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Abstract

Decentralized, autonomous and collaborative automation is becoming an emergent paradigm, 

not only when flexibility and reconfigurability are required, but also when the maintenance of  the 

overall quality is considered. Multi-agent, holonic and service-oriented systems have been subject of  

great attention, fitting well with the idea of  collaborative automation. Important questions are still  

related to the definition of  complex processes, its management and integration, especially in service-

oriented automation and production systems.

This  dissertation  introduces  a  new  engineering  framework  for  service-oriented  automation 

system. It covers the specification of  the architecture, the extensible basis for multiple applications 

using Petri nets and the full engineering approach including the necessary software. Most of  the  

resulting characteristics came from the open methodology for Petri nets, used as a unified tool for 

the specification, modeling, analysis and execution of  service-based automation systems. Petri nets 

were chosen and identified as being part of  the solution by presenting a set of  useful characteristics.  

For this, the open and extensible basis permits the expansion and adaptation to several requirements. 

In  consequence,  with  the  collaboration  of  other  methodologies  that  addresses  e.g.  decision 

mechanisms, automatic reconfiguration and service aggregation, the solution may contribute to the 

reduction of  the design, operation and reconfiguration.

Based on the validation and evaluation of  the engineering framework, it is possible to highlight  

its contributions, namely the support of  several phases in the engineering and the development of  

customized  Petri  net  applications  based on the  formal  definition.  Moreover,  the  same Petri  net 

models can be used for analysis, simulation, operation and support information for decision makers. 

Additionally,  the composition strategy permits the development of  orchestration models without 

knowing the final control and displacement layout. Reusable models and well structured engineering 

process are towards the enhancements in design and configuration, and consequent operation.
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Resumo

Automação descentralizada, autónoma e colaborativa está a tornar-se num paradigma emergente, 

não só quando a flexibilidade e a reconfiguração são obrigatórias, mas também quando a manutenção 

da qualidade em geral é considerada. Sistemas multi-agente, holónicos e orientados a serviços têm 

sido  objecto de  grande atenção,  integrando-se  bem com a  ideia  de  automação colaborativa.  No 

entanto, questões importantes ainda estão relacionadas com a definição de processos complexos, a 

gestão  e  integração  de  sistemas,  especialmente  considerando sistemas de  automação e  produção 

orientados a serviços.

Esta dissertação apresenta um novo engineering framework para sistemas de automação orientados a 

serviços. O conteúdo abrange as especificações da arquitectura,  a base extensível para aplicações 

múltiplas utilizando redes de Petri e uma abordagem completa de engenharia, incluindo o software  

necessário. A maioria das características resultam da metodologia aberta para redes de Petri, utilizada 

como um instrumento unificado para a especificação, modelagem, análise e execução de sistemas de 

automação baseados em serviços. As redes de Petri foram escolhidas e identificadas como sendo 

parte da solução, devido ao seu conjunto de características úteis. Para isso, a base aberta e extensível 

permite a  expansão e adaptação às diversas exigências.  Em consequência,  com a colaboração de 

outras metodologias que abordam, por exemplo mecanismos de decisão, reconfiguração automática e  

agregação  de  serviços,  a  solução  pode  contribuir  para  a  redução  do  design,  operação  e 

reconfiguração.

Com  base  na  validação  e  avaliação  do  engineering  framework,  é  possível  destacar  as  suas 

contribuições,  ou  seja,  o  apoio  às  várias  fases  de  engenharia  e  desenvolvimento  de  aplicações 

personalizáveis de rede de Petri baseadas na definição formal. Além disso, os mesmos modelos de 

rede de Petri podem ser usados para a análise, simulação, operação e suporte de informações para os  

sistemas de decisão. A estratégia de composição permite também o desenvolvimento de modelos de 

orquestração sem saber a disposição final do controlo. Modelos reutilizáveis e processo de engenharia 

bem estruturado são importantes na melhoria no design, configuração, e consequente operação.
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Resumé

L’automatisme  décentralisé,  autonome  et  collaboratif  devient  un  paradigme  émergent,  non 

seulement lorsque flexibilité  et  reconfiguration sont exigées,  mais aussi  lorsque le  maintien de la 

qualité globale est pris en considération. Des systèmes multi-agents, holoniques et orientés services 

font  l’objet  d’une  grande  attention,  qui  s’harmonise  parfaitement  avec  l’idée  d’un  automatisme 

collaboratif. Des questions importantes sont toujours liées à la définition de processus complexes, à 

leur gestion et intégration, en particulier dans l’automatisme orienté services et dans les systèmes de 

production.

Cette thèse présente un nouveau framework d’ingénierie pour les systèmes automatiques orientés 

services.  Elle  introduit  la  spécification  de  l’architecture  -  la  base  extensible  pour  des  multiples 

applications, en utilisant des réseaux de Petri et une approche d’ingénierie complète, y compris le 

logiciel nécessaire. La plupart des caractéristiques résultantes viennent de la méthodologie des réseaux 

de Petri, utilisés comme un outil unifié pour la spécification, la modélisation, l’analyse et l’exécution 

des systèmes automatiques orientés services. Les réseaux de Petri ont été choisis et identifiés comme 

étant partie de la solution en présentant un ensemble de caractéristiques utiles. Pour cela, une base 

ouverte et extensible permet l’expansion et l’adaptation de nombreuses exigences. En conséquence, 

en collaboration avec d’autres méthodologies qui adressent par exemple des mécanismes de décision, 

la reconfiguration automatique et l’agrégation des services, la solution proposée peut contribuer à 

réduire le temps de conception, d’exploitation et de reconfiguration.

En se basant sur la validation et l’évaluation du framework d’ingénierie, il est possible de mettre 

en évidence ses contributions, à savoir le soutien dans plusieurs phases de l’ingénierie et dans le  

développement des applications de réseaux de Petri personnalisés basées sur la définition formelle. 

En outre, les mêmes modèles de réseaux de Petri peuvent être utilisés pour l’analyse, la simulation, 

l’exploitation et le soutien d’information pour les décideurs. En plus, la stratégie de composition 

permet de développer de modèles d’orchestration sans savoir la régulation finale et l’agencement de  

déplacement. Des modèles réutilisables et des processus d’ingénierie bien structurés s’orientent vers 

une réduction des efforts de conception et de configuration. 
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Zusammenfassung

Dezentrale,  autonome  und  kollaborative  Automatisierungssysteme  gelten  zur  Zeit  als 

aufstrebendes  Paradigma,  nicht  nur  wenn  Flexibilität  und  Rekonfigurierbarkeit  erforderlich  sind, 

sondern auch wenn die Aufrechterhaltung der Qualität insgesamt betrachtet wird. Multi-Agenten, 

holonischen und serviceorientierten Systemen wird heutzutage große Betrachtung geschenkt, auch 

im Bezug auf  die  Eigenschaften der kollaborativen Automatisierung.  Jedoch stehen immer noch 

wichtige Fragen im Zusammenhang auf  die Definition von komplexen Prozessen, die Verwaltung 

und Integration von Systemen, vor allem im Bereich von serviceorientierten Automatisierungs-und 

Produktionssystemen offen.

Diese  Dissertation  stellt  eine  neue  Engineering  Framework  für  serviceorientierte 

Automatisierungssysteme  vor.  Es  umfasst  die  Spezifikation  der  Architektur,  die  erweiterbare 

Grundlage für mehrere Anwendungen die Petri-Netze benutzen und ein vollständiger Engineering-

Ansatz, einschließlich die erforderlichen Software. Die meisten der daraus resultierenden Merkmale 

stammen  aus  der  flexiblen  Methode  der  Petri-Netze,  die  als  ein  einheitliches  Werkzeug  zur 

Spezifikation,  Modellierung,  Analyse  und  Durchführung  von  servicebasierten 

Automatisierungssystemen  benutzt  wird.  Aufgrund  der  mathematischen  Vorteile  die  Petri-Netze 

bieten, wurde diese zur Grundlage der These. Ein weiterer Vorteil ist die leichte Erweiterung der 

Netze.  Im  Zusammenarbeit  mit  anderen  Methoden,  sollte  diese   Engineering  Framework  zur 

Reduzierung der Planung, Betrieb und Rekonfiguration beitragen.

Aufgrund  der  durchgeführten  Testreihe  wurde  festgestellt,  dass  die  Engineering  Framework 

verschiedene Unterstützungsmerkmale für die Engineeringsphasen aufweist. Zum ersten können die 

Petri-Netz  Modelle  für  die  Analyse,  Simulation,  Betrieb  und  als  Informationsunterstützung  von 

Entscheidungssystemen  dienen.  Zum  zweiten  ermöglicht  es  die  Kompositionsstrategie  der 

Entwicklung  von  Orchestrierungsmodelle,  ohne  dass  das  Controllayout  vorliegen  muss. 

Wiederverwendbare Prozesse verbessern das Design und die Konfiguration der serviceorientierten 

Automatisierungssysteme.
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Chapter 1:
Introduction

Tomorrow's  industrial  automation  will  confront  the  increase  of  complexity  and  growth  of  

information to be processed and therefore the ability to automate tasks as efficient as possible. The 

number  of  different  available  options  are  a  consequent  challenge  for  the  system  developers. 

Furthermore, traditional centralized and sequential systems are  insufficiently flexible for the required 

dynamism  to  handle  different  situations,  requirements  and  changing  markets.  Conventional 

automation approaches require too much design and reconfiguration effort and don't deploy as much 

as possible the collaborative and distributed “intelligence”.

In opposition to the availability of  bleeding edge technology, a significant inroad in industrial  

automation and manufacturing plants is missing. The reasons for this situation are various, such as 

the missing answers to several basic questions in terms of  development and performance of  these 

systems,  efficient  methodologies  for  control  software  and  modular  verification  before  the  final 

implementation together with methods of  reuse and/or reconfiguration of  control solutions. Any 

new concept requires also a new way of  designing and thinking to automation engineers, as well as  

the correct identification of  requirements by the software engineers to develop powerful software for 

computer systems and embedded devices.

1.1 Problem description and motivation

Service-oriented architecture (SOA) is a new model for automation that has proven results in 

different areas of  computer science (documented, for example, by the book series “Service Oriented  

Computing and Applications”). In service-oriented automation systems, the research on coordination 

models and composition (service-oriented engineering in general) is a relative a new area (since the  

proven  concepts  of  service-oriented  architecture  at  the  device  level  by  the  SIRENA  project  

[Jammes2005]). In the center of  such solution are the services, but less important are the service 

providers and consumers  in general,  such as embedded devices providing not  only services,  but 
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2 Introduction

acting as a source of  multitask features. In this context, service computing and orientation is not only 

a form of  communication but instead a philosophy that software entities should adopt by sharing 

resources  and  representing  their  needs.  An  assimilation  of  this  direction  can  be  done  with 

collaborative  automation  [Mick2003],  in  terms  of  autonomous,  reusable  and  loosely-coupled 

distributed resources.  These  characteristics  are  also part  of  a  SOA and in the end it  favors  the  

proactive control of  the shop-floor devices.

The engineering of  these systems has to adopt a  new development  process  that  is  naturally 

different  to  the  traditional  controller-centric  design.  The  options  are  to  use  the  already  applied 

service standards in business and e-commerce fields or the adaption of  industrial standards to the  

emergent  requirements.  Of  course,  a  mixed  approach could  also  be  beneficial.  Nevertheless,  in 

service-oriented architectures for industrial automation several research directions and solutions have 

been presented, but overwhelmingly directed to a specific part of  the whole engineering problem. 

Thus, a road map is required for integrated solutions of  engineering, respecting users, developers, 

available  hardware  and  software.  Moreover,  a  formal  method is  also  required to  provide  design 

facilities, with the ability to validate models and to be used as an integration middleware to connect 

loosely-coupled services together that are provided by automation components of  the shop-floor. In 

addition,  it  should also  handle  other  details  that  could be  beneficial  in  just  using  one common 

solution.  SOA principles such as loose coupling,  reusability  and the design paradigm of  service-

orientation should be as well validated in industrial automation.

The mathematical modeling language of  Petri nets [Petri1962] is one of  the possible candidates 

for the purpose of  engineering SOA automation systems and to validate service-orientation and the 

reusability of  information and resources. Nevertheless, there are missing applications of  Petri nets in 

service-oriented industrial automation environment, especially a methodology for the development 

of  custom based and extensible Petri nets software to fit the SOA approach in automation.

1.2 Dissertation statement

This dissertation focus on the specification of  a formal,  open and unified methodology and 

resulting engineering framework that addresses the modeling, analysis, operation and integration of  

service-oriented automation systems based on distributed automation devices. The “formality” of  

the methodology means that is grounded on proven mathematical theory; “openness” in sense of  

being  prepared  for  methodological  and  implementation  extensions  and  “unity”  as  one  reusable 

solution for most of  the possible applications.

The fundamental architecture is around the design paradigm of  service-orientation and for this 

purpose  several  concepts  were  introduced in  terms of  architectural  elements  and behavior.  The 



methodology itself  is founded in Petri nets and their mathematical characteristics, extended to permit 

a flexible basis for service-based automation applications. Therefore, this open methodology is used 

within the engineering framework to cover the principles of  service-orientation and to permit multi-

featured service-based automation systems. The service-orientation design paradigm and principles 

of  SOA are validated within this thesis.

Moreover,  in  terms  of  implementation,  the  concepts  are  translated  into  a  software  suite 

consisting of  engineering tools for PC, as well as software for automation devices providing features  

such as web service communication,  orchestration engine in the  Petri  net  formalism, distributed 

orchestration, online composition and decision support. The service technology of  choice is web 

services,  more  concretely  Device  Profile  for  Web  Services  (consisting  of  a  set  of  web  service  

protocols specially chosen for low profile devices).

With the choice of  a Petri net based formalism, the research question of  this work follows as:  

“How does a formal, extensible  and open methodology contribute to an engineering framework to the design and  

management of  service-oriented automation components?”. From the viewpoint of  the life-cycle, the question 

is: “How to contribute to the reduction of  the design and operational phases in service-oriented automation systems  

using an engineering framework based on formal methods?”. Both of  them are connected in such a way that 

the answer of  one complements the other (depending only on the viewpoint).

1.3 Hypothesis and expected objectives

The hypothesis  of  this  dissertation is  formulated in  the  following way:  Design paradigm of  

service-orientation and SOA principles can be validated in industrial automation by using a formal,  

open and unified methodology based on Petri nets for an engineering framework. Moreover, the  

design and operation efforts  can therefore be reduced by introducing an engineering framework 

respecting SOA principles and formal methods.

The  proposed  objectives  can  be  resumed  by  the  following  lists,  both  scientific  and 

implementation objectives.

Scientific objectives – Specification and evaluation of  engineering methodology for service-oriented 

automation systems using a formal foundation:

• Background and requirements analysis;

• Specification of  the architectural elements;

• Formal description and validation of  the methodology;

• Integration with the service specification;

• Uncover  of  most  of  the  methodology  features  for  the  engineering  of  service-oriented 

automation systems;
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4 Introduction

• Validate service-orientation design principles and proof  of  SOA in automation (at the device 

level, but for the orchestration of  atomic services and composition).

Implementation  objectives – Development  of  engineering  tools  and  orchestration  engine  for 

automation components:

• Software packages based on the unified methodology;

• Service-oriented automation components (structure)  integrated with the used web service 

profile for devices and orchestration engine;

• Orchestration engine for automation components (i.e. devices) with several features such as 

composition,  distributed orchestration (via  collaboration with other  entities)  and decision 

support;

• PC-tools for the design and configuration of  automation components.

The proposed approach and resulting software package should be evaluated and validated in real 

industrial scenarios.

1.4 Requirements and assumptions

The main requirements for this dissertation are the usage of  service-oriented architectures for 

industrial  automation.  In  terms  of  technology,  Device  Profile  for  Web  Services  (DPWS)  is 

considered as the web service specification to be used, as well as implemented frameworks according  

to  the  standard.  In  terms  of  architectural  elements,  besides  the  required  services,  automation 

components (designated here as automation bots) running on embedded industrial devices are the 

main requesters and providers of  services, and also participants in distributed orchestration activities  

with other entities on the system.

Petri nets were chosen and identified as being part of  the solution by presenting a set of  useful  

characteristics supporting the life-cycle of  service-oriented systems. For this, an open basis permits 

the  expansion  and  adaptation  to  several  requirements.  These  nets  are  applied  to  the  modeling, 

analysis,  service  management,  embedded  software  controllers,  decision  support  system  and 

monitoring, to improve the fundamentals in the engineering of  service-oriented automation systems.

1.5 Limitations of  scope

The considered research domain is part of  the computer science vain, supporting the application 

in industrial automation.  The following topics are not included in this research and thus limit its 

boundaries:

• Performance aspects with web service device and the technical integration itself;



• Decisions  mechanisms  (should  only  detect  decision  points/conflicts,  provide  necessary 

information from the analysis and ask for its resolution);

• Service composition directed by web semantics and ontologies;

• Multi-agent systems (can be considered only as part of  the integration for decisions);

• Automatic reconfiguration (but may provide some patterns such as alternative paths, that 

enhance towards automatic reconfiguration); 

• Applicability in other domains, such as e-commerce.

1.6 Dissertation outline

After the introductory chapter, the main body of  this dissertation is presented (see Figure 1). The 

second chapter  shows  an  overview and the  state  of  the  art  in  service-oriented  automation  and 

production.  Its  starts  with  paradigms  in  automation  especially  concerning  the  introduction  of  

computer science and the notion of  collaborative automation. Service-oriented architectures and web 

services, as well as their importance in automation, is followed by modeling and other engineering 

topics,  such as  the  application of  Petri  nets.  Major  requirements,  missing aspects  and identified 

research directions conclude the chapter.

Figure 1: Main clusters of  this dissertation

Chapter 3 describes the architecture and the methodology based on Petri nets. A service-oriented 

automation  system is  presented  with  special  attention  to  the  services,  smart  embedded  devices 

(known as automation bots, concerning the software part of  the device) and orchestration engine.  

The open methodology for Petri nets is presented, starting the formal definition and several base 

elements such as analysis, conflicts, property system and a template for deriving user-defined token 

games (the rules that make the Petri net run and interact with the exterior). Based on the previous 
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foundation, features and extensions are given, concerning mostly the application in service-oriented 

automation systems. These include Petri net models and service association, composition of  models 

and decision support system.

Tools, implementation and engineering are broached in chapter 4. The Continuum Development 

Tools  are  presented  as  a  software  package  for  the  engineering  of  service-oriented  automation 

systems. Part of  it, the bot framework permits the development of  service-oriented entities to be 

embedded into automation devices. In addition, this chapter also reports the engineering process that 

is expected to be done in conjunction with the software.

 Chapter  5  discusses  the  application  of  the  methodology  and  software  in  two  industrial 

demonstrators: the first one deals with assembly automation in manufacturing and the second one 

serves the purpose of  integrating different technologies and solutions. The evaluation and discussion 

is done afterwards. 

Finally,  the conclusions are given in the last chapter, including future work that can be done  

based on the results of  this dissertation.



Chapter 2:
Service-orientated automation and 
manufacturing

The meaning  of  doing things  automatically  without  our  personal  intervention is  a  common 

thought,  supporting  everybody's  laziness,  quality  and  comfort  against  repeated,  boring  and 

sometimes heavy operations. Slavery, animal labor and the utilization of  natural forces are some of  

the historical documented aspects in this sense. The last one and also revealing the enormous human 

creativity towards commodity, permitted the exploration of  new forms that are less independent on 

the efforts of  others. One example is the use of  watermills to break wheat grain into flour for baking  

breads – one of  the oldest prepared food.

Advancements  in  technology  (such  as  the  steam engine  and the  safe  control  of  electricity) 

permitted unprecedented forms of  automatic operations and machinery in the industry. Known as 

the  industrial  revolution  – new  methods  and  organizations  for  producing  goods  – the 

industrialization has altered where people live, how they play and how they define political issues. 

Innovation is central to most concepts of  industrial revolution [Stearns1989]. This is often associated 

with the advent of  capital intensive plant and equipment, steam power and factories [Hudson2009].

A central nominee of  industry is automation. Automation (or specifically industrial automation) is the 

use of  scientific and technological principles in the manufacture of  machines that take over work  

normally  done  by  humans  [ScienceEncyclopedia2010].  This  definition  has  been  disputed  by 

professional  scientists  and engineers,  but  in  any case,  the  term is  derived from the longer term 

“automatization” or from the phrase “automatic operation”. Delmar S. Harder, a plant manager of  

General Motors, is credited with first having used the term in 1935, as “the automatic transfer of  

auto parts from one metalworking machine to the next” [TIME1956]. But its meaning has broadened 

as fast as its application.

Industrial automation is applied in manufacturing , which in its comprehensive sense, is the process 

of  converting raw material into products that have value in the market. Manufacturing also involves 
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activities in which the manufactured product, itself, is used to make other products [Kalpakjian2005].  

Another  perspective  sees  the  manufacturing  as  an  internal  function  that  is  buffered  from  the 

customer  in  order  to  maximize  efficiency  [Chase1992].  Note  that  manufacturing  and  the  term 

production are used here synonymously. More information about automation and production can be 

found, for example, in [Groover2007].

One of  the most significant facts is the emergence of  decentralized systems capable of  dealing 

with  the  rapid  changes  in  the  production  environment  better  than  the  traditional  centralized 

architectures [Harrison2007]. Different approaches had been developed and analyzed to cover the 

requirements  of  novel  automation  and  production  systems.  Furthermore,  the  introduction  of  

computer science and information technology in  automation reflects  an obvious convergence in  

terms of  computation and resolution of  problems, including optimization of  automation processes 

and enhancing manufacturing quality. Solutions can be found from the agent-based systems (as an 

example,  the  ARCHON industrial  applications  [Horwood1992])  to  service-oriented  architectures 

(diffused with the SIRENA project [Jammes2005]).

The current  chapter  reports  the  state-of-the-art  and definitions  in  terms of  service-oriented 

automation and manufacturing, preceded by models and solutions for distributed and collaborative 

automation and the importance of  computer science in automation. The kernel is focused on the 

engineering topics of  such service systems, namely orchestration and composition of  services, as well 

technological and integration aspects. Current research directions and missing aspects are highlighted 

and serve as important background for this dissertation.

2.1 Computer science and paradigms for collaborative 
automation and production

Computer systems are a constant presence in today's business, technology and services. Behind 

the systems relies the science and technology, and in this case,  computer science is the basis for the 

computation processes translated into software and hardware applications. Closely related, information  

technology (IT) deals with several life-cycle elements of  information systems that can be computer 

based. Moreover,  software engineering is related to the methods for the development and maintenance 

of  software to improve its efficiency in the field where it is applied. Whenever it is information or the 

computation to process it, these aspects are common in today's industrial automation, and therefore 

the knowledge and experience should be brought together. After decades of  parallel development,  

the paths of  information systems tools and manufacturing systems are converging to provide the 

impetus that will allow the integration of  the total business enterprise [Fitzgerald1992].

One of  the main concerns is the distribution and heterogeneity of  resources, and particularly if  a 



deliberated dispersion makes sense or brings any benefit. In computing, distributed systems are a 

natural  evolution  of  isolated  computing,  not  only  for  extending  the  limitations  in  terms  of  

processing power and consequent drawbacks, but also to assimilate software to the real nature of  

things. Examples of  dispersions and their relations with the environment can be found in natural 

systems  (such  as  ecosystems  [Clapham1990])  and  also  in  human-made  ones,  like  theme  parks. 

Whatever the extent is, the distribution should also be handled with some kind of  arrangement and 

obey to imposed laws, else the behavior would be chaotic and non-sense. Therefore, distribution and 

heterogeneity is often discussed as a beneficial feature or an obstacle for a particular system. The  

question in  the context  of  informatics to the  previous reference is:  How can computer  science 

contribute and resolve these problems?

Particularly,  distribution of  equipment,  operators,  products and information can be found in 

modern industrial production systems. Many industrial applications are physically dispersed within a 

widely area to be controlled by a single program running on a single computing platform. Years ago, 

the method used to deal with these large systems was to decompose the system into smaller, more 

manageable subsystems and machines, program the control for each one separately, and then write  

custom “glue” code to knit the smaller components into the complete system [Hall2007]. A large 

number of  factors are critical in the effective operation of  such flexible production lines, including 

the number of  product options, manufacturing operation of  each one, product type, workstation 

capacity, processing time of  the operations at each station, material handling capacity at each work 

station,  and  overall  material  handling  capacity  [Ali2005].  Therefore,  the  resulting  data  to  be 

processed, besides being enormous, may also be constantly in change [Mendes2009].

Distribution is only one of  the characteristics that is part of  modern computer science and also 

of  automation. Attending to the ACM Computing Classification System [ACM2010], it is possible to 

see how diverse the subjects and applications are, in order to reflect the vast and changing world of  

computer oriented writing [Mirkin2008]. Looking to the list, the reader can find several topics of  the 

classification systems that have direct reference to automation and manufacturing: (I.2.1) Artificial  

Intelligence – Applications and Expert Systems: Industrial automation, (J.1) – Computer Applications 

– Administrative  data  processing:  Manufacturing,  (J.7)  – Computer Applications  – Computers in 

other systems: Industrial control, etc. Nevertheless the application is not limited to those references, 

as it can be identified by the use of  distributed artificial intelligence, data communication devices and 

models of  computation (just to name a few). Observing the huge number of  applications, projects 

and publications, computer science has an effective impact in industrial automation as an application 

domain, therefore the boundaries should be lowered to permit a greater synergy between them.

One target for computer science in the automation world is the processing of  information and 

functions of  programmable logic controllers (PLC). Traditionally, these systems are used in the control, 
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which communicates and synchronizes the operation of  individual devices via I/O, providing limited 

reconfiguration  capabilities.  PLCs  are  at  the  forefront  of  manufacturing  automation  and  many 

factories use PLCs to cut production costs and or increase quality [Erickson1996]. PLCs still remains 

the key of  industrial automation, presenting nowadays advanced features, such as networking and 

high-level programming environments, to support the development of  distributed systems. However, 

last  years  have  witnessed  a  demand for  reconfigurable,  modular  and cost-effective  solutions  for 

industrial automation. In fact, cost, quality and responsiveness are the three main foundations on 

which every manufacturing company stands on, to be competitive in the current global economy 

[ElMaraghy2006].

In current practice, the control program which runs on the PLC is designed manually, and the  

control program together with the time-driven, sequential operating system of  the PLC determines 

the behavior of  the PLC [Hanisch1997]. They are programmed using the IEC 61131-3 standard 

[IEC2003],  which  provides  the  specification  for  several  languages  used  in  the  control  (see 

[Erickson1996]  for  a  good  introduction  on  these  topics).  But  with  the  emergence  of  soft-

programmable  hardware  and  advanced  communication  techniques,  e.g.  field-buses,  complex 

distributed  systems  consisting  of  heterogeneous  controller  devices  are  becoming  quite  common 

[Hussain2005].  On the  other  side,  the  resulting  engineering  tools  used  in  the  development  and 

deployment  processes  usually  do  not  address  other  characteristics,  such as  modularity,  flexibility, 

extensibility, reusability, and interoperability [Thramboulidis2003].

In opposite to what happen in terms of  evolution of  products that become easily old-fashion 

after a short period of  time, automation and manufacturing systems have been in a peaceful and calm 

situation, concerning to the adoption of  new research and technology results. An exception may be 

the introduction of  the IEC 61499 [IEC2005] standard that according to [Hussain2005] marks the 

beginning of  a new era in the field of  software engineering for industrial control systems. The IEC 

61499  standard  (an  event-based  function  blocks  specification)  was  introduced  to  extend  the 

limitations of  the previous standards in terms of  modularity and distribution. However, its adoption 

by the major control system equipment vendors has been slow to nonexistent [Hall2007].

Over  the  years  different  models  have  been  introduced  and  discussed  to  enhance  current 

automation and manufacturing systems, including concepts from other domains such as computer 

science.  Early  was  identified that  automation  systems need to follow the  changing demands,  by 

introducing concepts of  flexibility  and reconfigurability,  beside others.  This idea is reinforced by 

several studies, e.g. the one elaborated by the US Committee on Visionary Manufacturing [CVM1998] 

and another one sponsored by High-level Group of  the European Commission [EC2004], which 

have  identified  reconfigurable  manufacturing  as  the  highest  priority  for  future  research  in 

manufacturing. The NSF Engineering Research Center for  reconfigurable manufacturing systems (RMS) 



defines  reconfigurability  as  the  ability  to  adjust  the  production  capacity  and  functionality  of  a 

manufacturing system to new circumstances through the rearrangement or change of  the system's 

components  [Harrison2007].  The  aptitude  of  a  system  to  reconfigure  automatically  in  several 

circumstances can be considered as the ultimate dream in production systems, and may affect all  

enterprise  levels,  ranging  from  the  strategic  level  to  the  shop  floor  level  comprising  physical 

automation devices.

RMS extended the concept previously introduced by  flexible manufacturing systems (FMS). Where 

FMS make possible the manufacture of  a variety of  products (flexibility) on the same system, RMS 

provide  the  functionality  and  capacity  that  is  needed,  in  the  sense  of  increasing  the  speed  of  

responsiveness to markets and customers (see [Mehrabi2000]). Thus, a given RMS configuration can 

be dedicated or flexible, or in between, and can change as needed. In fact, reconfigurable systems, 

instead of  incorporating all the flexibility once at the beginning of  their life cycle, incorporate basic  

process models that can be rearranged or replaced quickly and reliably [Mehrabi2000a].

Figure 2 shows the economic goals for the different manufacturing paradigms, including mass 

production,  lean  manufacturing  and  the  explained  FMS  and  RMS.  Mass  production  and  lean 

manufacturing  are  concerned  with  the  production  of  cheaper  products,  and  the  elevation  of  

production quality.  To adjust  these concepts to the changing market,  FMS is responsible for the  

production diversity. Due to many reasons, FMS developed in the last two decades: (i) are expensive,  

since in many cases they include more functions than needed, (ii) utilize inadequate system software,  

since developing user-specified software is extremely expensive, (iii) are not highly reliable, and (iv) 

are subject to obsolescence due to advances in technology and their fixed system software/hardware. 

To overcome this limitation RMS has a more adaptable perspective, in which it is “adjustable” to the 

business and market interests.

Figure 2: Economic goals for various manufacturing paradigms
(adapted from [Mehrabi2000])

Reconfiguration  is  not  possible  if  the  underlying  technology  does  not  support  it.  Since 
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automation is under the hood of  manufacturing, changes have to occur in the automatic processing 

of  machines and services. Furthermore, the growth in the complexity involving production, process 

control,  communication,  etc.  creates  numerous  problems  for  their  developers  [Zhou1999]. 

Computational control and production strategies have to be adopted to solve the different issues and 

to permit that a certain paradigm be feasible. The consequently reduced human intervention also  

means a more rigorous attention and responsibility when designing such systems. It was identified  

that the use of  emergent computer solutions and information technologies is a fundamental engine  

to promote the new vision of  these systems in the industrial automation. Different from the high-

level concept of  the RMS model, several others provide a close inspection to the use of  intelligent 

and distributed automation and manufacturing to support reconfiguration and other aspects.

Such ideas  culminated in  different concepts  and some important  results  have been achieved 

through  European  AMICE  Consortium  for  the  computer  integrated  manufacturing  (CIM) 

[AMICE1989], the international intelligent manufacturing systems (IMS) consortium [Hayashi1993] 

and  the  collaborative  management  model  /  collaborative  manufacturing  management  (CMM) 

[ARC2003] by the ARC Advisory Group (see the left part of  Figure 3). These approaches point out 

the idea to have distributed control based on autonomous,  intelligent,  fault-tolerant and reusable 

automation entities to preserve the stability of  hierarchy while providing the dynamic flexibility of  

“heterarchies”. The CMM situates the enterprise in three different axes (life-cycle, supply chain and 

operations), that have to be attended through the entire management model in a collaborative fashion 

(represented in the left side of  Figure 3).

Figure 3: ARC's collaborative management model (left) and collaborative industrial automation
(adapted from [ARC2003] and [Colombo2004] respectively)

In  automation,  this  trend  can  also  be  explained  via  collaborative  automation (CA)  [Mick2003] 

[Harrison2004] [Colombo2004]. This new class of  systems requires the existence of  distributed and 

intelligent entities that collaborate to accomplish distributed control activities, while being able to 



self-organize and evolve organization structures and mechanical devices. The rationale paradigm of  

collaborative  automation  is  explained  by  three  main  emerging  technologies  that  are  integrated 

respectively (see the right side of  Figure 3 from [Colombo2004]): mechanic, control and intelligence. 

These methods are to be used effectively in order to achieve a system with flexibility, reconfigurability  

as well as robustness [Colombo2008]. From the computer science side, the control (in parallel with 

the  traditional  control  theory)  and  intelligence  are  fundamental  aspects  and  demonstrate  were 

computational theory and practice can be applied.

Applying the collaborative automation paradigm typically means that all the participating groups 

such as control vendors, machine builders and system integrators will be confronted with the subject  

to migrate from legacy manufacturing systems to new systems composed of  building blocks. The 

modularization of  the production system requires the decomposition of  the present “controller-

oriented  structure”  into  functional  modules  with  a  “manufacturing-task-oriented  structure”. 

Furthermore, in order to be able to use the modularized function entities they have to be described 

and the functional  dependencies  of  the latter  need to be  described.  The functional/dependency 

description also has to respect  the mechanical  flexibility  of  the collaborating devices  which is  a  

crucial  factor  when  designing  a  variable  production  process.  Based  on  those  descriptions  the 

functional modules are aggregated again to obtain a higher level of  autonomy [Colombo2008].

Collaboration  can  be  understood  in  the  three  layer  IT-enterprise  pyramid  of  Figure  4, 

representing  the  composition  of  the  enterprise  resource  planning (ERP),  manufacturing  execution  system 

(MES) and the shop-floor (in this case, made of  the distributed control system, DCS). Information flow 

is  required  between  these  layers:  planning  and  business  data  have  to  be  translated  so  that 

manufacturing and control strategies can be defined and, from the other side, feedback should be  

returned to be analyzed for future planning. A more collaborative initiative (and not just information 

passing procedures) could be beneficial in the sense of  offering and using services that represent 

integration and support resources from the layers.

ERPs are an alternative approach to the traditional software development methods. ERPs are 

integrated  and  enterprise  wide  systems  which  automate  core  corporate  activities  such  as 

manufacturing,  human  resources,  finance  and  supply  chain  management.  From  a  business 

perspective, the software and the business processes need to be aligned which involves a mixture of  

business  process  design  and  software  configuration  [Gibson1999].  These  front  ends  normally 

includes all office planning, scheduling, sales, and services systems, whereas the back end includes the 

supportive logistics, MESs, and shop floor controls that oversee the real value-added manufacturing 

activities [Qiu2004].
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Figure 4: Modern IT-enterprise for manufacturing
(adapted from [Karnouskos2007])

Whatever approach is chosen or what IT resources are used, in the center of  many views stays 

the essence of  collaborative entities, which are referred in [Bepperling2006] as intelligent autonomous 

mechatronic components (IAMC). These addressed units are sometimes recognized differently by 

different  authors,  for  instance  “modular  intelligent  automation  unit”,  “physical  agent”,  “holon”, 

“collaborative automation units”, etc., just to name some of  them. However, the idea behind the 

concept is usually the same: these entities are parts of  an organization and contribute to the overall  

interest by collaborating. This organization is also characterized by its aggregation capabilities, i.e., 

simpler units might be aggregated in order to generate more complex structures.

Each one of  these entities is typically constituted by hardware (mechatronic), control software 

and embedded intelligence, and it is able to dynamically interact with each other to achieve both local 

and  global  objectives,  when  they  are  considered  within  a  cross-layer  infrastructure  like  a 

manufacturing enterprise [Deen2003], such as the one in Figure 4. These entities are distributed over 

the system: some are embedded into automation devices, such as sensors and actuators, and regulate  

their behavior; others are available in computing devices to perform more complex tasks.

A rising technological solution to adapt the majority of  the concepts behind IMS into feasible 

principles  is  multi-agent  systems (MAS).  MAS  are  characterized  by  decentralization  and  parallel 

execution of  activities based on autonomous entities, called agents. A software agent can be viewed 

as a computational entity (or extension of  active objects) situated in an environment from which it 

receives perceptions and within it takes actions with autonomy and pro-activity [Oliveira2007].  In the 

perspective of  automation and manufacturing, MAS is a suitable approach to develop the new class  



of  reconfigurable production systems since they already supports the idea of  interaction within a  

society  of  individual  agents,  fitting  well  with  the  idea  of  a  community  of  collaborative  entities. 

Additionally, emergence can be mapped into the evolution of  the society of  agents when identifying 

reconfiguration opportunities and defining new complex functionality and behavior.

