
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO
PORTO

Multi-robot Coordination using Flexible
Setplays: Applications in RoboCup’s
Simulation and Middle-Size Leagues

Luís Henrique Ramilo Mota

PROVISIONAL VERSION

Programa de Doutoramento em Engenharia Informática

Orientador: Luís Paulo Reis (Professor Doutor)

Co-orientador: Nuno Lau (Professor Doutor)

Dezembro de 2011

c© Luís Henrique Ramilo Mota, 2011

Resumo

O RoboCup é uma iniciativa de âmbito mundial, que tem como objetivo incentivar a in-
vestigação e desenvolvimento aplicados a problemas complexos, mas bem conhecidos.
A iniciativa RoboCup tem no seu seio domínios de aplicação heterogéneos e comple-
mentares, sendo que o futebol robótico permanece, desde o início, a área mais desafiante
e popular. O futebol está organizado em várias ligas, com diferentes características, onde
a cooperação entre robôs é sempre um desafio primordial.

A coordenação multi-agente e o planeamento estratégico são dois dos principais tópi-
cos de investigação no contexto do RoboCup. Porém, inovações nestas áreas são fre-
quentemente desenvolvidas e aplicadas apenas a uma das ligas RoboCup, não exibindo
assim um nível de generalização suficientemente alto. Além disso, apesar de o conceito
de jogada estudada (Setplay) já ter sido reconhecido, por muitos investigadores, como
importante para a organização do comportamento de uma equipa, não foi ainda criada, no
âmbito do RoboCup, nenhuma ferramenta para o desenvolvimento e execução de jogadas
estudadas genéricas. No sentido usado nesta tese, uma jogada estudada é um plano livre-
mente definível, com número variável de participantes e argumentos, bem como várias
fases ou passos, possivelmente executados em alternativa.

Esta tese apresenta uma ferramenta que permite a definição e execução de jogadas
estudadas, aplicável a qualquer liga cooperativa do RoboCup, ou em domínios similares.
Esta ferramenta é baseada numa linguagem padrão, independente da liga e flexível, que
permite a definição de jogadas estudadas, que poderão ser executadas em tempo real,
usando comunicação entre os vários robôs participantes. Foi também desenvolvido um
algoritmo de seleção em tempo real de jogadas, inspirado pelo Raciocínio Baseado em
Casos (CBR - "Case Based Reasoning"). Esta ferramenta regista as condições de apli-
cação de execuções passadas das jogadas estudadas, e usa esta informação para escolher,
em cada momento, entre as jogadas estudadas possíveis. Esta estrutura de jogadas estu-
dadas pretende ser uma ferramenta para a rápida prototipagem de planos multi-agente,
permitindo uma adaptação expedita aos adversários, podendo explorar as suas fraquezas
e obtendo, consequentemente, uma vantagem competitiva.

Nesta tese é descrita a aplicação da ferramenta às ligas de Simulação 2D e 3D, bem
como à de robôs médios, com exemplos práticos da definição, gestão e execução de jo-
gadas estudadas. Os resultados atingidos mostram a utilidade da ferramenta. Foram real-
izadas, na liga de Simulação 2D, experiências em condições de competição. Os resultados
mostram uma clara melhoria no desempenho, quando comparado com a situação anterior,
sem a utilização de jogadas estudadas. Estes resultados motivam a utilização desta ferra-
menta como a principal técnica de coordenação de qualquer equipa participante numa das
ligas de futebol do RoboCup.

i

ii

Abstract

RoboCup is a worldwide initiative, that aims at fostering robotic research and develop-
ment based on complex yet well-known problems. There are different, complimentary
application domains inside the initiative, with robotic soccer remaining the most chal-
lenging and popular one. This domain is organized around several Leagues, with different
characteristics, where cooperation between robots is always a primary issue.

Multi-agent coordination and strategic planning are two of the major research topics
in the context of RoboCup. However, innovations in these areas are often developed and
applied to only one domain and a single RoboCup league, without proper generalization.
Also, although the importance of the concept of Setplay, to structure the team’s behavior,
has been recognized by many researchers, no general framework for the development
and execution of generic Setplays has been presented in the context of RoboCup. In
the sense employed in this thesis, a Setplay is a freely-definable, flexible and multi-step
plan, which allows alternative execution paths, involving a variable number of robots and
having optional arguments.

This thesis introduces such a framework for high-level Setplay definition and execu-
tion, applicable to any RoboCup cooperative league and similar domains. The framework
is based on a standard, league-independent and flexible language that defines Setplays,
which may be interpreted and executed at run-time through the use of inter-robot commu-
nication. A real-time selection algorithm for Setplays, inspired by Case-based Reasoning
(CBR) techniques, was also developed. This tool stores the past application conditions
and success of individual Setplays, and uses this knowledge to select among Setplays
whenever they are feasible. The Setplay Framework aims at being used as a tool to rapidly
prototype multi-agent plans, that are executed at run-time, allowing the swift adaptation
to particular opponents, and thus exploiting weaknesses and gaining a competitive edge.

The application of this framework in the 3D and 2D Simulation Leagues, as well as in
the Middle-Size League, is also described with concrete examples of Setplay definition,
management and execution, which allow the framework to be properly evaluated. The
results achieved show the usefulness of this approach. Experiments were made in com-
petitive settings, in the scope of the 2D Simulation league. The results showed a clear
improvement in the performance when Setplays are activated. This motivates the usage
of the Setplay Framework as a main coordination technique of any team participating in
the Simulation, Small-Size, Middle-Size, Humanoid and Standard Platform leagues of
RoboCup.

iii

iv

Agradecimentos

Ao Luís Paulo e ao Nuno.
Aos elementos do Júri.
Aos elementos das equipas FCPortugal e CAMBADA.
À Mónica.
À Olga.
À Teresa.

Luís

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Motivating Scenario . 3
1.3 Objectives . 4
1.4 Thesis Structure . 5

2 State of the Art 7
2.1 RoboCup . 7

2.1.1 Simulation League . 7
2.1.2 Small-size League . 9
2.1.3 Middle-Size League . 9
2.1.4 Standard Platform league . 9
2.1.5 Humanoid league . 10

2.2 Agent Architectures in RoboCup . 10
2.2.1 Internal Agent Architecture . 10
2.2.2 Multi-agent System Architecture 11

2.3 Modeling and Communication Languages 12
2.4 Team level Coordination in RoboCup 13

2.4.1 Role allocation . 14
2.4.2 Positional Coordination . 15
2.4.3 Setplays . 16

2.5 Summary . 20

3 Setplay Framework 21
3.1 Framework Description . 21

3.1.1 Directives and Actions . 24
3.1.2 Conditions . 28
3.1.3 Regions . 31

3.2 Inter-robot Communication . 31
3.3 Practical Application and Usage profiles 34

3.3.1 Setplay selection . 34
3.3.2 Action selection and execution 36
3.3.3 Communication management 37
3.3.4 Summary . 38

3.4 Wrapper classes . 38
3.5 Operations on Setplays . 40

vii

viii CONTENTS

3.5.1 Setplay management . 40
3.5.2 Setplay duplication . 40
3.5.3 Setplay inversion . 41

3.6 Setplay Language . 41
3.7 Setplay Example . 47
3.8 Summary . 50

4 Framework Implementation 53
4.1 Implementation of a C++ library . 53

4.1.1 Setplay definition parser . 54
4.1.2 Selection of players participating in a Setplay 55
4.1.3 Setplay execution engine . 63

