ground truth performance, i.e. in the upper right corner
of these scatter plots. Based on this evidence it is apparent
that F-measure in particular cannot be used to predict poor
performance. This differing behavior of Information Gain on
the one side and F-measure and AMLt on the other can be
attributed to Information Gain having an unambiguous zero
value, as shown in Section II-A.

By observing the histogram plots in the left column of
Figure 4, it is apparent that only the Information Gain has a
continuous transition from histograms centered at low values
to histograms centered at high values. The other two measures
are characterized by generally flatter histograms, and the F-
measure histograms are often characterized by simultaneous
high values for 100% and 66.7%. This can be ascribed to beat
sequences at metrical levels related by a factor of two (see
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Figure 4: Left side: Each column of the image depicts a histogram
obtained from 5 * 4/2 mutual agreements of the 5 beat sequences
for each song in Datasetl. The histograms are sorted by their mean
values (BT-MMA). Dark colors indicate high histogram values. Right
side: MMA versus MGP scatter plots for each evaluation method.

II-A) which score an F-measure of 66.7%. These characteris-
tics imply that the computation of mean mutual agreement is
most reliable for the Information Gain. Hence, we conclude
that using Information Gain for the MMA computation is
superior to either F-measure or AMLt.

IV. BUILDING A CHALLENGING DATASET

We start from the assumption that adding diversity to ex-
isting collections is necessary to facilitate future improvement
in beat tracking systems. To this end we now describe a new
dataset and compare its properties to those of Datasetl. The
new dataset was compiled by choosing a set of CDs and
extracting 40s of each song. We chose music with the goal of
obtaining a sufficient number of files that could be considered
difficult in terms of their rhythmic properties. We concentrated
on styles of Western music, because it is not always apparent
how the notion of beat is used in music of other cultures. The
CDs contained a variety of styles including classical music,
Romantic music, film soundtracks, blues, chanson, and solo
guitar compositions. We extracted a total of 678 excerpts.

A subset of the 678 pieces was chosen for manual an-
notation with the goal of selecting pieces that cause the
largest problems to the beat tracking approaches. We decided
to choose samples with BT-MMAp values < 1 bit, which
resulted in 270 samples. The choice of this threshold was
motivated by observing that for values < 1 bit, the histograms
in Figure 4a have a clear peak and the correlation with BT-
MGPp in Figure 4b is strong. We do not intend for this
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threshold to be interpreted as a globally valid division between
easy and difficult files, rather it was chosen empirically to
maximize the probability of obtaining only difficult files.
In order to cross-check the assumption of these files being
difficult, we added 19 samples with the highest BT-MMAp
value which should be characterized by a high BT-MGP. This
set of 289 pieces chosen for annotation will be referred to as
Dataset2 throughout the remainder of the paper.

The annotation process followed a detailed protocol, which
is available on the paper’s website [32]. The first step consists
of recording spontaneous taps from all authors of this paper
for all 289 pieces. The taps enable us to examine the ability of
listeners to follow the beat in a possibly difficult piece of music
without any entrainment. The MMA of these taps is used to
assess the perceptual difficulty, and will be compared to the
MMA of the automatic beat trackers. It should be stated that
while all five authors come from an engineering background,
four have many years experience as practicing musicians in
different styles and instruments. Before tapping, each subject
was not permitted to listen to the piece, instead they tapped
the beat while listening to it for the first time. In addition, no
subsequent correction of the taps was allowed.

In the next step, the files in Dataset2 were equally dis-
tributed among the authors of the paper for ground truth anno-
tation. The annotations were performed using Sonic Visualiser
[33]. To assist with the annotation, each annotator was allowed
to use multiple visualizations such as the waveform or spec-
trogram. The use of automatic beat tracking or onset detection
algorithms was not permitted, however the spontaneous taps
could be used. Wherever available, scores of the pieces were
used as a guideline to arrive at a valid annotation, especially
for classical and Romantic music. Each annotator was given
the possibility to reject a file if the annotation process appeared
intractable. This happened in 72 cases, resulting in 217 valid
beat annotations for Dataset2.

Finally, the annotator had to compile a tag file for each
annotated sample. The tags specified which signal character-
istics made the annotation difficult. An arbitrary number of
tags could be assigned to a song, however if the file was not
considered difficult for annotation, the tag “none” was used.
The full list of tags is presented in Section V-B.