According to Giret et al. [Giret2005] MAS are good candidates for modeling holonic manufacturing  

systems (HMS). In an HMS, key elements such as machines, work centers, plants, parts,  products, 

persons, departments, or divisions have autonomous and cooperative properties [Gou1998]. These 

elements  are  called  “holons”.  In  an  HMS,  each  holon's  activities  are  determined  through  the 

cooperation with other holons, as opposed to being determined by a centralized mechanism. An 

HMS could therefore enjoy high agility, which is an important characteristic for future manufacturing 

systems. From the outset, the prevalent software technology to implement the concepts of  holonic  

manufacturing  appeared  to  be  intelligent  co-operating  agents,  also  called  multi-agent  systems 

[Bongaerts1998]

Industrial applications of  multi-agent and holonic systems are diverse and well documented in 

different publications. By enabling networks of  autonomous yet interacting reasoning elements, this 

technology provides an alternative to the centralized systems prevailing in industry [Marik2005]. One 

of  the  most  known  MAS  architecture  for  industrial  application  is  ARCHON  [Horwood1992], 

developed during the ARCHON project – ESPRIT project P-2256 – until 1994. The consortium has 

developed a general purpose architecture which can be used to facilitate cooperative problem solving 

in industrial applications [Wittig1994]. Another example is the agent-based control system developed 

in  the project  P2000+, able to meet the challenges of  flexible and robust manufacturing in the  

automotive  industry  [Bussmann2001] [Schild2007]. ADACOR  (ADAptive  holonic  COntrol 

aRchitecture  for  distributed  manufacturing  systems)  [Leitão2006]  is  a  successful  example  of  the 

application  of  MAS  and  holonic  manufacturing  system.  ADACOR  deals  with  the  frequent 

occurrence of  unexpected disturbances in a very decentralized way, relying in simple scheduling and 

control algorithms and using local information available in the functional blocks.

The topic of  cyber-physical systems (CPS) is recently discussed in industrial automation. CPS are 

engineered systems that require tight conjoining of  and coordination between the computational  

(discrete) and the physical (continuous) [Wing2008]. They have a computational core that interacts 

with  the  physical  world.  The  trend in  cyber-physical  systems is  to  rely  less  and less  on  human 

intervention  and  decision-making  and  more  and  more  on  the  intelligence  as  embodied  in  the 

computational core. Computational components may be distributed, and thus need some sort of  

interaction to complete objectives of  both cyber and physical parts. Such components can be seen as 

collaborative  entities  with  tight  integration  of  the  continuous  world.  Indicators  of  missing 

foundations, such as lack of  compositionality and predictability in the engineering process and lack 
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of  comprehensive  design  automation  tools,  are  experienced  by  industry  while  developing  and 

operating real-life CPS.

In distributed manufacturing  environments,  using MAS,  HMS,  CPS,  or  other  approach,  it  is 

important  to guarantee the interoperability between the distributed entities or applications and to 

verify that the semantic content is preserved during the exchange of  messages between them. In fact,  

a study commissioned by NIST (National Institute of  Standards and Technology) reported that the 

US automotive sector alone expends one billion dollars per year to solve interoperability problems 

[Brunnermeier1999]. The solution to those problems requires the use of  standard platforms that 

support transparent communication between distributed smart control components or applications.

In spite  of  the promising perspective  of  agent-based and holonic approaches,  the industrial  

applications developed in the context of  evolvable and reconfigurable manufacturing systems are 

extremely rare,  and the implemented functionality  are  normally  restrict  [Marik2005].  Some other  

reasons to sustain this fact can be pointed out, namely i) a new way of  thinking, ii) industry want to  

use proven technology and is afraid to use emergent terminology usually associated to these new 

technologies,  like  ontologies,  self-organization,  emergence  and  learning,  iii)  the  integration  with 

business levels, and iv) a set of  more technical related problems, namely in terms of  granularity, 

scalability, interoperability, flexibility, modularity and complexity of  self-organization mechanisms to 

support the reconfigurability  and evolution [Leitão2009]. Additionally,  the investment required to 

implement these approaches is much larger than that required to implement the traditional ones. In 

fact, as stated by Schild and Bussmann, flexibility is a future advantage that requires an immediate  

investment, while the flexibility advantages are only potential benefits [Schild2007].

The integration of  collaborative entities in mechatronic devices still  presents some problems, 

mainly due to the heterogeneity of  these devices. In fact, the majority of  agent-based laboratorial  

control applications use software agents without the need to integrate physical devices (for example 

in the supply chain case) or emulators when they are needed (for example, in manufacturing control  

systems).  But  in  the  real  situations,  industrial  applications  require  the  integration  of  physical 

mechatronic devices, normally tens or hundreds. Methodologies to support an easy, fast, transparent 

and re-usable integration of  mechatronic devices is then required.

One of  the most recently adopted and with promising applicability for distributed collaborative 

automation  are  service-oriented  architectures.  The  present  dissertation's  reference  architecture  is 

based on service-orientation and therefore the following sections detail its applicability in automation 

and manufacturing domains.



2.2 Services in industrial automation

Distributed software components are being used in the form of  distributed objects, function 

blocks and services, beside others. The last one, as part of  the main element in service-oriented  

architectures, is hitting right now the domain of  industrial automation systems. The idea of  “service-

oriented computing to provide a way to create a new architecture that reflects components' trends  

toward autonomy and heterogeneity” [Huhns2005] dominates the view of  the future trend. Also its  

growing maturity in the business and e-commerce ground, are seen as step forwards for a seamless 

integration [Jammes2005c] of  resources from different levels.

The root of  service-oriented architectures fits well with collaborative automation, in sense of  

autonomous,  reusable  and  loosely-coupled  distributed  components.  The  use  of  the  service-

orientation paradigm enables the adoption of  a unifying technology for all levels of  the enterprise,  

from  sensors  and  actuators  to  enterprise  business  processes  [Bepperling2006].  In  automation 

domain, the vision of  using service-orientation is to support the life-cycle in the context of  agile and 

flexible  process  control.  Therefore,  methodologies  and  technologies  for  service-oriented 

architectures must be sufficient and efficient for the many features and issues that exist in modern  

industrial automation.

2.2.1 Service-oriented architectures and web services: an overview

The proliferation of  the Internet in the '90s, due to the possibility of  sharing information to 

other people  and organizations,  guided to discover of  common interests  and to search for new 

market possibilities. In order to survive the massive competition created by the new on-line economy, 

many  organizations  are  rushing  to  put  their  core  business  competencies  on  the  Internet 

[Hamadi2003].  In  consequence,  the  emergence  of  service-oriented  architecture and  one  of  its 

technological standard, web services (WS), became notorious. Moreover, service-oriented computing (SOC) is 

the most promising approach to face the increasing demand for business-aligned applications that 

provide  the  ability  to  react  quickly  on  new  requirements  of  continuously  changing  business 

environments [Belter2008]. SOC is  the computing paradigm that utilizes services as fundamental 

elements for developing applications and solutions. To build the service model, SOC relies on the 

SOA, which is a way of  reorganizing software applications and infrastructure into a set of  interacting 

services [Papazoglou2003]. The ability to efficiently and effectively share services on the web is a  

critical step towards the development of  the new on-line economy driven by the business-to-business 

(B2B) e-commerce [Hamadi2003]. In parallel, SOA represents also a form of  interoperability not 

only for Internet environments, but also used for closed networks, inter-application communication, 

etc.
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Generally speaking, service-oriented architecture is a way of  building distributed systems [Ross-

Talbot2005], originally designed for electronic commerce and business, but progressively adopted in 

other domains. Services and SOA was always defended with a set of  more or less accepted keywords  

(with  a  corresponding  reference explaining  the  keyword),  such as  loose  coupling  and autonomy 

[Huhns2005],  interoperability  [Nezhad2006],  composability  and  reusability  [Milanovic2004] 

[Santos2006].  T.  Erl  characterizes  SOA  and  service-orientation  by  its  design  principles,  namely 

standardized contracts, loose coupling, abstraction, reusability, autonomy, statelessness, discoverability 

and composability [Erl2007]. Jammes et al. [Jammes2005a] refer to the challenge of  SOA to reconcile 

the opposing principles of  autonomy and interoperability. A reference in many SOA publications is  

one of  the famous citations by Albert Einstein (1879-1955): “Things should be made as simple as 

possible, but no simpler”, which indicates that a SOA must be simple enough, but should cover the 

required features of  its application.

Figure 5 exemplifies the most common SOA approach, representing what it is called the “magic” 

triangle of  SOA [Melzer2007], including the basic elements and behavior. To discover a service, it 

must be published before by the provider (1), so that the service is searchable (2) in order to get a  

reference to it by the requester (3). This procedure works by using a discovery mechanism to locate  

services, e.g., a service directory facility, a broadcasting announcement messages, etc. With the correct 

reference to a service, the requester may request the service from the provider (4). In affirmative case 

the provider will accept the request (5) and the interaction of  the service usage can be started (6).

Figure 5: “Magic” SOA triangle with core web services protocols
(adapted from [Mendes2008])

Many publications define SOA using a ternary relationship model that depicts the main SOA 

participants and their dependencies. Service providers register their services with a central repository,  

and service consumers query the repository for the services they need. Once clients have identified 

the right services within the repository, they can directly interact with those services. This generic 

model  doesn't  explain  the  differences  between  standard  middleware  and  the  service-oriented 

approach.  It  turns  out  that  the  model  applies  to  all  kinds  of  distribution  middleware  including 



CORBA (see comparison in [Lagerberg2002]), a Distributed Component Object Model (DCOM), 

Java Remote Method Invocation (RMI), and .NET Remoting.

Although many vendors view SOA as a unique paradigm, SOA functionality can be implemented 

in many ways. Information is a commodity. For decades, techniques have been refined for acquiring 

and parsing information. Gathering data over the Internet has evolved quite a bit, from basic file 

retrieval via the FTP, to the dynamically generated content and the personalized GUI of  web pages  

today [Ma2005]. Today, the preferable realization of  SOA is web services, which provide a language-

neutral, loosely-coupled, and platform independent way for linking applications over the network (Fu 

et al. [Fu2006]). Formal definition of  WS and additional algebra is given by Hamadi and Benatallah  

[Hamadi2003]  and  Bing  and  Huaping  [Bing2005].  From  the  practical  standpoint,  WS  offer  a 

technology that is rich and flexible enough to make SOA a reality [Ma2005].

The underlying structure of  the web service platform is  made of  XML (eXtensible Markup 

Language) + HTTP (HyperText Transfer Protocol). The HTTP is one of  the most used Internet 

protocols, and the XML provides a mark-up language which can be used between different platforms 

and programming languages for interchanging information in a standard way. A web service itself  is 

software that can process a received XML document through some combination of  transport and 

application protocols [Vogels2003]. These services are made available from a web server for web 

users or other web-connected programs.  Besides the standardization and wide availability  of  the 

Internet  itself,  web  services  are  also  enabled  by  the  ubiquitous  use  of  XML  as  a  means  of  

standardizing data formats and exchanging data [Jammes2005b].

One of  the major protocols used in web services is WSDL (Web Services Description Language,  

formally Web Services Definition Language) [W3C2007], which is a W3C specification that provides 

an abstract,  technology neutral  language for  the  definition of  published operations  of  a  service 

[Brenner2007]. In a simple manner, services are a set of  operations, which in turn can be one of  

different  message  exchange  patterns,  for  instance  request/response  or  events.  The  exchange  of  

information of  the operations is via the network using SOAP (originally stood for Simple Object 

Access Protocol, and lately also Service Oriented Architecture Protocol, but is now simply SOAP)  

formatted messages  (which is  another  web service  standard).  SOAP is  a  platform and language 

independent communication protocol used between applications, using a simple and extensible XML 

based format for sending messages over the Internet. UDDI (Universal Description, Discovery and 

Integration) manages a service directory where applications can register and search for web services  

in form of  interfaces described by WSDL. These protocols are known as the core web services  

technologies [Roy2001].  Figure 5 represents the interaction schema using the common core web 

service protocols.  More information and details  about these and other  protocols  related to web 

services can be found in [Ma2005].
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In  fact,  there  are  many  possible  views  of  SOA,  most  of  which  focus  on technologies  and 

implementations for service orientation rather than the architecture. SOA in its fundamental core 

doesn't simply define an implementation technology but an architectural solution for a specific design 

problem  in  a  given  context,  with  XML  web  services  being  just  one  possible  implementation 

technology [Stal2006]. Furthermore, the main difference to the other technologies does not only rely 

on the implementation of  the basic resources, but in the way that they are used and composed into 

complex applications. Thus, for the real applicability of  WS, advanced topics of  engineering have to  

exist. Service-oriented System Engineering (SOSE) and Service-oriented Modeling (SOM) are some 

examples  of  emerging  areas  that  involves  engineering  SOC/SOA  applications  and  associated 

techniques include modeling, specifications, analysis, automated code generation, simulation, testing, 

monitoring, and policy governing and enforcement [Tsai2006].

2.2.2 Service-oriented automation as a collaborative ecosystem

The SOA paradigm was originally applied in electronic commerce and business systems, using 

web services technology, but is being progressively adopted by other fields. SOA was seen as a new 

ground for experimentation in industrial automation since its relative success in the business chapter 

from the beginning of  the 21st century. Since industrial automation and production systems domains 

present distinct technical requirements from the original application in business levels, SOA must be 

proved  not  only  at  its  most  basic  form,  but  also  to permit  complex  engineering  steps  that  are 

required in modern distributed systems.

In the automation domain, the vision of  using service-oriented architectures is to support the 

life-cycle needs in the context of  agile and flexible manufacturing, addressing distributed, modular 

and reconfigurable automation systems whose behavior is regulated by the coordination of  services. 

Service-orientation  principles  are  pointed  out  as  a  promising  solution  to  address  the  current 

challenges in industrial automation and production systems, namely the modularity,  flexibility and 

reconfigurability.  Standardized services and advanced separation of  interfaces and implementation 

enhance the abstraction of  component-based development and thereby paving the way for non-

technical  software  engineers  to  develop  complex,  process-oriented  software  systems  [Zeeb2007]. 

Some services can be composed by other services, creating a leveled structure of  services. In these  

systems, the behavior is regulated by the coordination of  services.

The use of  services was already a long discussion in factory automation long before formally 

presented in SOC and SOA. From one side, service-based manufacturing and service factory was  

discussed in [Chase1992]; from the other side, component services have been part of  multi-agent 

systems, such as in [Lin1994]. The main difference to SOA/SOC is that there was no main focuses  

on service-orientation, interoperability and autonomy concerning services, formal approaches, and 



the consideration as a new form of  engineering. Another aspect is related to the fact that the service-

oriented systems were adopted from other domains, namely e-commerce and business, which create a 

greater challenge in their application in industrial automation. Indeed, Tsai et al. sustain that “the goal 

of  the industry is  no longer manufacturing hardware and software products. Instead, it  provides  

services that people need” [Tsai2006], which represents this tendency.

Collaboration  should  be  a  central  topic  in  SOA,  and therefore  SOA principles  fit  well  with 

collaborative  automation,  in  the  sense  of  autonomous,  reusable  and  loosely-coupled  distributed 

components.  According to [Huhns2002],  “A service-oriented architecture is a set of  architectural  

tenets for building autonomous yet interoperable systems.” and this proposal is facing one of  the 

challenges  of  collaborative  automation,  namely  providing  interoperability  between  autonomous 

systems. SOA provides a communication platform in which underlying structures and processes can 

be encapsulated in one interface, represented by services that may be used externally [Jammes2005].

Contributions have been made about the integration of  service-oriented components from the 

factory's  shop-floor  into  the  IT-enterprise,  in  order  to  provide  vertical  information  and control 

sharing. One possible solution is that these components provide the required services to the upper 

levels of  the enterprise and thus are controlled by them. This fits with the service-oriented paradigm, 

but  the  traditional  master-slave  hierarchy  from the  top-down perspective  is  not  favorable  when 

speaking about collaborative and proactive devices. A partial solution is a mix of  autonomous devices 

from the shop-floor level that may provide services, but also may request services provided by the  

other levels, such as decision making systems and the typical MES and ERP. Figure 6 represents the 

enhancement of  the model of  Figure 4 with horizontal and cross-layer service-orientation.

To simplify the service integration into large-scale enterprise software, many large vendors have 

announced  architectures  and  products  for  an  enterprise  service  bus  designed  to  facilitate  the 

integration of  enterprise software components [Bichier2006]. With the advent of  web services and 

service-oriented architectures, realizing enterprise integration, accelerating enterprise responsiveness 

to customers, automating inter-enterprise interactions and optimizing the business processes of  the 

whole  supply  chain,  become  feasible.  The  service-oriented  paradigm  and  the  web  services 

technologies are rapidly emerging as the most practical approaches for integrating a wide array of  

manufacturing  resources  in  the  manufacturing  grid  environment.  Efforts  in  the  semantic  web 

standards  and  technologies  present  an  opportunity  for  automating  the  integration  process 

[Zhao2005].

SOA have proved to be a suitable approach in e-commerce and IT-enterprise, but considering the 

root of  many production and automation companies, their ground made of  electronic devices is still 

a  major  task  for  SOA.  Service  providers  and  requesters  also  include  also  industrial  devices,  

manufacturing  equipment  and products  (besides  the  typical  software  agents  that  run on normal 
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computers and servers). Nevertheless, several efforts are being done in integrating and managing 

SOA in automation and manufacturing.

Figure 6: Modern IT-enterprise for manufacturing using service-orientation

The first visible application resulted from the SIRENA project (http://www.sirena-itea.org) with 

the objective to develop a service infrastructure for real-time embedded networked applications. The 

SIRENA Project [Jammes2005] has contributed for the visibility of  the SOA-based automation by 

providing web services at device level through the extension of  the SOA paradigm into the realm of  

low-level embedded devices, such as sensors and actuators. The SIRENA project had leveraged SOA 

to seamlessly interconnect (embedded) devices inside and between four distinct domains: industrial 

automation, telecommunication, automotive and home automation. A framework was developed to 

achieve this aim as well as assuring interoperability with existing devices and extensibility of  network 

based on the SIRENA technology. The feasibility of  this approach has been demonstrated through a 

proof-of-concept implementation based on the DPWS, a device-oriented subset of  the web services 

protocols. It was required to support Plug-and-Play connectivity, to base on open standards, to apply 

down to sensor and actuator level and to be technology neutral regarding programming languages, 

operating systems and network media [Bohn2006].

Since then, significant research is going on, covering the engineering of  such systems, including 



the modeling, semantic description and collaboration. Based on the achieved success of  SIRENA, 

several other projects have followed. SODA (Service Oriented Device and Delivery Architecture) 

[SODA2007] is one of  such examples which goal was to create a service-oriented ecosystem built on 

top  of  the  foundations  laid  by  the  groundbreaking  SIRENA  framework  for  the  high-level  

communications between devices based on the SOA paradigm.

Nevertheless, the major representative in the area of  service based systems for automation is the 

SOCRADES project (Service-Oriented Cross-layer infRAstructure for Distributed smart Embedded 

Systems). Its primary objective is to develop a design, execution and management platform for the 

next-generation  industrial  automation  systems  [Cassina2009].  Since  the  emergence  of  service-

oriented architecture in industrial automation, smaller applications were shown, but fully functional 

demonstrations  close  to the  reality  were  minimal.  Moreover,  integrated solutions  to  validate  the 

configuration and operation of  service-oriented automation systems, from embedded devices until  

business applications need to be demonstrated. With these motivations and also as part of  the results 

of  the SOCRADES project,  efforts were done in developing a full  engineering approach for an  

industrial  demonstrator.  The  used  methodologies  are  based  on  the  project's  requirements,  but 

sufficiently flexible to adapt novel approaches by the researchers and developers. The new solution 

for automation system brings a different way to configure and operate the system, but in the near  

future is  expected a wide acceptance,  based on the integration,  reconfiguration,  ease of  use and 

performance of  service-based systems (see the project's road-map of  [Gerosa2008]).

The  SOCRADES  project  integrates  two  complementary  technological  approaches:  one  that 

focuses on device-centric functionality at the lowest level and the other one that adopts a service-

oriented view in order to cut across, not only all levels of  the embedded device hierarchy, but also the 

higher-level  business  processes  of  which  the  device level  processes  are  a  constituent  part.  As‐  

illustrated by  Figure 7, these two orthogonal approaches meet at the sensor/actuator level. At this 

level, the emergence of  wireless sensor/actuator networks poses new challenges with respect to the 

robustness  and  reliability  of  communications  links.  Such  issues  are  addressed  by  a  device level‐  

middleware.  The device level  application platform layer  above this  middleware makes use of  the‐  

services  offered  by  the  latter.  Enterprise level  middleware  provides  functionality  like  service‐  

orchestration and choreography, knowledge-based service discovery, agent based service interactions‐  

and service repository management. The enterprise level application platform is situated at the level‐  

of  enterprise information systems. This platform is intended to be an extended version of  an existing 

business process management system [SOCRADES2006].
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Figure 7: SOCRADES infrastructure views
(adapted from [SOCRADES2006])

Currently,  the  SOCRADES project  and other  related works  have already  demonstrated new 

methodologies, technologies and tools for the modeling, design, implementation and operation of  

networked systems made up of  smart embedded devices. Most of  the results of  service-oriented 

devices and automation systems can be found in disseminated works (see some examples in the 

reference section). Several international conferences in the area of  automation already have a great 

support of  service applications and also there are dedicated sessions for these topics (for example the 

Annual Conference of  the IEEE Industrial Electronics Society). It is shown that the adoption of  

web services principles in an automated production system satisfies some requirements, namely the 

interoperability between equipments and the basis for flexibility and reconfigurability. Moreover, in 

the center of  service-oriented automation stays the service technology that is already available for 

industrial devices.

2.2.3 Service technology for devices (Device Profile for Web Services)

Standard web technologies and increasing computational power are becoming ever more available 

even  on the  smallest  devices  and  also  different  platforms  [Bepperling2006].  Some devices  have 

already natively integrated web servers, supporting standard protocols or even allow user-defined 

enhancements. The interoperability of  SOA and the concept of  creating a service interface for hiding 



the  service  implementation becomes an important  feature.  This  will  enable  radically  new device  

networking architectures and pave the way for application of  a uniform communication paradigm 

down from the shop floor up to the top floor, thus breaking down current technological barriers 

[Smit2006]. In turn, these evolutions hold the promise of  greatly increasing the agility  of  future  

industrial enterprises.

The benefits of  service-orientation are conveyed all the way to the device level, facilitating the  

discovery and composition of  applications by re-configuration rather than re-programming. Dynamic 

self-configuration of  smart  embedded devices  using loosely-coupled services  provides  significant 

advantages for highly dynamic and ad hoc distributed applications, as opposed to the use of  more  

rigid technologies such as those based on distributed objects (see [Jammes2005] and [Jammes2005a]).  

From the other hand, the fundamental production operations are closely related to device-level and 

their service representation can be considered as the glue between the traditional automation area 

and the service-driven area. Those services do a translation of  the service's input, output and event 

variables to process values and vice verse.  Those implementations do not underlie such dynamic 

modifications as aggregate services do and could be implemented with less flexible constraints.

WS and SOA would be difficult to be practicable in industrial automation if  there were not some  

trade-offs considering the domain and available resources. In the home and industrial automation 

domain, one technological specification that is used in the research of  service-based devices is the 

Device  Profile  for  Web  Services [OASIS2009a].  DPWS was  specified  considering  some specific  web 

service protocols but also restricting the usage of  web services to keep aspects of  the limitations in 

embedded systems [Pruter2008]. DPWS defines the extensions required for using web services in 

electronic devices [Jammes2005b]:

• Taking into account their specific constraints: footprint, performances, etc.;

• Fulfilling the most  common needs:  security,  plug & play,  asynchronous and event-driven 

exchanges.

DPWS defines  a  profile  over a  specific  set  of  web services  protocols  to enable  secure  web  

service  capabilities  on  resource-constraint  devices  [Bobek2008].  Therefore,  simple  or  complex 

services can be called directly by other devices or enterprise information systems [Li2008]. DPWS 

allows sending secure messages to and from web services, dynamically discovering a web service, 

describing a web service, subscribing to, and receiving events from a web service [Zeeb2007].

The DPWS protocol stack comprehends the following protocols (see Figure 8 (for more details 

see [Jammes2005b] and [Zeeb2007]):

• SOAP: domain-independent protocol for message exchange, used to invoke actions and to 

retrieve information;

• WSDL: formalize the way to specify service interfaces;
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• WS-Addressing: protocol for high-level addressing;

• WS-Discovery: protocol to automatically find devices and services (“plug-and-play”);

• WS-Eventing: protocol to signal asynchronous events;

• WS-Security: optional means to secure the communications.

DPWS defines an architecture in which devices run two types of  services: hosting services and 

hosted services, described in [Jammes2005c]. A hosting service is the device representation on the 

network, being responsible for the device advertise and metadata exchange. Hosted services are the 

services that the device has and depend on their hosting service for discovery. Hosting services allow 

other devices to use, subscribe and obtain metadata of  the given services (see left side of  Figure 8).

Figure 8: DPWS protocol stack (left) and device architecture (right)

One of  the main features is “dynamic discovery” that permits devices to announce themselves in 

the  network and therefore  be  discovered  by  others  and  ready to  be  used  by  their  services  and 

operations (similar to the plug & play mechanism without the need of  specific device drivers). As an 

example,  DPWS-enabled devices  can be discovered by  Windows Vista  /  Windows 7 based PCs 

(under “Network” in the Windows Explorer) and therefore the user can check their information.

DPWS  is  a  growing  specification  used  in  several  implementations  and  research  projects. 

Currently there are several implementations of  DPWS, for example Service-Oriented Architecture 

for Devices (https://forge.soa4d.org/) and Web Services for Devices (http://www.ws4d.org/). In 

terms of  standardization, the DPWS specification was recently published by the OASIS Web Services 

Discovery and Web Services Devices Profile (WS-DD) Technical Committee as an OASIS Standard.

There  are  many  examples  of  DPWS  applications.  One  of  the  most  noticed  and  spread 

application is the Windows Rally that is a set of  technologies from Microsoft that integrates DPWS 

with  a  stack  called  WSDAPI  and  intends  to  simplify  the  setup  and  maintenance  of  network 

connected devices. In the manufacturing industry there are many applications using DPWS, such as 

integration  of  2D-3D  engineering  tools  with  physical  devices  [Cachapa2007],  methods  for 



developing  efficient  diagnosis  mechanisms  in  devices  [Barata2007]  and  systems  for  adding 

transparently  security  properties  to  service  orchestration  [Chollet2008].  On  home  service 

development using web services for devices, companies are successfully creating products that allow 

the  integrations  of  many  devices  at  home  promoting  a  new  degree  in  home  interaction 

[Bottaro2008].

Several projects used and use DPWS as the main foundation for web services and web service-

enabled devices. DPWS was used as a basis for the SIRENA project with the objective to develop a 

service infrastructure for real time embedded networked applications. The feasibility of  the project 

has been demonstrated through a proof-of-concept implementation based on the DPWS. Several 

others, such as SOCRADES and SODA, continued the expansible demonstration of  DPWS in their 

devices.

2.3 Modeling and other advanced topics for service-based 
automation

In an architecture  that  is  being  specified and developed with web services  technologies  and 

making available different kinds of  distributed services,  it  is  clear  that  the basic  structure is  not 

enough to  automate  the  interactions  and to  permit  the  application  of  diverse  functionality.  For 

example, we need to describe a transaction that should depend on a well established sequence of  

services and also a way to validate the transaction model to discover possible deadlocks or conflicts.  

Thus,  there  are  distinct  tools  that  offer  particular  features  for  web  services.  Aoyama  et  al.  

[Aoyama2002] has classified web service technologies in two layers:  web services platforms to describe, 

discover and execute web services, and web service engineering to develop applications with web services 

(see Figure 9).

Figure 9: Web service platform and engineering levels with some common topics

The platform technologies of  web services are generally related to the core protocols (see section 

2.2.1 “Service-oriented architectures and web services: an overview”). As a new domain of  software 

engineering, web services engineering concerns every aspect from development, deployment, use, to 

evolution of  web services, such as analysis, architectures, development methodologies, descriptions, 
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testing,  development  environments,  management,  and  applications  [Aoyama2002].  The  topics  in 

Figure 9 are collected from different research works present in publications. It does not represent all 

existing areas and many of  them overlap (or have dependencies).

Important subjects are still related to engineering solutions of  service-oriented systems from the 

software/hardware and user point of  view, and also to stimulate the industrial adoption. In service-

oriented automation systems, a formal and unified method is required to provide design facilities, 

with the ability to validate models and to be also used as an integration middleware at run-time with  

enough flexibility and features. Previous works in the domain report some advances with engineering 

methodologies.  Main  research  directions  are  related  to  SOA  device  integration  and  DPWS 

[Jammes2005b]  [Bobek2008]  [Li2008],  orchestration  and  semantics  of  devices  and  systems 

[Jammes2005b] [Delamer2006a], the use of  Business Process Execution Language (BPEL) and other 

formalisms [Puttonen2008] [Lobov2008], process optimization [Rahman2008], business integration 

[Nguyen2008],  integration of  SOA and MAS [Ribeiro2008]  and virtual  SOA enabled production 

environments [Cachapa2007].

The following sections  represent a  description of  a  sub-area of  the  engineering of  services,  

namely modeling and adjacent topics, related but not only limited to industrial automation.

2.3.1 Modeling languages and standards in automation

Programmable logic controllers are widely used for automating a variety of  industrial  plants.  

Important  applications  are  material  handling  and  warehousing  systems,  weight  lifting  systems, 

transportation  lines,  packaging  systems.  A  PLC  is  a  general-purpose  microprocessor  system 

connected to sensors and actuators: the former provide information on the state of  the controlled 

plant while the latter perform the actions prescribed by the controller. Mapping input information 

into output commands is the basic task of  PLC software [Bonfatti1995].

Equipment  manufacturers  provide  different  devices  and  machinery,  and  the  request  for  a 

common way to configure them begun to grow; standards were defined to overcome these problems.  

Therefore, the IEC 61131 standard was defined for PLCs. Due to the real-time, cyclic nature of  the 

PLC software, specific languages have been studied for supporting the design and coding phases. 

According to the IEC 61131-3 standard (the third part of  the IEC 61131), five basic languages are 

identified  at  different  levels  of  abstraction:  Instruction  List,  Structured  Text,  Ladder  Diagram, 

Function Block Diagram, Sequential Function Chart (Grafcet) [Bonfatti1995].

From the other hand, the primary purpose of  the IEC 61499 standard is not as a programming 

methodology, rather as an architecture and a model for distributed systems. This standard defines a 

number of  models conducive for designing distributed systems. These models are defined in terms 

of  Function Blocks (FB) and allow describing distributed control systems (DCS) in an unambiguous 



and formal manner [Hussain2005]. There are two types of  function blocks: basic function blocks and 

composite function blocks. A composite function block contains other composite function blocks 

and/or basic function blocks.

Several programming and modeling languages are used currently to design the control structures 

in automation systems, such as the programming of  PLCs. Table I shows several common languages, 

mostly from the IEC 61131-3 standard. Moreover, 

Table I: Programming and modeling languages used in automation

Language Description

Ladder Diagram (LD) Specialized schematics commonly used to document industrial control logic 
systems

Function Block Diagram (FBD) Relation between inputs and outputs of  modular logical blocs

Sequential Function Chart (SFC) Graphical programming language used for PLCs

Structured Text (ST) High level language that is block structured and resembles PASCAL

Instruction List (IL) Low level language and resembles assembler

Petri nets (PN) State/transition based graphical language with solid mathematical 
foundation

Timed Net Conditions Event 
System (TNCES)

Petri Nets-based formalism that allows organization of  hierarchical models 
composed of  reusable modules

π-calculus Process calculus able to describe concurrent computations

For the usage of  these languages in SOA, the first thing that should be considered is how to 

represent services and their logic. Another remark is that most of  these languages were defined in the 

way that PLCs works, and therefore it does not mean that it can be directly adapted to systems in 

which SOA and WS frameworks should operate (e.g. PC-like, embedded system).

2.3.2 A new form of  modeling and engineering

SOC  is  a  new  paradigm  that  evolves  from  the  object-oriented  computing  (OOC)  and 

component-based  computing  paradigms  by  splitting  the  developers  into  three  independent  but 

collaborative entities: the application builders (also called service requesters), the service brokers (or 

publishers),  and  the  service  developers  (or  service  providers).  The  responsibility  of  the  service 

developers is to develop software services that are loosely coupled. The service brokers publish or 

market the available services, and the application builders find the available services through service  

brokers and use them to develop new applications.

As a new domain of  software engineering,  services  engineering concerns  every  aspect from the 

development, deployment, use, to evolution of  services, such as analysis, architectures, development 

methodologies,  descriptions,  testing,  development  environments,  management,  and  applications 

[Aoyama2002].  However,  an  important  question  remains  unanswered:  how to  efficiently  handle 
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distributed systems based on services and consequently their processes [Leitão2010]? In other words, 

the  challenge  is  how  to  describe  the  processes  that  regulates  the  system behavior  and  how to 

synchronize and coordinate the execution of  the services offered by distributed entities to achieve 

the  desired  behavior.  Besides  the  individual  control,  interaction  must  occur  along  individual 

components of  the system. This can be done by defining processes between them that agglomerates 

together pieces of  single process models controlled by the components. Whatever is the strategy 

chosen by the system engineer, i.e. a centralized control by gluing control models together or peer-to-

peer  synchronization  between components'  control  models,  it  should  be  possible  to  design  the 

control with a minimal effort.

The main basis for the specification and use of  services is their description. At the factory floor, 

manufacturing equipments can be abstracted as the web services described in a WSDL file. Each 

device or a piece of  equipment ranging from a sensor to the entire production cell may be controlled  

at run-time to perform required operations stipulated by the business or product needs. The vendor 

of  the equipments can deliver the WSDL file along with the supplied equipments for the production 

line [Lobov2008].

Besides the description, an emerging area of  research is also the investigation of  technologies 

that will enable the discovery and composition of  web services [Bansal2008]. This paradigm shift is 

changing the way software and hardware is being developed [Tsai2005]. Both automatic discovery 

and composition are seen as the way of  building more complex software from simple elements. One 

way  to  accomplish  web  service  composition  is  to  define  the  composite  services  as  workflows 

containing a set of  atomic web services with control and data flow among them. Proposed industry  

standards  for  the  service  composition,  such  as  the  BPEL  and  the  BPML,  use  this  approach 

[Bichier2006].  Service  discovery  and  composition  are  fundamentally  based  on  the  syntactical 

matching using the WSDL.

For the automation world, this way of  constructing applications from elementary pieces can be 

somehow compared with the IEC 61499 standard, where elements are basic function blocks and the 

higher level engineering is related to wire these blocks. However, for the IEC 61499 standard little or 

none  was  done  in  terms  of  discovery  and  automatic  association  of  these  blocks.  Furthermore, 

service-based systems are not static “wired” as in IEC 61499, providing a balanced view between 

information sharing, modularity, integration aspects and collaboration, based on the natural idea of  

services that are present in the daily life.

Therefore, a set of  engineering tools is required for supporting a successful migration to the new 

automation approach.  Among other  tasks,  the  engineering  tool  should  provide  methods for  the 

following  items:  identification  of  modular  components,  description  of  the  architecture  of  the 

automation system, modeling languages for service composition and other forms, methods to model 



the entire production process or parts of  it, formal validation and simulation of  the new production 

system, and linkage of  the modules to legacy systems [Bepperling2006].

2.3.3 Modeling languages for service-based automation

Synchronization and parallel processes are very common in distributed computing. The case of  

SOA is  not  different and special  needs require that  services are invoked in  a  specific  order and 

precedence, in such a way that it can be described by models (or more commonly known as workflow 

models).  Workflows are networks of  tasks rules that determine the (partial) order in which the tasks 

should  be  performed.  Essential  ordering  principles  are  the  sequencing,  selection  of  choice, 

parallelism and iteration [Aalst2003].  Thus, modeling techniques and workflows are fundamental to 

the  development  and  engineering  of  services,  since  they  provide  the  description  and  execution 

behavior for the complex process.

In the previous sub-section, the composition of  the service is described as the main development 

form for service-orientation. However, to reach a composition, specifications are needed to create  

composite services and any other form involving the generation and exposition of  services. Several 

words are used in the SOA community to describe more complex interactions, such as orchestration, 

choreography and composition (see [Peltz2003]). Orchestration and choreography fall in the bunch 

of  complex execution [Santos2006], focused in the executable processes that include more than one 

single service. These processes interact with external entities through web services operations using a 

XML based language [Turruellas2006].

Some  people  use  orchestration  and  choreography  as  synonyms,  some  claim  they  describe 

different  concepts  [Tilkov2006].  The  definitions  themselves  are  not  always  consistent  and  clear, 

leading  to  the  misunderstanding  of  these  concepts.  Originally,  orchestration  is  about  music  and 

choreography  is  about  dance  [Reynolds2006].  Peltz  [Peltz2003]  provides  a  reasonable  accepted 

definition.  Orchestration  differs  from choreography  in  that  it  describes  a  process  flow between 

services,  controlled  by  a  single  party.  Orchestration  refers  to  an  executable  process.  More 

collaborative in nature, choreography tracks the sequence of  messages involving multiple parties,  

where no one party truly “owns” the conversation.

To provide a clear definition and to avoid misunderstanding, the terms are explained in a similar  

way to that defined by [Jammes2005a] and [Peltz2003]. Orchestration is the practice of  sequencing and 

synchronizing the execution of  services, which encapsulate business or manufacturing processes. An 

orchestration engine implements the logic for workflow-oriented execution and sequencing of  atomic 

services,  and  provides  a  high-level  interface  for  the  composed  process.  Service  choreography is  a 

complementary  concept,  which  considers  the  rules  that  define  the  messages  and  interaction 

sequences  that  must  occur  to  execute  a  given  process  through  a  particular  service  interface. 
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Additionally, choreography can be used independently in a collaborative system without a centralized 

approach.

Both approaches are commonly used as execution models for service  composition [Santos2006]. 

Service  composition is the combination of  single services and all the interaction patterns between 

them to  create  composite  services.  Orchestration  (of  web service)  is  a  technique  to  recursively  

compose and orchestrate web services to provide a new composite web service [Ross-Talbot2005]. 