4.2 Setplay Evaluation and Selection: Case-based Reasoning 64
4.2.1 Case characterization . 66
4.2.2 Case spatial similarity . 69
4.2.3 Case retrieval . 71
4.2.4 Case selection and reuse . 73
4.2.5 Case revision . 74
4.2.6 Case retention . 74

4.3 Graphical Design of Setplays: SPlanner 75
4.3.1 Other strategy tools . 75
4.3.2 General Architecture . 76
4.3.3 Interface design . 77
4.3.4 Execution flows of a Setplay . 79
4.3.5 Defining actions for participants 80
4.3.6 Positions of players and action targets 80

4.4 Summary . 81

5 Framework Application to RoboCup Teams 83
5.1 Introduction . 83
5.2 Application to the 3D Simulation League 84
5.3 Application to the 2D Simulation League 86

5.3.1 Implementation of Actions . 86
5.3.2 Implementation of Conditions 88
5.3.3 Setplay Selection for Execution 89
5.3.4 Choice and execution of Actions 90
5.3.5 Inter-robot Communication . 92
5.3.6 Summary . 92

5.4 Application to the Middle-size League 93
5.4.1 Setplay Selection for Execution 94
5.4.2 Choice and execution of Actions 95
5.4.3 Implementation of Actions . 95
5.4.4 Implementation of Conditions 97
5.4.5 Inter-robot Communication . 97
5.4.6 Summary . 98

CONTENTS ix

6 Evaluation of the Setplay Framework 99
6.1 Testing in the Middle-Size League . 100

6.1.1 Set-pieces: Throw-in . 100
6.1.2 Setplay in play-on mode . 101

6.2 Testing in the 2D Simulation League . 104
6.2.1 Own Goalie Catch . 104
6.2.2 Corner Kick . 111
6.2.3 Kick-in . 121

6.3 Summary . 123

7 Conclusions 125
7.1 Achievements . 125
7.2 Publications . 127
7.3 Future Work . 127
7.4 Concluding remarks . 129

A Setplay definitions used in tests and evaluation 131

References 147

x CONTENTS

List of Figures

3.1 Setplay integration with an abstract soccer player 22
3.2 Setplay definition . 23
3.3 Action definition . 25
3.4 Object definition . 28
3.5 Condition definition . 29
3.6 Region definition . 31
3.7 Setplay interaction scheme . 32
3.8 Setplay Manager . 35
3.9 Context and Executor Wrapper classes 39
3.10 Corner Setplay definition . 49
3.11 Corner Setplay execution steps. 50

4.1 Player Selection from distance to Lead Player 57
4.2 Player Selection from distance to Setplay Positions 58
4.3 Player Selection from global distance to Setplay Positions 61
4.4 Player Selection by all algorithms: distance to lead player (dashed ar-

rows), distance to individual roles (dotted), global distance to positions
(thick). 62

4.5 CBR cycle, adapted from Aamodt and Plaza (1994) 66
4.6 Transversal partition of the pitch . 67
4.7 Longitudinal partition of the pitch . 68
4.8 Radial partition of the pitch . 69
4.9 Global partition of the pitch . 70
4.10 SPlanner tool architecture overview . 76
4.11 SPlanner main GUI for the definition of a Setplay 77
4.12 Types of players jerseys in the SPlanner GUI 78
4.13 Menu with feasible actions for the active player 79
4.14 Graph of a Setplay with all possible execution flows 79
4.15 Icons for player actions . 80
4.16 Types of positions (relative, absolute and undefined) for players and ac-

tion targets . 80
4.17 Step-by-step definition of a corner-kick Setplay with three participants . . 82

5.1 Setplay example: 3D Simulation League (Sphere model) 85
5.2 Decision process for a pass . 87
5.3 Decision process for a shot at goal . 88

xi

xii LIST OF FIGURES

5.4 Decision process for Action choice and execution 91
5.5 Decision process for Action execution 96
5.6 Decision and synchronization process for a ball pass 97

6.1 Throw-in Setplay example . 102
6.2 Play-on Setplay execution steps. 103
6.3 Goalie catch with Setplays deactivated 106
6.4 Goalie catch with Setplays deactivated: time to cross middle line 107
6.5 Goalie catch with four players: FCPortugal pictured yellow, Nemesis dark

blue, ball in centre of the pink circle. 108
6.6 Goalie catch with six players: FCPortugal pictured yellow, Nemesis dark

blue, ball in centre of the pink circle. 109
6.7 Goalie catch with 2 Setplays activated 110
6.8 Goalie catch with 2 Setplays activated: time to cross middle line 111
6.9 Corner against Bahia with Setplays deactivated. 112
6.10 Corner with Setplays activated: FCPortugal pictured yellow, Bahia dark

blue, ball in centre of the pink circle. 113
6.11 Corner against Bahia with an activated Setplay. 114
6.12 Corner against Bahia with and without an activated Setplay 115
6.13 Corner with 2 random-chosen Setplays 116
6.14 Corner with 2 Setplays: CBR choice without experience 117
6.15 Corner with 2 Setplays: CBR choice with previous experience 118
6.16 Corner with no Setplays . 120
6.17 Corner Kick with six participants: FCPortugal pictured yellow, Nemesis

dark blue, ball in centre of the pink circle. 121
6.18 Corner with an activated Setplay . 122
6.19 Corner against Nemesis with and without an activated Setplay 123

A.1 Example Setplay definition of a corner-kick in SPlanner 132
A.2 Throw-in Setplay definition . 133
A.3 Middle-size league Setplay definition for play-on 134
A.4 Setplay definition for Goalie Catch against Nemesis: four participating

players, continues in A.5 . 135
A.5 Setplay definition for Goalie Catch against Nemesis: four participating

players, continued from Fig. A.4 . 136
A.6 Setplay definition for Goalie Catch against Nemesis: six participating

players, continues in Fig. A.7 . 137
A.7 Setplay definition for Goalie Catch against Nemesis: six participating

players, continued from Fig. A.6, continues in Fig. A.8 138
A.8 Setplay definition for Goalie Catch against Nemesis: six participating

players, continued from Fig. A.7 . 139
A.9 Setplay definition for corner kick against Bahia, continued in Fig. A.10 . 140
A.10 Setplay definition for corner kick against Bahia, continued from Fig. A.9 . 141
A.11 Setplay definition for simple corner kick against Bahia 142
A.12 Setplay definition for Corner against Nemesis: six participating players,

continues in Fig. A.13 . 143

LIST OF FIGURES xiii

A.13 Setplay definition for Corner against Nemesis: six participating players,
continued from A.12 . 144

A.14 Setplay definition for kick-in from CAMBADA 145

xiv LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

RoboCup is an international initiative to promote AI, robotics, and related fields. It fos-
ters research by providing a standard problem, where a wide range of technologies can be
integrated and examined. RoboCup uses the soccer game as a central topic of research,
aiming at innovations to be applied for socially significant problems and industries. Re-
search topics include design principles of autonomous agents, multi-agent collaboration,
strategy acquisition, real-time reasoning, robotics, and sensor-fusion.

The ultimate vision of the RoboCup initiative is that "by mid-21st century, a team of
fully autonomous humanoid robot soccer players shall win the soccer game, comply with
the official rule of the FIFA, against the winner of the most recent World Cup."1 This is
certainly an ambitious goal, but research in cooperative robotics has been accumulating
results that allow the community to continue believing in this challenge. With this goal in
mind, some questions have to be asked: what kind of robotic team will play this decisive
game when the time comes?