Each annotation was subsequently evaluated by a second
subject. In the annotation process all annotators expressed
insecurity about some of their annotations due to the high
level of difficulty of some of the files. To address this issue
we consulted experts with conservatory degrees in music
and composition, and with their assistance we obtained a
more reliable ground truth especially for the most difficult
samples. The comments and changes that were performed in
this revision process were documented and are available on
the paper’s website [32].

V. ANALYSIS OF NEW DATABASE
A. Automatic beat tracking on the new dataset

For Dataset2, BT-MMA histograms and scatter plots of BT-
MMA over BT-MGP are depicted in Figure 5. Computations
were performed in the same way as for Datasetl, enabling
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Figure 5: Left side: Each column of the image depicts a histogram
obtained from 5+ 4/2 mutual agreements of the 5 beat sequences for
each song in the 678 samples used to derive Dataset2. The histograms
are sorted by their mean values (BT-MMA). Dark colors indicate
high histogram values. Files excluded from annotation lie between
the vertical blue lines. Right side: MMA versus MGP scatter plots
for the annotated 217 files in Dataset2. Pieces assumed to be easy
according to their BT-MMA are depicted by gray circles with the
remainder shown as black triangles.

a comparison between Figure 4 and Figure 5. A common
characteristic of the plots for Datasetl and Dataset2 is the
high correlation between BT-MGP and BT-MMA for small
values when using Information Gain (see Figures 4b and
5b), respectively. Again, for F-measure and AMLt such a
correlation cannot be observed. This provides strong evidence
for using BT-MMA p to detect difficult files in the context of
the newly annotated Dataset2.

Differences between Datasetl and Dataset2 are evident
for all three evaluation measures: the mutual agreement his-
tograms in the left columns are strongly biased towards the
upper right corner for Datasetl and towards the lower left
corner for Dataset2. Again, the histograms for BT-MMAp
in Figure 5a show a more accentuated concentration and a
continuous development from concentration in low to high
histogram bins. However, in Figure 5a a higher proportion
of histograms is characterized by a concentration in bins of
1 bit or less. This indicates that Dataset2 contains a larger
relative percentage of difficult samples than Datasetl. The
super-imposed vertical lines in the histogram plots in Figure
5 indicate the borders for the initial choice of files to be
annotated, i.e., the first 270 files and the last 19 files sorted by
BT-MMA (see Section IV). Samples on the left of the first
line were chosen because they were assumed to be difficult
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Table II: Ground truth performance of each individual BT on the 217
annotated files in Dataset2. Bold numbers indicate best performances.

BT AMLLt (%) F-measure (%) Inf. Gain (bits)
Aubio (AUB) 18.5 24.7 0.68
Beatit (BIT) 20.6 28.7 0.53
Beatroot (DIX) 27.6 322 0.66
BeatUJaén (BUJ) 239 27.7 0.60
Bock (BOE) 26.1 40.1 0.91
Davies (DAV) 334 322 0.90
Degara (DEG) 334 34.6 0.89
Ellis (ELL) 20.8 35.2 0.62
Essentia (ESS) 233 26.6 0.64
Hainsworth (HAI) 26.0 24.8 0.83
IBT causal (IB1) 21.1 26.8 0.70
IBT non-causal (IB2) 28.6 31.1 0.78
Klapuri (KLA) 339 36.2 0.92
Lee (LEE) 12.9 34.6 0.50
Scheirer (SCH) 18.5 30.2 0.70
Stark (STA) 26.0 27.3 0.74
Mean 22.7 30.8 0.73
Deterministic 16.1 21.2 0.46

(low BT-MMA p), while the 19 files on the right of the second
line in the histogram plots were included because they were
supposed to be the easiest in the dataset (high BT-MMAp).
In Figure 5b a clear separation can be observed between those
files, where the difficult files are marked by black triangles and
the easy files by gray circles. This separation is not evident
for the other evaluation measures in Figures 5d and 5f, and
the difficult files form wider spread clusters.

The individual accuracy values for Dataset2 are depicted in
Table II where bold numbers indicate the best beat tracking
results without statistically significant differences. Note that
the files in Dataset2 were selected based on BT-MMA p and
are supposed to be difficult, with the exception of the included
19 files with high BT-MMA p. For Dataset2 the overall perfor-
mance is much lower than for Dataset1 (see Table I), and there
are fewer significant differences among the best beat trackers.
Moreover, there is no consistent subset of best beat trackers,
as all except four beat trackers are among the best performers
for at least one evaluation method. The performance of some
beat trackers is close to the mean performance of an entirely
deterministic (baseline) beat sequence, fixed at 120 bpm and
generated as in [20]. In general, this proves that the compiled
dataset is more difficult for automatic beat tracking than
Datasetl, and again supports the validity of our proposed BT-
MMA method.