Web service composition problem shares many common features with workflow systems. However,  

web service composition requires additional functionality for discovery and checking interoperability 

of  the web services [Karakoc2006].

Figure  10 shows  the  most  common interaction  methods  to  access  and  coordinate  services, 

namely simple request-response, choreography and orchestration (with composition of  services).

Technologically  speaking,  WS-BPEL  provides  the  most  complete  realization  to  date  of  the 

workflow  execution  model  in  the  context  of  a  service-oriented  architecture  [Curbera2006].  In 

opposition to  other  process  language  specifications,  BPEL  builds  natively  on  the  web  service 

component model defined by the WSDL, and models every activity in the process in terms of  web 

services interactions. Other protocols already deal also with service modeling and coordination, such 

as Web Services Flow Language (WSFL), Web Service Conversation Language (WSCL), Composite 

Web Service Language (CWSL) form Karakoc et al. [Karakoc2006] and Web Services Choreography 

Description Language (WS-CDL).

Figure 10: Most common interaction methods in SOA
(A - simple service request, B - choreography and C - orchestration)

According to Reynolds [Reynolds2006] and returning to the comparison between orchestration 



and choreography, the real distinction lies not in the dictionary, but in the differences between WS-

BPEL and the WS-CDL. Web service orchestration relates to the execution of  specific business  

processes. WS-BPEL is a language for defining processes that can be executed on an orchestration 

engine. Web service choreography relates to describing externally observable interactions between 

web services. WS-CDL is a language for describing multi-party contracts and is somewhat like an 

extension of  WSDL: WSDL describes web services interfaces,  WS-CDL describes collaborations 

between web services. Both approaches have been separately developed by industrial consortia and 

international organizations as W3C and OASIS. In particular, WS-CDL (W3C standard) and WS-

BPEL (OASIS standard) specifications represent the most credited languages for the web services  

technology which deal with choreography and orchestration respectively [Busi2006].

Most  research  works  have  been  concerned  with  the  co-ordination  of  services,  specially  the 

automatic way of  creating new orchestrations based on the available services and some rules on how 

to compose them and to generate new forms of  services. There are several methodologies for that  

purpose, since the use of  semantic services [Medjahed2003] [Lastra2006] [Thramboulidis2007] to the 

application  of  intelligent  systems  (such  as  multi-agent  systems  [Maamar2004])  to  support  the 

construction of  workflows from services (e.g. using BPEL [Pasley2005]). Evaluation of  services and 

the use of  quality of  service (QoS) is also used when generating orchestrations and selecting the best  

possible service [Day2004] [Chaari2008].

Web service composition is today a very active topic of  research. It involves the combination of  

a  number  of  existing  web services  to  produce  a  more  complex  and useful  service  [Tang2004]. 

Semantic  enriched  web  services  (semantic  web  services)  provide  the  possibility  to  enhance  the 

automatic tying and corresponding composition of  web services. Composition can be viewed as a 

modeling technique, but the emphasis on creating new services from old ones and the problem of  

efficiency and effectiveness of  the process, may have different motivations and methods behind. A 

central  challenge  is  the  development  of  modeling  techniques  and  tools  for  enabling  the  semi-

automatic  composition  and  analysis  of  these  services,  taking  into  account  their  semantic  and 

behavioral  properties  [Hull2005].  In [Bhiri2006]  is  given  an approach to specify  and orchestrate 

flexible  and  reliable  web services  compositions  based  on  the  concept  of  transactional  patterns.  

Hamadi  and Benatallah [Hamadi2003]  describe a  Petri  net-based algebra,  used to model  control  

flows, as a necessary constituent of  reliable web service composition process. An agent-based and 

context-oriented approach is used in [Maamar2005] to support the composition of  web services. 

According to Moldt and Ortmann [Moldt2004],  web services might be composed to accomplish 

arbitrary  complex  tasks.  Agents  can  compose  these  web  services  as  long  as  they  know  their 

semantics.  Here  process  ontology  offers  a  way  to  give  agents  an  understanding  of  the  services 

offered.  Elfatatry  and Layzell  [Elfatatry2005]  write  about complex forms of  interaction,  such as 
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negotiation,  that  will  become dominant towards a service-oriented model of  development.  More 

research work on service composition is given in [Chafle2004], [Hull2005] and [Karakoc2006]. 

The authors of  [Fu2006] present an executable web service architecture model (SO-SAM) that  

incorporates  predicate  transition  nets  with  the  style  and  understandability  of  component-based 

concepts. To overcome the centralized nature of  these processes, in [Nanda2004] is given a technique 

to partition a composite web service written as a single BPEL program into an equivalent set of  

decentralized processes. In [Santos2006] a semantic-based binding is illustrated. An engine receives 

the composition description (i.e. the code), starts to run it and for each abstract service (described 

with  semantic  information),  a  service  repository  (or  a  service  broker)  is  contacted  in  order  to 

discover  which service  will  be  the  responsible  for  executing  that  activity,  always  considering the 

associated ontology.

Other approaches are based on the well known UML (Unified Modeling Language) [Amir2004]. 

The authors of  [Baresi2003] present the proposal for modeling SO-architectural styles with UML 

diagrams and graph transformation rules and exemplifies it for SOA.

The previous works show that there is a lot of  research in the area of  modeling and processes 

based on services, mainly applied to business and e-commerce. In industrial automation, namely at 

the  device  level,  services  are  used  for  diversified  tasks,  mostly  monitoring,  diagnosis  and  basic 

operations. Standard protocols should handle the basis for these issues and thus specify technology 

rules that should be followed by all involved partners to successfully permit the conversation. From 

the technology point of  view, web services are the main force to implement these concepts using 

well  established  web protocols,  but  also other  types  of  implementations  are  possible.  From the 

service modeling perspective, the associated complexity of  modeling and its execution should also be 

available to industrial controllers, so that they can be more independent from business applications 

and therefore, have a local domain of  autonomy over equipment, such as robots, conveyors, and 

other shop-floor mechatronics.

Embedded systems usually consist of  some transformed parts dedicated to calculate and transfer 

values through the system (data flow) and some reactive part that curbs the type and order of  such  

transformed operations (control flow). The result of  a data flow operation can reside within the data 

flow or be part of  the control flow  – the latter one is called condition. Similarly, a subset of  the 

control  flow  interacts  with  the  data  flow,  and  constitutes  the  set  of  control  signals.  These 

control/data-flow interactions are not a trivial matter and have been long neglected in behavioral 

models for embedded systems – for the sake of  simplicity [Varea2006].

However, it is not expected that such devices be only able to provide services representing their  

resources, but also a source of  multi-functional actions concerning service-orientation. Particularly, 

composition  and  orchestration  have  been  seen  as  the  form  of  engineering  of  service-oriented 



architectures,  and the inclusion of  these features in industrial devices is  still  a major effort.  The 

representation  of  the  work-plan  associated  to  services,  to  be  interpreted  and  executed  by 

orchestration engines, can be defined using different methods [Milanovic2004]. In automation and 

manufacturing,  the service composition and collaboration have been studied with web semantics  

[Delamer2006],  service  classification  [Zhao2005],  service  binding  [Pohl2008]  and  the 

collaboration/integration of  multi-agent systems [Shen2005].

A possible solution is to use WS-BPEL, but it only specifies interactions among web services and 

does not consider the internal logic of  software components and services. Other solutions that have 

been applied are based on 61131-3 languages and IEC 61499 function blocks [Bangemann2009] 

[Candido2010]  with the  objective  of  adapting industrial  standards to SOA. Similar  to  Petri  nets, 

TNCES (Timed Net Condition/Event Systems) are used for modeling interaction-aware services 

[Popescu2008].

2.3.4 Petri nets for SOA

Petri nets formalism is a graphical oriented language for design, specification, simulation and 

verification of  systems,  created by  Carl  Adam Petri  in  his  dissertation (see  [Petri1962]).  It  is  in 

particular well-suited for systems in which communication, synchronization and resource sharing are 

important. On one hand, as a graphical tool, Petri nets can be used as a visual-communication aid 

similar  to flow charts,  block diagrams, and networks. On the other,  as a  mathematical  tool,  it  is  

possible to set up state equations, algebraic equations, and other mathematical models governing the 

behavior  of  systems  [Murata1989].  According  to  R.  Zurawski [Zurawski1994]  the  Petri  nets 

formalism, based on a well-founded mathematical theory, has a very good capacity to graphically and 

formally  represent  and validate certain typical  relationships,  such as concurrency and parallelism,  

synchronization, resource sharing, mutual exclusion, monitoring and supervision, which are typical 

specifications of  manufacturing systems.

Since the formal Petri nets are very basic in the application point of  view, numerous extensions  

nets have been introduced over the years. It is important to keep in mind, that as the complexity of  

the net increases in terms of  extended features, the harder it is to use standard tools to evaluate  

certain properties of  the net. Commonly, extended Petri nets are appointed as high-level Petri nets 

(HLPN). An ISO draft for the HLPN standard is also available (see the ISO15909-1 specification).  

Some important extensions include: stochastic Petri nets [Ciardo1987] and colored Petri nets (CPN) 

[Jensen1987].

Automation systems are a common target for the application of  Petri nets and their higher-level  

deviated structures (e.g. colored Petri nets), preferable in analysis and modeling. Another question is  

the real-time interpreters or engines of  Petri nets for logic controllers. They are not common, and  
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normally Petri nets are converted into other formalisms (such as the IEC 61131-3 languages) that can 

be understand by devices (see [Uzam1996]). Anyway, one of  the first documented implementations 

of  Petri  nets  based  sequence  controllers  were  developed  in  the  early  80's  by  Hitachi  Ltd.  

[Murata1986]. It was successfully used in real applications to control parts on an assembly system and 

to control an industrial robot. Also fuzzy Petri nets and colored Petri nets have been studied for the 

application  in  logic  controllers,  compiling them afterwards  to PLC understandable  language (see 

[Gomes1995] and [Colombo1998], respectively). A tutorial on Petri nets in industrial applications can 

be found in [Zurawski1994].

The  powerful  analysis  and  modeling  features  provides  also  the  ability  to  control  complex 

manufacturing systems. Due to their capability in modeling the systems' dynamics, Petri nets have 

been combined with fault tree analysis techniques to determine the average rate of  occurrence of  

system failures (Adamyan and He [Adamyan2004]). A novel approach to the development life-cycle 

of  agent-based production control applications, from the design to the operation, based in a catalog 

of  high-level Petri nets is given by Leitão et al. [Leitão2005]. The high-level Petri net-based approach 

facilitates  the  conception,  definition  and  formal  specification  of  an  “encapsulation  process”  in 

industrial production systems.

In service-oriented systems, the use of  visual modeling techniques such as Petri nets in the design 

of  complex services is justified by many reasons. For example, visual representations provide a high-

level yet precise language which allows expressing and reasoning about concepts at their natural level  

of  abstraction. From the application point of  view, a service behavior is basically a partially ordered 

set  of  operations.  Therefore,  it  is  straight-forward  to  map  it  into  a  Petri  net  and  vice-versa. 

Operations are modeled by transitions and the state of  the service is modeled by places. The arrows 

between places and transitions are used to specify causal relations [Hamadi2003].

Petri  nets describe process models,  i.e.  workflow models,  and can also be used as a tool for 

design and validation of  the modeled system. The simulation capabilities and coordination among 

individual transitions (that can represent real services), may indicate that it is also possible to use for 

orchestration  of  web  services.  A  control  component  with  a  build-in  orchestration  engine  can 

interpret such nets and execute it. In real-time execution, the enabled transition must be detected, 

services associated with the enabled transition must be called and, after that, the workflow model has 

to be  updated to reflect  the actual  state of  the  system.  The task  of  orchestration engines  is  to 

synchronize and to control  the whole process until  it  reaches the goal,  based on the  elaborated 

model, i.e. they have to orchestrate the production system.

Diversified  research  has  been  done  by  using  Petri  nets  in  web  service  environment.  The 

traditional  application  of  Petri  nets  in  SOA  environments  seems  to  be  orchestration  and 

choreography, to define sequences, conditions, interactions and compositions of  services.  Hamadi 



and Benatallah [Hamadi2003] propose a Petri net-based algebra for modeling web services control  

flows, and Zhai et al. [Zhai2005] integrate agents and web services into grid service workflow system 

based on colored Petri nets. The combination of  agents and web services enhances the adaptability  

and dynamics of  the framework. The verification of  web services composition by using colored Petri 

nets is  presented by Yang et  al.  [Yang2005].  In Bing and Huaping [Bing2005],  a  Petri  net-based  

algebra is used to capture the semantics of  complex web service combinations. Chatain and Jard  

[Chatain2005] reveal the interest in the questions of  supervision and diagnosis, by explaining how to 

use unfolding of  dynamic nets for the diagnosis application. To facilitating web services integration 

and  verification,  Zhang  et  al.  [Zhang2004]  introduces  WS-Net  as  an  executable  architectural  

description  language  incorporating  the  semantics  of  colored  Petri  net  with  the  style  of  object-

oriented concepts.

Compositional  aspects  and  coordination  of  Petri  nets  and  workflows  in  general  have  been 

studied,  such  as  described  by  Anisimov  et  al.  [Anisimov2001]  and  Pankratius  and  Stucky 

[Pankratius2005], to provide an approach to distributed systems. The workflow management system 

can be orchestrated in a centralized viewpoint (master/slave) in which the workflow model should be 

interpreted and coordinated by the corresponding manager. In other hand, distributed management 

requires additional care because the global execution and state identification is not synchronized and 

supervised by one element.

The question of  using Petri nets for SOA-automation has been less researched and documented. 

The behavior of  service-based automation systems can be modeled by Petri nets, described by the  

differential and algebraic equation associated with the bipartite graph. However, the resolvability of  

these  equations is  somewhat  limited,  partly  because  of  the  non-deterministic  nature  inherent  in 

service-oriented systems and also because of  the constraints that solutions must be found as non-

negative integers. Nevertheless, Petri nets must respond to the basic requirements of  modeling (i.e.  

representing the system dynamics), being user-friendly, consider performance issues, interoperability, 

portability and acceptability.

Moreover, the missing key aspects are related to more complex engineering, coordination and 

aggregation methods, especially tailored for the system's requirements. The suggestion over Petri nets 

is to provide a balance between the typical SOA methodologies and the programming languages of  

the IEC 61131 standard. However, practical usage of  Petri nets is limited by the lack of  computer  

tools which would allow handling large and complex nets in a comfortable way [Suraj2006]. From the 

other hand and considering also the use of  Petri nets in the run-time of  SOA, methods are missing  

for the development  of  customized Petri  nets  libraries  for software  applications  and devices  of  

multitasked usage.
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2.4 Major requirements, missing aspects and identified 
research directions

Multi-agent systems and more recently service-oriented systems were considered by the research 

community to face some of  the major challenges in industrial automation and production systems. A 

major motivation started to grow in the field of  service-orientation and complementary topics with 

visible  results  in  several  research  works  and  international  projects.  Service-oriented  computing 

represents a novel research domain, based on the principles of  services and surrounding engineering. 

Besides the advantage of  bringing the IT closer to the automation world, most SOC research is based 

on the topics of  communication and derivative activities, such as integration and standardization. 

Other  questions  such  as  the  meaning  of  service-oriented  devices,  energy-efficiency  (a  highly 

appreciated topic nowadays), control solutions and industrial adoption, should also be a main interest 

in service-oriented automation systems.

The emergence of  SOA in the automation domain and the use of  web services standards became 

notorious after the successful application in automation devices and as a new form of  engineering.  

However, a major industrial acceptance, besides the research projects scope, is needed, due to the  

lack of  demonstrated features of  both automation devices and supporting applications.  A major 

challenge in this type of  service-oriented systems is related to how individual entities may interact, 

coordinating their activities by synchronizing the execution of  services they provide. The aggregation 

of  single services and all the interaction patterns between them is also a complex issue. Specifically 

for  service-oriented  based  collaborative  automation  systems,  there  is  a  gap  on mechanisms  and 

engineering tools that provide interaction schemes, protocols and patterns applied for services and 

corresponding providers and requesters.

As reported before, one of  the major propulsion in this direction was the EU research project 

SOCRADES. An important result of  SOCRADES is the smart embedded devices (or SOCRADES 

devices) that are service-enabled industrial controllers with several functionality that were extended 

during the project. It is represented in the central hexagon of  Figure 11.

Surrounding the device, there are several other hexagons in  Figure 11, representing important 

topics and requirements of  the project [Mendes2010b] (more detailed information can be found in 

[Gerosa2008] as well as the project's public deliverables and its homepage http://www.socrades.eu):

• Service-oriented industrial automation: The application domain and also the source of  knowledge. 

For this there are several techniques to describe the available information (e.g. the use of  

semantics, ontology), besides the intrinsic capabilities provided by web service technologies.

• Plug & play: A selling point is the ability to connect devices and others to the network and 

with minimal need of  configuration they are able to integrate and ready to work. This is  

eased by features such as dynamic discovery, dynamic configuration, uniform description, use 



of  standard interfaces, etc.

• Engineering: This represents the methodologies and tools to put the system running and to 

behave accordant to what it is pretended. As a new domain of  software engineering, services 

engineering  concerns  every  aspect  from development,  deployment,  use,  to  evolution  of  

services,  such  as  analysis,  architectures,  development  methodologies,  descriptions,  testing, 

development environments, management, and applications [Aoyama2002].

Figure 11: The SOCRADES device and surrounding topics/requirements

• Integration:  Not only the integration of  devices with other ones is required (in a form of  

interoperability),  but  also  their  approach to other  levels  such as  production  systems and 

business interests.

• Distributed orchestration: In SOA, a pertinent question is about how to interact with services 

and how automated processes can use them [Bepperling2006]. Several words are used in the 

SOA community to describe more complex interactions, such as orchestration, choreography 

and composition (see [Peltz2003]). Since the coordination of  activities is not anymore viewed 

in  a  central  manner,  the  collaboration  between  separated  units  of  orchestration  and 

composition of  work-plans is fundamental to achieve global objectives. Petri nets is one of  

the successful used language for the distributed orchestration.

• Run-time features: When the system is running, several features can be highlighted. Some of  
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them are inherited by the nature of  service-oriented architecture; others were introduced by  

the  motivation  of  the  requirements.  Most  high-level  features  are  considered  to  be 

reconfigurability, adaptability, intelligence, auto-sustainability, besides others.

There are many works discussing the benefits and innovations when using SOC as the main way 

of  engineering systems, especially when dealing with business models, but just a few tell the other  

side of  the story (see e.g. [Dias-Patel2006]). As in other domains, the research of  SOC in industrial  

automation has faced some difficulties, mostly due to the insufficient study of  the SOC concepts and 

also on relaying on the confidential results of  SOC in the business world.

2.4.1 Major requirements and missing aspects

Web services and their performance issues

Several automation control vendors decided to work on the topics of  service-orientation in form 

of  web  services,  with  distributed  engines  integrated  at  the  device-level,  in  opposite  to  the 

conventional IT system that run heavy-weight engines in central computers. However, the complex 

description patterns and the verbosity of  XML web services protocols create a whole new set of  

design  tradeoffs  and  issues  for  developing  web  services  applications  for  embedded  systems. 

Embedded systems rarely have enough memory and processing power to run a HTTP Web server, 

SOAP  engine  and  XML  parser.  The  verbosity  of  XML  and  HTTP increases  the  RAM  usage,  

bandwidth requirements, and operating costs [Engelen2004].

Decomposing applications and hardware into services

“How to effective decompose a given application into services? Should the decomposition be 

guided by the set of  available services, i.e., should the decomposition be different depending on the 

set of  available services?” [Tsai2006]. These are several questions that affect the development and 

integration of  services and until know there is no clear answer; at least at the device level.

Increasing complexity but also functional simplicity

Current  service  applications  are  already  complex  due  to  dynamic  composition  and uniform 

handling of  various software and hardware resources as services. But future services applications will  

be even more challenging [Tsai2006]. This can evolve to a situation called “Gas Factory”, an anti-

pattern that identifies overgrown complexity for what it is for. Therefore, for service-enabled devices 

a balance must be reached between functionality and simplicity.

To overcome SOAP limitations, DPWS specifies limited constraints functionality, so that it can 

be implemented on small devices to restrict the traffic. DPWS specification is a set of  very general 

standards based on SOAP. While protocol generality can be considered as an advantage that can lead 



to  acceptability  and  even  interoperability,  it  brings  also  complexity  in  the  design  of  a  concrete 

framework [Zeeb2007]. The functional simplicity also means that other technologies must be added 

to build complex distributed applications.

BPEL or not BPEL?

The application of  BPEL has also been studied in industrial automation (see [Puttonen2008]),  

but is a high-end computational and centralized control approach for orchestration and far away 

from novel industrial objectives. BPEL seems to be a solution for creating composition of  individual 

services and their rules, but in many ways comparable of  what non-visual programming already is  

doing since the beginning: encapsulation of  several function calls and their order and rules of  calling 

into a single function. Obviously,  BPEL has the advantage of  allowing visual representation and 

description of  concurrent processes, but not different from what was already studied within other 

languages.  The main disadvantage is  its  interpretative  nature,  but  it  can be overcome with code  

generation techniques.

The application of  BPEL in automation environment can be discussed. From one side, it has 

already a well defined syntax in XML, development tools and can be used directly with web services, 

providing a way of  orchestration.  From the other side,  BPEL is  a specification mainly targeting  

business  requirements  for  both  intra-corporate  and  business-to-business  spaces.  Therefore,  it  is 

unknown to automation system engineers that are used to the IEC 61131 languages.

Other aspects are that the application of  BPEL is probably too complex and descriptive to be 

interpreted by  the  resource  constrained  devices  (typically  used in  automation)  and that  it  is  not 

suitable  for  internal  service  process  description  based  on  device/software  capabilities.  The 

orchestration of  existing web services to workflows is a challenging task which is complicated by the 

fact  that  manufacturing  processes  have  time  constraints,  especially  real-time  constraints  (see 

[Mathes2008]  for  the  use  of  orchestration  based  on  BPEL  in  automation  and  production 

environments).  BPEL depends on web services and therefore it  is  technology dependent  that  is 

affordable to adapt to non-web services based SOA. Last but not least, BPEL is missing analysis and  

validation support that is in fact an active research topic in the SOA business community. However, 

some efforts have been done in terms of  the application of  BPEL and orchestration in general for  

industrial automation with results (see [Puttonen2008], [Mathes2008] and [Jammes2005a]).

Solutions can be described by a decentralized option. Because performance and throughput are 

major concerns in enterprise applications, it is important to remove the inefficiencies introduced by 

the  centralized  control.  In  the  work  of  [Nanda2004],  the  BPEL  program  is  partitioned  into 

independent  sub-programs  that  interact  with  each  other  without  any  centralized  control. 

Decentralization can increase parallelism and reduce the amount of  network traffic required for an 

application. Another possibility is the use of  the IEC 61131 languages (adapted to services) and also 
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Petri nets (see [Mendes2008]).

Most services are used as objects

Given the strong similarities between (web) services and distributed objects, it is understandable 

that many people believe they are the same [Vogels2003]. The main problem seems to be that (web) 

services are widely implemented in the same way as distributed objects are. As an example, we define  

an interface with a set of  operations, we implement the operations of  the service and, from the client 

side, we define the rules and the logic to call the operations of  the service. Isn't it familiar with the 

common object-oriented approach?

To overcome this idea, the main difference when comparing with object-based methodologies 

seems  to  be  the  automatic  use,  discovery  and  binding  of  services,  and  also  the  high  level 

programming (creation of  new services based on atomic ones). However, these features can also be 

easily adapted to the object-oriented approach, for example using some design patterns dealing with  

distribution and concurrency.

The same happens at  the device level.  It  seems to be missing a deeper meaning of  service-

oriented components, their autonomous development and also the study of  the conditions that a  

component has on providing services and the needs on requesting others' services. Reasoning in this 

direction, a more clear separation with the object-oriented concept can be defined. 

The question of  autonomy

If  services become mobile and adaptive, there will be an enormous number of  services that will 

be available. These services may not know each other before, yet they may need to communicate and 

to collaborate with each other to complete a trade or perform a joint mission [Tsai2006]. Having well 

known interfaces, functionality and the orchestration between means the same as using the traditional 

modular approach that was already defined in the IEC 61499 standard. In the other edge, too much 

autonomy  of  services  providers  and  requesters,  increased  loose-coupling  and  introduction  of  

unknown components and services requires the use of  enhanced semantics and artificial intelligence 

mechanisms.

Lack of  service education and adoption

Currently, an important problem in SOC/SOA is the lack of  education related to the service-

oriented principles [Tsai2006], namely due to the missing of  enough documentation and reports,  

high quality applications and reduced availability in workshops.

The other question is related to the industrial adoption of  SOA principles, since most of  the 

factories are heavily based on the centralized IEC 61131 standard for PLCs. There were taken efforts  

on modernizing some aspects  of  the  automation and production levels,  such as the  IEC 61499 



standard for distributed control  and automation based on function blocks. Even considering this 

relatively recent acceptance as a standard, adoption by the major control system equipment vendors 

has been slow to nonexistent (see [Hall2007] for the challenges to industry adoption of  IEC 61499). 

The  difficult  adoption  can  also  be  explained  by  the  fact  that  several  trends  are  considered  as 

“fashionable”. Consequently, the industry relies on technology that has proven work and engineers 

are used to, even if  antiquated, inflexible and does have not parallel advance with other scientific 

fields.

2.4.2 Future directions

A global consideration to be faced in the near future is to co-relate the use and advantages of  

SOC approach with the important topics of  flexibility, adaptability and re-configuration. Solutions 

used in the past, such as multi-agent systems, have always concentrated in particular problems, but  

automation and production systems have to be considered as a whole to respond adequately  to  

business models. With SOC, and since it  already provides sufficient integration mechanisms, new 

research work has to flow in this direction. Therefore, qualitative industrial demonstrations, especially 

the ones that connect business entropy with factory shop-floor are required to convince the industry 

market.

Even if  loose-coupling and autonomy are key issues in service-oriented systems, in automation it 

is  important  that  the  collaborative  processes  should  be  done  under  the  umbrella  of  particular 

requirements. Although web services, and particularly DPWS, already complies many requirements, a 

real  heterarchical  service-oriented  “architecture”  is  missing,  where  services  and  their 

requester/providers may be easily integrated and functionally operate. 

For  a  SOA  based  collaborative  automation  systems,  there  is  a  gap  on  mechanisms  and 

engineering tools that provide interaction schemes, protocols and patterns applied for services and 

corresponding providers and requesters. It is not a technological issue, since web services are already 

there and demonstrated by practical use, but merely taking in account the viewpoint of  collaborative  

automation, the strong requirements request further research and applicability of  high level methods. 

Under this  context,  questions such as formal and flexible control  solutions with analysis  and 

validation capabilities,  decision support  systems,  scheduling mechanisms,  high-level  programming 

through association/composition, consideration of  real-time constraints, and energy efficiency are 

highly appreciated and must be demonstrated in service-oriented systems.
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Chapter 3:
Service-oriented automation systems: 
architecture and Petri nets methodology

Service  ecosystems  are  well  known  in  the  field  of  business  and  electronic  commerce  (see 

[Barros2006] and [Sawatani2007]) but in industrial automation and production systems (especially 

concerning  distributed  devices)  it  is  a  relatively  new  research  area  with  promising  results.  An 

important  issue  for  these  systems  is  where  the  control  is  located  and  how  its  granularity  and 

distribution are affected. Since the introduction of  the common PLC, significant effort has been 

done in research and development to overcome the PLC's limitations in terms of  centralized usage.

Architectures for devices and control software have been focus of  research, commonly dealing 

with the IEC61131-3 languages [Bonfatti1995] [Erickson1996] [Aramaki1997] [Huang2003], the IEC 

61499  function  blocks  for  distributed  control  and  automation  [Thramboulidis2006]  [Hall2007] 

[Hirsch2007] and other control techniques such as Petri nets [Murata1986] [Nascimento2004]. For 

service-oriented distributed devices, the control method is partially open to any control approach, but 

should also consider specific requirements of  service-orientation. Serving different functionality, a  

single service-oriented control  device should be ready for multiple  activities,  and thus requires  a  

special adapted internal framework that handles differentiate and concurrent processes.

Especially for service-oriented industrial automation, the application of  Petri nets must be open 

to several specifications, requirements and methodologies for engineering that will possibly come in 

future. Considering these aspects, an approach was specified to permit feasible and customized Petri 

net based applications (particular for service-oriented industrial automation). The choice over Petri  

net was due to the convincement based on previous experience that it could be used in this sense and 

to “do the most possible with the methodology”, i.e. to uncover its features for the engineering of  

service-oriented automation systems.  Of  course,  the excellent properties of  Petri  nets should be 

maintained.

The resulting open methodology for the definition of  Petri net based applications is  using a 

45



46 Service-oriented automation systems: architecture and Petri nets methodology

ground basis made of  several elementary packages. This includes the Petri net formalism (according 

to [Murata1989]), analysis routines and conflict management. Besides the required openness, another  

requirement is the introduction of  the time factor when evolving the Petri net. Consequently, the  

basis of  the Petri nets is guaranteed and the doors are open (in terms of  time delays) that can be used 

for customized operations. On top of  this, a modular property system was specified and a novel 

approach for the creation of  token games (an “engine” that runs a Petri net) based on a customized  

template.

3.1 A service-oriented automation system (SOAS)

In  distributed  automation  and  especially  in  the  domain  of  production  systems,  the  set  of  

equipment and other components in the system may be comparable under some circumstances to a 

society  of  living  beings.  Taken a  closer  look into  a  component  itself,  its  internal  mechatronical 

organization may correspond to functional organs that are responsible for specific tasks, providing 

the “vital” properties to be able to fulfill its requirements. Service-oriented systems are one approach 

to specify the environments for heterogeneous “organisms” that require interaction. The following 

sub-section describes the approach in terms of  architecture and composing elements.

3.1.1 Background and foundations for a service-oriented automation system

It is likely that in the future, all computing units, both hardware and software, both small (such as  

embedded systems) and large (such as mainframes) will be organized as services, i.e., systems will be 

service-enabled [Tsai2006]. Adapting the service-orientation concepts to shop floor “ecosystems”, a 

“society”  of  service-oriented  entities  is  designed,  composing  the  reference  model  for 

automation/production  system.  Each  participant  in  the  system  is  referred  as  service-oriented 

automation bot that may have different roles (e.g.  production, transportation and monitoring).  A 

“bot” is a general term given to any service-oriented automation component in the architecture, from 

simple representatives of  equipment to complex entities that have orchestration and decision duties.

The adoption of  the designation “bot” in this work is easy to comprehend: from one side the 

question of  representing someone or something, from the other side the connotation to robots that 

are  widely  used in  industrial  automation.  Bots  are  a  common term used in  computer  games to 

designate non-human players in a virtual world that should behave as similar as possible as the ones  

made of  flesh and bone. Therefore, methodologies of  artificial intelligence and nowadays scripting 

are used to specify their behavior, whatever it is based on known information or on completely new 

input. Bots are also used in other fields with similar meaning and/or extending it also for the use of  

repetitive software tasks, such as chatbots, web bots and tutor bots for e-learning (as industrial robots 



for physical tasks). In a general way, it is correct to say that a bot is the software part of  a robot or 

simulated being.

Since services are the main guide, bots should have the need of  requesting services and also the 

desire in providing services to the community. Services itself  are a form of  providing resources and 

actions that are shared in some circumstances, much similar to the real-life services. As an example, 

industrial sensors are not simply supplier of  Internet pages to browsers but they become servers of  

measurement functions and so they can play a more complex role in the monitoring system or in the  

integration of  different measurement networks. This solution offers great possibility in terms of  fast 

and easy access to measured data, of  integration of  large complex web sensor network, of  realization 

of  flexible custom applications, and of  service reusability [Ciancetta2007].

The service-orientation  reference model  provides  support  over  the  three  axes  of  the  CMM 

model [ARC2003], as illustrated in  Figure 12. This means that it  addresses the vertical enterprise 

integration by covering from the shop-floor level to the business level, the supply chain integration 

by supporting the interaction with suppliers  and customers,  and the  life-cycle  of  a  collaborative 

manufacturing system.

Figure 12: Service-oriented industrial automation ecosystem integrated to the CMM model
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The proposed reference model is built upon a set of  distributed autonomous and cooperative 

bots representing the manufacturing components using the service-orientation to provide a rich and 

application approach. Therefore, in the abstract layer of  the ecosystem, resources and control are 

shared  and  organized  according  to  the  established  objectives  of  the  production  system.  This 

organization  and  collaboration  is  guided  by  an  engineering  process  to  support  the  design  and 

evolution  that  is  sufficiently  flexible  to  provide  reconfiguration  mechanisms  according  to  the 

environment and business changes.

Figure  13 shows  the  basic  description of  a  service-oriented bot  and its  integration  into  the 

environment  of  automation  and  production  shop  floor.  The  given  example  is  an  entity  that 

represents  a  physical  conveyor  (mediator  of:  conveyor)  and  has  the  transportation  role  (role: 

transportation).  Implicitly,  the  communication  to  the  outside  world  would  be  via  services 

(orientation: services), being able to provide and request services when needed. The integration into 

the IT-enterprise is also reached by the service-orientation. A bot has a set of  tasks or activities 

(tasks: transport, monitoring, etc.) and those may be used as services provided by the component.

Figure 13: Service-oriented automation bot and its environment

Interaction between bots is done by the two-way service orientation, in sense of  requesting and  

providing services. It is expected in production and automation that heterogeneous entities work  

together for mutual benefit and global objectives. This can be distinguished as symbiosis, similar to  

the  interactions  between different  biological  species  (see  [Moran2006]  for  more  information  on 

symbiosis). It is also possible that bots may compete with each other for resources (services), but in  



the end the global goal must be respected.

3.1.2 Architectural overview

The architecture is based on a society of  collaborative automation bots working under service-

oriented principles,  permitting  an easy  configuration,  operation and communication between the 

system's entities based on service provider/requester (see Definition 1 and Figure 14).

Figure 14: Most important elements of  the architecture of  SOAS

Definition 1. Service-oriented automation system (SOAS) is a set of  bots providing and requesting 

services under the service-orientation principle, responsible to resolve automation problems, 

concerning the representation of  services, orchestration of  services and additional topics.

The following presents a resume of  the architecture principles:

• Organization: Bots have one or more functions and resources, visible via services;

• Interaction of  entities and environment: All the interaction is via requesting and providing services, 

representing bots'  resources.  These services are described via  interfaces and have one or  

several access ports with several operations. Interaction protocols are required to guide the 

communication;

• Design and evolution: The development is concerned with the definition of  bots and hosted 
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services (as well as their interfaces). Services must be implemented from the server side (the 

provider)  and  their  connection  to  the  mechatronics  (if  present).  The  expected  behavior 

should be done by the design of  system processes, involving the interaction of  bots, external 

events and bots' internal structure.

In  the  proposed  approach,  complex,  flexible  and  reconfigurable  production  systems  are 

composed of  modular, reusable bots that expose their production capabilities as a set of  services.  

This composition approach applies to most levels  of  the factory floor;  simple devices compose  

complex devices or machines, which in turn are composed to build cells or lines of  a production 

system and so on [Colombo2010]. The same applies to the concept of  service-oriented production 

systems and composing complex services from simpler services.

The system's architecture is denoted  in  Figure 14 with an overview of  the main architectural 

elements (i.e. services, smart embedded devices, automation bots, orchestration engines, industrial 

equipments, etc.), discussed in the next subsections. Other elements include the engineering tools to 

configure the system and its services and production execution system (PES) (or MES, responsible 

for production orders and services).  Concerning more the implementation and engineering, these 

two are discussed in the Chapter 4 “Service-oriented automation systems:  tools, implementation and

engineering”.

3.1.3 Services and communication methodology

Services are the mechanism by which needs and capabilities are brought together [OASIS2009]. 

Services are communicable via a  service bus responsible to exchange information between service 

providers and requesters. From the technology point of  view, the used service-oriented architecture 

is  based  on  web  services  and  use  of  DPWS ([OASIS2009a])  as  a  basic  building  block  for  the 

communication and interoperability.

The definition of  the service and related topics (Definition 2), used in this work, was adopted 

from  the  formal  specification  of  WSDL  version  1.1  [W3C2001]  and  also  [Bing2005],  using  a 

simplified  service  model  without  the  parameters  linked  normally  to  technology  (like  binding, 

messages, addressing, discovery, etc.). The use of  the older WSDL version instead of  the newer one 

(2.0) was due to the use of  the DPWS version 1.1 [OASIS2009a] that uses WSDL version 1.1 in its  

specification.

Definition 2. A service groups a set of  related ports together. Each port is a realization of  a 

port  type  (representing  a  single  endpoint  defined  as  a  combination  of  a  binding  and a 

network address). A port type is an abstract collection of  operations that describe actions and 

related message exchange patterns. A message is an abstract, typed definition of  the data being 



communicated. A service port is represented by a set of  operations Sp = {s1,  s2, …, sn} and 

can be used as the synonym of  the service if  the service is just defined by one port.

What really makes the kernel of  the service is the use of  these operations and their management 

by the provider (see Figure 15.A). For a service requester to use a service, it must know its interface, 

which describes the service (e.g. its operations, messages, types). However, implementation aspects 

are  not  included  in  the  interface  (must  be  handled  by  the  provider),  as  well  as  more  complex  

coordination  of  the  operations  and  services  (this  is  arranged  e.g.  within  the  orchestration).  Of  

course, service providers can also be requesters and “vice versa”.