The RoboCup initiative has always believed that, to reach its intended goal, a wide
array of scientific challenges will have to be solved. To better deal with this diversity of
challenges, RoboCup has been split in different and heterogeneous leagues: Simulation,
Mixed-Reality, Small and Middle-Size, Standard Platform and Humanoid, all in the soc-
cer domain, as well as leagues dealing with other domains, such as the Rescue league,
both simulated and with real robots, and RoboCup@Home, that researches the use of
robots in domestic environments.

This diversity of applications has certainly allowed research teams to deal with a broad
set of scientific issues. Nevertheless, it has also brought some drawbacks: the focussing on

1URL: http://www.robocup.org/about-robocup/objective/

1

2 Introduction

specific leagues and problems, together with the competitive nature of the competitions,
has frequently made teams overspecialize in specific issues, and simultaneously neglect
the generalization and wider application of results. This has had as consequence that the
solutions developed in one league are not easily transferable to other leagues, lacking
therefore general purpose testing and applicability. This question has been discussed in
more detail in Mota and Reis (2008).

Robot Soccer needs, as the research in the domain develops, coordination at team
scope, which involves planning at many levels. This thesis deals with representing and
executing high level, flexible plans for robots playing in different RoboCup leagues. A
framework for representing, executing and evaluating such plans is presented, relying on
inter-robot communication.

Setplays are commonly used in many team sports such as soccer, rugby, handball, bas-
ketball and baseball. There are surely several important differences between robot soccer
and human sports, but Setplays are nonetheless a useful tool for high-level coordination
and cooperation. From a more practical and applied point of view, one can expect these
small and flexible plans to be very useful when applied to specific situations, e.g., when
an opponent team leaves an empty area when defending a corner kick. In such a situation,
a Setplay could be rapidly developed with the goal of exploiting the weakness detected in
this situation, and using the empty area as a shooting point. This example highlights one
of the most significative usage scenarios for Setplays: serve as a rapid multi-agent plan
prototyping tool, which is used to exploit weaknesses in specific situations.

One additional motivation for high level planning has been raised in the Middle-Size
League: the Technical Committee has at one point decided that some of the teams would
have to join efforts to pairwise create common teams, in order to decrease the total number
of participating teams. This idea was not put forward, but anyway the challenge of build-
ing multi-partner teams remains unsolved. One possible way to integrate heterogeneous
players would be to present them a list of Setplays, understandable to all, and simply tell
them when and how each of these Setplays should be executed. A draft scenario of such
a mixed team integration has already been presented in Mota et al. (2006).

From this analysis, one can conclude that there is the need for general purpose tools
and frameworks, that can apply to several leagues, thus allowing the easy generalization,
testing and transfer of obtained results. Furthermore, Setplays can be used as a tool for
the rapid prototyping of behaviors that bring a competitive edge.

1.2 Motivating Scenario 3

1.2 Motivating Scenario

To better ground the need for a Setplay Framework in the RoboCup domain, a motivating
scenario, from an actual RoboCup team from the University of Porto is presented.

The FCPortugal2 2D Simulation team has previously investigated how to organize its
collective behavior around so-called Setplays. Such Setplays were intended for dynamical
use in particular situations during the game. An example is used for the execution of
goalie catchs: the objective is to get the ball quickly into the opponent’s half, with low
probability of interception. To attain this goal, four players are involved. The goalie

is responsible for starting the Setplay by moving to the left edge of the penalty area and
subsequently passing the ball to the left defender, as soon as the latter has moved to a point
located near the touch line. Two additional players, the left midfielder and left forward,
will also move to points near the touch line, in front of the left defender. The Setplay

starts when the goalie passes the ball to the left defender, which tries to pass the ball on
to the left midfielder, which, upon ball reception, passes the ball on to the left forward.
This Setplay could be fine-tuned and become a very successful collective move, assuring
quick moving of the ball onto the opponent’s half.

The concept of Setplay, as described, is used to enhance the team’s behavior. In FC-
Portugal’s original application scenario, Setplays were not configurable using parameters,
and could only make use of a limited set of actions: positioning and passing. Moreover,
the number of players was fixed throughout the Setplay.

But what if this kind of collective move could be described and shared in a standard,
league-independent and flexible way, which would be interpreted and executed at run-
time? The first benefit would be the possibility of writing arbitrary Setplays, which would
dynamically be used during the game, opening horizons to new plays which could, for
instance, differ from game to game, to better deal with each opponents’ characteristics.
In that case, the Setplays could also be used in different leagues. Furthermore, since any
player could have access to the definition of Setplays and interpret their content, Setplays
could also be a means for the creation of mixed teams, where heterogeneous robots would
play together: when the Setplays are being executed, players simply have to follow the
steps in the Setplay in order to cooperate.

To fulfill these requirements, one needs a standard language, supported by a frame-
work, where Setplays could be defined and interpreted by any player in any league. The
basic concepts of soccer (moves, conditions, skills) need a clear and concrete definition.

2URL: www.ieeta.pt/robocup/

4 Introduction

Also, the transitions between intermediary steps have to be expressed, as well as termina-
tion conditions. Such a language and framework are the scientific subject tackled in this
thesis.

1.3 Objectives

The main objective of this thesis is to develop a general-purpose framework for the appli-
cation of Setplays, small multi-player plans in the robotic soccer domain, to any league in
RoboCup.

Setplays should be high-level, reusable plans, defined in a league-independent lan-
guage and with a text-based syntax that allows the quick and easy creation or modification
of a Setplay.

This framework should be as modular as possible, offering tools that allows its easy
application to any league without any change in the framework. Such tools include:

Setplay language: formal definition of a language to clearly define flexible Setplays;

Graphical editor: an editing tool to configure Setplays in a graphical environment, which
should allow general users and field specialists to provide Setplay-definitions to the
Framework;

Setplay parser: a parser to read the text syntax of Setplays;

Selection of players: algorithms to select the participating players in a Setplay combin-
ing Setplay positionings and actual player positions;

Setplay evaluation and selection: algorithms to evaluate and record the performance of
individual Setplays, as a basis for real-time selection of Setplays in actual situations;

Setplay execution engine: an easy-to-use mechanism to manage the execution of Set-
plays;

Communication management: Setplay execution makes use of the communication be-
tween players and the framework must provide tools for its management.

To test the application of the framework and prove the validity of the underlying con-
cepts, the framework was applied to several teams: in simulated soccer, and to the Middle-
size League.

1.4 Thesis Structure 5

1.4 Thesis Structure

This thesis was structured with an increasing level of detail from the beginning to the
end. Chapter 2 presents a literature review and evaluates the State-of-the-Art. Chapter
3 presents the Setplay Framework’s architecture, with focus on the most important op-
tions, while also presenting the newly defined language that will allow the expression of
Setplays. Next, chapter 4 describes in detail how the Framework was developed into an
autonomous library in C++, which can be applied to arbitrary teams. The application of
the Framework to three different teams, from the 3D and 2D Simulation and from the
Middle-size leagues is presented in chapter 5. Chapter 6 discusses the results achieved by
the application of the Framework to these teams. Finally, chapter 7 sums up the thesis,
points to future work and draws the relevant conclusions.

6 Introduction

Chapter 2

State of the Art

2.1 RoboCup

In the last years, the RoboCup competitions and symposia (Kitano, 1998; Asada and Ki-
tano, 1999; Veloso et al., 2000; Stone et al., 2001; Birk et al., 2002; Kaminka et al., 2003;
Polani et al., 2004; Nardi et al., 2005; Bredenfeld et al., 2006; Lakemeyer et al., 2007;
Visser et al., 2008; Iocchi et al., 2009; Baltes et al., 2010; del Solar et al., 2011; Röfer
et al., 2011b) have increasingly become a test bed for cooperative robotic approaches.
Teams from all around the world compete in nine major leagues including six cooperative
soccer main leagues: Simulation 2D; Simulation 3D; Small-Size; Middle-Size; Standard
Platform and Humanoid.