B. Perceptual vs. automatic beat tracking difficulty

1) Assessing perceptual difficulty: To better understand the
difficulty of beat tracking, subjective aspects should be taken
into account as well. In Dataset2, we can gain insight into these
subjective aspects by using the spontaneous taps collected in
the annotation process.

During the annotation of Dataset2, we found that sponta-
neously tapping to an unknown piece is a very demanding

process for music without a clear and simple beat. Thus, we
assume that perceptually easier files result in tap sequences
that show higher mutual agreement, analogous to the beat
tracker outputs. In order to differentiate these agreements from
the MMA obtained from beat trackers (i.e. BT-MMA) we will
refer to them as TAP-MMA, and to the mean performance of
the taps compared to ground truth as TAP-MGP (in contrast
to BT-MGP). The TAP-MMA values between the five sponta-
neous taps that are available for each sample were computed
using Information Gain. Figure 6a shows a scatter plot of these
TAP-MMA p, values against the BI-MMA p values of the five
beat tracking algorithms. While the sparse cluster in the upper
right corner indicates that high agreement of beat sequences
implies high agreement of spontaneous taps, such a relation
does not exist for low BT-MMA p. In this case, we can observe
the existence of a wide range of TAP-MMAp values. This
implies that among files that are difficult for automatic beat
tracking, there were both difficult and easy files for the human
tappers. In Figure 6b a high correlation between TAP-MMA p
and the mean performance of the taps against the ground truth
annotations (TAP-MGPp) can be observed. This correlation
supports the assumption that high agreement between subjects
implies perceptually easier pieces. Comparing Figures 5b and
6b, we can see that in Figure 6b there are no separate clusters
of data for very low TAP-MMAp and TAP-MGPpvalues.
This indicates that, for the difficult samples, the human taps
tended to be more accurate compared to the ground truth, and
that the spontaneous taps were characterized by higher mutual
agreement than the beat tracker outputs.

TAP-MMA, (bits)
g
TAP-MMA, (bits)

BT—MM%\D(b\ts) 8 TAP—M(%PD (bits) 3

(a) (b)

Figure 6: TAP-MMAp and TAP-MGPp for annotated 217 files
in Dataset2. Pieces which are considered easy according to their
BT-MMAp are depicted by gray circles. (a): Scatter plot of TAP-
MMAp versus BI-MMA p, dotted lines indicate the chosen border
for difficult files for beat tracking (vertical line) and human tappers
(horizontal line) (b): Scatter plot of TAP-MMA p versus TAP-MGPp

In conclusion, we can state that, even without ground
truth available, it is possible to reliably detect samples where
automatic beat tracking will fail. Among these files there will
be both files that are perceptually difficult and files that are
easy. As our aim is to facilitate improvement in beat tracking,
we want to focus on those pieces that have a perceivable beat
but that make beat trackers fail. These pieces are located in
the top-left rectangle of Figure 6a, and we will now focus on
the signal properties that differentiate them from perceptually
difficult pieces which are located in the lower-left rectangle of
Figure 6a.

2) Signal properties: The general signal properties en-
countered in Dataset2 are summarized in the tags assigned
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expressive timing|

slow tempo|

lack of transient sounds
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gradual tempo change|
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tempo discontinuity|
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Figure 7: Frequency of tags for all annotated files in Dataset2. Tags
indicate which signal properties made a sample appear difficult during
the manual annotation.

during the annotation process. Figure 7 shows the number
of occurrences of all tags for the 217 annotated pieces. The
most prominent tag is expressive timing, which applies when a
sample changes in tempo in correlation with its melodic phrase
or segment boundaries [34] as often happens in Romantic
music. Other prominent tags related to tempo were slow
tempo, gradual tempo change (i.e. one stable tempo changes
gradually to a different stable tempo) and tempo discontinuity
(i.e. a sudden tempo change). This indicates that any kind
of tempo changes cause trouble for beat tracking approaches,
and adds the characteristic of having a slow tempo to the list
of problematic tempo-related features. Furthermore, ternary
meter also led the beat trackers to fail, which suggests that
many approaches may be tailored to track music mainly in
a % time signature. Characteristics related to the instrumental
timbres, such as lack of transient sounds and quiet accompani-
ment complete the picture of the problematic signal properties
that make beat trackers fail. They can be summarized in three
groups: 1) timing/tempo related, ii) time signatures and iii)
lack of clear rhythmic onsets. The tag none was applied when
none of the other tags fit to the properties of the signal, and its
appearance is always related to the files with high BT-MMA p,
i.e. the 19 easy files in Dataset2.