Figure 15: Interaction between provider and requester (A) and types of  services (B)

There are different types of  services in the system and even if  their origin is transparent to the 

outside (requesters), some essential types are explained here (see Figure 15.B).  Device service (hosting 

service) is directly associated to a device, and play an important part in the device discovery process  

[Jammes2005c].  Atomic  services are  considered  the  ones  provided  by  elementary  equipments  and 

entities, such as the smart embedded device (controlling the conveyor) that would expose a “transfer” 

service. They cannot be divisible into other services and serve as the basis of  service composition 

(and service modeling in general).  Complex services may aggregate the functionality provided by 

simpler  ones.  This  is  referred  to  as  service  composition  and the  aggregated  service  becomes  a  

composite service [Chafle2004] (e.g. a service resulting from an orchestration). The  deployment service is 

itself  a  built-in  service,  which  allows  the  integrator  to  deploy  its  own resources  [Candido2009], 

configure other services and other aspects of  the server. Services are available and can be requested  

via the service bus which is a network.
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For the basic interaction (and also defined in the WSDL standard),  message exchange patterns (or 

transmission primitives)  are needed.  The following patterns  are important to this  work (see also 

Figure 16):

• One-way (input event): the endpoint of  the server (provider) receives a message;

• Notification (output event): the endpoint of  the server (provider) sends a message;

• Request-response:  the  endpoint  of  the  server  receives  a  message,  and  sends  a  correlated 

message;

• Solicit-response: the endpoint sends a message, and receives a correlated message.

Figure 16: Sequence diagram of  the message exchange patterns

A  service,  port  and  a  corresponding  operation  will  be  expressed  as  [device:  client|server] 

service.port.operation[evin|evout|req|sol](inparameters,  outparameters).  The  expression  is  always  defined 

according to the direction of  the server which implements the interface. The reference of  the port  

can be avoided if  the service has only one port and/or they are used with similar connotation. The 



evin|evout|req|soll reference indicates one of  the operation's message exchange patterns (respectively,  

one-way, notification, request-response and solicit-response).  Different from the request/response 

mechanism in which responses always correspond always to one previous request, events only need 

to  be  subscribed  first  and  are  then  generated  asynchronously. Messages  can  be  added  with 

information, represented by the  inparameters (for incoming message) and  outparameters (for outgoing 

message) fields. The preceding [device: client|server] can be used if  the service is hosted by a device 

service and/or to indicate the perspective of  the operation (client or server).

Complex  interaction  can  be  made  on  top  of  the  message  exchange  patterns.  Therefore,  

orchestration  of  services  represents  a  complex  description of  interaction of  services.  For  more 

information, please follow to the next section.

3.1.4 Smart embedded devices, automation bots and orchestration engine

Smart  embedded  devices are  the  host  for  most  of  the  services  exposed  in  the  system and also 

responsible for the coordination and control  activities (Figure 17).  These devices have two main 

interfaces, mediating the connection to the shop-floor  industrial  equipment via  I/O (e.g.  lifter)  and 

managing the access to the service bus by exposing and requesting services.  The web service infra-

structure is based on the SOA4D implementation of  DPWS (https://forge.soa4d.org). An automation  

bot is  considered  the  software  representation  of  the  device  and can  also  be  hosted  in  different  

computational equipments. The bot is configurable with the dynamic deployment feature of  SOA4D. 

Once on-line, the automation bot can be discovered (dynamic discovery) and provided services can 

be requested. It can also request services whenever it needs to.

Figure 17: Smart embedded device with internal automation bot

The specification of  an internal anatomy of  bots may simplify their development. Since service-

oriented bots may have different and sometimes concurrent activities, it may be useful to consider a 

functional and independent structure in favor of  reusability and easy development. A modular device 
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architecture  with  asynchronous  and  synchronous  event  mechanism  between  modules  and 

independent  thread  routine  for  each  module  should  be  considered.  For  example,  the  DPWS 

framework and the I/O module are two modules of  an automation bot, providing different features 

(communication  via  services  and  synchronization  of  the  industrial  equipment,  respectively)  and 

interoperable via  event  passing.  Both have their  own scheduling unit  to avoid that,  e.g.  the I/O 

module has to stop each time the DPWS framework is waiting for the response of  a service, thus 

blocking the execution of  parallel processes by the I/O.

Since services aren't isolated entities exposed by the intervenient software components, there 

should be some kind of  logic that is responsible for the interaction. Therefore, some of  them may 

include an orchestration engine to “link” services into higher ones. The model-based orchestration engine is 

able to interpret a given work-plan made of  services (an orchestration) and execute it. The work-plan 

can be defined in several orchestration languages, for example, BPEL [OASIS2007], Petri nets formalism 

(see  for  example  the  work  of  R.  Hamadi  and  B.  Benatallah [Hamadi2003]  and L.  Bing and C. 

Huaping  [Bing2005])  or  even  adapted  IEC  61131-3  languages.  Another  feature  is  to  compose 

services, i.e. the work-plan itself  represents an exposed service. In this dissertation it was adopted the 

orchestration  (and  additional  features)  based  on  the  Petri  net  formalism.  Besides  the  language 

specification  and the  development  of  the  interpreter  (i.e.  the  orchestration  engine),  a  complete 

extensible methodology was created to permit the multi-featured application of  Petri nets.

3.2 Open methodology for Petri nets in the modeling, analysis 
and execution of  SOAS

The kind of  automation and production systems addressed in this dissertation is characterized by 

having a flexible material flow with several different flow specifications that can be offered by a  

defined layout. Therefore, high-degree of  concurrency, competency relationships among components 

and non-deterministic sequences are presented. In addition, the introduction of  service-orientation 

makes possible to represent needs and conditions of  the system's components in form of  services  

that can be accessed by others. The formal specification and modeling of  physical systems that have 

the characteristics addressed above can only be performed by using a mathematical  tool  able to  

represent all the characteristics without exceptions.

Especially for service-oriented industrial automation, the application of  Petri nets must also be 

open to several  specifications,  requirements and methodologies for engineering that will  possibly 

come in future. Besides this, it also has the necessary flexibility to develop higher-level structures 

based on the foundation, such as colored Petri nets.  Since services, modeling, analysis,  synthesis, 

integration and flexibility are used as the synonym of  SOA, Petri nets based structures are strong 



candidates to fulfill the requirements.

The use  of  Petri  nets  can  be  presented  in  the  life-cycle  of  processes  as  modeling,  analysis  

(simulation) and execution (control). Figure 18 refers to this life-cycle approach that is also compliant 

to the development of  traditional automation and production systems. In particular, reconfiguration 

can be achieved when there is a need to re-design some processes (transition from execution to 

modeling in Figure 18). For the development of  the required software applications, there are some 

basic  needs,  namely  a  SOA  infrastructure  and  particularly  an  open  Petri  net  framework  that  

represents the major input for the specification of  the methodology.

Figure 18: Modeling, analysis and execution of  Petri nets in service-oriented automation systems

Considering the several aspects, an approach was specified for a concrete Petri nets methodology 

that  is  feasible  and  customized  for  the  studied  needs  [Mendes2009a].  Figure  19 represents  a 

requirement graph with the topics (or packages) that were found to be necessary for a full featured 

basis. The dashed arrows indicate that the input is optional and depends on the application.

The packages of  Petri nets analysis and conflicts are mainly used for validation purposes and 

detection and resolution of  conflicts that may be introduced in the Petri nets models. The property 

system permits the enrichment of  the Petri net and its elements (e.g. transitions, places and arcs) with 

user-defined information that is not presented in the formal definition of  Petri nets, such as labels,  

priorities, actions, etc. Timed Petri nets provide the rules for delaying the step-wise behavior of  Petri  

nets and thus permits relating them with real-time systems (see [Ghezzi1989] as an example).
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Figure 19: Approach for the open methodology for applied Petri nets

A main kernel of  this concept is the token game template, which is explained later. Including 

external features and requirements, and using specially the token game template, the final application 

can be tailored using the rules introduced in the methodology. Details about each individual topic are  

explained in the next sub-sections.

3.2.1 Petri nets formalism

The core for the Petri nets used in this work is based on the formal definition of  Petri nets extracted 

from the work of  T. Murata (1989) [Murata1989]. Besides the definition using set theory it is also  

possible  to  define  them  or  representing  them  via  matrices  and  graph  theory,  which  are  more 

convenient when implementing Petri nets in computational systems.

Definition 3. A Petri net is a 5-tuple,  PN = (P,  T,  F,  W,  M0) where P = {p1,  p2, …, pm} is a 

finite set of  places, T = {t1, t2, …, tn} is a finite set of  transitions, F ⊆ (P × T) ∪ (T × P) is a 

set of  arcs (flow relation), W: F → {1, 2, …} is a weight function, M0: P → {0, 1, 2, …} is 

the initial marking, P ∩ T = ∅ and P ∪ T ≠ ∅.

Definition 4. A Petri net structure without specifying the initial marking is denoted by N = (P, 

T, F, W). A Petri net with the given initial marking is denoted by (N, M0).

In order to simulate the dynamic behavior of  a system, a state or marking in a Petri nets is 

changed according to the transition (firing) rule.



Definition 5. A transition t is said to be enabled if  each input place p of  transition t is marked 

with at least w(p, t) tokens, where w(p, t) is the weight of  the arc from place p to transition t.

Definition 6. A firing of  an enabled transition t, corresponding to the firing rule, removes w(p, 

t) tokens from each input place p of  transition t, and adds w(t, p) tokens to each output place 

p of  transition t, where w(t, p) is the weight of  the arc from transition t to place p. Note: An 

enabled transition may or may not fire (depending on whether or not the event actually takes 

place).

In a Petri  net each node is either a place or a transition.  Tokens occupy places representing 

resources or states of  the system. The dynamic evolution of  the Petri net, i.e. the change of  a state or  

marking in the model,  is described through the enabling and firing rules, stated in the following  

definitions.

Graphically, Petri nets can be represented by a bipartite graph structure. Nodes of  the graph are  

places (represented usually as a cycle) and transitions (normally described by a bar). Arcs are responsible 

of  connecting places to transitions and “vice versa”. The dynamic of  Petri nets is regulated by the  

flow of  tokens (pictured by corresponding number of  dots) that are resident inside places and as a 

whole (all tokens existent in the Petri net) represent the  marking of  the Petri net, translated in the 

system's actual state.

3.2.2 Analysis

The Petri nets formalism is widely used by researchers due to their mathematical foundation and 

consequently “proof  of  concepts” and specification of  new theorems. Analysis and validation of  

systems is crucial, not only to prove that they are free of  errors, but also to test if  they do what the 

engineer wants that they should do. Also and not less important, is to obtain statistical information 

of  the system performance, allowing the future enhancements of  the system.

Generally speaking, two types of  analysis can be done over a Petri net: the analysis considering  

both the Petri net structure and the initial marking is called behavioral analysis and the analysis based 

solely on the structure of  the Petri net is designated structural analysis.

The first analysis is heavily based on reachability, described by the general behavior of  a Petri net 

and concerns with the reaching from one marking to another. Starting from initial system condition 

or state (initial marking), it is desired to derive all the possible states the system can reach, as well as 

their  relationship.  The  resulting  representation  is  a  reachability  tree  or  reachability  graph.  To 

construct  this  tree,  the  algorithm  found  in  [Zhou1999]  can  be  used.  Some  properties  like  the 

existence of  dead markings, firing sequences that transform one marking into another, boundness, 

safeness, reversibility and many other properties can be obtained.
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From the computational point of  view, creating the reachability tree (i.e. all possible sequence of  

markings from firing transitions) can be quite expensive, depending on the complexity of  the Petri  

net model. Therefore, structural properties are more suitable to obtain when only the topological  

structures of  Petri nets are considered. They are independent of  the initial marking M0 in the sense 

that these properties refer to the existence of  certain firing sequences patterns and possible places of  

mutual exclusion. These properties can often be characterized in terms of  the incidence matrix and 

its associated homogeneous equations or inequalities [Murata1989]. The resulting invariants can then 

be used to obtain some structural properties (independent of  the initial marking).

Definition 7. For a Petri net structure N with m places and n transitions, the incidence matrix 

A= [aij] is a m × n matrix of  integers and its typical entry is given by aij = aij
+ - aij

-, where aij
+ is 

the weight of  the arc from a transition j to its output place i and aij
- is the weight of  the arc to 

transition j from its input place i. Note: The transpose of  A is represented by At = [aji].

Definition 8. An integer solution x of  the homogeneous equation Ax = 0 is called transition-

invariant. The set of  non-zero entries of  this solution is called transition-support.

Definition  9.  An integer solution  y of  the homogeneous equation  Aty = 0 is called  place-

invariant. The set of  non-zero entries of  this solution is called place-support.

To obtain the invariants, some matrix reduction algorithms can be used to discover the set of  x 

and  y vectors of  the  Ax = 0 and  Aty = 0 equations (see [Amer-Yahia1999] and [Martinez1980]). 

Generally  speaking,  the meaning of  the analysis  of  place-support constitution allows confirming 

mutual  exclusion relationships  among places and functions and resources  involved in  the model 

structure. The analysis of  the transition-support allows the identification of  work cycles.

3.2.3 Conflicts

There is the possibility to model Petri nets without conflicts, but the existence of  such properties 

creates a new dimension in terms of  flexibility of  Petri nets. Besides static models that only specify a 

predefined work-plan, some models can be enriched with the possibility of  choices that permit the 

intervention of  decision handlers (often borrowing concepts from artificial intelligence).  In more 

complex systems represented by their Petri nets, they may contain intersections of  conflicts. This 

happen when a transition  t has more that  one input place that  is  in conflict.  In these cases the 

resolution  of  one  conflict  implies  also  considering  the  other  conflicts  that  are  in  intersection. 

Therefore, conflicts sets (set of  intersecting conflicts) should be considered, instead of  single conflicts.

Definition 10. A place p has a structural conflict, SC(p), if  there are at least 2 transitions t ∈ T 



where w(p, t) > 0. The set of  all structural conflicts is denoted by SC.

Definition 11. A place p is in conflict, C(p) if  it has a structural conflict SC(p) and the current 

number of  tokens of  place p, M(p), enables at least two transitions t which place p is inputs.

Structural conflicts are quite suitable because they represent the candidates for the real conflicts  

that happen at run-time. In fact,  the set of  real  conflicts  C is always a subset (or equal) of  the 

structural conflicts SC,  S ⊆ SC. These candidates can be obtained by the structural information of  

the Petri net and if  calculated before running the net, performance is increased afterwards (avoiding 

the analysis of  each place).

In more complex systems represented by their Petri nets models, they may contain intersections 

of  conflicts. This happen when a transition  t has more that one input place that is in conflict. In 

these cases the resolution of  one conflict implies also considering the other conflicts that are in 

intersection. Therefore,  conflicts sets (set of  intersecting conflicts) should be considered, instead of  

single conflicts.

3.2.4 Property system

The formal definition of  Petri nets does only define the structure and behavior of  the net, in  

which their elements (e.g. transitions and places) do not contain any information or are associated to 

anything. Enhancements have been done to Petri nets to make them more usable and applicable to  

real systems (e.g. colored Petri nets [Jensen1987]). A common point in all these types of  nets is that 

the elements are associated to some kind of  information (e.g. time, capacity and priority). The idea is 

always  to  maintain  the  strong  foundation  of  Petri  nets,  but  enhancing  it  with  structural  and 

behavioral characteristics. One approach to permit a flexible and customized definition of  control 

structures based on Petri nets is to define a property system that works on top of  the standard 

structure and behavior. In the end, the advantage is to provide the facility to customize higher-level  

types of  nets, based on the formal Petri nets definition and the developed property system.

The following definition (Definition 12) describes a property system to be used for Petri nets and 

its  elements,  such  as  places,  transitions  and  arcs.  It  was  inspired  by  the  Qt's  Property  System for 

classifying their QObjects (see [Blanchette2006]).

Definition 12. A property system (for Petri nets), Π = {π1, π2, …, πl}, is a set of  properties that 

classify one or several elements of  the system (in this case represented by Petri nets). Each 

property  π  ∈  Π is defined by  property  parameters,  ψ(π)  = (ψname,  ψscope,  ψreference,  ψinformation,  ψdata-type, 

ψdefault- value, ψvalue, ψaccess, ψpersistence, ψdesignable).
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A description of  the property's parameters ψ(π) follows: name (ψname) of  the property to be used as 

its identifier;  scope (ψscope) or domain, so that the property can be clustered with others of  the same 

scope; reference (ψreference) to an object or resource, permitting that the property is related to something;  

detailed  information (ψinformation)  about the property;  data-type (ψdata-type)  of  the property's  value (e.g.  int, 

double,  string , …), including limits, increments and restrictions;  default-value (ψdefault- value) of  the property 

and its current value (ψvalue); ψaccess specifying if  value is read-only or read-write; ψpersistence in terms of  the 

value being stored or calculated from other values (e.g. dimension = length + height) and ψdesignable if  it is 

available to the user.

Several  operations  can  be  used  to  set  a  property,  using  accessor  methods  (i.e. 

property.set(value),  property.designate(true), …). Another aspect not considered here is 

the ability of  having hierarchy of  properties and linkage between properties (for example, p1 is child 

of  p2 and p3 depends on p4).

3.2.5 Timed Petri nets

Originally, Petri nets were proposed as a causal model and no information is included how the 

behavior is related to time. This is crucial for analyzing time affected systems and also to use Petri 

nets in the control of  processes. Without time, Petri nets can only be evolved stepwise, e.g. step 1:  

transition t1 enables, step 2: transition t2 enables, step 3: transition t2 fires, etc. Timing constraints may 

be added, as in timed Petri nets [Kumar1990] or stochastic Petri nets [Ciardo1987] [Haas2004] (more 

for probabilistic time distributions). While stochastic models are fairly well-suited to performance 

evaluation, they do not seem to be very useful for modeling real-time systems, i.e. systems whose  

correctness depends on timing bounds [Wirth1977]. Time has been added to Petri net models in 

many  different  ways  – typically  by  specifying  delays  on  places  or  transitions.  Differently,  in 

[Ghezzi1989] the main idea consists of  attaching a time-stamp to each token in order to represent  

the “local” time of  the token, i.e. the firing time of  the transition which created it.

Time is especially important when considering the specification and development of  the Petri 

nets dynamics, or sometimes called token game (see section 3.2.6 “Petri nets dynamics: a template for

token games”). Two types of  delays actually exist:

• Introducing  delay  information  in  the  enabling  rule  and  firing  rule  of  Petri  nets,  more 

concretely into places and transitions (and in some extends, also arcs and tokens).  These 

delays can be consequence of  actions, evaluations and other time consuming operations that 

are associated to the elements of  the Petri net;

• Intrinsic delays resulting by the time consuming routines that are used by the token game to  

evolve the Petri net. This factor should be minimized and depends heavily on the processing 

power that is attributed to the token game. This “invisible” characteristic is normally not 



considered in research publications, but is not less important.

With continuous Petri nets the discrete state transition rule is replaced by a notion of  trajectory 

using a continuum of  intermediate states [Badouel2004]. One side effect is that delays should be 

handled so that they should not be infinitive (leading to a dead-end not represented in the Petri net 

structure) and also not blocking other active branches of  the Petri net. The other one is the dealing 

with instant transitions that have theoretically zero time consumption. An immediate transition fires the 

instant it becomes enabled, whereas a timed transition fires after a positive amount of  time [Haas2004].

The  presented  approach  provides  some  flexibility  in  representing  and  associating  the  time 

information in a Petri net (see Definition 13 and Figure 20 for a graphical example of  a transition 

life-cycle). It was inspired by the publication of  Kumar & Harous [Kumar1990], not only by the 

proposed method of  timed Petri  nets  but  also by the  interesting comparison of  other different 

methods, especially concerning the models of  time attribution to places and transitions.

Figure 20: Life-cycle of  a transition

Definition 13. ΔPN = (P, T, F, W, M0, Δe, Δf, Δc) represents a timed Petri net, where (P, T, F, W, 

M0) are part of  the formal Petri net definition (see Definition 3), Δe: T ∈ ℜ0
+ represents the 

delays of  transitions remaining enabled until it is decided to fire or disable again, Δf: T ∈ ℜ0
+ 

defines the delays that  the firing process takes between consuming the input tokens and 

expelling  output  tokens  and  Δc: T  ∈ ℜ0
+ describes  the  intrinsic  time  of  analyzing  and 

processing each transition. Note: the delays can be volatile when the time is non-deterministic, 

such as in probabilistic generations or association to operations.

Definition 14. Analogous to Definition 13, a timed Petri net structure is given by ΔN = (P, T, F, 

W, Δe, Δf, Δc).

While the timed Petri net does not affect the structures and rules that governs the Petri nets, the  
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influence of  time affects how (and when) the rules should be applied. Important are the two first 

delays  Δe and  Δf  that can be used or represent external time-consuming functions and operations. 

While the disabled and enabled states are intrinsic of  the logical process of  Petri nets, the firing  

process can be extended to be the interface to the system by calling specific functions that make the 

evolution of  the firing process. This characteristic makes possible to associate the Petri net to the real  

systems: the marking of  the Petri net corresponds to the state of  the system, and the firing of  a 

transition  corresponds  to  the  occurrence  of  an  event  [Haas2004].  The  last  one,  Δc,  represents 

intrinsic delays that are associated with time consuming routines to evolve the Petri net (analyzing 

and processing  each transition).  This  “invisible” characteristic  is  normally  not  considered in  the 

research publications, but is not less important.

One side effect is that delays should not be infinitive (leading to a dead-end not represented in 

the Petri net structure) and also not blocking other active branches of  the Petri net. The other one is  

the dealing with immediate transitions that have theoretically zero time consumption. An immediate  

transition fires the instant it becomes enabled, whereas a timed transition fires after a positive amount of  

time [Haas2004]. A special remark to be considered is when a transition is on firing process and it 

does enable again. More detailed discussion can be found in the section 3.2.6 “Petri nets dynamics: a

template for token games” about the definition of  a prototype token game that regulates the state 

changing of  transitions and considers the already specified Petri net features in the previous sections.

3.2.6 Petri nets dynamics: a template for token games

The goal of  this template is to provide a basis for Petri nets token games (an “engine” that runs a  

Petri  net),  based  on  the  standard  Petri  nets  formalism  and  extensible  to  permit  the  inclusion 

customized features. In its core and to maintain an asynchronous (independent) operation of  the 

transitions,  the  template  is  a  state  machine  specification  for  each  transition  and  consequently  

responsible  for  managing  the  transition's  state  and  evolution.  The  template  itself  is  not  a  fully 

functional token game because it only defines a set of  basic operations for analyzing and evolving 

transitions of  the Petri net. Concrete token games can then be customized from this template.

The choice of  having a state machine representation for the life-cycle of  transitions is mainly due 

to  implementation concerns on computational systems. The different „states“ and „edges“ that are 

part  of  the  life-cycle,  invites  the  adoption  of  a  state  changing  mechanism  for  processing  the 

transitions. A state machine is a safe way to represent and implement those possibilities. The state 

machine is specified by checking what is possible and valid for the Petri net formalism and, at the 

same time, concerning possible external interactions.

The state machine is formally given in Definition 15, Table II presents its state table and Figure

21 the state diagram.



Definition 15. The Petri nets transition state machine for a transition t ∈ T (where T represents a 

finite set of  transitions of  a Petri net) is defined by a 5-tuple TSMt = (Σ, Φ, Ω, Γ, σ0), where 

Σ = {σ1, σ2, …, σ16} is a set of  16 states, Φ: Σ → {φ1, φ2, …, φ16} is a set of  flags for each 

state,  Ω = {ω1,  ω2,  …,  ωn} defines a finite set of  input/output symbols,  Γ:  Σ  ×  Ω  →  Σ 

defines edges between two states as caused by the input/output and σ0 ∈ Σ defines the initial 

state  (σ0  = σ1  = 1). Note: transitions in the state machine are referred as edges, not to be 

confused with the transitions of  the Petri net.

The state machine related to each transition is made of  several states representing the different 

combination of  flags and the change between states is made by occurrence of  events and execution 

of  operations. Besides the enabled and firing flags that indicate if  a transition is enabled or firing,  

sleeping and jump parameters were added to permit a more flexible management for the external  

time  consuming  functions  (see  definition  below).  “In  summa”,  there  are  four  flags,  and  their 

combination result in 16 different states for the transition. The state of  a transition is evolved by two 

main situations:

• Implicitly, by calling the evolve function over the transition. This function analyzes the actual 

state  of  the  transition  and  proceeds  according  to  the  state  machine  in  Table  II (it 

corresponds to the white background rows);

• Explicitly, by 1) the enabling/disabling of  the transition during previous processing of  other 

transitions and their evolution and also 2) by calling the wake-up function over a transition due 

to occurrence of  events (it disables then the sleeping flag). These situations are marked in 

darker background rows in Table II.

The previous definition of  TSMt has several remarks that are discussed. The flags for a state 

σ ∈ Σ are defined by φσ = (φE, φF, φJ, φS). The meaning of  a flag when it is true is:

• Enabled (φE): the transition is automatically enabled depending on the actual marking of  the 

Petri net;

• Firing (φF): the transition is on firing process. A particular note considered here is that if  a 

transition is during firing process and enabled again, the enabling is ignored until the firing 

process is concluded;

• Jump (φJ): the handler functions (see below) are not called in the next analyzing iteration of  

the transition;

• Sleeping (φS): the transition is waiting for external signal and consequently is blocked.

Note: The additional flags (sleeping and jumping) do not interfere on the basic mechanism to 

evolve the Petri net (in sense of  consuming and expelling tokens by the transitions), but moreover 

when the net should evolve and how external events influence it. Note that the Petri nets that are  

used in this work are not isolated, but connected to external events outside the net via the transitions.
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Table II: State table of  a Petri net transition
Notes: The flags (φ) and the results of  the flag testing function (ωf) marked with underscored/bold are true, else false. Edges 

with white background are evolved implicitly and gray ones explicitly (for more details see the following text).

Actual state Edge γ and  ω(γ) Next state Actual state Edge γ and  ω(γ) Next state Actual state Edge γ and  ω(γ) Next state
σ Flags φ ωk ωu ωf σ σ Flags φ ωk ωu ωf σ σ Flags φ ωk ωu ωf σ

(1) E F J S – – – (1)
(6) E F J S

– – E (5)

(12) E F J S

– – – (12)
– – E (2) – ωui E (4) – – E (11)

(2) E F J S

– – E (1) – ωui E (3) – – S (4)
ωhe = U ωui E (4)

(7) E F J S
– – E (8) – – E S (3)

ωhe = U ωui E (3) – ωuo E (2)

(13) E F J S

– – E (14)
ωhe = I – – (2) – ωuo E (1) – – S (5)
ωhe = J – – (14)

(8) E F J S
– – E (7) – – E S (6)

ωhe = S – – (10) – ωuo E (2) ωhx = W – – (1)

(3) E F J S

– – E (4) – ωuo E (1) ωhx = I – – (13)
ωhf  = U ωuo E (2)

(9) E F J S

– – E (10)

(14) E F J S

– – – (14)
ωhf  = U ωuo E (1) – – S (1) – – E (13)
ωhf  = I – – (3) – – E S (2) – – S (6)
ωhf  = J – – (15) ωhx = W – – (1) – – E S (5)
ωhf  = S – – (11) ωhx = I – – (9)

(15) E F J S

– – – (15)

(4) E F J S

– – E (3)

(10) E F J S

– – – (10) – – E (16)
ωhf  = U ωuo E (2) – – E (9) – – S (7)
ωhf  = U ωuo E (1) – – S (2) – – E S (8)
ωhf  = I – – (4) – – E S (1)

(16) E F J S

– – – (16)
ωhf  = J – – (16)

(11) E F J S

– – – (11) – – E (15)
ωhf  = S – – (12) – – E (12) – – S (8)

(5) E F J S – – – (5) – – S (3) – – E S (7)
– – E (6) – – E S (4)

Figure 21: State diagram of  a Petri net transition

An input/output symbol  ω ∈ Ω has three types of  functions that are analyzed/executed in a 

sequential way, ω = {ωh, ωu, ωf}. The functions have mixed input/output.



Handler functions ωh ∈ {ωhe, ωhf, ωhx} (generate both input and output) are used for the external 

communication (and thus must be defined). Their return values contribute to the definition of  the  

next steps in the state machine. In practice, the main distinction between enabled and firing functions 

is  that  the  first  one  does  not  guarantee  the  number  of  tokens,  not  even  if  the  transition  will 

effectively enter the firing process (e.g. it may disable again):

• Enabled function (ωhe): called when a transition is enabled and thus permitting it to enter the 

firing process  (and consuming  tokens).  It  may return {U,  S,  I,  J} (for  testing as  input), 

meaning update (if  still enabled, the transition then enters effectively the firing process by 

calling  consequently  one of  the  update  functions),  sleep  (puts  the  transition  in  sleeping, 

awaiting an call  of  the wake-up function), ignore (does nothing and does not change the 

status of  the transition) and jump (does the same as returning S, but next time, the enabled 

function is not called);

• Firing function (ωhf): called when a transition is on firing and thus permitting it to leave this 

process  (and expel  tokens).  The return status is  similar  to  the enabled function,  but  for  

leaving the firing process;

• Exception function (ωhx): called on exceptions when a transition is disabled during sleeping (see 

state 9 and 13 of  Table II). Returning W (wake-up), the sleeping mode (and jump mode if  

active) is disabled. Returning I (ignore) the actual state is not changed.

Update  functions  ωu ∈  {ωui,  ωuo},  (only  generate  output)  are  responsible  for  evolving  the 

transition according to the actual state of  flags, i.e. they are used to effectively consume and expel 

tokens. The update input ωui updates the input of  a transition, i.e. consuming tokens and the update 

output  ωuo is responsible for updating the output of  a transition (expelling tokens).  Last, the flag 

testing function ωf  (only input) tests the status of  a state, namely its flags (φE,  φF,  φJ,  φS) if  they are 

true or false.

When relating the transition state machine with the timed Petri nets, it is easy to verify where the  

intersections are. For a transition t, the time between the calling of  the enabled function ωhe(t) and 1) 

returning update (U), 2) calling corresponding wake-up function when sleeping or 3) disabling of  the 

transition, represents the Δe(t) delay. Similar, the time between the calling of  the firing function and 1) 

returning update (U) or 2) calling corresponding wake-up function when sleeping, describes the Δf(t). 

The processing of  the wake-up function and the evolve function (that encapsulates the application 

of  the three types of  functions that are analyzed/executed in a sequential way, ω = {ωh, ωu, ωf}) are 

mapped to the  Δc(t) delay. To compare the association, please see the previous  Figure 20 of  the 

transition's life-cycle.
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3.2.7 User-developed Petri nets applications

The  open  methodology  and  the  token  game  template  do  not  define  a  concrete  Petri  nets 

application and leaves to the engineer and/or developers the possibility to customize their Petri nets 

application.  Therefore, when defining a concrete application based on the previous methodology 

(especially a token game), several aspects must be considered:

• Create the necessary Petri nets structures based on the open methodology;

• Define the handler functions of  the token game and the call of  the wake-up function;

• Consider a specification of  properties and their association to the elements of  the Petri net 

and the evolution of  the net;

• Decide about how conflicts are managed and reported;

• Define the life-cycle of  the whole Petri net based on the ones from the transitions. A special 

attention must be taken in the order of  analyzing transitions, when to begin/finish the token 

game and also deadlock detection.

In service-oriented automation,  the  resulting Petri  nets  applications  must  also  consider  their  

environment and what features should be handled. Additionally, the necessary service infra-structure 

must be available and also, when targeting devices, hardware access must be considered. From the 

Petri  net  side,  one obvious conclusion is  that  services  should somehow be related to Petri  nets, 

whatever it should represent the logic of  a service, work-flow between services or other situations. 

Other thoughts have to be done if  the final structure should help in the modeling, analysis and/or be 

used in the control of  a service environment.

3.3 Features and extensions for Petri nets based on the open 
methodology

The proposed approach to develop Petri net-based application for embedded devices and PC 

tools, is to use the open methodology described in section 3.2 “Open methodology for Petri nets in

the  modeling,  analysis  and execution of  SOAS” tailored for service-oriented systems,  taking the 

advantage of  their powerful mathematical foundation. Having the basis for Petri nets applications 

and engineering, the next step would be identify what are the characteristics that can be extracted 

from them to be used in service-oriented automation systems.



Figure 22: Dependency graph for features and extensions of  Petri nets

Figure 22 lists the features and extensions of  Petri nets that use the open methodology as basis 

and that were researched for the application in service-oriented automation systems. More topics can 

be discussed, but only the essential to this dissertation are presented.

The following sub-sections extend the topics of  Figure 22 that will contribute to the engineering 

process for these kinds of  service-oriented automation systems.

3.3.1 Petri net models and ports

The concept of  Petri net model is here used to identify a separated and well defined Petri net that 

is bounded to some specific resource or is part of  a composition of  models. Petri net models are  

used to simplify the development of  big structures and localize the behavior represented by the  

model (e.g. a model may represent a conveyor). It is based on the Petri net formalism (section 3.2.1 

“Petri nets formalism”) and the property system (section  3.2.4 “Property system”) to permit  the 

definition of  information related to the different elements of  the Petri net (and the net itself).

Definition  16.  A  Petri  net model is a structure containing a well formed Petri net  PN and 

associated properties of  the whole Petri net Π(PN) and its elements, namely transitions Π(t), 

∀ t ∈ T,  places Π(p), ∀ p ∈ P and arcs Π(f), ∀ f  ∈ F.
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Common properties of  the Petri net can be the name of  the Petri net πname(PN), the resource it 

represents πresource(PN) and the address(reference) of  the net πreference(PN).

Since Petri nets can be used to describe process activities in different ways, some association rules 

of  processes are necessary to be explained. The following basic control flow patterns are considered 

for this work (Figure 23)1:

• Sequence: An activity in a process is enabled after the completion of  another activity in the 

same process;

• Parallel  split:  A point in the  process where a  single  thread of  control  splits  into multiple  

threads of  control which can be executed in parallel, thus allowing activities to be executed 

simultaneously or in any order;

• Synchronization:  A  point  in  the  process  where  multiple  parallel  sub-processes/activities 

converge into one single thread of  control, thus synchronizing multiple threads;

• Exclusive choice: A point in the process where, based on a decision or work data, one of  several 

branches is chosen;

• Simple merge: A point in the process where two or more alternative branches come together 

without synchronization. It is  an assumption of  this pattern that none of  the alternative 

branches is ever executed in parallel.

• Figure 23: Basic control flow patterns for Petri nets used in this work
• (A) sequence, (B) parallel split, (C) synchronization, (D) exclusive choice, (E) simple merge

More complex  patterns  can  be  obtained with  the  intrinsic  properties  of  Petri  nets  (see  the 

examples  of  [Aalst2003]),  which  are  dependent  of  the  designer's  choice  of  how to  define  the 

associated resource's  behavior.  The  introduction  of  tokens  in  the  Petri  net  creates  an  increased 

flexibility to represent complex systems, where states are not limited to a mark at a given place, but a 

1 Note that activity actions represented in the Petri net are associated to transitions. Places define occurrences 
that are triggered by transitions (e.g. calling an action, receiving an event).



set  of  marks  flowing  along  the  net.  The  use  of  different  marks  (tokens)  may  also  be  used  to 

represent different resources in the system and study their positioning in the Petri net.

Another concept that is fundamental to this work is the use of  ports.  Ports are used as the  

gateways for the interaction of  a Petri net model with external references. In other words, the ports  

are specific gates to synchronize control models, being in some cases also related to the physical 

connectivity of  the entities.

Definition 17. A Petri net port is a set of  transitions grouped in a logical way that can be used 

for external interaction (e.g. for composition, service association, etc). Several properties are 

used for a transition part of  a port:  πport(t) indicates the port name a transition belongs to, 

πport_in_seq(t) the input sequence reference or πport_out_seq(t) the output sequence reference. Note 

that not all transitions in the Petri net model need to be part of  ports.

The sequence references  πport_in_seq(t) and πport_out_seq(t)  are used to  indicate the logical  order of  a 

transition inside a port to be identified by the external interactive resource. The difference of  being 

an input sequence reference is that the affected transition is used to get external input to be enabled  

and the output sequence reference indicates that the transition will output something when firing.  

These concepts are more clearly explained in the section 3.3.4 “Composition of  Petri nets”.

As said before, ports permit an additional flexibility for the Petri net model, in terms that the 

model can not only be used as an isolated instance. In summa, ports are useful for:

• The logical association of  transitions of  a Petri net;

• The connection of  models;

• The basis for the link of  the models to service ports and I/O signals;

• The association to real equipment ports (source & sink).

An example of  a Petri net model associated to a conveyor is given in Figure 24. A mechatronic 

device is used, corresponding to an unidirectional conveyor with two different ports (one on each 

side) where pallets can be inputted and outputted over the physical ports. These ports should be used  

to connect to the other devices, e.g. other conveyors. The corresponding Petri nets model specifies  

the predicted behavior of  the conveyor, including the ports for external interaction. These ports can 

be  used to establish a  synchronization to the  other Petri  net  models  associated to the  neighbor 

conveying units. Note that no direct device association is specified in the Petri net model of  Figure

24 (i.e. set and get I/O to and from the device).
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Figure 24: Example Petri net model associated to the behavior of  a conveyor

Petri net based “engines” running on devices and/or PCs have to interpret and execute Petri net  

models  in  order  to  reflect  the  represented  behavior  to  the  reality.  One  example  is  the  use  of  

embedded  Petri  net  orchestrator  in  devices,  as  explained  later  in  Chapter  4: “Service-oriented

automation systems:  tools, implementation and engineering”.