2.1.1 Simulation League

2.1.1.1 2D Simulation League

The 2D simulation league is based on the publicly available soccer server system (Noda
et al., 1998). It simulates the players and the pitch for a 2D soccer match. The server
accepts low-level commands from the players, executes them in an imperfect way and
sends (imperfect) perception information back to the players. One of the objectives of the
simulation league consists in testing high-level multi-agent research issues, while waiting
for the hardware to catch up. Advances in the simulation league (Gabel and Riedmiller,
2011) include the use of learning to optimize individual and team skills (Stone, 2000;
Riedmiller et al., 2001; Riedmiller and Merke, 2003; Taylor and Stone, 2009), cooperative
techniques like formations and roles (Stone and Veloso, 1999; Kyrylov and Hou, 2010),
complex team strategies (Kok et al., 2003; Reis and Lau, 2001), new agent architectures

7

8 State of the Art

and agents debugging tools (Stone and Veloso, 1999; Reis and Lau, 2001; Lopes et al.,
2010).

2.1.1.2 3D Simulation League

The 3D simulation league was introduced as a new competition in 2004. This competition
is based on a completely new simulator with a 3D environment (Kögler and Obst, 2004)
and established a new set of research problems that had to be tackled. New problems
include the physics dynamics model which is much more precise and realistic than the
one of the 2D simulator (Smith, 2004), and new agent actions that are closer to the ones of
real robots when compared with the 2D simulator (Noda et al., 1998). The 3D simulation
league has drawn a lot of interest in the community.

Since RoboCup 2007, the original 3D server, where players were modeled as spheres,
was continuously replaced by versions where players were different kinds of humanoids
(Boedecker and Asada, 2008). Presently, players are modeled as NAO robots, identical
to the ones used in the Standard Platform League, described below. In this phase of
development, research has been mainly focused on the development of robot movements,
like gait (Lattarulo and van Dijk, 2011; Shafii et al., 2011).

2.1.1.3 Mixed Reality League

Mixed Reality refers to a combination of real and virtual entities. In this case, the tech-
niques used belong to the Augmented Reality research topic, since virtual objects are
inserted into a real world, and also from Augmented Virtuality, since real objects interact
with virtual objects.

The Mixed Reality RoboCup sub-league (da Silva Guerra et al., 2008) organizes com-
petitions with a standard micro-robot platform inside an Augmented Virtuality/Reality
environment. These competitions consist of a soccer tournament where teams play au-
tonomous robotic soccer games. The real robots act with virtual objects on a screen: ball,
poles and field. The number of robots per team has grown from two to five, with a long
term goal of playing games with eleven players. A simulator (Simões et al., 2011) has
been introduced to assist the teams’ development.

This league has been active since RoboCup 2007, and FCPortugal has participated
on several occasions, with a second place being the best result obtained (Gimenes et al.,
2007), in the initial development phase of this thesis.

2.1 RoboCup 9

2.1.2 Small-size League

Small-size teams consist of five robots that play in a 6x4m green-carpeted field. The rules
of this league permit the use of a shared global vision (Zickler et al., 2010) and robots’
centralized control. During the game, the off-field software controller receives global
vision information and sends out commands to the robots using wireless communication.
The need for high speed and precise control has given the small-size league the reputation
of the ’engineering league’. Developments in subjects like electro-mechanical design,
control theory and digital electronics, have been crucial in this league (Stone et al., 2001;
Birk et al., 2002). However, teamwork characteristics like explicit passing abilities and
Setplays (Browning et al., 2004) have increasingly become more important due to the
advances in hardware and the steadiness of the rules.

2.1.3 Middle-Size League

RoboCup Middle-size League poses a unique combination of research challenges, com-
bining most of the challenges encountered in the simulation and small-size leagues. The
game is played by teams including up to five robots, in a 18x12m field, with an official
FIFA ball. Robots must be totally autonomous and thus carry all sensors and actua-
tors on board, but communication is permitted. In past RoboCup editions, most teams
were mainly concerned with hardware design, and complex solutions have been devel-
oped: omni-directional cameras (Iocchi and Nardi, 2000; Marques and Lima, 2001), laser
range-finders (Weigel et al., 2001) or omni-directional drive designs, self-calibrating vi-
sion systems (Lange and Riedmiller, 2005; Heinemann et al., 2007b; Neves et al., 2009),
ball handling mechanisms (de Best et al., 2011) and robot self-localization (Lauer et al.,
2006; Heinemann et al., 2007a) have concentrated a lot of attention. Only a few teams
introduced high-level approaches derived from previous simulation league approaches
(Weigel et al., 2001; Hafner and Riedmiller, 2003; Lau et al., 2008, 2010; Conceição
et al., 2006). Past directions in this league included the participation of mixed teams
(Iocchi et al., 2007), composed by the joint efforts of initially distinct teams, introducing
several research challenges, directly concerned with the objectives of this project.

2.1.4 Standard Platform league

The Standard Platform league had its debut on the 2008 edition of RoboCup. It is a
replacement for the four-legged league, described in the next paragraph of this section.
All teams must use the same robot, NAO1, a humanoid model which is available since

1URL: http://www.aldebaran-robotics.com/eng/Nao.php

10 State of the Art

early 2008. The field is 6x4m and the teams can have a maximum of four robots. B-
Human (Röfer et al., 2011a) is one of the best performing teams, having won this league’s
last three editions of RoboCup.

The four-legged league, which has ceased to be maintained and was last present in
RoboCup 2007, was a predecessor to the Standard Platform League, since the robotic
platform was common to all team and locomotion was made using legs. Teams consisted
of four quadruped AIBO robot platforms from Sony. Objects had different colors, and
special markers existed in the field to enable self-localization. Research in this league was
mainly focused on vision, self-localization and robot locomotion. However, some teams
like the previous champions UNSW and the German Team, have implemented teamwork
algorithms like formations and the use of roles. The case of the German Team is particu-
larly interesting because they were voluntarily organized as a mixed team. Several teams
competed separately inside Germany but joined efforts when at the World Championship,
mixing the software modules through the usage of a common architecture, developed by
the four participant universities (Lötzsch et al., 2004). This approach, though success-
ful, requires that all partners commit to a common architecture, leaving much place for
innovation on cooperation of teams with heterogeneous architectures.

2.1.5 Humanoid league

The Humanoid League is played by autonomous robots with a structure similar to a hu-
man body and human-like senses. Major research issues in this league are stable strategies
for walking, running, and kicking the ball, and visual analysis of the environment. The
league has three sub-leagues, distinguished by robot sizes: Teen Size, Kid Size and Adult
Size. Field size ranges from 6x4m in Kid Size to 9x6m in Teen Size. The number of
players per team also depends on the sub-league, and ranges from two to three. Robots
are designed and built independently by each team. Team Nimbro (Behnke and Mis-
sura, 2011) and Darmstadt Dribblers (Friedmann et al., 2011), both from Germany, have
consistently obtained competitive results.

2.2 Agent Architectures in RoboCup

2.2.1 Internal Agent Architecture

Traditionally, architectures employed in RoboCup tend to be hybrid, mixing reactive com-
ponents with deliberative reasoning. This choice is made because players must be able to

2.2 Agent Architectures in RoboCup 11

rapidly change their behavior when there is a sudden change in the environment (e.g. ball
possession is lost), while there is certainly the need for mid to long-term planning.