Having obtained an overview of the signal properties that
make automatic beat tracking difficult, we would like to know
which of these properties makes tapping the beat difficult for
human listeners. We want to address the question of whether
the files in the upper and lower left rectangles of Figure 6a
differ according to their signal properties. If we can identify
some significant differences, this can give valuable insight into
how to discriminate between perceptually difficult pieces and
those that are difficult only for automatic beat tracking. To this
end, features describing those discriminant signal properties
might be used in a machine learning approach to automatically
classify samples into one of the two classes. A threshold
was set to a TAP-MMA p value of 1 bit (dotted horizontal
line in Figure 6a), i.e. the same threshold that was applied
to BT-MMAp when choosing difficult files for annotation.
Then, a set of t-tests was applied in order to investigate if the
beat-annotated samples in the lower and upper left rectangles

differed regarding their given tags. In this way, we can infer
which signal properties led to inaccurate tappings.

Table III: Tags with different mean according to t-test, sorted by
increasing p-value, from top to bottom. The presence of a tag implies
that it appears significantly more frequently for low TAP-MMA p

T-test: TAP-MMA p p-value
changing time signature 0.0010
expressive timing 0.0011
quiet accompaniment 0.0035
no repetition 0.0047
low familiarity with song/style  0.0110
beat phase ambiguity 0.0360

The results of the t-tests are listed in Table III. The
appearance of a tag in the list means that it is significantly
more present in files with low TAP-MMA . We can see that
a change in time signature was the most important factor that
led to low tapping agreement. However, this tag is quite sparse
among the dataset as shown in Figure 7. The most prominent
factors, taking into account their frequency of appearance,
are expressive timing and quiet accompaniment. Hence, these
factors apparently cause problems both for beat trackers and
for human tappers. The list of properties given in Table III
can serve as a guideline to which signal descriptors might be
applied when trying to exclude signals from automatic beat
tracking because of their high complexity even for human
listeners. It is apparent that processing music with highly
expressive timing should be postponed, as its beat is too
complex to be spontaneously tracked even by human listeners.
We consider that demanding an accurate beat tracking on
such music resembles demanding high word recognition rates
from an automatic speech recognizer in signals that cannot
be perceived by a human listener. However, a profitable first
step may be to concentrate on music characterized by ternary
meters, slow tempo or soft onsets, among other characteristics
that do not impose drastically increased difficulty to human
beat perception.

VI. SAMPLE APPLICATION

In this section, we demonstrate a sample application for
the mutual agreement technique that is different from sample
selection in compiling datasets. We assume a large collection
of audio files without any beat annotations and we would like
to perform a task that relies on beat tracking, e.g. cover song
detection or a chord transcription. As a first step, we seek to
reject any files considered impossible for current beat tracking
systems. Then for the remainder, we would like to choose a
reliable beat tracker to provide the beats. Traditionally this
would be done by selecting an algorithm which is considered
superior to the others based on some beat tracking evaluation
process. We now show how our mutual agreement measure
with five beat tracking algorithms can be applied for this
purpose as well.

In this experiment we ran our committee of beat trackers on
Dataset] and calculated BT-MMA , for each sample. We then
excluded those samples with BT-MMAp below a specified
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Figure 8: Result of automatic beat tracker selection (MaxMA), compared with single best beat tracker choice (Best mean) and oracle scores
(Oracle) on Datasetl using our committee of 5 BT. For the thresholds 0 to 3 bits on BI-MMA p, the percentage of the 1360 files kept for
evaluation is shown on the x-axis. The vertical line shows the point up to which differences between MaxMa and Beat mean are significant.

threshold. The threshold was incremented in steps of 0.3 bits
from O to 3 bits. Since we have shown that disagreement
between the committee harms beat tracking performance, we
now try the opposite approach and select the beat sequence
with maximum mutual agreement with the committee, which
we denote, MaxMA. For each sample (at a given threshold),
we simply select the beat sequence with the maximum mutual
agreement (MaxMA) with the other four sequences as the
most reliable beat estimation. In effect we assume that the
beat tracker that best agrees with the rest of the committee
is the most reliable algorithm. In Figure 8, we compare the
MaxMA approach to another viable option, that of picking the
beat tracker [10] with the best mean overall performance from
our experiments in Sections III and V. We denote this option
Best mean. To illustrate the upper limit on performance we
also include the theoretical optimum Oracle, that picks the
most accurate beat tracker for each individual sample.