3.3.2 Service association to Petri nets

In the previous section, it was introduced the concept of  ports in the Petri net model to support 

the external interaction and synchronization, allowing that an isolated model can be used as a part in 

a system, together with other elements,  including other Petri  net  models.  Aiming to support the 

connection of  the model to the “real world”, input events (e.g. a signal indicating the status of  a  

sensor or a service request to start the execution of  a robot operation) or output actions (e.g. a signal  

to an actuator or a notification of  a service execution) can be connected to transitions. The Petri net 

ports are then associated, to link the model represented by a Petri net to several communication  

standards. One of  the main possibilities is the association of  the ports to the I/O of  devices, so that  

the model's execution can be synchronized with the physical lines connected to a device1. The other 

one and fundamental to this dissertation is the association to services.

The service's  behavior is  basically  a partially ordered set  of  operations, such as the complex 

processes between services. Therefore, it is straight-forward to map it into a Petri net model, where 

operations (actions and events) are modeled by transitions and the places mean the state of  service's 

1 Note that I/O association is not part of  this dissertation, but could be easily done similarly.



coordination or the internal state of  control. Transitions are enriched with additional information 

from the service specification (3.1.3 “Services and communication methodology”) files so they can 

represent operations and the Petri net ports represent service ports.

For this dissertation, a service is not considered as an implementation or as a specification by a  

Petri net model (such as in most Petri net based orchestration publications), instead service elements 

(e.g. ports and operations) are viewed as associations to Petri nets elements.

Some  of  the  transitions  are  linked  to  the  request  or  provisioning  of  services.  A  service's 

operation  is  then  triggered  when  the  corresponding  transition  enables/fires.  In  this  case, 

S:T→ {s1, s2, …, sn}  represents  the  finite  set  of  services'  operations  associated  to  corresponding 

transition. A specific s ∈ S can be empty (meaning there is no operation associated to the transition) 

or  a  label  identifying  the  service  and  its  operations.  A  transition  willing  of  sending  a 

request/response or an event must be enabled, and the action is done when it fires. In the other  

hand, a transition receiving a message from a request, response or event, will only fire if  it is enabled  

and the message is there. Figure 25 represents these two types of  associations.

Figure 25: Two types of  service message association to transitions
(A) transition outputs a message, (B) transition waits for a message

Technologically speaking,  service association is  done by defining properties to transition that 

correspond to  the  specification of  service  definition  in  WSDL.  The information to be  used by 

transitions  is  gathered  by  an  imported  WSDL file  that  contains  the  description  of  the  service.  

Depending  on  the  operation,  transitions  can  be  part  of  a  client  request/response,  server 

request/response, client event and server event. The first two types require two transitions: one for 

initializing the request and one for the response. It is also possible to test responses by their return 

parameters, implying the use of  one response transition for each test (resulting in a conflict in the 

Petri net model). The difference of  an operation being a server or client is obvious: a server waits for  

the request and then gives a response, and a client makes a request and waits for a response. Events 

are  possible  as  client  and  server,  but  only  require  one  single  direction  (and  consequently,  one 
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transition).

Figure 26: Example of  Figure 24 associated to services

The example of  Figure 24 is extended in  Figure 26 with the service association. The conveyor 

provides one service that handles the necessary operations to make transfer movements over the two 

logical ports (corresponding to the physical ones). This service must be requested in order to behave 

in the corresponding way. Requesters can be other conveyors connected to this one over the ports.  

The ports have several operations that are used to synchronize the operation and message exchange.

3.3.3 Description of  Petri nets in XML

Since SOA implementations are frequently based on web services, their descriptive nature based 

on XML hints to the adoption of  similar procedure for the description of  Petri nets. In fact, several 

efforts  where already done for representing Petri nets (and High-level based structures)  in XML 

format,  such  as  the  Petri  Net  Markup  Language  (see  http://www2.informatik.hu-

berlin.de/top/pnml) and the International Standard ISO/IEC 15909 draft on a Transfer Format for 

High-level Petri nets. This has several advantages inherited from the nature of  XML, serving as a  

portable  interchange  format  towards  interoperability  and  also  the  human/machine 

“understandability”  of  the  resulting  representations.  Considering  automation  systems  (nowadays 

growing in terms of  information and engineers/machines that require to interpret it), the usefulness 

can be easily understand.

In terms of  information, all that is needed to represent a Petri net is its formal structure (see  



3.2.1 “Petri nets formalism”) and a property system (3.2.4 “Property system”) that contains all the 

additional information that may be necessary. Therefore, a XML based file format was defined for 

the definition of  Petri nets and associated information, such as analysis information, property system 

and layout  information.  This  specification  was  developed to provide  a  common file  format  for 

exchanging Petri nets and related information. One of  the goals is to permit a certain flexibility in  

order to be adaptable to several kinds of  Petri nets, especially high-level Petri nets, and also different  

types of  applications (simulation, control, analysis, etc.). The proposed file format is based on XML 

and extension is xpn (Extensible Petri Net File Format).

The xpn file format is based around three main elements that express the container for the whole 

information of  the Petri net: <structure> sets up the structure of  the Petri nets, i.e. the transitions,  

places and arcs;  <marking> defines the initial marking (if  any) of  the Petri net and the property 

system is constructed in the <property_system> element, where properties can be assigned to each 

element of  the Petri net.

3.3.4 Composition of  Petri nets

In the first place, the composition of  services can be implemented in a hard-wired manner by 

implementing  the  internal  logic  directly,  or  by  utilization  of  an  intermediate  process  modeling 

language, for instance, Petri nets.

The composition of  Petri nets is viewed as additional logic to synchronize the process of  two or 

more models. As illustrated in the left side of  Figure 27, three Petri net models are composed and 

their intersection is defined as composition logic. This can be done offline by using a composition 

tool to generate a new Petri net model that is the composition of  several individual ones, and also 

online where individual models are maintained in their distributional units and synchronized together 

on the fly via the network [Mendes2010]. The online composition can also be designated as virtual 

composition, because no new model is generated, but individual models have to be linked together as 

they were part of  one. The online composition is  done by using service-oriented architecture as 

means of  information exchange and service representation (i.e. to identify the synchronization points 

of  the Petri nets model). In both cases, at run-time an orchestration engine will get the Petri nets 

model and run it.

There is an important note to the topic of  composing Petri nets: Petri net composition is not the 

same  as  composition  of  services.  In  the  first  case  (and  the  one  used  in  this  dissertation),  the 

composition of  Petri nets is used to generate larger Petri net models or to synchronize the activity  

between models. Only if  a composition of  Petri nets which accesses exiting services and exposes 

new services based on a Petri net logic it is possible to say that the composition of  Petri nets also  

supports the composition of  services, generating composite services.
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Figure 27: Composition of  Petri net models and their execution in orchestration engines

The two forms of  composition will be explained in the following sub-sections.

Offline composition

Offline composition comprises the generation of  a new Petri net model based on the connection 

of  two or more individual ones. If  PN1 and PN2 are two Petri nets, PN1∪2 = PN1 ∪ PN2 represents 

its composition. This composition procedure can be applied to two or more Petri nets models. Figure

28 represents an example where two Petri nets are composed via the addition of  composition logic.

Figure 28: Offline composition of  Petri nets PN1 and PN2 resulting in PN1∪2



When the composition is completed, new inter-logic is generated. The basic idea is to match two 

transitions  from  different  models  by  connecting  them  via  a  place  (and  corresponding  arcs).  

Additionally, the specification of  the direction should be considered (e.g. the transition t2 from PN1 is 

the input of  the transition  t1 from  PN2).  This approach, besides to simplify the development of  

bigger and more complex models, also facilitates the synchronization of  models viewed as individual 

entities.

For the composition, Petri net ports are used (see section 3.3.1 “Petri net models and ports”) An 

example is given in  Figure 29 where the conveyor A is the client and the conveyor B is the server. 

The transition  t1 represents a start order of  the conveyor B, the transition  t2 represents that it has 

started and the transition t3 notifies when it is completed. All these three transitions are part of  the 

same port  (port=in of  the conveyor  B) and are input  or  output  transitions  in  contrast  to  their 

counterparts in the other model of  the conveyor A. Additionally, they have a sequence reference to 

indicate the order of  connection of  the transitions (e.g. the output transition t4 of  port=out from the 

conveyor A will be connected to the input transition t1 of  port=in from the conveyor B, because they 

have  the  same  sequence  reference,  port_out_seq=port_in_seq=1).  In  a  few  words,  for  two 

interconnected ports from different models, input transitions will be connected to output transitions 

with the same sequence reference. This can be seen in the connection table of  Figure 29, where 

transitions have two properties, {port, port_in_seq|port_out_seq}, which indicate, respectively, the 

port they belong and also the input/output sequence reference.

Figure 29: Port-based composition of  two Petri net models representing two conveyors
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All these three transitions (t1, t2 and t3) are part of  the same port (port=in of  the conveyor B) and 

are input or output transitions in contrast to their counterparts in the other model of  the conveyor 

A. Additionally, they have a sequence reference to indicate the order of  connection of  the transitions  

(e.g. the output transition t4 of  port=out from the conveyor A will be connected to the input transition 

t1 of  port=in  from  the  conveyor  B,  because  they  have  the  same  sequence  reference, 

port_out_seq=port_in_seq=1).  In a few words,  for  two interconnected ports from different models,  

input transitions will be connected to output transitions with the same sequence reference. This can 

be  seen  in  the  connection  table  of  Figure  29,  where  transitions  have  two  properties, 

{port, port_in_seq|port_out_seq},  which  indicate,  respectively,  the  port  they  belong  and  also  the 

input/output sequence reference.

As seen in Figure 29, ports are also useful when the models represent mechatronic devices. For 

example, a conveyor may have two ports (one for the input of  pallets and another one for the output 

of  pallets). This situation is also represented in its control model, in which it contains two ports that  

are used to connect  to other models from other devices (e.g.  adjacent conveyors).  Moreover,  to 

facilitate the composition, information about the layout and displacement of  equipment can be used 

for (semi-) automatic composition. For this purpose, the Petri net model should include a label (in  

case  of  Figure  29,  Conveyor  A  and  Conveyor  B)  and  the  layout  information  defining  which 

resources/devices may be connected and through which port.

A XML file was adopted to represent the resource connections and to improve the automatic 

offline composition. The resource connections XML file for the example of  Figure 29 is represented 

in Listing 1.

Listing 1. Example of  the resource connection of  Figure 29

1 <?xml version="1.0" encoding="UTF-8"?>
<connections>

<connection
resource1="Conveyor A" port1="out"

5 resource2="Conveyor B" port2="in"
/>

</connections>

In the example, only one connection is included, but multiple connections can also be defined. 

For this purpose, a new <connection/> tag must be defined inside the <connections> tag. If  the 

conveyor B would be connected to a conveyor C on the right, then this information is represented by  

one additional <connection/> tag.

Online composition: synchronization of  models

Online composition means that each model runs separately in its own orchestration engine and 



they  are  synchronized  via  a  composition  logic.  In  this  case,  the  composition  logic  represents  a 

service-based communication  act,  where  services  and their  operations  are  described in  Petri  net  

models.

Online composition requires that Petri nets have information on how to invoke and represent 

services to synchronize with the other models. This is done by describing transitions in the Petri net  

model (see section 3.3.2 “Service association to Petri nets”).

Figure  30 represents  the  connection  of  the  two conveyors  illustrated  in  Figure  29 with  the 

connection logic based on the service infrastructure. In the example, the conveyor A is the client and 

the conveyor B is the server. Both use the transfer interface (transfer.wsdl) to express the service in 

the  model.  The  sequence  start,  started  and  completed  will  be  transformed  into  a 

TransferIn(request),  TransferIn(response) and  TransferStatus(“completed”) sequence, 

to be compliant with the WSDL file.

Figure 30: Online composition of  the conveyors of  Figure 29 using service-orientation

Note that the correct division and use of  the composition types depends always on the available  

resources, the optimization strategies and the layout of  the system, but orchestration models can be 

individually developed without knowing this information.

3.3.5 Decision support system

Decision points, alternative ways and other conflicts are characteristics that can be modeled in 

Petri nets, the same way that web services related functions are able to figure out as transitions and 

places in Petri nets. A conflict can be viewed as a resource or state that is to be taken by more entities  

than its capacity or transitions that activate from the same state leading to different paths. Both of  
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the two situations requires mechanisms that should pro-actively detect conflicts and resolve them 

[Feldmann1996]. The existence of  conflicts does not strictly mean that there are design problems in  

our system, but should be also understood as an opportunity of  applying decision to a more flexible 

system. Other appointment for advanced handling of  Petri nets is the movement of  the information 

along a net (represented by tokens), that has an extended meaning in colored Petri nets [Jensen1995].

Such features require the intervention of  decision mechanisms that extend the indirection of  the 

static and predicted control. This is especially valid when considering that automation systems are 

inherited dynamically and not fully predictable; sometimes there are unexpected circumstances that a  

simple executed Petri  net cannot handle:  operation's  delay and canceling,  synchronization among 

individual  workflows,  unexpected  situations,  unaccomplished  operations,  dynamically  adding  new 

operations, etc. In these situations, a decision support system (DSS) provides support to resolve them.

The following topics describe where additional help is needed in terms of  decision, to increase 

the power of  Petri nets:

• Selection of  the firing transition between several  ones that  are in conflict  (resolution of  

conflicts);

• Petri  nets  analysis  to  support  decision,  including  behavioral  and  structural  analysis,  path 

finding and simulation;

• Selection of  the best service or operation to execute when the associated transition is enabled 

or firing;

• Management of  the Petri net: decide when to run, stop, and reset a Petri net;

• Automatic composition and aggregation of  Petri nets.

In the example of  Figure 31, an incomplete Petri net model is used to describe the relation 

between three machines that are activated when the corresponding transition fires. The machines 

have web services and when activated, a message is sent to the corresponding machine. The logic  

here is that only one machine can operate for one request at time. The decision point is translated in 

the Petri net model as a conflict, but requires that someone (in this case a DSS) resolves the conflict, 

i.e. choose one of  the machines depending on various criteria.

The degree of  complexity  associated to the decision-making instance can range from simple 

algorithms to complex cognitive systems, such as multi-agent systems, neural networks and genetic 

algorithms [Leitão2008]. There may be different ways to make a DSS more intelligent;  the most 

frequently suggested method is to integrate a DSS with an expert system [Cheung2005].  Although, 

in order to create a distributed system and considering that the DSS is going to be implemented in 

embedded devices, we must be aware that this kind of  systems are strictly restricted in terms of  

memory and processing power [Engelen2004].



Figure 31: Petri net based orchestration with decision support system

It  is  now a  matter  of  question  where  the  decision  supporters  should  be  employed.  Global 

deciders may have the full view of  the system, but introduces also hierarchical dependencies and thus 

reduces the reconfiguration capabilities. Local deciders that complement the control of  a device are  

more concerned with lateral collaboration with other similar companions, enhancing the autonomy 

and the systems flexibility. A mix of  both approaches can be used to balance the values of  the several  

parameters, and contribute to the overall system's performance and flexibility.
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Chapter 4:
Service-oriented automation systems: 
tools, implementation and engineering

The initiative in service-based systems replies its echo in the concept of  collaborative automation 

[Colombo2008] in the sense of  autonomous, reusable and loosely-coupled distributed components. 

Service computing and orientation is here viewed not only as a form of  communication, but more a 

philosophy that software entities (bots) should adopt by sharing resources and representing their 

needs.  As  said  before,  this  also  stands  for  a  new  way  of  design  and  thinking  for  automation 

engineers, supported business managers, and software engineers that have to develop the necessary 

tools and methodologies.  Figure 32 represents this view based on the requirements flow from the 

automation and business “worlds” for the specification of  the necessary software.

Figure 32: Requirements for software development of  service-oriented automation
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For the success of  a company, the marked must be correctly analyzed and business strategies 

have  to  be  planned,  which  can  maximize  the  usage  of  external  suppliers  and  clients,  and 

consequently produce the most favorable outcome (more details  on this subject can be obtained 

from game theory, particularly the best response strategy and the Nash equilibrium [Nash1950]). Of  

course, since the environment is not static,  flexibility and adaptability are keywords of  enormous 

importance. The same is valid for efficient planning and management of  industrial shop-floors by the 

automation  engineers.  A  perfect  balance  between  mass-production  and  mass-customization  is 

essential in the new markets of  ever changing demands.

Even if  not seen at the first sight, both worlds are service-enabled, and this does not always 

mean from the technology point of  view. In fact, the technology side of  services is nowadays more  

and more close related to web services. Therefore, software engineers have the task to provide the  

right tools to facilitate the life of  both “communities” for service-oriented environments, from the  

concept to the technology. Business managers may used, for example, to get statistical information 

of  production  and consequently  plan  new strategies.  But  the  main usage  is  for  the  automation 

“people” so that they can easily plan and configure factory cells.

There are numerous requirements for the development of  such systems and tools that can be  

found in the requirement tables of  several projects (see for example the SOCRADES and SODA 

projects  and several  related publications [SODA2007] [Spiess2007]  [Phaithoonbuathong2008]).  In 

this context it  is important to discuss the requirements that software engineers have to attend to 

specify configurable software entities (bots) and engineering tools. The major requirements are:

• Service-oriented  architectures  as  a  reference  model  for  the  specification,  operation  and 

integration of  automation systems;

• Maintenance of  some compatibility  to traditional  standards, such as IEC 61131 and IEC 

61499;

• Easy  development  environment  for  automation  engineers  and  integration  capabilities  in 

business levels;

• Device  considerations  such  as  use  of  low-cost  embedded  devices  with  plug-and-play 

capabilities, energy efficient, performance restrictions, security, reliability and portability of  

code;

• Reuse,  composition,  aggregation,  extension  and  simplification  of  services  and  software 

entities;

• High-level  process  description  for  component  behavior  and  inter  component  relations, 

supported by handling of  undocumented and exceptional events;

• Preparation  for  decentralization,  autonomy  of  entities,  automatic  reconfiguration  and/or 

simple manual reconfiguration.



The  main  challenge  in  the  requirements  and  proposed  features,  such  as  autonomy  and 

reconfigurability, is quite a problem when developing software for the engineering of  those systems.  

In the end, the software tools should provide the necessary easiness so that they can be uniformly  

used and, from the other side, have the necessary features.

This  chapter  introduces  the  tools,  implementation  and  engineering.  The  Continuum 

Development  Tools  are presented as  a  software package for  the  engineering of  service-oriented 

automation systems.  Part  of  it,  the bot  framework permits  the development of  service-oriented 

entities  to  be  embedded  into  automation  devices.  In  addition,  this  chapter  also  reports  the  

engineering process that is expected to be done in conjunction with the software.

4.1 Continuum Development Tools

Based  on the  requirements,  it  was  decided that  the  basic  building  blocks  that  compose  the 

distributed system should be configurable software components assuming different tasks, in a form 

of  a component-based service-oriented framework. The designation bot was adopted to identify the 

software component as explained in section 3.1 “A service-oriented automation system (SOAS)”). To 

design, configure and maintain bots, there is a need of  specific tools, that are user-friendly and speed-

up  the  development,  using  a  high-level  programming  approach  (visual  languages).  Figure  33 

represents a schematic diagram of  the used design principle.

Figure 33: Design concept for the software of  service-oriented industrial automation

The project was baptized by Continuum Development Tools (CDT) [Mendes2009], named after the 

continuum concept used in physics and philosophy. First developments were started by integrating 

already  developed  software  components,  in  special  the  PndK  (Petri  nets  development  toolKit) 

[Mendes2008], under the same umbrella. Along with the integration, it  was identified that several 

software packages are needed, namely: a framework for developing bots, engineering tools for the  
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design and managing of  bots and several utilities (mainly libraries) for supporting activities (e.g. such 

as communication and interface for devices).

Figure 34 represent a component diagram with the several grouped software components that 

were planned for the initial compendium of  the Continuum project. Target systems range from the 

traditional PCs (especially for the engineering tools) to the devices that should embed the generated 

bot code. The groups are categorized by the automation bots, their supporting engineering tools and 

additional utilities (in form of  libraries) to support the development. The main component would be 

the  Continuum Bot  Framework (CBF)  for  the  development  of  bots  and  their  functional  modules, 

inspired in the anatomy of  living beings. Another component, the Continuum Development Studio (CDS) 

that is based on an extensible document/view framework, provides an engineering tool for service-

oriented  bots,  for  example,  supporting  the  visual  description,  analysis  and  simulation  of  their 

behavior (for now, in Petri nets formalism). The Utilities package includes several reused software 

libraries and tools, some developed internally others adopted from the outside. Examples are the 

SOA4D DPWS library (available at https://forge.soa4d.org) providing facilities for the development 

of  web services and the Qt toolkit (see http://qtsoftware.com), used mainly as a graphical toolkit for 

human interaction in the CDS.

Figure 34: Main software components of  the Continuum project



The development environment was generated and is maintained using several tools. Subversion 

(http://subversion.tigris.org) was used as versioning control system. It permits the maintenance of  a  

repository in a server and several working copies where clients can change, update, commit and other  

operations over the copy. Events such as conflict files (two or more clients changed the same file in 

the meanwhile) are also handled.

CMake  (http://www.cmake.org)  was  the  choice  for  the  building  system  (permitting  cross-

platform development and generation). One of  the main features is the generation of  build files for 

different types of  compilers and IDEs and architectures with no or minimal changes in the source 

tree. CMake permits the configuration of  directories of  the source code using definitions written in  

CMakeList.txt files (each one in his corresponding directory). The main CMakeList.txt is located in 

the  root  of  the source  directory  (see  Figure 35)  and is  responsible to setup general  definitions, 

modules and CMakeList.txt files from the sub-directories.

Figure 35: Source tree of  the Continuum Development Tools

It was decided to have a flexible build system and as such, different CMake modules were defined 

separately. As seen in Figure 36 configuration files contain the correct instruction for setup different 

tools in the building process of  CMake.

Figure 36: CMakeModules directory
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There is no specific software project management tool that is used, since the group is constituted 

by few people and the development is  normally  done at  the same place.  Therefore,  in the root 

directory (see  Figure 35) several files can be considered as part of  the resources for the project  

management:  AUTHORS  has  a  list  of  the  collaborating  authors,  BUGS  comprises  a  list  of  

undesirable events in the software, COPYING describes the license information, PROCEDURES 

contains  general  guidelines  for  structuring  the  project  and  source  files,  README  includes 

information about the project and tasks.gan was used in conjunction with the software GanttProject  

(http://www.ganttproject.biz/)  to  define  the  priority  and  scheduling  of  different  tasks  for  the 

project. Additionally, automatic documentation presented from the source files (like description of  

classes and methods) can be generated using Doxygen (http://www.doxygen.org/).

It was decided that the main languages for development are C and C++, the first one concerning 

the efficiency regarding embedded devices and the second one mainly for the GUI. C# was also used 

in the development of  several configuration and deployment tools.

Supporting all the other software libraries and packages, the ContinuumUtilitiesLibrary contains 

several utility functions, classes and macros that are used within the project (see  Figure 37).  For 

example, the matrix and list libraries were developed mainly for Petri net components and are used in 

the  CDS  as  well  as  in  the  Petri  nets  Kernel.  Moreover,  several  classes  are  used  for  thread 

management such as CULMutex, CULThread and CULWaitCondition. The same can be said for the 

XML processing using the classes CULXml, CULXmlError and CULXMLParser.

Figure 37: ContinuumUtilitiesLibrary directory

Furthermore,  most  of  the  other  directories  (corresponding  to  the  software  modules  and 

packages) can be followed in the next subsections.

4.1.1 Bot framework

Automation bots, as explained in section 3.1.4 “Smart embedded devices, automation bots and



orchestration engine” (part of  the system architecture) are the main actors for the coordination of  

services and the overall function of  the system. Still open, is the internal organization of  bots that is 

a special concern to the developers and to the end users. As such, a modular approach was adopted 

to specify several functional and reusable modules that compose in the end a full integrated bot. The 

reader  may  look  to  a  module  as  an  organ  of  a  living  being,  providing  specific  functions  and  

properties.  For  example,  a  bot  that  is  mediator  of  an  industrial  robot  may  have  a  module  for 

communication,  a  Petri nets interpreter,  and also a device interface (so it  may read/write signals 

from/to the robot device).

Bots that implement several functions require a consistent anatomy to deal with the different  

function modules (“organs”) in order to fulfill the necessary requirements. Problems may arise from 

the  asynchronously  operating  modules,  possible  data  inconsistencies  and  concurrent 

processes/threads.  As  a  whole,  the  integration  of  modules  into  a  full  functional  bot  must  be 

considered. Similar to what happen to most of  the animals that have a nervous system, “impulses” or 

signals generated by modules should be routed correctly to the destiny and be interpreted.  This can 

be considered as a form of  loose integration, particularly event-based integration in which modules 

interact by announcing and responding to occurrences called events [Barrett1996].

Figure 38: Class diagram and realizations of  the Continuum Bot Framework

The main basis for the development of  bots is the Continuum Bot Framework. A class diagram 

centered on the CBF and realizations of  modules and bots is shown in Figure 38. The framework is 

organized in the directory  ContinuumBotFramework (see  Figure 39). A module can be defined by 

inherit the  CBFAbstractModule class and adding special functionality to it. For example, the Petri 

Nets Kernel Module uses the functions and structures of  the Continuum Petri Nets Kernel library.  

For the DPWS module, the external SOA4D DPWS library was used to create a communication 

module,  so  that  bots  could  use  it  to  communicate  to  others,  via  exposition  of  services  and 
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consumption of  others'  services. An independent bot (integrated as a stand-alone application or  

library)  can  be  obtained  by  deriving  CBFAbstractBot,  add  some  custom  code  and  specially 

combining required modules. See the example of  a Mechatronic Bot in Figure 38 that depends on 

several modules.

Figure 39: ContinuumBotFramework and ContinuumAutomationBot directories

Concretely,  to  derive  a  class  from  CBFAbstractModule (a  module  class  of  any  kind)  the 

following things have to be done:

1. Decide the function of  the module and the interaction in terms of  signals inside an instance 

of  an automation bot;

2. Derive a class for the module based on the CBFAbstractModule. For example:

class CustomModule: public CBFAbstractModule{ ... };

3. Implement the method virtual bool slot(CBFSignal* signal). This handler is called 

every time a signal is received (given by the parameter). Of  course, signals can also be send 

using the method void emitSignal(CBFSignal* signal);

4. Create  an  instance  of  the  defined  module  class,  add  it  to  a  bot  with  the  short 
addModule(CBFAbstractModule* module) method and call  its  start() method (starts 

the thread and the event-loop of  the module);

Similarly, an automation bot can be created using the following steps:

1. Derive a class for the module based on the CBFAbstractBot. For example:

class CustomBot: public CBFAbstractBot{ ... };

2. Implement the methods of  CBFAbstractModule:  virtual void start() and  virtual 
void onTermination(short moduleId). The first one defines the initializing code of  a 

bot  including  the  definition  of  the  structure  CBFBotInformation (which  contains 



information such as the name and type of  bot) and which modules it should be composed 

(using  the  short  addModule(CBFAbstractModule*  module) method).  The  last  one 

(onTermination())  is  called  by  the  last  terminating  module  and  must  therefore  be 

implemented to define the termination code of  a bot;

3. Create an instance of  the defined bot class and call its start() method.

Signals are used for intra-specific communication of  a bot, i.e. event-based interaction between 

its modules. A signal is created from the CBFSignal class and several parameters and user-data can 

be  set  in  the  signal's  instance.  Signals  are  sent  by  a  module  and  routed  via  the  intermediate  

CBFModuleManager that has a reference to each module. The receiving of  signals and their analysis is 

done asynchronously by each module. When a signal is received, it is saved in the local queue of  the 

module.  Internally,  a  module  represents  a  threaded  close-loop  that  analyzes  the  local  queue  of  

received signals. Whenever a signal is popped out from the queue, a code corresponding to this event  

is executed. The used signals mechanism can be compared in the functional way to the Signal/Slot 

approach from the Qt toolkit [Blanchette2006] and to active objects design pattern for concurrent 

programming [Lavender1996].

4.1.2 Automation bot with the Petri nets kernel module

The signal system is heavily centered around the Petri net kernel (or engine) and the way it works,  

since it is the main implementation structure concerning the output of  this dissertation as well as it is 

based  on the  open methodology  explained  in  Chapter  3: “Service-oriented  automation  systems:

architecture and Petri nets methodology”. The modeling language of  choice used along this thesis 

derives  from  the  Petri  net  specifications,  including  time  considerations,  property  system  and 

customizable  token  game  engine.  The  developed  Petri  net  orchestration  engine  based  on  the 

specifications has several features, including:

• Lightweight alternative to BPEL and similar to what automation engineers are used to;

• Service invocation and exposition;

• Design time and run-time composition;

• Analysis possibilities of  models at design time;

• Integrated decision support for conflict situations on the PN models;

• Interpretation of  XML-based configurations (used in dynamic deployment).

The  following  application  library  defines  the  Petri  Nets  Kernel  library  that  is  used  as 

orchestration engine in the automation bots, but also in other applications, including the Petri net  

library  in  the  CDS  (see  Figure  40).  In  terms  of  services,  needs  and  requests  are  used  in  the 

description of  predicted device behavior and also in the definition of  service-workflows (as in the 

traditional orchestration). The purpose of  the library is to provide Petri nets definition capabilities, 
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properties extraction from analysis and also to be used in simulation and real time service-based 

systems. The implementation is fully compliant with the open methodology explained in section 3.2 

“Open methodology for Petri nets in the modeling, analysis and execution of  SOAS”.

Figure 40: ContinuumPetriNetsKernel and ContinuumPetriNetsModule directories

Figure  41 represents  the  specified  Petri  Nets  module  [Mendes2009a].  The  modules  have 

dedicated tasks that complement the work of  the Petri nets engine. For short:

• The Service Infrastructure has the necessary functions to provide service capabilities;

• The Device Interface permits to access the hosting device (if  the application runs on one), 

mainly for reading and setting I/O signals;

• The  Graphical  User  Interface  (GUI)  can  be  used  for  visual  representations  and  also 

communication to the user;

• The Decision Support System (DSS) is used for conflict resolution and exception handling.

Besides  the  formal  structures/rules  and  analysis  capabilities  provided  by  Petri  nets,  the  real 

“juice” of  the controller is the ability to interpret Petri nets models and their associations to services  

and device signals. First of  all, properties must be defined and associated to Petri nets elements. For 

the sake of  simplicity, only transitions were characterized, because they represent the interaction to 

the  “outside  world”.  Transitions  have  a  label  and  also  several  action  properties,  e.g.  label, 

service.in_op,  service.out_op,  device.in_sig,  device.out_sig.  The  service  action 

properties are used to describe input and output operations of  a service port, i.e. messages to be 

waiting for (in) and messages to send (out). For the device, the action properties define signals to be  

tested (in) and signals to be written (out). The action properties can be used by the Petri nets engine  

by  accessing  the  corresponding  module,  in  this  case  the  Service  Infrastructure  and  the  Device 

Interface. The handler functions of  the token game template for each transition operate over these 

properties. The enabled function  ωhe tests first if  the transition is in conflict and if  this is true, it  



reports the information to the DSS module and awaits its instruction. If  no conflict is present,  ωhe 

considers the service.in_op and device.in_sig. Only if  both are true (i.e. service message is available  

and valid signal from the device), the transition enters the firing mode (corresponding to returning 

(U)pdate by the enabled function or (S)leep/(J)ump for asynchronous handling).  If  some of  the 

action properties are not defined, they are not considered (in this case meaning true). Similarly, the 

firing function ωhf  considers the service.out_op and device.out_sig, sending a message and writing a 

signal (if  defined). The exception function ωhx is only used on transitions that were disabled (e.g. in 

case of  conflict resolution) and this event is transmitted to the DSS. The wake-up function is called 

in asynchronous handling from the modules to signalize that events are finished and that the token 

game can consequently enter or leave the firing process of  a transition. Each transition has its own 

state  machine  defined  in  the  token  game  template  TSM(t).  In  a  whole,  the  evolution  of  the 

transitions is done in a sequential loop (as seen in Figure 41) until a stop command is received or a 

dead-end was detected. Commands can be received for example via the GUI and from the other  

hand, it may send monitoring/status information back to the GUI (for visualization purposes).

Figure 41: Developed Petri nets kernel module using the open methodology

The  Petri  Nets  Module  has  several  signals  for  interacting  with  other  modules  inside  the 

automation bot (i.e.  DPWS Module and Decision Support Module).  A description and sequence 

diagram is presented in Figure 42.
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Figure 42: Sequence diagram of  possible signals to the Continuum Petri Nets Module

Some of  the signals are explained below:

• CPNM_DESCRIPTOR_EVOLVE: is sent by the module to itself  to analyze the actual state of  the 

transition and proceed to the next step.

• CPNM_DESCRIPTOR_CONFLICT: in case of  a conflict in the Petri net, this signal is sent to the 

module handling conflicts (in this case the Decision Support Module).

• CPNM_DESCRIPTOR_EXCPTION: an exception has occurred in the evolution of  the Petri nets 

(this was used in case of  debugging the engine).

• CPNM_DESCRIPTOR_PRIORITY: defines a list of  priority values for each transition in case of  

conflict resolutions that does not require external intervention.

• CPNM_DESCRIPTOR_IN: an external notification is received that is associated to a transition. 

It  corresponds to a web service input message related to a transition and passed by the  



DPWS Module.

• CPNM_DESCRIPTOR_OUT: an external notification is sent that is associated to a transition. It 

corresponds to a web service output message related to a transition and passed to the DPWS 

Module.

• CPNM_DESCRIPTOR_CLEAR_TRANSITION_CACHE: clears  the  cache  of  a  transition  (e.g. 

information related to an expected input message).

• CPNM_DESCRIPTOR_STATUS: subscription to receive information each time the marking has 

changed.

The other two modules associated to the Petri nets module are the Decision Support module and 

the DPWS module (see  Figure 43 and  Figure 44). Both of  them are additional work and can be 

consulted in [Pinto2009] and [Mendes2008a]. Note that the DSS module was not implemented using 

the full concept described in section 3.3.5 “Decision support system”, rather a simplification for path 

finding using the structure of  the Petri net.

Figure 43: ContinuumDecisionSupportModule directory

Figure 44: DPWSModule directory
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A major task at this stage is to fit the automation bot, including the orchestration engine and web 

service technology into an automation device. The resulting smart embedded devices (demonstrated 

during the SOCRADES project) are the host for the most of  the services exposed in the system and 

also  responsible  for  the  coordination  and  control  activities  (see  Figure  45).  They  include  an 

orchestration  engine  to  “link”  services  together  and  to  create  new  composite  services.  Atomic 

services representing resources and functions of  the connected equipment are provided by the device 

interface. An internal decision support system is responsible to sustain the engine for decisions, e.g. 

selecting the best process based on decision criteria.

Figure 45: Structure of  a smart embedded device (automation bot)

The features of  the automation bot can be abbreviated in the following topics:

• Usage of  the Continuum Bot Framework and several  of  their modules, providing a full-

functional automation bot;

• Configurable software component with the dynamic deployment feature of  SOA4D. This 

does not configure only the automation bot and their services, but also for example, the Petri 

net engine would receive the XML representation of  a Petri net;

• Automation  bot  can  be  discovered  (dynamic  discovery)  and  provided  services  can  be 

requested. It can also request services whenever it needs to;

• Integrated orchestration engine to coordinate the activity of  services and internal I/Os;

• Interpretation of  Petri net models and coordination of  services available on devices. Due to 

the  service-based  communication  it  is  also  possible  the  lateral  collaboration  with  other 

entities;

• Conflict detection and resolution via different mechanisms: priority of  transitions and answer 

provided by the  local  decision  support  system.  A third trivial  resolution  method can be 



applied by simply awaiting an external (service) event associated to transitions;

• The access to external decision making system is also possible (in case of  production plan 

information to retrieve the next production step of  a pallet and/or via the RFID readers);

• Automation bot can be reset due an occurrence of  an exception;

• Able to run as independent software application for PC and also possible to integrate into an  

automation device with minimal changes.

The final automation bot has the combined functionalities provided by the modules, e.g. a bot is  

a service-oriented Petri net coordination module with internal decision support. Its logic is managed 

by the Petri Nets Kernel module that interprets a given Petri net model. Whenever expressed in the  

model, service operations are called and waiting to be called via the DPWS module. The conflicts and 

other situations are passed to the Decision Support module.

4.1.3 Development studio for engineers

The application of  Petri nets can range from typical systems with defined behavior to more  

complex ones with distributed participants. In any case, system engineering and associated tools are 

required to facilitate the developer's intervention.  From the Petri nets side, the practical  usage is 

limited by the lack of  computer tools which would allow handling large and complex nets in a  

comfortable way [Suraj2006]. Therefore, the CDS is intended to provide a user-friendly environment 

for  several  engineering  tasks  of  service-oriented automation systems,  since  the  specification  and 

configuration of  automation bots, analysis and simulation, until the operation of  the system. Figure

46 represents a screenshot of  the CDS, simulating a Petri net control model.

The development was based on a port and natural evolution of  the previous PndK, enriched 

with  a  multi  document/view type  framework  (similar  to  the  model-view-controller  architectural 

pattern) and additional tools. The framework was created on an insufficient basis of  the used Qt  

toolkit (that has in fact the support for model-view programming in form of  classes, but does not 

provide  a  framework  for  their  management  and  integration  into  an  application).  Basically  the 

framework includes a document manager class for supervising documents and their views, a project  

explorer to aggregate documents in a logical way and the abstract classes from which the developer  

can  create  customized  documents  and  views.  The  document  manager  permits  the  creating  of  

document  and  view  instances  in  the  fashion  of  the  factory  method  pattern  and  also  the 

customization of  their tools, e.g. menus, tool bars and other widgets. File handling (via the operations 

of  new, open, save, etc.) is also handled in an integrated manner for all types of  documents. For now, 

Petri net and text document types (and corresponding views) were implemented.