Berger et al. (2004, 2006) describe the Double-Pass Architecture, that aims at de-
coupling the sense-think-act cycle, by using a long-term planner that organizes intentions
and an executor that chooses short-term actions to execute. This architecture presents
a balance between deliberative long-term planning and reactive response to unexpected
events.

An already cited successful example is the German Team (Röfer et al., 2006), which
was a cooperative project between several German teams. Each team developed an in-
dependent four-legged team, that joined efforts to build up a national team. In order to
integrate the best components developed by every team, a general control architecture
was defined (Röfer, 2003), where behaviors are defined using an XML-based language
(Lötzsch et al., 2004). The system provides development tools like a debugger and a
simulator.

Ramos et al. (2007) proposed a middle-ware for soccer robots, with three components:
State-of-the-World, decision and low-level skills. The decision component can be set up
using either Petri Nets, State Machines or Fuzzy decision. The interface to the middle-
ware is not fixed and can therefore change between different applications.

Kleiner and Buchheim (2004) introduce a plug-in based architecture, where each com-
ponent is developed independently and then connected to the system. This allows a certain
degree of hardware independence, since components can be easily replaced. To allow this
flexibility, the system’s interface is fixed, and all components must comply to it.

Farinelli et al. (2005) present a development and control architecture for robotic plat-
forms. This architecture has a hardware-abstraction layer that allows high-level control
components to be applied to different platforms. To help the development, components
are built modularly and there are tools for remote inspection. A perceptual model is used
for communication between robots.

One less common approach is presented in Ferrein et al. (2006). This framework,
based on situation calculus, uses Golog as the implementation language. This way, the
framework allows the declarative description of behaviors.

2.2.2 Multi-agent System Architecture

The cooperation between the different players in a team has been the subject of research
in many teams, specially in the simulated leagues. This is certainly a broad field of devel-
opment, and many different approaches have been proposed. This section looks at some
relevant examples.

12 State of the Art

Yokota et al. (1999) present a cooperation mechanism based on communication, using
concepts common in the Multi-agent system domain, like communication protocols and
speech acts. Shiota et al. (2006), also a Japanese team, similarly aim at using communi-
cation, while keeping the bandwidth as low as possible. Agents exchange simple, limited
messages with clear semantics.

Lafrenz et al. (2006) use a graphical language to define distributed behaviors. These
behaviors are executed by the robots, namely by following synchronization and role-dis-
tribution phases. The behavior’s progress is decided using State-of-the-World information
in each robot, thus needing little communication resources.

In Beaudry et al. (2006), heterogeneous robots are used on the same team, with ball
and own positions being communicated to other players. Decision making is done in-
dependently by each robot. These decisions are, though, communicated to a supervisor,
which has the power to change them in case it considers they are not in the best interest
of the whole team.

In Castelpietra et al. (2001), formations are chosen through a voting process. Subse-
quently, roles in the chosen formation are distributed according to each robot’s evaluation
of its capacity to fulfill the role. This is possible because all robots are able to play any
role, whose characteristics are public, in order to allow adequacy evaluation.

Utz et al. (2005) argue that a team of heterogeneous robots can cooperate simply by
the exchange of messages about the State-of-the-World. The communication protocol is
based on CORBA. The messages’ content is the estimated position and velocity of the
player and the observed objects. The communication architecture could also be used to
convey information other than the perceived State-of-the-World.

Stulp et al. (2006, 2010) defend the usage of temporal prediction models of teammates
in the Middle-size league to help agents coordinating for recovering ball possession. The
learning is done off-line through model trees and Artificial Neural Networks. Estimations
of the state of teammates and of the utilities of their intentions serve to adapt to their
predicted actions.

While planning the present thesis, a proposal was made for an ad-hoc framework
to structure the communication and cooperation of heterogeneous agents. This proposal
Mota and Reis (2007b) was not further developed, but it will be considered as future work.

2.3 Modeling and Communication Languages

Several authors research on hardware-independent languages to carry high-level infor-
mation. These languages can have different purposes. Lovell and Estivill-Castro (2005)

2.4 Team level Coordination in RoboCup 13

define a potentially hardware independent, XML based language to describe physical ob-
jects like the ball. Stanton and Williams (2004) go in the same direction, also covering
the most basic concepts. One can see these languages as ontologies.

The soccer server (Noda et al., 1998) used in the robotic soccer Simulation compe-
titions also introduces perception and action languages. These languages convey infor-
mation about the different objects on the field, originally modeled in 2D. The abstraction
level is, though, quite low, only allowing primitive actions (dash, turn, kick, etc.) and
basic State-of-the-World concepts (distances and heading to objects).

Coach Unilang (Reis and Lau, 2002) is a coaching language that defines concepts
essential to coach robot soccer teams, including high-level topics like tactics and for-
mations, and low level concepts like time periods and field positions. There are several
options to express the recommended playing options: team mentality, team pressure, field
use, formations, etc. Real-time communication of game statistics is also possible. The
language allows expressing observed situations like players and ball position, enabling it
to be used as a communication language. Based on this language, RoboCup community
developed Clang (Chen et al., 2003).

Davin et al. (2005) present a language for players to communicate in the Simulation
2D league. Since there are severe bandwidth restrictions, the main challenge is to produce
concise content. It deals mainly with State-of-the-World information. The only exception
is a message type that can be used to ask for a pass if the player is in an advantageous
position.

Buttinger et al. (2002) introduced a Strategy Formalization Language (SFL), extend-
ing CLang by the ability to represent team behavior in a human-readable, easily modifi-
able format.

2.4 Team level Coordination in RoboCup

Coordination among players is one of the most important research topics in RoboCup,
particularly in the Simulation leagues. This subject is certainly very complex, since the
environment is not predictable and agents perceive it differently. Also, communication,
which could be a tool for synchronization and coordination, is either unreliable or re-
stricted. There have thus been numerous and varied approaches to coordination, which
will be looked into in the next sections.

14 State of the Art

2.4.1 Role allocation

Teams in RoboCup’s different leagues do make extensive usage of the concept of role.
Roles can have values such as defender, corner kick taker or right forward, and do some-
how condition the player’s behavior. Since a player might act in different roles, and these
can change along the game, there is a need for a strategy to allocate roles.

A general overview of role allocation in RoboCup is presented in Gerkey and Mataric
(2004). The authors analyze this question from an Operational Research point of view,
and argue that some of the currently employed strategies can be enhanced.

A classical approach for coordination in multi-robot teams (’Alliance’) is presented
by Parker (1998). This architecture aims at efficient role distribution and relies on com-
munication for coordination. It is not well suited for dependent tasks, since their outcome
is not predictable with certainty.

A simple role distribution mechanism is described in Moreira et al. (2006): a central
supervisor allocates roles to robots and communicates this to the other players. This kind
of choice requires no negotiation, thus being very simple and straightforward.

Another role distribution architecture is presented in Kose et al. (2005), where roles
are allocated through auctions among the team members. Costs for fulfilling a role are
estimated through reinforcement learning.

Kyrylov and Hou (2007) describe joint defensive positioning, resulting from multi-
criteria assignment with constraints on the number of defenders and attackers, and on
not allowing a defender to mark more than one attacker. On a later effort, Kyrylov and
Hou (2010) elaborate on the Pareto Optimality principle to improve the adequacy of as-
signments, minimizing the time required to execute an action and considering the risk
prevented by marking one attacker. The same kind of principles is applied to offensive
situations (Kyrylov and Razykov, 2008), with restrictions on space occupation and avail-
ability for pass reception.