Figure 8 shows that applying the MaxMA method to
choose a beat tracker leads to significant improvements when
evaluated against ground truth for both Information Gain
and AMLt over a wide range of thresholds. T-tests with a
level of significance of o = .05 were performed to compare
the MaxMA with the Best mean at each threshold, and all
differences on the left of the vertical lines in Figures 8a and 8b
are significant. This improvement in performance occurs even
when no samples are discarded and remains when retaining
up to 41% for of samples AMLt and 27% for Information
Gain. Beyond this point only the samples with high mutual
agreement remain, which are among the easiest in the dataset,
hence the choosing MaxMA over the the Best mean may offer
less improvement. Indeed both the MaxMa and Best Mean
performance approach the Oracle when only very few (easy)
samples remain.

While there is still a consistent improvement for the F-
measure (Figure 8c), this improvement is not significant for
any threshold value. This is likely the result of the discontinu-
ity of the F-measure, which assigns 0% to beat sequences
misaligned in phase and values of 66% for tempo halv-
ing/doubling. These properties of the F-measure increase its
variance even for sets of beat sequences that can be acceptable
in terms of perceptual criteria. This supports the observation
that significant differences in beat tracking performance can
vary dependent on the evaluation measure [20].

On the basis of this sample application, we infer that mutual
agreement can be successfully applied both for choosing “beat-
trackable” files and for improving beat tracking performance
on these files by selecting the beat tracker that has the
maximum mutual agreement with the other beat trackers.
Since all beat sequences must be estimated for the file selec-
tion/rejection process, the improvement given by the MaxMA
beat tracker choice adds negligible additional complexity.

VII. CONCLUSIONS

In this paper, we presented a method based on mutual
agreement of beat sequences to detect informative samples
in non-annotated data collections. We compiled and annotated
a new dataset that consists mainly of pieces with low mutual
agreement, and showed that this dataset is significantly more
difficult for state of the art beat tracking algorithms than the
largest existing collection. Using the new difficult dataset,
we analyzed the signal characteristics that make beat trackers
fail, and investigated the extent to which these characteristics
coincide with the properties that make tapping difficult for
humans. Based on our informal analysis of human tapping it
appears that expressive timing contributes strongly to making
music difficult to tap to. Furthermore it may not be musically
appropriate to attempt to precisely follow large expressive
changes. The musical experts who assisted in the annotation
process demonstrated more musically meaningful annotations
could be obtained by tapping a stable pulse around which the
timing changes deviate. However this level of tapping required
extensive musical training (beyond the level of the authors) and
provides strong evidence towards rejecting beat tracking for
musical pieces of this nature. Towards more realistic advances
in beat tracking, we propose investigating techniques for music
with properties that do not pose such considerable difficulties
for humans, including pieces characterized by ternary meter,
slow tempo, or soft instrument onsets.

In order to reliably detect difficult samples using mutual
(dis-)agreement, we demonstrated that the choice of the eval-
uation measure is crucial, and that Information Gain was better
suited to this task than both the F-measure and AMLt evalua-
tion methods. However, Information Gain appears less effec-
tive in highlighting where beat tracking algorithms strongly
agree with each other. Hence, in future work, we will explore
methods to combine different evaluation methods.
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The proposed MMA method represents an efficient ap-
proach to improve diversity in existing datasets, as well as
a simple technique to improve beat tracking in large non-
annotated datasets. Our method can also be applied in other
contexts by detecting problematic files for chord recognition
where it may be valuable to reject the use of beat tracking as
a temporal analysis component. Furthermore, outside of beat
tracking, we believe that there is considerable scope to apply
mutual agreement to other MIR research tasks through the use
of context specific evaluation methods.

The audio files of the newly compiled beat tracking dataset
will be made available on request, and all of the accompa-
nying meta-data is available on the paper’s web-page [32].
We encourage the research community to contribute to this
resource by adding further annotated difficult samples along
with meta-data.
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