Additionally, a customized property system was developed to allow the enrichment of  Petri nets 

and their elements with information that can be used, e.g. to associate the Petri net model to the 
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behavior of  an automation bot. It is also possible to import a configured WSDL file and associate it  

to the transitions of  the modeled Petri net, so that the transitions take actively part in the messaging 

sequences when the model is deployed into a bot. There is a built-in orchestration engine that is able  

to coordinate and synchronize services (using the SOA4D DPWS library) according to the workflow 

described by a Petri net. Configuration of  entities with the Petri net orchestration engine is done 

mainly by describing their expected behavior via a Petri net model, including the request of  external  

services, exposition of  its own services and device access.

Figure 46: Continuum Development Studio showing a designed Petri net

Figure 47 shows the source tree concerning the CDS. As said before it is build around a multi-

document/view  framework  that  permits  the  construction  of  customized  document  types  (and 

corresponding  views).  As  such,  new  document  type  classes  can  be  extended  from  the 

AbstractDocument class and AbstractView class. For instance two types of  documents exist: the 

first one is a simple text editor (only done for demonstration purposes) and the other one is the Petri  

Net editor. Similar, there is also a tools framework to create tools with visual elements for several 

tasks. Two tools are available: the Component Explorer that permits the loading and application of  

WSDL files to Petri net elements, as well as an interface to the external deployment tools; and the  

Petri Net Composer for the composition of  Petri net models.



For the configuration of  devices and deployment of  services, CDS is linked to additional tools 

that  are  responsible  for  the  respective  tasks.  The  tools  are  needed  to  transform  the  modeled 

information into device-interpretable XML language (previous defined semantically) and to upload 

this information via the dynamic deployment feature of  DPWS. The information on the deployment 

files ranges from the Petri net model (to configure the orchestration engine) until service information 

(what services are to be called and which new services should the device generate). More description 

about these tools can be found in the subsequent engineering process.

Figure 47: ContinuumDevelopmentStudio directory

It is worth mentioning that the previous version of  CDS had automation bot included with a 

Petri net engine which operation could be visualized in the editor, but in the new incarnation this was 

not ported due time constrains.
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4.2 Engineering process

Once the software is fully completed to be used (in this case the CDT), the question now is how 

to use it for specifying the automation system. This section describes the several required engineering 

steps since the system design until its operation.

Globally, the step-by-step sequence is based on the design, deployment and execution, as shown 

in Figure 48 for the Petri net based orchestration in smart embedded devices.

Figure 48: Petri Net based orchestration tools and engineering

In [Mendes2009] a detailed process is shown using the CDT. After the setup of  hardware and 

their atomic services (Figure 49.a), the CDS is employed for designing and analyzing the Petri nets 

template  models  for  describing  the  behavior  of  the  bots  (Figure  49.b).  When  importing  the 

device/connection information, composition of  models can be done for creating connection logic 

and for the overall system analysis (Figure 49.c). The process of  deploying a service that encapsulates 

its logic as a Petri nets model to a bot that provides an embedded Petri Nets Kernel Module is  

depicted in  Figure 49.d. The deployment functionality is a standard feature of  the DPWS and is  

exposed as a dynamic deployment service. The target and the deployment service can be discovered 

by stacks built-in discovery service. After deployment a new service endpoint has been added and the 

execution of  the services logic has been initiated. Deployment information includes the Petri nets 

behavior model, connection information of  neighbors (required services), provided services by the 

bot  and  also  extra  configuration  information  for  the  other  modules  of  the  bot.  The  bot  will  

configure itself  (and its modules) and is then ready for operation.



Figure 49: Engineering process using CDT

Operation means the behavior of  bots according to their defined model, plus exposition and 

requesting of  services by the different bots and other software components that are on the system 

(Figure 49.e). Higher level features in the service approach includes also the aggregation of  services  

into  one  (simplifying  the  outside  view),  lateral  collaboration  between  bots  (offering  services), 

decentralization  versus  hierarchical  control  approach  and  also  business  considerations.  Business 

integration (and in general, higher-level integration) of  the factory cell is done via service-orientation. 

Business needs are expressed by the production planning and management of  the factory cells by 

monitoring  their  work  status  (via  specific  series),  disabling/enabling  several  routing  paths  of  

production, etc.

During operation, reconfiguration may also be needed. For example, a control model for a bot is 

not anymore valid or production strategies have changed. In these cases, affected bots should be 

stopped (without paralyzing all the system) and consequently their services would no longer available. 

During this time, new models can be designed to define the new expected behavior, uploaded to the 

bots and restart their operation.

The next sub-sections provide details of  the individual engineering steps.
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4.2.1 Hardware setup and definition of  atomic services

The  most  important  issue  in  this  case,  besides  configuring  correctly  the  hardware,  is  the 

availability  of  atomic  services  in  the  network  as  well  as  their  description  in  WSDLs.  Hardware  

mounting and configuration is vendor-specific and thus requires dedicated knowledge to build the 

physical  system. In addition,  control  and embedded devices need to be connected to a  network 

system in order to be communicable. Of  course, these embedded systems must contain a framework 

for web service management, beside others. For orchestration purposes, some embedded systems 

should contain an orchestration engine (in this case, a Petri net based).

Figure 50: Example of  a system configuration with atomic services

Figure 50 represents a configuration with two conveyors and two machines. The objective is to 

convey pallets through the system and one of  the machines (or none) should operate over the pallet.  

Atomic services, available in the network, are the basic building blocks to orchestrate the system. 

They  represent  the  operations  provided  by  each  equipment.  These  services  are  provided  and 

managed by industrial embedded controllers that make the interface between the equipment and the 

service applications.

4.2.2 Design and analysis of  orchestration models

The Petri net models are designed in a bottom-up manner according to the process behavior that 

is intended to describe and orchestrate, such as robots and conveyors. Each model represents all  

possible discrete states of  such a resource and also all  the functions that this resource is able to  

expose as services, for instance move-piece, pick-part  and transfer-pallet.  The Petri net model is  

dependent  on  the  physical  resource  it  represents  (e.g.  the  behavior  associated  to  a  conveyor  is 

certainly different from the behavior associated to a robot), and the type of  operation the physical 



resource  performs  (e.g.  an  industrial  robot  can  perform different  operations,  such  as  handling, 

welding or painting). The identification of  the patterns associated to usual operations allows building 

a library of  Petri net models that can be re-used latter,  simplifying the development of  modular  

solutions.

This phase can be resumed into the following sequence, all possible with the CDS1:

1. Study the selected device class and its behavior (must be done externally to CDS);

2. Design the orchestration model in Petri net formalism (note that the same model can be used 

for other devices with the same behavior);

3. If  services are represented in the model: import the WSDL of  the atomic service that the 

device represent (if  needed, WSDL of  the composition can also be imported) and associate 

services to the transitions;

4. If  composition will be later used, define connection ports in the model;

5. Define additional properties using the property editor;

6. Analyze and simulate the model.

In parallel and if  the full modular system is known from the beginning, the global objectives and 

system  behavior  should  also  be  known  in  order  to  facilitate  the  development,  especially  the 

composition.

Some of  the topics in the previous numerated list are expanded subsequently concerning the 

usage of  CDS.

Design of  Orchestration models in Petri net formalism

The design of  the Petri nets and the association to services can be done with the CDS tool. The 

specification of  the used Petri nets is based on the one from section  3.2 “Open methodology for

Petri nets in the modeling, analysis and execution of  SOAS” and the features and extension in section 

3.3. After opening the Continuum Development Studio, the workspace is shown. It contains a multi-

document framework, so several documents can be handled inside the editor.  For the handling of  

documents, there are several operations that can be performed: New, Open, Save, Export, Print, etc. The 

Petri Net file (.xpn) is an XML definition for Petri nets and can also be easily viewed and edited with  

text editors, as well as post-processed by tools, able to import XML.

Creating and editing a Petri net is done using the special toolbox that provides several action  

buttons: Select, Erase, Token, Place, Vertical Transition, Horizontal Transition and Arc. 

When selecting a particular element on the document, the Property Editor on the right shows the 

corresponding properties. Some of  them can be edited. A common property is the id of  the element. 

There are also properties that are only associated to specific type of  elements. For example, a place 

has a Tokens field that defines the number of  tokens that a place has. New properties can be created 

1 Except otherwise indicated.
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for both Petri net elements (selecting the corresponding element) and for the whole Petri net (when 

no element is selected). At the top of  the Property Editor there are the buttons for the management 

of  properties. When adding a new property to an element, the user must first introduce its name, the 

type of  the property and the initial value. Property sets defined for an element can be saved into a 

template. Templates can then be applied to other elements.

Figure 51: Design of  a Petri Net

As an example, the Petri net in Figure 51 was designed. It is constituted of  a sequential part and a 

mutual-exclusive branch. The state of  a Petri net is defined by the number of  tokens present on each 

place. In the example, the initial state is defined by having one token (black dot) in place p1 and all 

others are empty. Transitions (black bars) describe the possible modification of  state, consuming 

tokens from the connected places that input the transition and expelling tokens to the connected 

output places. For example, transition t1 has one input place (p1) and one output place (p2). Transitions 

may also have multiple connections to places. Connected arcs may have different weight value. The 

weight value is only drawn if  it is greater than one. The weight value influences also the behavior of  

Petri nets.

Conflicts are modeled by places that have one or more “output” transitions that depend on the  



same conditions/resources represented by the place. The net of  Figure 51 following net has one 

conflict in place p2 where t2 and t3 depend on it.

Associate services to the transitions

In Petri nets, the transitions mark actions, functions or changes in the system. And places mark 

waiting stages, occupation idles or a brand between different functions/actions/changes. To model 

automation components, it is need to know all the stages, functions, actions, etc, necessary to make 

the component work properly.

For example, one unidirectional conveyor has two main functions, one input and one output. 

From the  service  point  of  view,  the  conveyor  provides  one  service  that  handles  the  necessary 

operations to make transfer movements over the two logical ports. This service must be requested in  

order to behave in the corresponding way. Requesters can be others conveyors connected to this one 

over the ports. Ports have several operations that are used to synchronize the operations and the 

message exchange. To implement models with web services it is need to use more transitions and 

places, because it is needed to create the communication with the engines and to get synchronization 

between all components of  the system. So a model of  a unidirectional conveyor (has to be a model 

that represents the predicted behavior) describes services needs and requirements and also the access 

to the device's motor and sensor, as it can be seen on Figure 52.

Figure 52: Model of  a conveyor configured with web service information

In CDS, Petri net models can be associated to web service operations, in the sense of  interaction 

and representing them after the net is deployed into a Petri net based interpreting control application 

or  device.  In  order  to  allow  web  service  based  interactions  in  the  model  of  the  automation 
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component, transitions (which are responsible for requesting actions and receiving events) can be 

configured with parameters allowing the discovery, exposure and consumption of  services, sending 

and reception of  messages and event notifications.

In the CDS tool, WSDL files can be imported (see the lower window of  Figure 52) and their 

service operations listed. Service operations can be applied over a selected transition. If  the operation 

is a request/response, then the user has to select one of  them (request or response) and if  it is a 

client or a server operation (i.e. the direction of  the message). A request must also be defined with 

the device class reference and transition(s) that will receive the response. In case of  events, the server 

or client viewpoint is selected, as well as the device class reference. The properties are automatically 

applied to the transition (this can be seen in the Property editor, in the right side of  Figure 52), and 

can be edited, including the addition of  parameters to the message fired by the transition (or to be 

tested by incoming message).

After the successful configuration of  the Petri nets and the service operations, the nets can be 

analyzed,  composed,  configured  and  deployed  into  Petri  net  interpreters  (orchestration  devices,  

automation bots).

Analyze and simulate the model

An important feature of  Petri nets is the background definition based in mathematics, more 

concretely in Set/Graph Theory and Linear Algebra. This enables them to be analyzed and to extract  

several properties. The CDS allows the user to do several analysis, tests and simulation. This is one  

important function because it is possible to search for errors on the model, see if  the model is well  

constructed, etc. The analysis toolbox includes several analysis options. In terms of  analysis, the first  

one is a simple classification that tells if  the structure of  the designed Petri net is valid for further 

analysis. More qualified analysis is used to generate behavioral properties and structural properties 

(see Figure 53).

The analysis toolbox verifies the following properties:

• Bounded -  A Petri  net  is  bounded when each  place  may have a  finite  number  of  marks 

(tokens);

• Safe - Is a particular case of  bounded property, a Petri net is tell as safe if  the number of  

marks possible in each place is equal to 1;

• Live - A Petri net is live if  each transition is able to be fired at least one time;

• Reversible - A Petri net is reversible if  the first marking is able to be obtained from all other  

marking;

• Conservative - A Petri net is bounded when each place has always a specific number of  tokens.

Additional analysis can be performed by obtaining the t- and p-invariants. The p-invariants vector  

of  places indicates a set of  places which total number of  tokens is always the same independent of  



the actual marking of  the net. The analysis of  p-invariants constitution allows confirming mutual 

exclusion relationships among places and functions and resources involved in the model structure.  

The t-invariants vector of  transitions that indicate the set of  transition of  a specific path of  the Petri 

net. The analysis of  the t-invariants allows the identification of  work cycles.

    

   

Figure 53: Analysis of  a Petri net with CDS

The qualitative analysis of  the incidence matrix and t- and p-invariants allows validating several  

aspects of  a conveying system for pallets with workstations:

• Mutual exclusion is presented in each control model of  the transfer units, in the sense of  

only one pallet may occupy it;

• The t-invariants of  the synthesize model for the transfer system describe possible sets of  

operations. Translated into the topology it  may refer to all possible routing sequences of  

pallets along this system;

• It is possible to have deadlock situations due to the presence of  circular paths if  all transfer 

units of  these paths are occupied by pallets. The overlapping conflicts of  these paths support 

the resolution of  these issues by activating alternative ways to route some pallets.

The quantitative analysis allows simulating the system behavior, therewith checking the system 

compliance with specified performance indexes, such as the lead time to produce a product,  the  
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throughput of  the system and the percentage use of  the resources.  With the tool, it is possible to 

simulate the designed Petri net (also called token game). The simulation begins with the initial state 

and analysis the possible transitions. The user may stop the simulation or it is automatically stopped 

when a dead-end is reached. In between, the user may decide in case of  conflicts which transition(s) 

should fire.

The  analysis  of  Petri  net  models,  both  quantitative  and  qualitative,  allows  validating  the 

specifications of  the system's behavior, verifying the correctness of  the models and verifying if  the 

models fulfill the desired specifications. It is also possible to refine strategies or specifications of  the 

system, detecting errors and mistakes before to implement the real production system. Only if  the 

model verifies all necessary properties (structural and behavioral), it is possible to be sure that the  

model is correct from the functional point of  view and it can be seen as a virtual representation of  

the system.

4.2.3 Orchestration strategy and composition of  models

The development of  modular service-oriented manufacturing systems requires the composition 

of  individual Petri nets models into a coordination model,  and consequently the composition of  

services. This task follows the same rules of  configuring a required resource's layout, i.e. taking into 

account, among others, the competition, concurrency and shared resources behavioral relationships.  

The specified approach is flexible enough to support different solutions: from a more centralized 

manner by using one automation bot with an orchestration engine to a more distributed manner by 

using several ones working together to coordinate their services.

In case of  using a more centralized orchestration, the models representing the orchestration of  

individual equipment are glued together into one model that should run in an automation bot. It 

implements the logic for the process-oriented execution and sequencing of  atomic services (from its 

point of  view), and provides a high-level interface for the aggregated process, creating higher value 

services  based  on  individual  ones.  In  the  distributed  approach,  several  automation  bots  are  

responsible for the coordination and take care of  their own domain of  autonomy. This means that  

the orchestration is distributed and does not require central supervision. The individual coordination 

has  to  collaborate  with  each  other  in  order  to  reach  the  same level  of  synchronization  as  one 

automation bot should provide.

The composition of  Petri net models used in the engineering process is based on the approach  

described  in  section  3.3.4 “Composition  of  Petri  nets”.  As  an  example,  Figure  54 shows  the 

specification of  models for three conveyors and two possible strategies, depending on how many 

orchestration engines  are  used.  As such,  offline composition is  needed for  selected models that  

should run in the same orchestration engine.



Figure 54: Example of  composition and orchestration strategies using the same models

For the offline composition, a special tool is needed and therefore was developed in the top of  

the CDS. The Petri Net Composer tool (PNC) allows the user to create simplified models and then 

link them together into a global model. 

The individual models can be stored into XML-formatted files (*.xpn files according to section 

3.3.3 “Description  of  Petri  nets  in  XML”).  In order  to  be  successful,  the  user  must  select  the 

transitions that belong to a connection port and define the two properties as explained previously 

(port and port_in_seq|port_out_seq). After defining the models, a layout information file has to be 

created with the resource connections and saved with the extension “.xrc”.

Once all referred files are available, the user may use the PNC menu entry to proceed with the  

composition, by selecting the resource connections file (*.xrc) and the several Petri net files (*.xpn) to 

be composed. The composition is automatically done by extracting the information from the *.xrc 

file, creating a new empty Petri net model, copying all the sub Petri nets models into the new model,  

generating the composition logic and saving the new model representing the composition. The new 

*.xpn file can then be opened and processed as a normal Petri net model. 
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The example of  Figure 55 shows the result of  a composition of  two individual models using the 

PNC tool. The window on the right side is the property editor that is used to define the properties of  

the transitions.

Figure 55: Composition of  Conveyors A and B using the PNC tool
(see Figure 52 for individual models)

In spite of  having the possibility to work under distinct strategies, it is important to note that the  

models  of  each  device  entity  remain  the  same  in  whatever  strategy  is  chosen,  reducing  the 

engineering efforts of  the system designer. The examples given here are based on pallet transfer  

mechanisms, but the same control solution can be extended to other control purposes and modular 

automation processes, in sense of  building more complex systems. As an example, the transfer units 

can be connected to other transfer  units  or  compatible devices,  such as cross transfer  units  and 

robots with transfer capabilities.

4.2.4 Configuration and deployment

With  the  CDT  it  is  possible  to  configure  automation  devices  with  the  enabled  Petri  net 

orchestration engine.  An feature from the used DPWS implementation is to permit the dynamic 

deployment  of  services  into  devices  as  well  as  the  general  configuration  thereof.  The  only 

requirement is that the device must be ready, attached to the network and discoverable by the tools.

The tool chain needed for composing systems, creating configuration files and deploying those 

files to devices or simulators is explained. In Figure 56 the complete sequence from design of  the 

components or the system, the composition and the deployment to the devices is shown.



Figure 56: Configuration and deployment tools

The most important utilities are1:

• Composition  tool –  composes  models  to  synthesize  one  system  model  following  a  layout 

configuration file that links the logical ports of  the model instances together. The layout 

configuration file describes the relations of  the component instance models that are to be 

linked. The composition tool is needed for semi-automatic composition of  a system model 

from a set of  component model instances. The composition tool can also be avoided if  

connections are known and/or composition of  models is unneeded.

• Configuration generator – creates deployment files from system models (configured Petri net 

models with layout information), WSDL(s) and device descriptor files.  For generation of  

configuration  files,  device  descriptor  files  are  needed  that  allow the  creation  of  1:1  link 

between binding reference names used in the models and the real DPWS devices / services.

• Web server - A HTTP web server is used as an online storage for WSDL and other files,  

therefore making possible the access to these resources by any tool or device in the network.

• Template  generator  of  device  descriptor  files –  creates  a  new device  descriptor  file  from given 

reference name. The reference name is used for creating device model information, device  

types and device scopes.

• Device lookup tool – helper tool that discovers all  DPWS device in the network and writes  

device descriptor files locally, for later use by the designer and configuration generator tool.

1 These additional tools complementing functionality of  the CDT are part of  the orchestration tools of  the 
SOCRADES project and were co-specified and developed by the author of  this dissertation.
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• Deployment  manager –  loads  the  generated  deployment  files  to  a  target  device  via  the 

deployment service. The target device must host a Petri net orchestration engine. A system 

model  that  is  going  to  be  deployed  is  represented  as  a  DPWS device.  Hence,  a  device  

descriptor file is needed for them as well (this can be done with the template generator).

The following sequence describes in more detail the procedure of  Figure 56. Figure 57 shows a 

service-view of  the configuration and deployment.

Figure 57: Deployment and start/shutdown of  the orchestration service
(adapted from [SOCRADES2009])

1. Design of  component models,  one per device type. The creation of  component instance 

models is done by copying the device type model and adapting the reference names (‘bref ’ 

property)  according  to  the  device  descriptor  file  name  that  is  associated  to  the  device 

instance. The creation of  the layout configuration file(s) can be done by a text editor;

2. Composition of  the instance models for one or more system model;

3. Generate  configuration files.  This  process  generates  basically  two files:  1)  a  service  class 

descriptor, containing the referenced port types and a model representation; 2) and a device 

descriptor, containing the device and hosted service information, including all discovery hints 

needed by the execution engine (later on to resolve the referenced component services);

4. Make sure an automation bot device or simulator that hosts a Petri net engine is running and 

ready to receive the configuration. Then invoke the deployment manager to download the 

descriptor files for a specific system model to the target device (use the uuid to identify the 



target). Repeat this step until all models are deployed. A new device is generated if  there is  

server information in the deployment files (previously modeled in the Petri net). The new 

device can then be used by any client;

5. Once a target has received the configuration and configured correctly, the execution start  

automatically.

4.2.5 Operation

The real-time execution of  Petri nets models for service-oriented systems is done by the previous 

configured automation bots that run on smart embedded devices or also on the PC. The engine is  

able to detect the enabled transitions, which may only be activated according to the enabling rule of  

Petri nets, and especially considering all input events connected to the transition (e. g. waiting for a 

service call). The transition firing corresponds to the firing rule of  the Petri nets and the setting of  

the actions associated with the fired transition (e.g. notifying the execution of  a service). After that, 

the model has to be updated to reflect the current state of  the system.

Based on if  the service exposed by the orchestration engine service (namely a transfer service) 

the  execution  of  the  model  is  started.  Normally  the  execution  starts  immediately  after  the 

deployment and the shutdown of  the orchestration service is done after the orchestration (see Figure

57).

Other capabilities at run-time is the ability of  managing conflicts with a decision support system 

based  on  decision  criteria  and  the  connection  to  a  production  execution  system  that  provides 

production information, i.e. the workstation that pallets should follow next (consequently resolving 

the conflict).

Decision criteria & conflicts

Once  workflows  are  available  to  be  executed  and  since  they  describe  mostly  all  possible 

combinations of  available processes (modi operandi), there are still decisions required in selecting the 

best  process  (modus  operandi)  in  a  specific  circumstance.  The  coordination  of  processes  and 

services,  depending  on  the  flexibility  that  the  system  reveals,  requires  the  decision-making  and 

conflict  resolution  at  run-time,  because  a  system model  does  not  describe  a  fixed  sequence  of  

actions, but rather all possible combinations thereof. On the other hand, it may also be necessary to 

choose from different available services that result from a filtered discovery. For instance, a pallet has 

the option to be conveyed straight ahead or to the right (requesting the corresponding service from 

the transport system). The answer can be given based on required manufacturing services, energy 

consumption, speed, and other quality parameters. Consequently,  the decision of  the best modus 

operandi is a key issue to improve the system performance that depends always on current situation 
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of  the automation system.

Detection of  decision points can be done when they actually happen during the execution of  the 

workflow or analyzed previously when the model is about to be executed. In any case, the decision 

points  represent  situations  where  there  is  a  need  of  the  decision  support  system to  provide  a 

concrete answer to the execution system of  the workflow. In terms of  Petri nets, decision points are 

identified by conflicts in the Petri net (see section 3.2.3 “Conflicts”) and therefore need an extension 

to handle such situations (see section  3.3.5 “Decision support system”). There is the possibility to 

model Petri nets without conflicts, but the existence of  such properties creates a new dimension in 

terms of  flexibility of  Petri nets.  Besides static models that only specify a predefined work-plan,  

some models can be enriched with the possibility of  choices that permit the intervention of  decision 

systems.

Therefore, [Mendes2010a] describes a solution for the decision-making over Petri net conflicts 

using a set of  criteria. Some prerequisites are needed before they are configured in the design and 

analysis phases. Decision criteria can be defined for each service s ∈ S using several attributes As  = 

{a1, a2, …, ak}. Since attributes are possibly of  different units of  measurement, normalization has to 

be done. In this case, the adopted procedure is to convert each attribute a ∈ A to a fuzzy interval of  

[0, 1] where the maximization of  this value is considered. 

In this case, the linear normalization is given as an example. Other normalization approaches can 

be used as well such as the exponential and logarithmical. For the normalization of  a value v into n 

(n∈ [0,  1]),  the  desired maximum and minimum of  the attribute must be  known (vmax  and  vmin, 

vmax >vmin). If  the quantity is directly proportional to the normalization interval [0, 1], i.e. the quantity 

is considered better the higher the value is, then linear normalization can be achieved by  n = (v  - 

vmin)/(vmax -  vmin) ,  vmin ≤  v ≤  vmax.  From the other hand, in case of  inverse proportionality, the 

normalization must be done using n = 1 - (v - vmin)/(vmax - vmin) , vmin ≤ v ≤ vmax.

Figure 58 shows and industrial lifter to lift pallets via the two ports (that may be connected to 

conveyors). The lifter has a transfer service with two operations responsible to transport a pallet 

from port A to port B and vice-verse. Each one of  the operation has defined attributes to be used as 

decision criteria. In the example, energy efficiency, quickness of  operation and reliability are defined.  

They have different  values  for  each operation that  may be  gathered from previous  experiences,  

defined initially using vendor specific information, or just defined for example purposes (as in this  

case).

In Fig. 3, the mean quickness of  the operation from port A to port B (.transfer_A_B) was defined 

as 11 seconds and from port B to port A (.transfer_B_A) is 12 seconds. Considering that maximum 

and minimum values for this attribute are, respectively, 18 and 8 seconds, and that the quickness is  

inversely proportional to the normalization quantity (less time means better value),  the quickness 



values for .transfer_A_B and .transfer_B_A will be 0.7 and 0.6. This means that from the speed point 

of  view, .transfer_A_B would be the selected operation because of  the higher value (0.7).

Figure 58: Industrial lifter with a transfer service and current decision attributes

Decision criteria should also be changed at run-time to provide an update to the current situation 

of  the system, especially when involving a learning system that can balance the attributes according 

to the past situations. For example, the energy efficiency of  an equipment will probably be reduced 

with its increasing age.

At  run-time,  decision points  (conflicts)  have to be detected.  For a  given decision point,  the 

decision support system will now combine the pre-calculated t-invariants of  the workflow with the 

current decision criteria.

For a given transition t ∈ T associated to a service operation s ∈ S, the combined attribute value 

for  t is given by  A(t) = [a1(t) +  a2(t) + … +  ak(t)]/k, where  ai(t) is the normalized value of  an 

attribute  of  the  service  s associated  to  the  transition  t.  There  are  k different  attributes  to  be 

considered for the transition t. 

The decision factor of  a t-invariant (modus operandi)  x extracted from a Petri net workflow is 

given by F(x) = b[∑(CxAx)/∑(Cx)], where Cx represents the set of  non-null coefficients of  all t ∈ x, 

Ax is the set of  combined attribute values of  all non-null coefficient t ∈ x. The value of  b ∈ [0, 1] 

indicates how much of  the decision factor of  x is to be considered (0 means not to be considered 

and 1 fully considered). Similarly, the values of  attributes ai and combined attributes A(t) can also be 

weighted by a w = [0, 1] before each operation. This represents the weight the attribute’s value has in  

the final decision.

Once the decision factors are calculated for each t-invariant, the selected modus operandi would 

113



114 Service-oriented automation systems:  tools, implementation and engineering

be the one corresponding to the t-invariant with higher decision factor. For example, if  F(x1) and 

F(x2) are two decision factors for respectively x1 and x2, and F(x1) > F(x2), then x1 will be modus 

operandi selected.

The selected modus operandi will  be executed by triggering the transitions associated to the 

selected services workflow. The non-selected modi operandi can be minimized (e.g. enter standby 

modus). After the decision-making process and posterior execution of  a service, new values for the 

attributes can be determined and balanced with the previous ones.

In case of  decision based on production information (e.g. to which workstation should a pallet 

be conveyed), external information must be acquired to resolve the conflicts. This particular case 

requires the existence and collaboration with a production execution system.

Production execution system1

For  production  management  and  information  adjacent  to  the  automation  tasks,  production 

orders are integrated via service-orientation from the enterprise resource planning system directly on  

the  shop  floor.  Additionally,  only  minimal  assumptions  about  the  concrete  production  line  are 

present in the whole system design. The detailed production steps are stored in the PES. This PES is  

integrated in between smart embedded devices with the Petri net orchestration engine and the ERP 

system, responding to service calls of  the orchestration engine, whenever conflict situations appear in 

the presence of  product and production information (Figure 59) [SOCRADES2009].

Figure 59: Production execution overview

It registers for NewOrderEntry on the ERP using the local discover unit (LDU). When receiving 

a  NewOrderEntry further  details  are  requested  from  the  ERP  device.  For  this  purpose  a 

GetOrderDetails message is used where the production execution system identifies itself  using a 

machine identifier that represents the shop floor unit.

The PES sends a Status READY message with the amount of  “produce able units” back to the 

1 Production execution system is not part of  the Continuum Development Tools and is only explained for  
supporting purposes. The following information was adapted from [SOCRADES2009]



ERP device. This answer is based on internally stored data about the required time to produce a  

single product. The production starts after receiving the Start message. The PES will be send each 

change of  the status of  the orders to the ERP device until the complete order is fulfilled.

The example is for a product where the process description is defined as follows:

1. A new pallet is inserted into the production workflow on workstation 1;

2. The single production step is performed at workstation 2;

3. Finally the product is phased out on workstation 1 again.

The workflow starts within a Petri net engine that requires a decision to proceed further. To 

identify the pallet to be handled, the engine gets the RFID number of  the associated RFID reader 

using the matching service. This association is modeled into the Petri net based on the concrete 

physical topology.

This pallet ID is used to get the next service from the PES. The returned service allows the Petri  

net engine to proceed. In turn, the pallet is moved on to the determined facility, e.g. workstation 2.  

Reaching the destination, the accompanied Production Unit is called to  ExecuteService for the 

given pallet ID. Then the production unit is performing the service.

A PC based HMI is used as production unit. It is a program that displays a text message with the  

required production step to the operator. The displayed text is provided by the PES. In a real system 

the PES may provide other information used to perform the production step, e.g.  a program to 

operate a manipulator.

The used production unit is acknowledged by the operator after finishing the production step by 

pressing a button.  This button can either be part  of  the HMI or later on a physically provided 

button. For example the PES is notified that the service “ws1” (workstation 1) is completed for 

PalletID=10721. With this message the result of  the production step is also provided, e.g. for a 

successful service the Result=”OK” is used. For the next time a service is requested for this pallet ID 

another service is returned. This way the pallet is moved to the next service. The time to complete 

each  production  step  and  to  manufacture  the  whole  product  is  measured  and  stored  into  the  

database.

To  demonstrate  the  workflow  over  a  longer  period  of  time,  the  production  unit  can  be 

configured to operate automatically. In this case the service is completed after a fixed period of  time.  

This way it is possible to let the system produce the units automatically and allow completing an 

order without human interaction.

115



116 Service-oriented automation systems:  tools, implementation and engineering



Chapter 5:
Application and Evaluation

This  chapter  serves  to  prove  the  application  of  the  specified  methodology,  including  the 

developed software and engineering process. The two successfully appreciated demonstrations where 

part of  the SOCRADES project and are based on the methodology proposed in this dissertation.1

5.1 Assembly automation in manufacturing: Seligenstadt 
demonstrator

The application  scenario  used  to  demonstrate  the  SOA approach is  based  on a  customized 

Prodatec/FlexLink DAS 30 – Dynamic Assembly System. The DAS 30 system is a modular factory 

concept platform for light assembly, inspection, test, repairing and packing applications. The DAS 30 

system combines flow-oriented dynamic production control and modular automation for increased 

production  efficiency  with  ergonomic  solutions  for  manual  assembly.  This  modular  automation 

platform includes  a  range  of  standardized  modules  as  workstations,  robot  cells,  conveyors  and 

flexible buffers.

The used system comprises a flexible production system with two work stations (that can be used 

by operators and robots), several conveyors that route production pallets into/out of  the system and 

to the workstations, and also two lifters that make the interface between the upper and lower levels  

of  conveyors.  The system exists  physically  (Figure 60.a)  and was also 3D modeled in DELMIA 

(Digital Enterprise Lean Manufacturing Interactive Application), used for simulation, monitoring and 

to  provide  the  connection  of  virtual  devices.  Prototype  devices  were  connected  to  the  several 

equipment  units  (conveyors  and  lifters)  for  hosting  the  developed automation  bots  (initially  un-

configured). The used tools and engineering methodology were applied to this scenario with the goal  

of  transferring  pallets  to  the  workstations  and  introduce  some  flexibility  in  the  design  and 

1 Part  of  the  description  of  the  two demonstrators  from the  SOCRADES project  were  adapted  from 
[SOCRADES2009], co-written by the author of  this dissertation.
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maintenance of  the system.

Figure 60: Prodatec/FlexLink DAS 30 used for the demonstration
(located at Schneider Electric Automation GmbH in Seligenstadt, Germany)

Figure 61 shows a representation of  the modular composition of  the system, using mechanical 

conveyor modules, lifters and workstations.

Figure 61: Modular composition of  the assembly system

Table III summarizes the characteristics of  each module part of  the transfer system.



Table III: Characteristics of  the transfer units and lifters

Unit ID Type and features Pallet IN port Pallet OUT port

C1, C3, C7, C9 cross 3 available, only 1 useda 3 available, only 1 useda

C2, C8 unidirectional, work 
station user panel, RFID 1 1

C4, C6 cross, RFID 3 available, only 2 useda 3 available, only 2 useda

C5 unidirectional 1 1

C10, C11 unidirectional (long) 1 1

L1, L2 start and end lifter 2 available, only 1 useda 2 available, only 1 useda

aDue to the physical combination of  the units only some pallet input or output ports might by available (input linked to an 
output), or reasonable to be enabled (dead-end path)

The central part of  the transfer system (units C1-C9) is made of  nine transfer units (conveyors) 

of  the  unidirectional  and  cross  types,  represented  in  Figure  62 (a)  and  (b)  respectively.  The 

unidirectional transfer unit provides an input and an output port and the cross transfer unit provides  

transfers not only in the longitudinal but also in transversal axis. These units have one optical sensor  

and  one  output  for  the  conveying  motor.  Moreover,  the  cross  transfer  unit  may  be  seen  as  a 

composition of  two devices, namely a unidirectional transfer unit and a lifter with directional transfer 

capabilities. Cross transfer units have two optical sensors for detecting the presents of  a pallet and 

other two for detecting if  the cross is in upper or lower position. The four outputs are used to 

control the motors: one for the normal conveying motor, one to lift the central cross directional 

module, and two for running the directional transfer in clockwise and counterclockwise direction.  

The lower transfer units (C10, C11) have the same behavior as the normal unidirectional transfer unit 

(such as unit C5), but are physically longer.

Lifter units are identified by the units L1 and L2 in Figure 61 and represented in Figure 62 (c). 

Besides being the interface between the upper and lower part of  the system, they are also responsible  

for transferring pallets into and out of  the factory cell. The transfer unit inside the lifter has two 

optical sensors for detecting if  a pallet is present. At the end of  the unit, there is a light barrier at 

each side. The transfer unit is able to go in two directions (similar to the central cross unit of  the  

cross transfer unit), so there is an output for each direction. The motor for lifting is controlled by a  

Telemecanique Altivar 71 in combination with a ControllerInside card (frequency converter for lifting 

control) which is counting and calculating the actual position of  the conveyor.

The pallets are placed manually in the system via the units C2 and C8 and are conveyed using  

alternative paths to the two workstations W1 and W2 (see the possible directions in Figure 61). The 

routing is done at the crossing units based on the required production operations needed by the  

product mounted on a particular  pallet  and based on the location and availability  of  production 

services in the system (at W1 and W2). A workstation can provide more than one type of  production 
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operations and one kind of  production operation could be provided by more than one workstation. 

Once a pallet has been routed to a particular workstation for receiving a particular operation, the line  

control system will halt the pallet at the transfer unit of  W1/W2 until the production operation has  

been executed by the operator.  This signal  is  given by the operator via  a simple HMI (Human-

Machine Interface) application.

Figure 62: Types of  transfer units used in the demonstrator

For the identification of  pallets, the cross units C4, C6 and the workstation units C2, C8 are  

equipped with RFID readers that are able to read/write information from/to tags attached to the 

pallet. The identifier will be used by the line orchestration to “ask” an external system for the next 

designated production step for a product. A next generation of  the system would not ask at each 

crossing section, but would store the production history directly on the tag.