TechUnited (Aangenent et al., 2009) team has recently switched from static to dy-
namic assignment of roles, which is done centrally by a dedicated module, based on the
State-of-the-World, namely player and ball positions.

McMillen and Veloso (2006) introduced a strategy for role assignment in the four-
legged league. This strategy implies the communication of the currently chosen Play,
which provides a set of Roles to be assigned to all the available players in the team. The
strategy assures coordination by the existence of a leader that selects the best momentary
Play and instructs the other robots on what Roles to take. Each Role fully determines
the player’s behavior. The strategy does not, however, define a concept of Setplay with
intermediary states, and Plays do not have Parameters. Plays are, in this context, a more

2.4 Team level Coordination in RoboCup 15

limited concept than Setplays, since they merely aim at distributing roles among all the
teams players. It is therefore more of a coordination methodology than cooperation with
actual plans, as is the case with Setplays.

For role assignment in the middle-size CAMBADA team, a dynamic algorithm that
adapts the formation to a possible varying number of active robots is used, which will
assign each role/robot to the strategic positionings according to priorities and number of
active robots (Lau et al., 2009).

2.4.2 Positional Coordination

A method to achieve coordination based on repulsions and attractions called Strategic Po-

sitioning by Attraction and Repulsion (SPAR) was introduced by Stone (2000). When an
agent is positioning itself using SPAR, the agent maximizes the distance to other players
and minimizes the distance to ball and to the goal. This is achieved evaluating several
forces: repulsion from opponents and team-mates, attraction to the active team-mate, ball
and opponents’ goal. It also uses other constraints that have influence in agent’s position-
ing: stay in an area near home position, stay within the field boundaries, avoid being at
an offside position and stay in a position where it is possible to receive a pass.

Later, the Situation Based Strategic Positioning (SBSP) was introduced in Reis et al.
(2001), Lau and Reis (2002) and Lau and Reis (2007). If an agent is not involved, and will
not be soon, in an active situation, it will try to occupy its strategic position relative to the
actual situation of the game. Through the analysis of the tactic, formation, self positioning
in the formation and player type, a player is able to define its base strategic positioning.
This position is then adjusted accordingly to ball’s pose and game situation (i.e. attack,
defense, etc...). The player type defines strategic characteristics like ball attraction, admis-
sible regions in the field, specific positional characteristics for some regions in the field,
tendency to stay behind the ball, alignment in the offside line, and attraction by specific
points in the field in particular situations. Using a strategic positioning like SBSP, the
players will be more well distributed over the field than using an active one like SPAR,
which is the reason why several teams adopted SBSP as the standard positioning method.

The CAMBADA coordination layer (Lau et al., 2008) is based on SBSP strategies
(see above) used in RoboCup 2D Simulation League, adapted to the MSL specifications.

Dynamic Positioning based on Voronoi Cells (DPVC) (Dashti et al., 2006) positions
players along the pitch, based on attraction vectors to reflect players’ attraction towards
objects, depending on the match’s current situation and players roles. Some limitations in
SBSP are enhanced, such as the need for home positions and fixed number of players for
each role.

16 State of the Art

Delaunay Triangulation (Akiyama and Noda, 2008) shares principles with SBSP. The
soccer pitch is divided into triangles based on training data and a map is built from a fo-
cal point (e.g. ball position) to the positioning of players. Constraints are used to solve
topological relations between different sets of training data, in order to attain more flex-
ible formations. Though simple, this positioning method manages to obtain reasonable
approximation accuracy, and is fast running, adjustable, and scalable.

Work et al. (2009) present a positioning for the four-legged league, based on potential
fields, which can be considered in line with the previous work by Stone (2000), described
earlier. Besides defining positioning, the algorithm also determines the participants’ roles.

Atkinson and Rojas (2008) present a formation choice strategy, in the four-legged
league, based on Game Conditions. Several aspects of the players action are evaluated,
through a trained Neural Network. This evaluation influences the choice of Formations,
with experimental results supporting evidence on an improvement of performance.

2.4.3 Setplays

Setplays can be understood, in a broad sense, as multi-agent plans that need the com-
mitment of several players in order to reach a common goal. Setplays are very common
in most sports, e.g., soccer, rugby and handball, which can make one believe that such
constructs can also play a useful role in robotic soccer.

The concept of Setplay is present in a teamwork and communication strategy for the
2D Simulation league, presented in Stone and Veloso (1999). These Setplays, however,
lack some of the most relevant features now presented in this thesis. Namely, they are
meant to be used only in very specific situations, like corner kicks and throw-ins, which
are decided by the referee, and are unique for each of these situations. Thus, the ques-
tion of Setplay activation and choice is not considered. Further, there is no mention to
Parameters, though Player Roles are proposed. Most importantly, a Setplay is limited to a
sequence of Steps, without alternatives, which minimizes the need of choice announcing,
and therefore the use of communication with this purpose.

The RFC Stuttgart/CoPS team uses Special Interaction Nets (Zweigle et al., 2006),
a simplified version of Interaction Nets adapted to cooperation in multi-agent environ-
ments. These diagrams include states representing actions, transitions modeling condi-
tions, eventually global, and sub-nets, with the former components. Certain conditions
can model time-dependent issues, and can be used to synchronize multi-agent behavior.
Messages can also be used to synchronize multiple networks. The model does not present
a standard set of concepts, thus not enforcing generalization, and may lead to the devel-
opment of very specific cooperative strategies. This team uses dynamic role assignment

2.4 Team level Coordination in RoboCup 17

(Zweigle et al., 2008), with sub-roles, e.g., role Defender and sub-role Left or Right. The
role allocation is done locally by every robot, based on the shared world model, that in-
tegrates information from all robots. This being the case, inconsistencies are minimized,
since all robots decide based on the same centralized information. Role allocation will be
potentially wrong only when the shared world model is inconsistent.

XABSL is a language to describe behaviors for autonomous agents based on hierar-
chical finite state machines, and has been used by different teams in RoboCup, namely
the German Team (Röfer et al., 2006). Recent developments (Risler and von Stryk, 2008)
have allowed the use of the language to develop cooperative multi-agent behavior, through
synchronization elements, that allow the specification of minimum or maximum number
of robots is a given state.

An interesting approach is presented in Castelpietra et al. (2002), where Setplays are
represented as transition graphs. These plans, which are formally defined, have a high
level of abstraction, and can be applied to different robotic platforms, as it has been the
case with Middle-size and four-legged robots. The actual execution of plans and how the
robots deal with synchronization issues are unclear topics. In a related research effort
(Iocchi et al., 2007), Petri Nets have been used to structure the development of a joint
team with robots from two distinct institutions.

A formal proposal for the usage of UML State-charts to specify single and multi-agent
behavior was introduced in Murray (2004). This approach was developed and refined
in Furbach et al. (2008), but lacks practical implementation and is not sufficiently clear
about synchronization mechanisms. Further, the underlying state charts are considerably
dense, and therefore difficult to read. This approach could not easily be used by non-IT
specialists.

Rad et al. (2004) use a tree of plan sequences to choose the best suited plan in each sit-
uation. This tree must permanently be re-evaluated. The mechanism for synchronization,
a vital issue, is not clearly described.

Kok et al. (2003, 2005) and Kok and Vlassis (2006) introduce Coordination Graphs
(CG), exploiting the dependencies between agents and decomposing a global payoff func-
tion into a sum of local terms that are communicated among agents. Nodes in the CG
represent agents and its edges define dependencies between them, which have to be co-
ordinated. The continuous aspect of state spaces in robotic soccer discourages the direct
application of CGs. To solve this question, roles are allocated to agents to discretize this
space and then the CG methods are applied to the derived roles. To simplify the algorithm,
it is assumed that only a limited number of near players need to coordinate their actions.