After  the  physical  configuration  of  the  system  and  explanation  of  the  methodologies  and 

software  tools,  it  is  now time to make the  system “run”.  The integration of  devices  and other 

elements  of  the  system  are  done  via  services.  Therefore,  everything  since  configuration  until 

coordination  of  devices  uses  service-orientation  and  the  service  bus  for  behavioral  and 

communicative operations. In a few topics, the objective of  the demonstration is:

• Prove the concept of  service-orientation and modular/component based approach for the 

scenario;

• Transferring the pallets to the correct workstation with some degree of  flexibility (based on 

their production plan);



• Use of  high-level programming (e.g.  Petri  net  based structures)  to compose the exposed 

atomic services offered by the system;

• Respond to some events that may happen in industrial manufacturing systems; 

• Development of  additional software to ease the engineering of  such systems;

• Definition of  several engineering steps for the design, analysis, operation and maintenance of  

the scenario.

The following sub-sections describe step-by-step the application procedures, following the one 

defined in section 4.2 “Engineering process”.

5.1.1 Hardware setup and definition of  atomic services

Several automation devices are used to control the mechanical parts of  the demonstrator and 

make the interface to higher level system via the exposition and requisition of  services. The modules 

of  the system (C1-C11, L1, L2) are controlled by Telemecanique Advantys STB (Small Terminal Box) 

NIP2311 prototype devices (Figure 63). The STB contains an Ethernet network interface module 

and can be assembled by the user from different input/output modules according to the process  

image requirements.

Figure 63: Advantys STB NIP2311 with I/O module(s)

For this prototype implementation, the controller of  the Ethernet module is used to host the 

service  infrastructure  allowing  the  deployment  of  user-defined  applications  as  DPWS-compliant 

service  components.  STB devices  were  configured and programmed to be  the  smart  embedded 

devices,  as explained in  section 3.4,  therefore  STB will  be  mostly  used as a  synonym for  smart 

embedded device and vice-versa. The STB is used for the implementation of  the different units as  

mechatronic components,  meaning each unit  is  controlled by its  own STB and its  functions are 

exposed as web service. The services are implemented by the STB with an embedded IEC-61131 
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engine. The ControlBuild prototype developed by Geensys (www.geensys.com) is used to specify the 

logic  and  services  offline  and  then  to  deploy  those  into  STBs.  Currently,  several  IEC 61131-3 

languages are supported: Function block diagram, ladder diagram and sequential function chart.

Another STB prototype has been implemented that provides an embedded service orchestration 

engine  based  on  the  Continuum Bot  Framework  with  Petri  nets  kernel  (see  section  4.1.1 “Bot

framework”) and the DPWS stack with the same deployment mechanisms as for the STB with IEC-

61131 engine. The current implementation does not allow the integration of  both IEC-61131 and 

Petri  net  engines  in  the  same  physical  device  (due  to  device  restrictions,  consequent  required 

optimizations and parallel access to I/O and messaging subsystem). The CDS is used to engineer  

system models and deploy those models to the STBs.

For the RFID reader/writer, the OSITrack RFID identification system is used. The OSITrack 

devices are connected using Modbus Serial to a TSX ETG 100 (RS485 to Ethernet converter) which 

is talking via ModbusTCP to the network. These antennas are placed on the modules C2, C4, C6 and 

C8. Each of  the pallets is identifiable by a 112 Kbyte tag on the bottom side. Each pallet has a unique 

tag id. Information about the workflow of  a specific pallet is deposited in a database. The OSITrack 

RFID system checks automatically the presence of  a pallet and transmits the data of  its tag to the 

TSX ETG 100. Every time a new tag is detected by an antenna, the corresponding data is refreshed.

The connection between the mechanical system, automation devices and network is represented 

in Figure 64.

The ControlBuild application was used to define the atomic services for the connected STBs to 

the modules C1-C11, L1 and L2. The TSX ETG 100 connected to the RFID antennas use a DPWS-

to-ModbusTCP Gateway, which is a PC-based application where the logic is hard-coded for RFID-

related services. The orchestration engines run on their own STBs and provide composed services to 

the  system.  Remark:  due  to  the  loss  of  7  STB prototypes  short  before  demonstration  started,  

modules  C1-C3,  C7-C9  and  C10-C11  share  3  STBs;  this  also  proves  that  the  same  STB  can 

coordinate several modules and expose their respective services.

Physical devices (e.g. conveyors and lifters) are represented as logical devices to the network.  

These  logical  devices  and their  services  run on the  STB controllers  (also some of  them where 

defined on the PC Gateway such as the RFID ones). The specification of  the services of  logical  

devices and their control logic is done using several procedures:

• Logic and services are specified offline using the ControlBuild tool and then deployed into 

the STB;

• Logic and services are hard-coded in PC Gateway application (e.g. services from the RFID 

antennas).



Figure 64: Connection of  mechanics, automation devices and network

Table IV resumes the available logical devices and their characteristics. To describe the services 

and to be used by the clients, several WSDL v1.1 are used.

Table IV: Available logical devices and their characteristics

Physical 
Device ID

Procedure Friendly Name of  the Logical Device Service Type (WSDL 
file)

C1-C11 ControlBuild
01MDST#1, 02MDSC#2, 03MDST#3, 04MDST#4, 
05MDSC#5, 06MDST#6, 07MDST#7, 08MDSC#8, 
09MDST#9, 10MDSC#10, 11MDSC#11

TransferType/ Control 
(Transfer.wsdl)

L1, L2 ControlBuild 01LIFTER#1, 02LIFTER#2 LifterType/ Control 
(Lifter.wsdl)

RFIDs PC Gateway 02_OSITrack#2, 04_OSITrack#4, 06_OSITrack#6, 
08_OSITrack#8

OSITrack 
(OSITrack.wsdl)

To describe  the  services  and  to  be  used  by  the  clients,  several  WSDL v1.1  are  used.  The 

endpoints of  the logical devices are associated to the corresponding service information as presented 

in the Table V.
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Table V: Service information

WSDL Operation Type In parameter Out parameter Description

Transfer.wsdl

TransferIn In/Out direction(int)
= 1, 2, 3 or 4 (input port)

response(int)
= 0 (OK)
= 1 (busy)
= 2 (unknown direction)
= 3 (no pallet loaded)
= 4 (pallet loaded)
= 5 (response error)

Starts a transfer in operation from the specified 
port. It sends back immediately an acknowledge 
if  request can be done or not.

TransferStatus Evout -

transferstatus(int)
= 1 (busy)
= 5 (done)
= 666 (error)

Event is sent when a transfer in operation is 
started or has finished

TransferOut In/out direction(int)
= 1, 2, 3 or 4 (output port)

response(int)
= 0 (OK)
= 1 (busy)
= 2 (unknown direction)
= 3 (no pallet loaded)
= 4 (pallet loaded)
= 5 (response error)

Starts a transfer out operation to the specified 
port. It sends back immediately an acknowledge 
if  request can be done or not.

TransferStop In/Out - response(int)
= 0 (OK)

Stops a transfer in/out operation. Reason is that 
the device has no sensing capabilities to detect if  
the pallet has left the device's conveyor.

GetStatus In/Out -
response(int)
= (3 no pallet loaded)
= (4 pallet loaded)

Stops a transfer in/out operation. Reason is that 
the device has no sensing capabilities to detect if  
the pallet has left the device's conveyor.

Lifter.wsdl

IFtransferOut In/Out IPtransferOutParam(short)
= 1, 2, 3 or 4

OPtransferOutStatus(short)
= 1, 2, 3 or 4 (ok)
= 111 (no pallet loaded)
= 700 (busy)

Starts a transfer out operation to the specified 
port. It sends back immediately an acknowledge 
if  request can be done or not.

IFgetStatus In/Out IPgetStatusParam(short)
= 0

OPgetStatusResponse(short)
= 0 (no pallet loaded)
= 11 (pallet loaded)
= 15 (1 sensor)
= 51 (1 sensor)

Used to get the state of  the 2 sensors of  the 
conveyor. Therefore, it is possible to check if  
there is a complete loaded pallet (the 2 sensors 
on), not fully loaded (one sensor on) or not 
present (all sensors off).

OFlifterA/
OFlifterB Evout -

OPlifterAstatus(short)/
OPlifterBstatus(short)
= 10 (done)
= 700 (busy)
= 500 (manual mode)
= 800 (aborted)

Event is sent when a operation is started or has 
finished.

IFinitialize In/Out IPinitializeParam(short)
= 0

OPinitializeStatus(short)
= 1 (ok)
= 10 (done)
= 500 (manual mode)
= 700 (ok)
= 800 (aborted)

The reference move is done. Should be done one 
every time at the beginning when the lifter is 
started.

IFtransferStop In/Out IPtransferStopParam(short)
= 0

OPtransferStopStatus(short)
= 10 (ok) Stops a transfer in/out operation.

IFtransferIn In/Out IPtransferInParam(short)
= 1, 2, 3 or 4

OPtransferInStatus(short)
= 1, 2, 3 or 4 (ok)
= 333 (pallet loaded)
= 700 (busy)

Starts a transfer in operation from the specified 
port. It sends back immediately an acknowledge 
if  request can be done or not.

IFlifting In/Out
IPliftingPos(short)
= 1, 2, 3 or 4 (input/output 
port)

OPliftingStatus(short)
= 1, 2, 3 or 4 (ok)
= 500 (manual mode)
= 700 (busy)
= 800 (aborted)

The conveyor is lifted up or down depending on 
the selected port.

OSITrack.wsdl

GetID In/Out - id(string)
= unique id of  RFID tag

Sends a command to the module to make an IP 
readout

Write In/Out Registers2(Start(int), 
Amount(int), Value(string))

Response(Identifier(int), 
Info(string)) Write several registers (0 - 55 free on tag)

Read In/Out Registers(Start(int), 
Amount(int))

Response(Identifier(int), 
Info(string)) Read several registers (0 - 55 free on Tag)

The sequence of  messages of  the transfer units (conveyors) is expressed in Figure 65 (left) for 

the  two operations  TransferIn and  TransferOut.  The sequence of  messages  of  the  lifters  is 



expressed  in  Figure  65 (right)  for  the  three  operations  IFtransferIn,  IFtransferOut and 

IFlifting.

Figure 65: Message sequence for the operations of  the transfer units (left) and lifters (right)

The proposed  service  ecosystem that  is  available  in  the  system is  represented in  Figure  66. 

Atomic  services  are  exposed by the  transfer  units  (Transfer),  lifters  (Lifting)  and  RFID devices 

(RFID). These services are the building blocks for the more advanced engineering of  this system and 

can be associated and composed depending on the requirements and objectives of  the application.

Figure 66: Service landscape of  the system
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Besides the “atomic” services explained previously, the “heart” of  the demonstration are the 

orchestration engines distributed into the STB devices, and the production execution system (PES, 

integrated  into  a  PC)  that  coordinate  and  interface  the  activity  of  automation  and  production 

processes, and also external orders. In the case of  the orchestration engines, the question is how 

many are  available  and how they  should  be  used.  This  step  is  done after  the  definition of  the 

orchestration models and shows that some flexibility is introduced in which models can be defined  

without knowing the exact number of  orchestration engines that will run them.

5.1.2 Design and analysis of  orchestration models

Before entering into details of  individual models for the case study scenario, a global scratch 

behavior model can be defined for the system. Figure 67 shows the scenario with a general behavior 

in Petri net formalism. The states represent the different units of  the system (transfers and lifters) 

and the transitions plus arcs the possible connections between the units. Besides the global overview 

concerning the behavior, it can be easily seen that actually the behavior represented in  Figure 67 

corresponds also to the paths that pallets can take. In this case, it is shown that one solution has 

already  several  functions,  namely  modularization,  connections  between  modules,  general  system 

operation and paths for pallets. In addition, it also represents some sites where decision is needed to 

enhance the flexibility.

Figure 67: Identification of  the global behavior with a Petri net structure

Behavior  models  of  the  individual  modules  are  designed  according  to  the  available  atomic 

services (and their operations) and the pretended behavior of  the devices. The editing of  the control  

models can be done using the Continuum Development Studio.

The orchestration approach concerning orchestration engines and interaction for each unit  is  



explained  in  Figure  68.  The  current  orchestration  engine  (DPWS  device)  does  orchestrate  the 

underlying phys equipment device (or several ones in case of  offline composition) and, if  exists, 

OSITrack RFID device(s). In parallel it must synchronize information with adjacent orchestration 

engines or any other client/server.

Figure 68: Device connection approach based on distributed orchestration

Figure 69 and Figure 70 represent the orchestration of  a transfer unit and of  a lifter, respectively.  

They were designed in the CDS and contain service information mapped to the schema of  Figure 68.

Figure 69: Orchestration of  transfer units
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(Note: because of  the large size of  the model, it was split in two parts)

The orchestration represented in Figure 69 works for the following situations:

• In normal transfer operations;

• When the conveyor is busy;

• When the next conveyor is busy;

• In case of  manual pallet load/unload;

• In case of  stop for work activity, etc. in the middle.

Figure 70: Orchestration of  lifters
(Note: because of  the large size of  the model, it was split in two parts)

There  are some remarks to  Figure  69 and  Figure 70 that  are worth to be discussed and to 

understand the behavior of  devices:

• portin: input port of  the current orchestrator; portnext: input port of  the next orchestrator; 

portout: output port of  the current orchestrator;

• I|O:operation(parameter): operation to send (O) or received (I) from the server perspective. 

If  a message is to be received and it has a parameter, then the transition only fires if  the 

parameters match;

• For manual placement of  pallets in WS1 and WS2, use I:TransferIn(11) and I:TransferIn(12) 

respectively;

• TransferStop must be called if  pallet is manually removed;

• Busy  state  is  indicated  by  the  response  O:TransferOut(portout)  or  by  the  event 



O:TransferStatus(portout), in which portout = 101-111 (for the conveyors), 112 and 113 (for 

the lifters).

Table VI: Details for the modeling of  each Petri net model and the corresponding device

Model Model type Workstation
(Including manual 
replace/remove of  

pallets)

Multiple I/O Conflicts

C1, C3, C5, C7, C9, C10, C11 Transfer unit No No No

C2, C8 Transfer unit Yes No Yes

C4, C6 (For several input and 
output ports do branches like the 
one in Figure 71)

Transfer unit No Yes Yes

L1, L2 (The lifter model of  
Figure 70 represents lifter L1 
(OFlifterA) and therefore, when 
L2 is the represented lifter, 
change OFlifterA to OFlifterB in 
the model)

Lifter No No No

These represent general models for all equipment shown in Figure 69 and Figure 70. Since it is 

difficult and in expensive in terms of  size to represent the models for all the equipment units, some 

changes have to be introduced in the models of  Figure 69 and  Figure 70.  Table VI resumes the 

changes that have to be done by adapting the models of  Figure 69 and Figure 70.

Figure 71: Conflict and resource sharing modeling for the cross units L4 and L6

For decisions on workstations (pallet should pass-through or be operated) and on the conflict 

points in C4/C6 (which path to take), changes have to be done in the central part where he conflict is 

located. Here an example for the workstation 1 in Figure 72. Basically to call the decision handler in 

some point of  the net, information of  the pallet ID has to be obtained first using the OSITrack 

service operation GetID. The parameter of  the request (id>p”loaded”.conflict_id) the “loaded” part 

has to be replaced with the place id of  the conflict (in the example labeled as loaded). After that, the  

first places of  each branch resulting from the conflict should have a property called services with 

coma-separated-values of  services that this branch leads to. In the example there is the “ws1” service  
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that will stop the pallet and wait until a TransferOut is given by the workstation 1 (after finalizing the  

operation over the pallet)  and a “default” service for all  other pallets  that  have no reference to  

workstation  1.  At  run-time,  the  engine  will  stop  at  the  conflict  “loaded”,  transmit  the  pallet 

information to the decision handler and wait for an answer (containing which transition to fire).

Figure 72: Modeling decisions on workstations

Analysis and validation of  models can be done using the analysis feature of  CDS. The analysis of  

transfer units and conveyors of  Figure 69 and Figure 70 in CDS is shown in Figure 73 and Figure 74.

Figure 73: Analysis of  the transfer unit model of  Figure 69

This structural analysis shows that the Petri net models are live, which guarantees the deadlock 

freeness, i.e. the execution of  a sequence of  movements of  a pallet in the transport system is done  

without stopping in an undetermined intermediate state. It is also possible to verify that the Petri net 

model is:

• Reversible, which means that the model returns to the initial state, through well defined work 

cycles in the execution of  a sequence of  pallet movements;

• Conservative, which means that once in the transfer system, the tokens representing pallets  



do not disappear neither new tokens are created;

• Bounded, which means that the number of  pallets in the system is limited to the maximum 

value of  m, due to the existence of  a monitor place that regulates the available pallets in the 

system;

• The  analysis  of  the  t-  and  p-invariants  allows  validating  several  systems'  specifications, 

namely:

– The set of  p-invariants describes the mutual exclusion presented in each control model of  

the transfer units, showing that, in a certain moment of  time, a pallet can only occupy one  

of  the systems' transfer units;

– The set of  t-invariants of  the synthesized model for the transfer system describes possible  

sets of  operations. Translated into the system topology it may refer to all possible routing 

sequences of  pallets along this system;

– The work cycles represented by the set of  t-invariants illustrates the sequences of  possible 

operations,  supporting the decision-making system to achieve the best  and short  path 

between two locations.

Figure 74: Analysis of  the lifter model of  Figure 70

The  quantitative  analysis  requires  the  introduction  of  the  time  parameter  associated  to  the 

transitions.  For this  purpose, deterministic  distribution times have been used,  since the system is 

composed of  real hardware/software components with deterministic time behavior. The token game 
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simulation performed in the CDS tool allows to verify the evolution of  the system behavior and to 

extract performance indexes. As an example, it is possible to verify how the system behaves when 

different routes are selected to convey the pallets.

An additional work was done by using simulated equipment of  the demonstrator designed in 

DELMIA automation engineering tool. These equipments expose atomic services the same way the 

real  ones  do.  The developed Petri  nets  models  were  executed from the editor  (the  older  PndK 

version with integrated orchestration engine) to access the services of  the virtual cell and controlling 

its behavior. When executing a Petri net inside the editor, its status is made visible, giving information 

about the actual marking, the enabling and the firing of  transitions of  the executed Petri net. This  

permits  the  simulation  of  the  orchestration  logic  with  virtual  equipment  before  going  tho  the 

physical counterparts (of  course, using the same models and services).

5.1.3 Orchestration strategy and composition of  models

The orchestration models can be connected together via the ports of  the models,  using two 

alternative ways (as described before in 3.3.4 “Composition of  Petri nets”):

• Using the Petri net composer (offline composition): The tool included in the CDS permits to 

generate  a  new model  based on the  connection of  individual  ones.  For  this  connection 

information has to be setup in the Petri net models and an XML connection file must be 

defined to describe which models will connect and via which ports;

• Service  request/response/event  mechanism  (online  composition):  this  permits  the 

intercommunication  of  two  engines  and  their  respective  models  via  the  exposition  and 

request of  services (this is already part of  the information of  the models designed before).

At the time of  the experimentation, there were only three available devices embedding Petri net 

orchestration engines, which one able to run one model at a time. Therefore, this situation represents 

a  major  problem  when  there  are  much  more  models  to  execute  (e.g.  one  for  each  conveyor 

unit/lifter). However, this situation was the main motivation behind this work, involving both offline 

and online  composition.  The solution  was using the  offline  composition  to generate  only  three 

composed models (one for each orchestration device) and let them work together in real-time using 

the online composition.

Afterward, the decision was to split the system into 3 clusters of  units (to be representative of  

the limitation of  3 orchestration devices),  resulting in  the right side,  center  and left  side of  the  

transport system. This division was taken into account to make the offline composition, ending up in 

three composed Petri nets models (model left, model center and model right of  Figure 75).  The 

following connection strategy was used in the system (see  Figure 75).  Most of  them are simply 

copy&paste of  others, only the device information is changed (e.g. C10 and C11 have the same logic,  



use the same service interface, but offer different services).

The composition tool was used to generate model right (based on models C1-C3), model center 

(based  on  models  C4-C5,  L1,  L2,  C10,  C11)  and  model  right  (based  on  models  C7-C9).  The 

generated models communicate via each other (for inter transfer operation of  pallets) using service 

invocation (“TransferIn/TransferOut” mechanism).

Figure 75: Connection of  behavior models and generation of  orchestration services

For the sake of  simplicity and also to demonstrate the composition feature in a standard and 

reusable  way,  the  generated  orchestration  services  implement  the  same  transfer  interface  as  the 

conveyors  with some particularities  (see  [orch]  device  of  Figure  70).  As  such,  the  orchestration 

services can be progressively composed in the same way the transfer units were done before.

The  composition  application  shows  that  it  is  possible  to  design  individual  models  without 

knowing the availability and disposability of  the final orchestration devices. The experiment shows 

one possible way to compose the system using three devices and a defined distribution, but it could 

also be done with a different number of  devices and other ways of  division. Offline composition is 

used  to  limit  the  use  of  devices,  network  traffic,  but  introduces  more  complex  models  to  be  

orchestrated  (considering  the  limitations  of  embedded  devices).  On  the  other  hand,  online 
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composition is focused more on the distributed orchestration and the synchronization thereof. The 

correct division and use of  the composition types depends always on the available resources, the 

optimization strategies and the layout of  the system, but orchestration models can be individually 

developed without knowing this information.

5.1.4 Configuration and deployment

The last step was to configure the devices with the deployment tool, uploading the models and 

the other information to the devices. Once models are designed and validated, they can be used to 

configure the orchestration engine devices. This is done using the CDS and additional utilities to 

deploy the information to the devices. Before the operation and to obey to production orders, it is 

necessary to setup the PES. The setup consists only on running the application that will respond to 

the question of  the orchestration engine in real-time. The system is then ready to receive pallets and 

orchestrate the transport system according to the pallet needs (defined in the product process plan 

information).

5.1.5 Use-cases and features

Table VII shows the most important use-cases and features of  this application.

Table VII: Details for the modeling of  each Petri net model and the corresponding device

Use-case/Feature Details

Use of  the Continuum 
Development Tools and 
additional software to configure 
the automation system

– Design and analysis of  automation models in Petri net formalism for the conveying 
modules.

– Deployment to the automation controller with embedded Petri net engine.
– Definition of  production orders for pallets manually.

Web services embedded in 
industrial controllers

– Device functionality encapsulated by means of  web services and embedded in 
industrial controllers (STB) through DPWS stack.

– Control of  legacy devices with service gateways (PC-based, for OSITrack RFID 
Readers).

Service orchestration

– Model-based (Petri nets) orchestration engines embedded in industrial controllers 
(STB).

– Service orchestration at low level with respect to topology of  the mechatronics 
devices that host the services.

Conflict resolution provided by a 
production execution system

– Decision support at conflict points based on local information (services exposed 
by the mechatronics devices) and on information obtained from higher levels 
(services exposed concerning pending production orders and product needs).

Execution of  the models – Pallet move along the mainline.

Placement of  one pallet in the 
workstation (loading) and 
automatic routing to the desired 
production workstation based on 
the production plan:

– Manual load order of  the pallet via one of  the workstations.
– Execution of  the behavior models that will orchestrate individual conveying device 

and transport the pallet.
– Resolution of  the conflict on the crossing points, where decision is requested to 

the production execution upon the arrival of  the pallet. The production execution 
will then answer with the correct direction for the pallet, which will afterwards 



enable the specific logic and route the pallet to the required destination.
– Pallet arrives at workstation and can be halted for operation purposes.

Placement of  a second pallet and 
mutual orchestration of  both 
pallets

– Procedure equal to the first pallet, but with different workplan.
– When pallets cross the same way (they try to request the same transportation 

module), the orchestration will automatically handle the first arriving pallet and wait 
for the second one until the transportation of  the first is completed.

Enterprise integration through 
web service interfaces

– Production order sent to Seligenstadt Pilot remotely by SAP via LDU/OrderEntry
– Production orders and order status updates are sent from SAP-system to the 

Seligenstadt demonstrator
– Cross-company site integration via a cross-layer and event based architecture of  

SAP-SIA for networked embedded devices.

5.2 Mechatronic trials: Aachen Demonstrator

Facing the situation of  technological innovation and the integration of  already existing approved 

technologies are required. In this context mechatronics should be mentioned as an example which is  

characterized by the integration of  mechanics, electronics and computer technology into functional 

units. Mechatronics helps to increase the intelligence and the performance of  production machines 

and systems. Therefore mechatronic modules with embedded intelligence can be seen as essential 

parts  of  advanced  production  systems.  They  are  expected  to  meet  the  demands  for  fast 

reconfiguration and to contribute to issues for flexible and high-speed manufacturing.

However,  due  to  the  heterogeneity  of  mechatronic  modules  like  robots,  machines,  sensors, 

intelligent tools, etc. appropriate middleware solutions are required to enable the interaction of  such 

distributed systems across  networks,  for  instance  to enable  collaborative automation and control 

towards common production goals in manufacturing. In this context and in contrast to the industrial 

application of  the “Seligenstadt Demonstrator”, the technical challenge of  the trials is focused on an 

automation scenario which is based on the application of  all SOCRADES results to enable gapless  

interaction,  collaboration  and  control  of  heterogeneous  mechatronic  devices  across  wired  and 

wireless networks in a service-oriented communication infrastructure.

This  section  will  explain  the  trial  scenario  concept  and  focused  on  the  Petri  net-based 

orchestration approach that was also applied to part of  the trials scenario.

5.2.1 The trial scenario concept

The objective of  the trial scenario concept was to compose an application close to manufacturing  

automation and to address special technical and technological challenges in terms of:

• Interaction  of  distributed  heterogeneous  mechatronic  devices  (most  of  them are  legacy 

systems  from different  vendors  and  from different  models/types)  like  robots,  intelligent 

tools,  different  controllers,  and  sensors  systems  of  various  types  across  a  SOA-based 
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communication infrastructure;

• Web service-based  interaction  and collaboration  of  networked embedded systems  across 

wired and wireless networks;

• Integrated discrete distributed control loops with different time constraints;

• Orchestration and choreography of  services embedded into control and automation devices;

• Fast service-oriented reconfiguration rather than re-programming;

• Seamless integration of  devices with higher-level business process systems.

To meet theses goals the trial site was set-up as a modular-structured automatic station capable 

of  managing material supply processes and of  delivering parts to individual distributed robotized 

work cells fully automatically in accordance to work orders on a “just-in time” basis (Figure 76).

Figure 76: Realistic background of  the trial scenario concept

To simulate the automatic material distribution and supply processes at the laboratory stage, the 

installation integrates eight sub systems (see Figure 77):

• Loading station with vision system;

• Two work stations with buffer zones;

• Wireless operating pallet docking station at the buffer zone;

• Gantry robot for transportation;

• Six-axis robot for pick & place operations;

• Sensor-guided gripper with embedded control;

• Pallets with integrated sensors for part detection and pallet management;



• Safety guards for surveillance of  the gantry workspace.

As platform to provide parts of  different size and color for supplying the robotized work cells  

with material the loading station will select requested parts from a material stock and generates data  

from a vision system to command the pick & place and transportation operations. For this purpose a  

set  of  data  containing information about  color,  quantity,  and location of  the  requested parts  is 

supplied and forwarded for use in the hybrid robot system (robot + gantry) which is responsible for 

the  handling  and transportation  tasks.  Driven  by the  exchange of  services  inside  the  automatic 

station, the robot and gantry are automatically controlled to move to successive work stations and to 

deliver parts (here: colored cylindrical objects as test samples) in accordance to predetermined work 

orders or in response to special events or requests from the robotized work stations.

Figure 77: Gantry robot system in the Mechatronic Centre of  Aachen, Germany

Figure 78 shows the layout of  the installation. The automation system is configured to apply 

sorting,  processing,  and  storing  of  machined  material  and  parts.  But  it  can  also  be  utilized  for 

packaging automation or similar processes.

The  laboratory  prototype  system  includes  a  gantry  robot  system  combined  with  a  six-axis 

industrial robot and associated controller units, gripper tools with embedded control, a safety guard 

system for surveillance of  the working area under the gantry, a loading station with integrated vision 

sensor for object identification and position detection, as well as two individual partly robotized work 

stations surrounding the gantry, each with a material buffer station. The buffer station is equipped 

with small mobile pallets. Each of  them consists of  integrated sensors for object detection and a 
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connector to couple a microcontroller-based I/O device (STB) for the pallet management. 

Based  on  the  granularity  of  intelligence  available  from  the  various  heterogeneous  physical 

devices, the overall system functionality and proper performance was achieved through controlled 

interaction of  devices via networks and integration of  task-specific control loops responsible for:

• Cooperative control of  the robot motion;

• Sensor-based control of  pick & place operations;

• Safety control;

• Sensor-controlled pallet management; and

• Pallet detection control (docking station).

Figure 78: Layout of  the application scenario represented by the trial site

As mentioned before the control loops will operate towards common goals but with different 

time constraints. From the real-time perspective highest priority had to be given to constraints related 

to the first  three control  applications  on the list  above.  Here,  hard real-time conditions  were to  

consider  while  real-time  behavior  was  of  lower  importance  for  the  control  of  pallet-oriented 

operations. 

Following  the  ideas  of  an  integrated  approach  the  trial  concept  considers  not  only 

communication across a standard IP-network. It also integrates a wireless sensor network combined 

with a gateway solution as bridge between the wireless and wired world.

In order to study the system performance in case of  safety events the trial scenario concept 



includes also two scanner sensors for workspace surveillance. The safety system provides services 

related to situations where the workspace under the gantry is entered by a human operator. Through 

event management functionality the robot systems are forced to stop immediately until the safety 

area is free again. Then via a restart function the robot systems will continue to finalize the service-

driven activities.

Besides  device-centric  aspects  in  the  application  of  the  used  technology  the  trial  scenario 

concept, as shown in Figure 78, also considers the integration of  device-level services with business 

processes and engineering aspects. For this purpose the SAP-SIA approach  was implemented to test 

and demonstrate “enterprise-to-shopfloor” communication in terms of:

• Device discovery,

• Work order handling,

• Service discovery,

• Device and production status monitoring,

• Monitoring of  critical events with impact on business processes like down,

• Times  of  machinery,  safety  events,  pauses,  breakdown of  communication  lines  via  web 

services.

Moreover, the overall architecture of  the prototype installation for the mechatronics trials has 

been developed and implemented as shown in Figure 78. It integrates in a very modular way:

• A cluster  of  embedded service-enabled  mechatronic  devices  for  automatic  handling  and 

transportation processes able to communicate and interact in accordance to the real-time 

constraints that are to consider for the different control loops involved;

• Web service enabled controller devices for sensor data acquisition and pallet management at 

the buffer zone of  each individual the work cell;

• A multi-hop sensor network for pallet docking control integrated via an OPC-UA gateway 

and a translator to DPWS; and 

• An interface for the enterprise integration by means of  the SAP-SIA to collect information 

from device level for the control of  selected business processes.

The collaboration of  the systems is implemented by coordination of  the state behavior of  each 

component.  Interlocks and conditions are used to provide a proper event-based synchronization 

during operation.

5.2.2 Pallet management with orchestration engines

At the buffer zones of  the integrated work stations, pallet devices are installed to carry material 

and to care for the material supply. The pallets are connected to WS-enabled I/O devices (i.e. STBs) 

which are responsible for the pallet management at each work station. The management functions 
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include 

• The supervision of  the material available on the pallet;

• The administration of  the material supply services;

• The registration of  occupied and  free pallet slots through interaction with object detectors;

• The administration of  work-orders;

• The management of  alarm services;

• The pallet presence function ( presence of  pallet);

• The pallet lock/unlock function controlled through input of  the wireless docking sensors.  

There are two workstations within the trials system, as shown in the schema of  Figure 78. A 

material handling system, composed of  gantry and a gripper tool, is able to move colored pieces 

between the stations. The stations are positioned on the shop-floor at fixed, known coordinates. The 

stations are exposed as a pallet management service.

The workstation is a mechatronic component that is positioned at known position in the shop 

floor. It is composed of  two compartments, a basis device (immobile) and a removable pallet. The 

pallet is equipped with 8 proximity sensors for the slots and a pallet presence sensor. The presence 

sensor allows detection if  the pallet is mounted on the station. The proximity sensors are sued for 

the slots to detect if  a work piece is present in a slot or not. The respective I/O interface is linked 

with a  controller,  the  STB with  embedded IEC engine  and web services.  A 16-bit  digital  input 

module is used for linking the sensors to the pallet control function implemented in the STB.

The basic functions of  the pallet controller are to manage the slots, to detect if  the pallet is  

installed and to manage how the information can be accessed from external nodes. Another feature  

that the pallet controller has to manage the absolute coordinates of  the station and the slots in the 

global Trials reference system. This has to be done in case that the choreography engine is not able to  

transform logical  position information of  slots to absolute coordinates of  the mechatronics trial  

system.

The PN-based orchestration engine part of  the automation bot is able to interact with the station 

service by reception of  station status messages which are used to trigger high-level actions at the  

choreography engine, e.g. “bring red object from station 2 to 1”, which is then managing the complex 

interactions with the gantry, gripper, security sensors etc. The PN engine in combination with the 

production execution system is used to link shop floor processes with business processes in terms 

that actions on the shop floor are performed according to production plans.



5.2.3 Use-cases

Orchestration at device level with decision support

This use case deal with the integration of  the different orchestration services and the decision 

support functions offered by the orchestration approach. Based on orders in the PES, the PN engine 

will select one of  the available abstract operations (e.g. BringRedObjectToPalette) and invoke the 

APSchoreography service, which will report the status and the termination of  the action via event 

notification. One of  the subscribers is the PN engine, the other the PES.

After  receiving  the  termination  event  the  orchestration  logic  allows  to  process  new  events  

coming from the pallet management service. The PES receives the termination event and interprets it  

as one element of  a running order as being fulfilled.

Figure 79: Orchestration sequence diagram

The sequence of  interactions  between the orchestration services is  depicted in the  sequence 

diagram of  Figure 79. A simple process is implemented by the PN-based engine that reacts to status 

events coming from the workstation pallet management service. The PN engine will communicate 

with the PES system to decide on how to proceed for a specific event (decision support). The PN 

engine needs orders that are stored in a database. These orders can be entered locally or remotely, for  

instance by SAP-SIA.

Orchestration at device level with enterprise integration

In this use case is an extension to the orchestration use case by the integration of  SAP-SIA that 

allows entering production orders into the mechatronic trials system remotely with the OrderEntry 
services offered by the PES component.

The trial setup is the same and operates based on the same processes. The only difference is that 
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the PES component receives orders from SAP-SIA and reports the status of  the orders continuously 

back  to  SAP-SIA.  The  abstract  operations  offered  by  the  choreography  engine,  such  as 

BringRedObjectToPalette, are atomic operations that produce exactly one product entity of  an 

order.

An order would have the content: “bring 5 red objects to pallet in Trials production site with  

energy mode ‘fast’…” This means the product type is “BringRedObjectToPalette”, the quantity is 

“5” and the mode is “fast”, for instance.

Figure 80: Trial enterprise integration sequence diagram

The sequence diagram in Figure 80 shows how the orchestration process is extended and how 

the status and termination events coming from the choreography engine are used to produce the  

relevant order status update events for SAP-SIA.

General use cases

These  application  scenarios  have  been  selected  close  to  real-world  situations  known  from 

production automation concepts but also in view of  different time constraints that are to consider to 

enable sufficient performance in process control.  For the trials  each of  the selected use cases is  

initiated through a Work-order generated at the enterprise level and should give birth to a service-

driven sequence of  activities and interaction at varying levels of  complexity. 

In  this  context,  the  Table  VIII below represents  the  spectrum of  use  cases  developed and 

implemented for the trials.

Table VIII: Mechatronics trials – use cases

Use-case/Feature Details

WorkOrder 1: Fill pallet at 
WorkStation 1 with 3 red objects

– Detect red object at the loading station; pick up the object; Transport the object to 
the pallet at WorkStation 1; ask for a free pallet slot; drop down the object; repeat 
processes.

WorkOrder 2: Clear loading 
station

– Fill pallet at WorkStation 1; create event as soon as pallet is full; replace pallet; 
presence of  new pallet is registered by docking station with Siemens sensors; create 



event to continue process.

WorkOrder 3: Keep pallet at 
WorkStation 1 filled with red 
objects

– 2 objects of  the pallet at WorkStation 1 are damaged; they are removed ; pallet 
manager creates event: 2 objects are missing, pallet should be refilled; refill process 
will be initiated.

Plug & Play – Integration of  WorkStation 2 by plug & play.

WorkOrder 5: Bring 2 objects 
from WorkStation 1 to 
WorkStation 2

– Request from  pallet manager at WorkStation 2 for 2 objects; no objects at the 
loading station;  pick-up of  object from pallet at WorkStation 1; transportation to 
WorkStation 2; ask for free pallet slot; drop down the object; repeat processes

WorkOrder 6: Fill pallet at 
WorkStation 2

– During the filling sequence the workspace of  the gantry is entered by a person; 
event create by the safety sensors; robots and gantry stop movement; person leaves 
safety area; restart of  the  systems

Real-to-virtual connectivity – Monitoring of  real system behavior by means of  a 3D virtual model through 
service-based real-to-virtual connectivity.

Reconfiguration – Online choreography; reconfiguration of  wireless network.

5.3 Evaluation and discussion

The approach formalized in this dissertation was applied and validated within the SOCRADES 

project, consisting of  industry experts from the most well known European automation companies 

and  selected  reviewers  from  the  European  Union  (see  section  5.3.1 “Assessment  within  the

SOCRADES project”).

Besides  the  assessment,  evaluation  of  the  methodology  and  application  is  also  discussed, 

recurring of  qualitative analysis (see section 5.3.2 “Qualitative analysis of  the dissertation's evaluation

aspects”). Quantitatively, it was not an objective to evaluate the system's performance, but to discuss 

the work in terms of  feasibility, appreciation from the side of  the engineer and possible application 

aspects concerning the presented features. Important is also to validate several principles that are the  

basis for SOA, such as reusability and loose coupling.

5.3.1 Assessment within the SOCRADES project

The following information is mostly concerning the demonstrator in Seligenstadt and part of  the 

trials  in  Aachen  dedicated  to  the  application  of  the  dissertation's  solution.  The  full  project's 

assessment results can be found in the official deliverable “Deliverable D8.2: Evaluation of  the Trials  

Performed  at  the  Selected  SOCRADES  Prototype  Applications  and  Assessment  of  Results” 

[SOCRADES2009a].  The  following  notes  were  adapted  from  the  deliverable  D8.2 

[SOCRADES2009a] (also co-written by the author of  this dissertation) that shows an analysis done 

by several experts.

The list of  features presented on the demonstrator located at Schneider Electric in Seligenstadt  

can be summarized as follows:
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• Web services embedded in industrial control devices and modularization of  the system (each 

module has own hardware + control device + services);

• Dynamic deployment and dynamic discovery of  devices/services;

• Service orchestration embedded in industrial control devices using Petri net formalism;

• Modular device architecture (DPWS framework, Petri net kernel, DSS, custom applications);

• Complete engineering approach with custom designed supporting software;

• Service orchestration using Petri net formalism, including modeling, composition, analysis, 

simulation and execution in service enabled control devices;‐
• Interoperability  between different  hardware/software  technologies,  connected together by 

one framework using DPWS;

• Conflict resolution provided internally by the control device and supported externally by a 

production execution system (which can communicate to ERP from SAP);

• Device to enterprise integration through web service interfaces;

• Proactive pallet management in a SOA-based material flow control  system, with multiple 

pallet support at run-time via web services.

The following list describes the link between features, the requirements from where they were 

originated, and the assessment criteria utilized for its evaluation (only the ones that include input and 

contribution from this dissertation):

• Engineering  of  SOCRADES  components  SHOULD  support  composition  of  
application task related services [fulfilled? YES] – Two main device level  components‐  

have been developed that allow the composition of  task related services, (a) the embedded 

IEC engine  which allows  composition  in  a  Russian doll  manner  with  a  single  high level‐ ‐  

interface  of  the  composite  and  composition  in  peer to peer  manner,  where  logic  is‐ ‐  

distributed to several logical components. Apart from that, (b) the (embedded) model based‐  

orchestration  engine  component  allows  also  composition  of  services  by  composing 

component models of  the devices and services. The DSS supports the selection of  services 

on the Seligenstadt demonstrator according to product needs at run-time. At design time, 

composition of  services is supported for both components. The CDS tool allows design of  

complete  automation  applications  based  on  distributed  service based  components.‐  

Distribution,  deployment  and  dynamic  interaction  between  the  components/services  are 

completely managed by CDS. The CDS used for the model based orchestration does the‐  

composition of  tasks by linking models (of  services) into one system model by using a port 

connection logic and layout information of  the devices and services present and used in the 

factory floor.

• The system MUST allow high level functionality (e.g. control) to be distributed (i.e.  



embedded, deployed) into devices [fulfilled? YES] – Control in terms of  having direct 

link to process interfaces (actuators and sensors) is embedded in devices and is downloaded 

to devices via deployment services. Control in terms of  workflow logic is covered by the 

orchestration  engine  embedded  in  STB  device  (Remote  IO  device  now  serving  as 

orchestration  engine).  The  configuration  of  the  engine  takes  place  via  the  same service 

deployment mechanisms. An embedded version of  the decision component that supports the 

embedded orchestration engine has been integrated into the device. Configuration is done by 

service deployment.

• The system MUST allow peer to peer communication between devices [fulfilled? YES] 

– Peer to peer communication is possible and supported by the embedded IEC control and‐ ‐  

orchestration components. Each service and composite service can act in a server role, but 

can  also  include  references  to  other  services  acting  as  a  client.  In  the  Seligenstadt 

demonstrator, the orchestration logic was distributed and executed on 3 separate devices. The 

synchronization among the engines was done by peer to peer, meaning there was no superior‐ ‐  

instance  supervising  the  distributed  engines.  However,  the  interaction  between  the 

orchestration services and the web services exposed by the devices was not mixed with peer‐
to peer interaction between the devices at lowest level, because the reconfiguration of  the‐  

system is done at the orchestration model only.

• The  service centric  infrastructure  MUST  enable  devices  to  expose  their‐  
functionalities as web services [fulfilled? YES] – This is provided by the implementation 

of  the DPWS stack and the IEC engine in the STBs and also in the middleware components. 

Moreover, the embedded orchestration is also able to generate non-atomic services.

• The system MUST provide the ability to dynamically assemble services to provide 
higher  level  functional  capabilities  [fulfilled?  PARTLY] –  The  dynamic  assembly  or 

composition of  services has been achieved by using a Petri net based workflow language. 

The dynamicity  lies  in that  the assembly of  services is  done at  design time with service 

models  that  are  enriched  with  logical  interfaces.  With  those  interfaces  the  models  are 

compiled  automatically  to  a  system  model,  creating  the  correct  and  allowed  service 

invocation sequences. Service binding to production services is done dynamically at run-time, 

where the selection of  services is supported by a decision making system. Dynamic assembly‐  

of  services at run-time and at device level is not possible with the embedded orchestration 

approach today, there is always an engineering step needed before that.

• The service centric infrastructure MUST allow service assembly to be embedded into‐  
devices   [fulfilled? YES] – The service assembly can be deployed as orchestration service 

with the embedded Petri net based orchestration engine and it can be deployed as service 
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component with the embedded IEC engine.

• The  service centric  infrastructure  MUST  support  a  procedure driven  interaction‐ ‐  
mechanism [fulfilled?  PARTLY] –  With the model based orchestration approach based on‐  

Petri  net  formalism, procedure driven interaction mechanisms are supported with limited‐  

features. Modeling of  sequential service invocations with client and server roles is supported 

and similar to BPEL. However, handling of  complex message content with functions for 

calculation, compare, aggregation etc is not implemented yet in the orchestration engine. The 

approach allows the designer to choose between modeling a system supported by automated 

model composition, or modeling systems by defining the set of  allowed service sequences for 

a given production system.

• The  service centric  infrastructure  MUST  support  the  management  of  deployed‐  
(hosted) services on device [fulfilled? YES] – Basic management for application services are 

provided as operations exposed by the same web services. Each service in the Seligenstadt  

demonstrator supports at least a  GetStatus operation and Status event notification. The 

operations read status information from the programming logic used for controlling those 

devices. The dynamic deployment management service is the generic interface to manage 

hosted services, in terms of  creating, deleting and updating their metadata.

• Devices  and  IT  applications  SHOULD  be  able  to  interact  together  without 
intermediaries and no protocols translation [fulfilled? YES] – All the web services hosted 

on STBs in the EAD are visible to the SOCRADES SIA developed by SAP. The software 

component  LDU implementing  the  DPWS stack  is  in  charge  of  discovering  local  web 

services  hosted  on STBs and also  exposes  a  Virtual  enterprise  web service  hosted on a 

remote server. In this way the interaction between IT applications and the factory floor is 

completely transparent.

• Support  an  Event  Driven  Architecture [fulfilled?  YES] –  Event  driven  architecture  is 

supported and has been applied in the Seligenstadt demonstrator for the interaction patterns 

between application services at device level and orchestration services, between orchestration‐  

services and MES and SAP SIA enterprise services.  Status information is  propagated to 

upper levels via event notifications. The classical synchronous request response interaction‐  

pattern  for  operations  that  take  a  considerable  amount  of  time has  been  replaced by  a 

pattern using an asynchronous event notification as response.

The main focus in Seligenstadt scenario was the application of  the approach of  model based‐  

orchestration  of  services  and  decision making  processes  at  device level.  Together  with‐ ‐  

demonstrations done in the past, the demonstrator shows the missing phases of  the complete life-

cycle of  the engineering approach (2D/3D modeling and simulation, design, simulation, analysis and 



validation based on formal methodologies, configuration, deployment and production execution). 

The demonstrator puts strong emphasis and efforts on integrating components of  the service‐
centric  infrastructure  at  device level.  The  implementation  and  fulfillment  of  the  scientific  and‐  

technological aspects in the demonstrator has been covered in a satisfactory way:

• Application web service and device control based on an embedded IEC engine;

• Embedded orchestration services and engine;

• Embedded and external decision supporting components;‐
• Service and device management services;

• Logic deployment services;

• Integration with enterprise systems and business processes.

The  production  cell  offered  all  basic  components  that  would  also  be  needed  by  a  larger  

production line, such as loading, unloading, workstations offering different production services and 

equipment layout that allows testing of  flexible material flow concepts. It was possible to evaluate the 

expected characteristics of  the approach explained previously in section 5.1 “Assembly automation in

manufacturing: Seligenstadt demonstrator”.

It is worth of  mentioning some of  the highlights that are present in the developed middleware:

• Composition  of  services  by  linking  models  according  to  layout  knowledge  rather  than 

designing individual processes from scratch (“configuration rather than programming”);

• Concurrent processes and sequences are easy to model with the PN formalism and thus, 

appropriate for the design of  modular systems;

• Separation  between  orchestration  engine,  embedded  DSS  and  external  DSS  allows  to 

implement  decision  algorithms  where  most  appropriate,  e.g.  embedded  DSS  deals  with 

simple path finding calculation, external DSS deals with high level production scheduling.‐
However,  the  small  size  of  the  cell  had  some  disadvantages  that  were  not  considered  as 

significant in the beginning. The Seligenstadt cell has only 2 workstations, so that multiple services 

had to be hosted on same devices (workstations), e.g. workstation 1, hosted 2 production services  

and the loading an unloading service. Hence, the production scenarios that could be investigated 

were only of  simple nature. The system performed stable with 2 3 pallets, critical situations usually‐  

occurred due to loss of  synchronization of  the engine with the real state of  the devices.

Due to the resource limitations given by the embedded orchestration engines, only simplified 

versions of  the logic models could be executed, which meant that most logic that was responsible for 

the dynamicity and reactivity of  the models had to be removed. For example, the detection of  pallets  

at  run-time at  any place in the system did not work as expected any more.  Workaround was to 

introduce pallets only at designated devices.

Because  of  the  relatively  small  size  of  the  manufacturing  cell,  scenarios  with  multiple 
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simultaneous production processes (>2) of  products with different production plans (>4 production 

steps) could not be satisfactorily tested with the existing equipment.

A strong  synchronization between the  orchestration engines  and between each orchestration 

engine  with  the  device level  services  is  required.  It  was  observed  that,  otherwise,  unexpected‐  

situations will disturb the operation of  the system too easy. In the current version of  the engine, 

synchronization takes place via user defined service interfaces. This decision was made in order to‐  

hide  the  technology  behind  the  interface.  The  conclusion  of  today  is  to  have  dedicated 

synchronization interfaces, specialized for the synchronization of  distributed models.

More  efforts  in  the  future  need  to  focus  on  really  combine  results  around  BPEL  based 

orchestration and the presented embedded orchestration approach. Petri net was chosen because of  

the existing tools for validation and analysis, which were objectives in the project. Both languages  

describe  workflows,  but  BPEL language was  too  powerful  to  be  able  to develop an  embedded 

version out of  the specification for such an engine in C. Most engines available are based on Java for 

executing large scale business processes. Anyway, a subset of  the BPEL elements is implemented in  

the PN engine.

The user has the choice of  using the orchestration engine as shown in the demonstrator, by using 

model composition and distribution of  logic to multiple engines, but he can use the engine also in‐  

the  classical  service  orchestration  manner,  where  as  many orchestration  instances  are  present  as 

processes are running. As a reminder, the approach was to have one logical  model to handle all  

processes (though done with distributed engines). Weaknesses in the Petri net approach are the lack 

of  semantic descriptions of  exposed interfaces and discovery using semantic annotations of  service 

endpoints. Another weakness compared to BPEL is the lack of  sophisticated message handling and 

implementing algorithms for more complex data processing.

The design of  behavioral models is quite intuitive and quickly done in Petri net. However, it is  

evident that the current language derived from Petri nets provides only the basic language primitives 

and that more complex component models or models enhanced with security features or exception  

handling will result in very complex models which are hard to maintain and understand.

For example, a standard call to a device operation needs at least 3 elements (request response +‐  

sync event as operation finished notification), and much more if  the model must reflect different  

responses. Moreover, at this moment, SOAP exceptions cannot be handled at application level. The 

health of  a device/service is not monitored, only if  respective calls are modeled. Hence, introducing 

more  capabilities  into  the  engine  and offering  the  designer  more  properties  allows  significantly  

reducing the complexity of  models and ease the design of  complex systems.



5.3.2 Qualitative analysis of  the dissertation's evaluation aspects

Besides the evaluation within the SOCRADES project concerning the aspects in this dissertation, 

several other parameters can be discussed. The objective of  the validation is the proof  of  service-

orientation in automation concerning the principles of  SOA. There are several design principles for 

SOA depending on the authors who defines them, but the ones considered here are, according to T. 

Earl [Erl2007], the ones that realize the goals and benefits of  service-oriented computing in the real  

world: standardization, loose coupling, abstraction, reusability, autonomy, statelessness, discoverability 

and composability. “Becoming proficient with the concepts and principles of  service-orientation equips you with an  

understanding of  what is and is not considered "service-oriented" within the world of  solution design!” (T. Erl). Note 

that  the  considered  principles  are  not  only  directed to  the  services  itself,  but  in  general  to  the 

engineering as a whole. In addition, other principles and aspects were considered concerning the  

methodology and engineering framework described in this  work.  In conjunction,  these build the 

qualitative metrics used to proof  the research work.

Contracts & Standardization

Services obey to standards that are defined to provide means of  interoperability. The use of  the 

DPWS introduces the basic profile for this need and, since this work integrates DPWS, the principle 

of  contracts and standardization is to some extend valid. Nevertheless, DPWS does not provide any 

standard  for  orchestration  neither  for  complex  description  using  semantics.  This  question  was 

addressed by using a specification for the orchestration language based on XML description of  Petri 

nets that is also possible to enrich with additional information due to the property system. Semantics 

was not an objective of  this  work,  but semantic descriptions could benefit  and complement the 

orchestration and decision mechanisms.

Loose coupling and autonomy

Services  are  to  be  specified,  permitting  some flexibility  in  their  usage  and  minimizing  their 

dependency.  The approach in this  work is  to allow that models are independently  designed and 

loosely coupled to services and other models. Models can be therefore composed and orchestrated 

differently. Their instantiation permits the association to services and the orchestration engines they 

will run on. Orchestration engines work afterwards independently from each other, until they need 

interaction from other services. It was demonstrated that if  one orchestration engine fails, the other  

ones do not stop until they requires a service from the failed one.

Abstraction

Services  are  implemented  in  such  a  way  that  they  should  hide  their  internal  logic.  In  the  

engineering framework this  is valid in the sense that orchestration models do not need to know 
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details  about atomic services they use (besides the interface).  The development of  orchestration 

models can be done without knowing the final control and displacement layout, making it possible to 

construct models for individual equipments (such as conveyors and lifters) instead of  considering the 

full scenario. This is possible due the composition approach introduced in this dissertation as well as  

the abstraction from automation control  devices.  The methodology is  flexible enough to permit 

different control strategies based on the same models and adapted to the proposed service-oriented 

control architecture.

Reusability

Reusability is promoted by SOA: not only the ability of  services being reused during their life-

cycle, but also information and mechanisms during the engineering should be “recycled”.

Information contained in the extended Petri nets can be (re)used for different means during the  

life-cycle. Thus, the same Petri net models are used for analysis, simulation, operation and support 

information of  decision makers (using decision criteria). The composition strategy permits also the  

reuse of  service interfaces (composition does not add complexity to the interface, but complexity to 

their  implementation).

Reduced transition from the design (including analysis and simulation) to the operation is also 

achieved. The same orchestration models are used in both the simulated environment and for the real  

automation scenario. The only thing that changes are the provider of  atomic services (instead of  

simulated equipment, there are real devices) and the orchestration (not on PC, but on embedded 

devices).

Statelessness

State information is not managed by the serves directly, but associated to their implementation 

(whatever the service is atomic or a composite based on a Petri net orchestration).

Discoverability

Discoverability depends on what communication standard is used and in this case DPWS (and 

the used implementation framework SOA4D) provides the necessary primitives to make services 

discoverable, by including, besides others, meta-data description associated to services and network 

mechanisms to broadcast/multicast information. Services are announced in the network and can be  

located using the dynamic discovery feature of  SOA4D.

Composability

Services can be composed to form complex structures based on some sort of  logic. This logic 

may also result in new services (composite services). The logic for composite services is defined here 



by the Petri net formalism with service association. A composition may also introduce enhanced 

features  to  an existing  service  by  wrapping  its  interface.  For  example,  the  service  for  the  pallet  

management in the Aachen demonstrator can be used as it is or composed with the pallet detection 

system, generating a composed one that has the same interface of  the first one.

The composition of  services allows creating new and more complex services; each individual 

service behavior being modeled using Petri nets, the composed model is by sure more complex. The 

proposed approach for the composition of  Petri nets models considers two forms, namely the off-

line composition and the on-line composition. Both compositions can be used depending on the 

design choices and available resources, but in both cases they maintain the original behavior planned 

for the individual equipment. At the end, the whole composition represents the specification of  the 

system made of  several well specified elementary models.

Offline composition is used to limit the use of  devices, network traffic, but introduces more 

complex  models  to  be  orchestrated  (considering  the  limitations  of  embedded  devices).  Online 

composition is focused more on the distributed orchestration and the synchronization thereof.

Formality, openness and unity

The methodology is formally specified in this dissertation and is proved by its implementation 

and  application  in  the  two  industrial  demonstrators.  The  choice  over  Petri  net  was  due  to  the 

convincement based on previous experience that it could be used in this sense. Therefore, it was 

pretended to “do the most possible with the methodology” based on Petri  nets,  i.e.  uncover its 

features for the engineering of  service-oriented automation systems.  Of  course there are several 

types of  high-level Petri nets that could be used, however the basis for the dissertation was to permit  

user customization over the core Petri net formalism, so that requirements and objectives could be  

considered. Besides the required openness, another requirement is the introduction of  the time factor 

when evolving the Petri net. Consequently, the basis of  the Petri nets is guaranteed, except that the  

doors are open in terms of  delays that can be used for customized operations.

Other important aspects include:

• Token game template – Part of  the open methodology, the token game template permits the 

definition of  concrete token games affecting the life-cycle of  transitions (that are used as 

inputs and outputs of  interactivity for custom applications). In its core and to maintain an 

asynchronous (independent) operation of  the transitions,  the template is a state machine 

specification for each transition and consequently responsible for managing the transition's 

state and evolution.

• Property system for Petri nets – Part of  the open methodology, the property system gives the 

possibility of  enrichment of  the several elements of  the Petri net (e.g. transitions and places)  

with custom information that can be for example changed during the evolution of  the Petri  
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net by the token game.

• Active  conflict  management – Part  of  the open methodology,  conflicts  are viewed as choice 

possibilities and reported to the outside (as an output) by the mechanism of  the token game. 

The result (choice) can be replied afterwards back to the token game. The decision maker 

responsible to solve the conflicts can be anything choosing the firing transition from the 

candidates, for example a rule-based reasoning system.

• Association of  service ports to model ports and device ports – Another concept that is fundamental to 

this work is the use of  ports. Ports are used as the gateways for the interaction of  a Petri net 

model with external references. In other words, the ports are specific gates to synchronize  

control models, being in some cases also related to the physical connectivity of  the entities.

Engineering and implementation

• Requirements for the engineering – One requirement is the previous knowledge about Petri nets, 

SOA and the engineering approach. This information has to be transmitted to the users and 

developers that are normally used to the traditional automation systems. Petri nets are not 

much different from what automation engineers are used to (e.g. IEC 61131-3 languages). 

SOA can easily taught and understood if  more education and trainings are done in services  

for  automation,  especially  to  understood  why  services  simplifies  the  representation  of  

resources and how topics of  engineering such as orchestration and composition are used to 

create complete automation applications.

• Elementary architecture for service-based automation – Indeed, it is based on SOA and therefore it is 

centered on the notion of  services, but a more focus is given to providers and requesters.  

This  perspective  permits  to  identify  why  and  how  system  entities  request  and  provide 

services.

• Automation bots (smart embedded devices) – Service-oriented automation components (structure) 

integrated with the used web service profile for devices and orchestration engine.

• Modular  and  event-based  internal  architecture  for  automation  bots  (components) –  Based  on  the 

foundation from the token game template part of  the open methodology, the event system is 

reused  for  the  whole  component.  Modules  of  the  component  may  be  integrated  and 

programmed with diverse functions. Modules have their own thread of  execution to permit 

parallel processing and non-mutual blocking.

• Continuum Development Tools – These tools are a full featured software package that includes a 

PC engineering application and the framework for automation bots.

• Engineering tools for PC (i.e. CDS) – The CDS provides a GUI to facilitate the engineering 

process described in this dissertation. The CDS has as well some limitations and bugs, but 

not  concerning  the  methodology  exposed  in  this  dissertation,  but  rather  some 



implementation aspects mostly related to the GUI and the handling of  XML information. 

Other  improvements,  such  as  an  Undo/Redo  could  be  implemented,  but  due  time 

restrictions and seen as features of  a “final product” (and not as a experimental software 

which  objectives  are  not  the  user-friendliness  of  the  software)  were  drawn  into  the 

background.

• Distributed orchestration on automation devices using Petri nets and web services – Orchestration engine 

for  automation  components  (i.e.  devices)  with  several  features  such  as  composition, 

distributed orchestration (via collaboration with other entities) and decision support. This 

also proves the application of  SOA in general to industrial  automation devices,  specially 

high-level functions at the device level, such as orchestration.

• Centralized  vs  Distributed –  Automation  resources  are  in  nature  distributed  but  what  is 

important here is the question of  orchestration engines. If  more than one is used, than it is 

possible  to  talk  about  their  distribution  and  needed  collaboration  between  them.  The 

composition approach introduced in this dissertation can be applied to both types (one or 

more orchestration engines), using the same basic models (before the composition) in any of  

the situation.

• Implementation possibilities – The Petri net methodology is in a such way specified that until  

now its implementation works the same way in PC and embedded systems. The token game 

template is compatible with typical state machines in the sense that the the life-cycle of  each 

transition  is  a  state  machine  with  shared  information  (that  are  the  places  and  tokens). 

Moreover, the event-based nature of  it makes it possible to integrate the nets in event-based 

systems.

• Use of  Petri nets for SOA in automation – Macro-programming for service definition and logic 

to plan service interactions using a tool grounded on formal specification of  Petri nets with  

an extensible based directed to SOA and related subjects. The same Petri net models are used 

for  analysis,  simulation,  operation  and  support  information  of  decision  makers  (using 

decision criteria).

• Expected behavior of  the system – In both demonstrations, the planned behavior was observed, 

even  considering  the  more complex  final  solution  and distribution  of  resources.  In  the 

Seligenstadt demonstrator it  was shown the proactive management of  a pallet conveying 

system using  SOA concepts  in  automation  and the  Aachen demonstrator  highlights  the 

integration approach of  different technologies with SOA in a cross-layer infrastructure for 

industrial companies.

• Towards the reduction of  the design and configuration efforts – Orchestration model classes can be 

reused for other similar equipment. The composition approach also reduces the efforts in 
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the specification of  the final orchestration by using several smaller models. Reusability of  

information and mechanisms, as well as the adoption of  the other principles in automation 

contribute to the reduction of  efforts.

Performance

No  performance  evaluation  was  done  (not  an  objective  of  the  dissertation  and  not  really 

conclusive in the project), but should be considered in the future in how deep SOA can be located in 

the  automation  comparing  with  traditional  control  logic.  The  problem of  real-time  control  and 

processing is because the use of  a distributed control system (several devices) and because of  web 

services for communication (that  need time for communication and processing).  Technologically 

speaking, it is not possible (for the moment) to bring SOA to the direct I/O control and/or inside  

fast control loops. This are the parts that should be improved in the future, so that there may be as 

little  as possible of  delays (all  the delays sum together can that result in minutes of  delay).  The 

orchestration itself  with Petri nets is fast as normal PLC control systems as long as it only involves 

the coordination of  internal function of  the device. If  there is coordination of  external services, than 

it includes also the delays that are associated to web service communication, processing, etc.

Integration

One initial concern was that service-oriented automation devices should be more capable besides 

just providing services. With this dissertation, these devices have embedded orchestration engine that 

can access services from any server and also create new ones based on composition. Moreover, the  

devices include a decision support system that only will request information from high-level systems 

(such as the production execution system) in case it has no clue on what to do (e.g. a pallet needs to 

go to machine A, so the orchestration engine request production information for the next step). Pro-

activity  and  a  higher  autonomy  has  been  demonstrated,  favoring  the  bottom-up  approach  and 

reducing  the  power  of  MES  and  ERPs  Sure,  for  automation  vendors,  pro-activity  and  more 

functions in automation devices make them more indispensable and generates a stronger business 

opportunity.

Manufacturing is set one level higher than the output of  this dissertation (see for example the 

production execution system). Since the idea was a more proactive concept (also in the direction of  

collaborative automation), production orders are not given, but proactively requested by the internal 

decision support system of  devices to the PES. This can be a change in direction, were traditionally 

MES gives orders to the DCS (i.e. MES controls the DCS). 



Chapter 6:
Conclusions

SOA was identified of  being a key chapter in several domains of  information technology. The 

emergence of  this discipline is done in a limited scale due to the traditions of  automation and its well 

founded roots. SOA and other paradigms have been demonstrated in industrial automation mostly 

for academical use, contrasting to what is happening in the industrial world. This means also that  

solutions must not only tackle a limited scale of  problems, but a wider and complete spectrum of  

what is known to automation and manufacturing.

This research work was started from the missing aspects in the engineering of  service-oriented 

industrial automation environment, especially a methodology for the development of  custom based 

features to permit a successful framework for this ambient and obeying to the principles of  service-

orientation. First, a service-oriented automation system was presented with special attention to the 

services,  smart  embedded  devices,  automation  bots  and  orchestration  engines.  The  open 

methodology for Petri nets followed, including the formal definition and several base elements, as  

well as features and extensions, concerning mostly the application in service-oriented automation 

systems.  The  Continuum Development  Tools  are  the  result  in  terms  of  software,  enabling  the 

process of  engineering given in this dissertation. The framework was tested and evaluated in two 

industrial demonstrators, as part of  the EU SOCRADES project.

The  engineering  framework  is  the  center  of  the  proposed  research  and  also  the  main 

contribution for service-oriented automation systems. This thesis proves that the design paradigm of  

service-orientation and SOA principles are validated and applicable in industrial automation by using 

a  formal,  open  and  unified  methodology  for  the  engineering.  The  framework  is  based  on  the 

principles of  Petri nets that are extended for applicability.  This is an important reference because it 

demonstrates the application of  SOA in automation beyond the typical “communication” property, 

but effectively as a design paradigm. Moreover, the design and operation efforts can therefore be 

reduced by introducing this engineering framework based on SOA principles and formal methods.

The open methodology contributes as an engineering framework to the design and management 
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of  service-oriented  automation  components.  It  covers  manly  the  design  principles  of  service-

orientation, but also additional concerns are threaded in terms of  engineering. This is possible due to 

the intrinsic features of  Petri nets and the open specification developed in this dissertation, to permit 

a full-featured engineering process. The formal attributes of  Petri nets are mathematically grounded 

and are reused in the extensions introduced here. These extensions only affect the time variable of  

Petri nets and not its reachability (i.e. the possible states and how to reach them). The unity of  the 

method permits the reuse of  mechanisms and information during the life-cycle of  service-oriented 

automation  systems,  contributing  also  to  the  reduction  of  design  and  operational  efforts.  The 

methodology has the necessary foundations to build software and strategies that cover most phases 

of  the life-cycle of  service-based automation. Numerous features and extensions are demonstrated in 

this dissertation as well shown through real industrial scenarios.

The application of  the engineering framework was done in two different demonstrators under  

the SOCRADES project and, together with other solutions, evaluated by industrial experts of  the 

European Union. The engineering methodology, the CDT environment and the ability of  distributed 

orchestration for industrial devices were welcomed by the experts. Therefore is was shown that SOA 

is possible in industrial automation, as a pro-active and feature-rich platform that serves also the 

purpose  of  a cross-layer  framework in the integration of  modern enterprises.  Other evaluations  

include the disseminated work, discussions with experts and patent applications that are based on this 

work. Summarizing, this work was judged in research, legal and industrial communities.

6.1 Contributions and lessons learned

The  dissertation's  contributions  should  fulfill  the  proposed  objectives.  Scientific  and 

implementation  objectives  were  reached,  namely  a  specification  and  evaluation  of  engineering 

methodology  for  service-oriented  automation  systems  using  a  formal  foundation  and  the 

development  of  engineering  tools  and  orchestration  engine  for  automation  components.  The 

highlight of  this work is the engineering framework itself  to validate the principles and the paradigm 

of  service-orientation in automation, recurring to a formal, open and unified solution based on Petri  

nets.

In terms of  Petri nets, the methodology was defined to permit extensibility, but maintaining its 

formality. This is mainly possible due to 1) property system that is used for the enrichment of  the 

elements of  the Petri net with information and 2) specification of  the template for token games that  

represent the mechanisms to make a Petri net run and to associate external primitives to its evolution. 

The state machine representation for the transitions of  the Petri net was a design choice considering  

implementation  aspects  (event-driven,  non-blocking,  resource  sharing,  conflicts  and  parallel 



execution)  that  make possible  to develop it  for  multiple  platforms.  The unified property  of  the 

methodology demonstrates  that  Petri  nets are used as  much as possible  during the  life-cycle  of  

automation systems (not requiring other formalisms for design, analysis and operation). Petri nets are 

also exploited as the form of  orchestration and composition in service-oriented automation systems.

The architecture is  fully defined,  not only in terms of  services, but also concerning service-

providers and requesters, which are seen necessary for a modern service-oriented automation system. 

A gateway is left open to the integration of  production elements as well as other domains such as  

ERP systems. It was demonstrated the pro-active nature of  the resulting system, in which it is able to 

request information to the levels above whenever a conflictual situation is present. This kind of  

activity is fundamental to the “bottom-up” type of  integration.

The output is also complemented with the integration of  service orchestrations based on the  

proposed Petri net formalism, expanded to permit the association to services. This milestone is a step 

forward,  presenting  a  model-based  distributed  orchestration  based  on  Petri  nets  to  reveal  the 

different engineering features that are possible with it:

• Formal analysis of  orchestration models due to the maintenance of  these properties in the 

Petri net methodology and its extensions.

• Reusability of  models during all the engineering process since the design until its operation.

• Flexible description of  orchestration modes using the property system: In the present work 

it  was  used  to  include  descriptions  in  the  Petri  nets  concerning  services  and  decision 

support, but it is also prepared for other kind of  descriptions and semantic usages.

• Intrinsic conflict detection and reporting are present in the models: Basic decisions can be 

made by introducing criteria to transitions (in form of  priorities) that are then evaluated 

when a conflict happens. Another solution is the use of  external decision support system to 

resolve these conflicts.

• Flexible composition of  models:  This permits  different  control  strategies,  depending on 

available control resources on time of  deployment. A centralized or distributed orchestration 

strategy  can  be  realized  based  on  the  same  initial  individual  model  classes.  The  device 

distribution abstraction is fundamental in the engineering process, because design can be 

partially abstracted from the final hardware layout.

• Orchestration independence: A orchestration engines continues the operation, even on the 

failure of  other engines and can also operate when decision systems are not responding 

(using default ways described in the models).

The engineering process introduced in this  research describes a sequence of  steps to design,  

configure and operate these kind of  systems, intended to reduce efforts as indicted by the several 

contributions  explained  previously.  In  terms  of  implementation,  the  efforts  resulted  in  the 
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Continuum Development Tools, that includes a rich-featured chain of  PC applications for service-

oriented industrial applications, as well as the framework for implementing automation bots. This 

framework is based on a modular approach and handled in a event-driven way. One of  the modules 

is  the orchestration engine for Petri nets based on the open methodology and the extensions to 

permit  the association to a web service framework (such as the  one used in  the demonstrators, 

namely the SOA4D DPWS implementation).  The orchestration engine for automation bots have 

several features such as composition, distributed orchestration (via collaboration with other entities) 

and decision support and are configurable with orchestration models.

The main lesson that was learned is the importance of  reusing information. Generally it does not 

only apply to SOA, but to any kind of  systems. The manipulation of  information is vital and many 

of  it can be directly found in sets that someone already has in its disposition. With Petri nets and the 

introduced  extensions,  reusabilty  is  a  key  element  during  the  engineering  process  by  providing 

necessary  information  that  are  contained  in  the  models  since  its  specification.  As  said  before 

“Reusable models and well structured engineering process are towards the reduction in the design 

and configuration efforts.”

Nevertheless, some very high demanding subjects by the industrial community were not analyzed 

in  this  work.  Performance  and  security  are  out  of  the  scope,  but  during  the  research  they  

demonstrated how crucial they are, concerning the degrees of  acceptance of  SOA in automation.  

The bottleneck in terms of  performance in this work is due the processing of  web services by the 

used  SOA  framework  for  devices.  Performance  restrictions  were  not  visible  during  the 

demonstrations by the human eyes, but are a real concern in describing how far it is possible to apply  

technically SOA and web services in automation.

Debatable is also the question of  using Petri nets instead of  other well known formalisms. If  

SOA  is  considered,  WS-BPEL  is  the  first  answer  that  would  be  logical  for  the  orchestration.  

Standards have limits and the scientific research work was not to be limited by the business-driven  

orchestration  that  WS-BPEL  is  based  on,  including  its  quite  complex  specification  that  would 

penalize  the  implementation  in  industrial  controllers.  This  work  was  not  concerning  with  the 

application  of  a  specific  orchestration  standard  in  automation,  but  to  prove  SOA principles  in 

automation concerning model-based orchestration and beyond. Petri nets are simple and flexible 

enough, therefore they were considered as the basis for the methodology.  The methodology and 

resulting engineering framework is not directed to one particular piece of  the puzzle that is SOA in 

automation, but moreover is the frame that support the puzzle.



6.2 Future work

This dissertation does not by any mean represent a completely finished work. Therefore, it leaves  

open several research directions that could be expanded in the future. SOA in automation is not a 

closed chapter, indeed it needs more research and especially,  stable and powerful  applications to 

convince industrial adoptions. What was reached with this dissertation is that such applications are 

possible,  using  a  single  grounded  methodology  for  the  development  and  operation  life-cycle. 

Nevertheless it was also demonstrated that a lot of  topics can be expanded in the future, directly or  

indirectly derived by this work.

From the methodology and engineering itself, some details can be explored,  for example, the 

features of  composition,  including automatic composition using semantics and the use of  direct 

information from announced devices. In terms of  analysis of  Petri nets, a study can be taken on how 

the properties of  individual models are reflected in the composition. Since the focus is a distributed 

environment, it is also important to research the way of  distributed or collaborative intelligence to 

support the manual planning by automation engineers. Further specifications should be around the 

decision-making  mechanisms  and  their  implementation  using  a  proper  decision  technique.  This 

would contribute to current active topics such as energy efficiency and reduction of  costs. Moreover, 

since  the  idea  was  to  create  a  methodology that  is  open and for  sure  not  all  possibilities  were 

discovered in this dissertation, it could be used as well for research activities in the future.

Concerning SOA devices, more experimentation with the real hardware is needed to ensure a 

qualified evaluation. In practical terms, evaluation has to be done in SOA automation systems by the 

parameters of  performance, security, error handling, design and maintenance efforts, flexibility, and 

capacity, besides others. This was not possible because of  the restricted use of  hardware and the 

limited demonstrative purpose of  the scenarios in which the exposed methodology was used. A 

qualification with good quantity metrics would be very beneficial for objective conclusions.

Tradition in automation cannot be avoided, and as such, adoption of  these techniques is and will  

be a major challenge and possible research topic by itself. Thus compatibility to the standards of  

automation (such as IEC 61131, IEC 61499, AutomationML, PLCopen, Modbus, CANopen, etc.) 

must be reached to provide smooth transitions to new approaches. This is also true concerning the  

migration to/from legacy systems, because it requires enormous efforts in all levels to change the  

core of  what is  already working perfectly.  A wise  integration of  these systems would here be a  

“temporary” bypass.  “Service education” is the keyword and needs to be disseminated from business  

managers to automation technicians. Furthermore, implementations or conversions could be tested 

using WS-BPEL and automation standards, or being handled by an embedded scripting engine that 

acts as a gateway between these languages and standards.

The CDT software is still a prototype and was used successfully in two demonstrations. As such,  
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more testing and development  are  needed,  including the  addition of  new features,  to make it  a 

“commercial” product. The commercial possibilities and potential impact in the future of  several  

aspects of  this dissertation have been backed-up with international patent applications.

The engineering framework is  not  only  limited to the  demonstrations  where  it  was  applied, 

neither  constricted  to  the  domain  of  automation.  Close  to  automation  is  manufacturing  and 

therefore it would be interesting to analyze complex manufacturing processes and integrate some 

fundamentals used in this work. Validation of  SOA principles is a fascinating subject that should have 

no boundaries considering the different types of  systems and disciplines that exist. The reuse of  the 

service-orientation  design  paradigm  and  its  principles  is  toward  a  multidimensional  space  of  

applications and new possibilities in computer science.
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