The Brainstormers Tribots (Lange et al., 2008) have their roles, and the team forma-
tion, decided centrally by a dedicated, high-level module. The closest robot to the ball

18 State of the Art

acts as a master and decides which play to use.

Team Agent Behavior Architecture (TABA) (Ruiz and Uresti, 2008) uses hierarchical
task decompositions to coordinate the behavior of players in the old four-legged league.
Collaboration between players is managed through formations including roles, which de-
scribe players’ positions. Formations and role choices depend on the team attitude and
game state. A CBR system stores a strategy base. A strategy case is a plan designed to
achieve a particular goal and includes applicability and termination conditions and a list
of formations with roles. Further work by Vega et al. (2006) includes a Soccer Strategy
Description Symbols (SSDS) graphical notation, an eXtensible Markup Language (XML)
behavior language and a control simulator based on Finite State Machines.

The Carpe Noctem team (Skubch et al., 2011) has introduced a XML and XMI-based
language to help structure responsive teamwork. The underlying model is similar to Petri-
Nets. The resulting plans can be dynamically instantiated, but they primarily serve the
purpose of distributing roles and behaviors among the team members. There is an as-
sociated plan editor, which is more appropriate for use by robotic soccer experts, and
unsuitable for users only acquainted with regular soccer.

Cooperative behaviors through Petri Net Plans, based on the Joint Intentions theory
(Cohen and Levesque, 1991), were developed by Palamara et al. (2009) for the manage-
ment of passes in the four-legged-league. Ziparo et al. (2008) introduced a framework
based on Petri-Nets for representing multi-agent plans. This framework allows the de-
scription of multi-agent interactions, with primitives for synchronization between players.

Stoye and Elfers (2007) present a framework introducing plans in the Small-size
league, including a graphical editor where positions depend on a discrete partitioning
of the field. Plans are evaluated through several dedicated experts which consider qualita-
tively the success rates of dribbles, passes and shots. Plans typically lead to a shot at goal,
have usually only two or three steps, and can be interrupted if a good shooting opportu-
nity occurs. Steps are considered to be defined in a fixed order, and there is no alternative
to transition from a step to another. No experimental results are presented, and player
coordination is not considered, since this is not an issue on this league, as all agents are
controlled centrally.

2.4.3.1 Setplay selection and activation

One relevant task for the successful application of Setplays is their selection during the
game, and therefore possible tools with this purpose must be considered.

Case-based reasoning (CBR) is a technique to solve new problems based on the solu-
tion to known, similar situations in the past (Aamodt and Plaza, 1994). Typically, a CBR

2.4 Team level Coordination in RoboCup 19

system has a large case base, with knowledge about past situations. When a new problem
is presented, the case base is searched for a similar case (case retrieval). The solution to
the retrieved case is then adapted to the new problem at hand, and applied. This appli-
cation can at this point be evaluated and also inserted in the case base, for later usage,
generating new cases for future selection and adaptation. Case-based Reasoning has had
several applications in RoboCup, but is not yet a very popular research topic. The most
significant results will be looked at in the next paragraphs.

Karol et al. (2004) present a formal approach to classification and evaluation of plans.
Unfortunately, this approach remains purely theoretical, since it has not been implemented
in a real system.

An application of Case-based Reasoning techniques to the four-legged league has
been presented in Ros et al. (2006, 2007) and Ros and Veloso (2007). A single agent
is responsible for retrieving the most suited case and advertising its choice to the team-
mates, who will perform the sequence of actions in the plan. This approach lacks testing
in real game situations.

A different usage of CBR is presented in Wendler and Bach (2004), where behaviors
when manipulating the ball are analyzed and predicted. In this case, the results can be
used to better predict the opponent’s behavior. Lattner et al. (2006) aim at extracting
small interaction between players from game logs. The extracted interactions are, though,
not evaluated nor used in real game situations.

Berger and Lämmel (2007) try to use CBR to activate cooperative behaviors, in this
case involving two players. The experimental results showed that this application was not
clearly successful.

In the approach presented in Bowling et al. (2004), the success of Plays in the scope
of the Small-size league is recorded, in order to help the choice of these Plays in future
execution opportunities. This evaluation can rapidly change, even during one game, to
cope with Plays that ceased to be effective due to practical reasons like not being adapted
to a specific team, or opponent adaptation to the Play.

Ma and Cameron (2009) aim at applying Reinforcement Learning techniques to multi-
agent planning. The presented results, of experiences in the 2D Simulation league, show
some improvement only after several hours of learning (up to 20), which means that this
technique should be used only for off-line learning. Moreover, experiences were done
in a laboratory environment, only with teams with very limited performance. Hence, the
results of the application of this approach to real game situations are unknown.

20 State of the Art

2.5 Summary

Although many approaches to cooperative robotics exist in the context of RoboCup, only
a few teams include high-level concepts general enough to be useful for more than one
league.

There has been no general, abstract proposal for Setplay-based cooperation that would
be applied to the domain as a whole, which is the main scientific contribution of the
present work. This thesis’ project approach differs from all the known approaches, since
it has the long term intention of being used in all RoboCup leagues with the same agent-
based software. Furthermore, it also aims at integrating robots with different origins in its
teams.

Chapter 3

Setplay Framework

This chapter makes a thorough description of the core components of the thesis. Section
3.1 describes the information architecture of the framework, while the communication
protocol is described in section 3.2.

This Setplay Framework was designed with the aim of being flexible and applicable to
different teams in different leagues. To make the integration of the Framework in already
existing teams easier, several alternative usage profiles were envisaged, as described in
section 3.3. This kind of integration will demand the application of some abstract con-
cepts in the Setplay Framework to actual concepts or skills in the underlying team code.
To support this task, some auxiliary classes were defined, as described in section 3.4. Ad-
ditionally, some operations created to manage Setplays are described in section 3.5. The
language underlying the framework is presented in section 3.6.

To wrap up this chapter, section 3.7 presents a complete, practical example of the
usage of the Setplay Framework.

3.1 Framework Description

The Setplay Framework (Mota and Reis, 2007a), inspired by the motivating scenario and
the challenges it creates, was designed with the goal of being general, flexible, config-
urable and applicable to any robotic soccer league. Its intended integration model with
an arbitrary soccer player can be seen in Fig. 3.1. The picture, an UML component di-
agram, shows how the player’s components interact with the Setplay-specific tools and
components. Basically, the player’s top-level decision maker will use the Framework’s
Evaluation and Selection tool to evaluate, at all appropriate moments in the game, if it
should run one of the available Setplays. If it chooses to do so, then it will interact with

21

22 Setplay Framework

the Execution Engine component, which will guide the execution of the Setplay, depend-
ing on the State-of-the-World and on some choices done by the player, as seen further
on section 3.3.2. During this execution, the Framework will need both to check if some
conditions are satisfied, and to order the execution of some actions. To do this, it will use
the native capabilities of the player, which will be available through the implementation
of abstract Actions and Conditions, as described in section 3.4.

Setplays

Execution
Engine

Evaluation and
Selection

Abstract Actions

Abstract
Conditions

Player

Decision Making

Action Executor

World State

Tactics

Formations

Opponent
Modelling

Roles

...

Intelligent
Communication

Figure 3.1: Setplay integration with an abstract soccer player

The general structure of the Framework is shown schematically in Fig. 3.2. At the top
level, a Setplay is identified by a name and a numeric identification (id), and has parame-

ters, which can be of simple data types like integers and decimals, or more sophisticated
concepts as points and regions. An additional argument allows the Setplay to be labeled
as invertible, which means that this Setplay can be inverted, and will be valid on the op-
posite longitudinal side of the pitch. Setplays also have Player References, which identify
players taking part in the Setplay. The Player References can point to specific players, or
be Player Roles, i.e., abstract representations of a particular role in the Setplay, identified
by a name (e.g., attacker, supporter). Parameters and Player Roles will be instantiated at
run-time, allowing a flexible use of the Setplay. There is also an Abort Condition which,
when satisfied at any moment during execution, implies the Setplay should be aborted.
Conditions will be described in further detail later in this section.

3.1 Framework Description 23

name: String
id: PosInt
invertible: bool

SetPlay

id: NonNegInt
waitTime: Miliseconds
abortTime: Miliseconds

Step

name: String
Parameter

*1

*

1

PlayerReference

players

*

1

Condition

Transition

Action

*
1

Variable

roleName: String
PlayerRole

team: String
number: PosInt

Player

*

1
participants1

1

next

Decimal

VarRegion

Participation

*

1

Region

*

0..1

FinishAbort

NextStep

Integer

abortCond

Directive

*
1

Do

Dont

*
0..1

*

0..1

at

players

1..*

1

*

1

Figure 3.2: Setplay definition

24 Setplay Framework

Steps are the main building blocks of a Setplay, which will contain an arbitrary num-
ber of these, gathered in a list. A Step can be seen as a state in the execution of a Setplay.
By convention, the first Step in a Setplay is always labelled with 0 as its id. Some players
participating in a Setplay will follow all of these Steps in order to accomplish the success-
ful execution of the Setplay. Other players might only participate in some of the Steps

and then abandon it in subsequent Steps.

A Step has an id, which is a non-negative integer. In order to control the Step’s execu-
tion, the concepts of ’waitTime’ and ’abortTime’ are introduced. Wait time is the amount
of time the player should wait, after entering the Step, before starting the transition to
another Step, or simply finishing the Setplay. The abort time is the threshold after which
the players will abandon the Setplay, if it was not possible to progress from this Step to
another one, or finishing the Setplay. A Step can also have a Condition, which should be
satisfied before entering the Step. A list of Participations identifies the players taking part
in this Step in particular, with an optional location (at), indicating the desired positioning
of the player in this Step.

There are several possible ways out of a Step, which are defined as Transitions. All
Transitions can have a Condition, which must be satisfied for the Transition to be fol-
lowed. An Abort Transition represents a situation where the Setplay must be abandoned,
either because it is no longer judged useful, it is thought not to reach its goal, or for any
other reason. The Finish Transition represents that the Setplay has reached its intended
goal and should end at that point. The most common Transition, that is used to link be-
tween the different Steps is defined as NextStep. It includes the id of the next Step to be
reached, and contains a list of Directives that will be applied in order to accomplish the
Transition.

3.1.1 Directives and Actions

Directives include Actions and can be of two kinds: ’Do’ and ’Dont’, meaning, respec-
tively, that the contained Actions should, or should not, be executed. In this context,
Actions, depicted in Fig. 3.3, are high-level concepts that represent skills and moves, both
simple and complex, that can be executed by a player. Examples of such Actions are pass-
ing the ball to a player or region, shooting at goal, intercepting the ball, or dribbling. In
the Setplay framework, the Action concepts were initially inspired by the ones defined by
Clang (Chen et al., 2003), the coaching language used in the Simulation league. The orig-
inal action names were kept, but the reference to players (and player sets) in arguments
was changed: the original definition allowed only integers (representing player numbers)
as identification. Since Setplays are commonly defined using player roles, the arguments

3.1 Framework Description 25

Shoot

Position

Dribble

Region

1

1

1

1

1
1

PlayerReference

1..*

1
MarkRegion

1

1

MarkPlayer

1

1

Clear
1

1

Intercept

Hold

MarkLineTo
1..*

1

Tackle

1..*
1

to

to

to

ActionSequence

2..*

1

Action

WithBallWithoutBall

AttentionTo

AttentionTo

1

to

Object1
to

Stop

MarkGoal

ReceiveBall

yCoord: Decimal
MoveToOffsideLine n

n

type: BallMoveType
Pass

type: BallMoveType
Forward

Pos

OffsideLine

Figure 3.3: Action definition

26 Setplay Framework

of actions involving players were defined as PlayerReferences, which can be, as men-
tioned before, both PlayerIDs and PlayerRoles. These actions are the most common and
fundamental to play soccer, and will be described here:

Position: takes a region as argument, the executor should position itself in that region
(short name: pos).

Forward to region: takes a region as argument, the ball should be forwarded to that
region (short name: bto). There is an optional argument, type, with normal, fast

and slow as possible values, describing the type of kick that should be employed.
In future applications of the Framework to other leagues and teams, the possible
types might be expanded to include concepts like lob-kick, or even heel kick.

Pass to player: takes a player reference as argument, instructs the executor to pass the
ball to that player (short name: bto). Similarly to the forward action, there is an
optional argument, type, with values similar to the ones described in the previous
action.

Mark player: takes a player reference as argument, which should be marked by the ex-
ecutor (short name: mark).

Mark pass line to player: takes a player reference as argument, instructs the executor to
mark the pass line to that player (short name: markl).

Mark pass line to region: takes a region as argument, the executor should mark the pass
line to that region (short name: markl).

Set Offside line: takes a region as argument, instructs the executor to set the offside line
trap at that region (short name: oline).

Dribble: takes a region as argument, instructs the executor to dribble the ball to that
region (short name: dribble).

Clear: takes an optional region as argument, instructs the executor to clear the ball from
that region (short name: clear).

Shoot: without any argument, instructs the executor to shoot at goal (short name: shoot).

Hold: without any argument, instructs the executor to hold the ball at the present location
(short name: hold).

Intercept: without any argument, instructs the executor to actively intercept the ball
(short name: intercept).

3.1 Framework Description 27

Tackle: takes an (opponent) player reference as argument, which presumably holds the
ball and should be tackled by the executor (short name: tackle).

There was, however, the need to introduce several new actions, to cope with needs in
the different leagues to which the Framework was applied:

Action Sequence: composite action, with unspecified number of arguments, where sev-
eral actions are to be executed following a particular order.

Stop: action with no arguments, to force a robot to stop, especially important for robots
moving fast and/or with high inertia (short name: stop);

Attention to Region or Object: two different actions, with either a Region or Object as
argument, to instruct a robot to keep attention on the argument (short names: atten-

tionToReg and attentionToObj). In the Framework, an Object represents any phys-
ical object present on the field, such as the goals, the ball or players, as pictured in
Fig. 3.4 .

MarkGoal: action with no arguments, orders the robot to position itself close to the own
goal, in order to avoid opponent goals, may be especially important when Goalie is
not present or is malfunctioning (short name: markGoal).

ReceiveBall: action with no arguments, informs the robot that the ball will be passed to
it, in order for it to be able to position itself properly, and possibly perform an active
reception (short name: receiveBall).

Move To Offside Line: action with an optional decimal as argument, instructs the robot
to move rapidly towards the opponent offside line to the y-coordinate matching the
argument, to prepare the interception of the ball when it is passed to the back of
the opponent defense. This action is important to allow the player performing this
action to find itself isolated behind the opponent defense (short name: moveToOff-

SideLine).

Both Action Sequence and the actions to focus attention on an object or region and
to mark the goal were introduced with no specific league in mind: such abstract actions
might be necessary in particular Setplays, e.g. when a robot does not have omnidirectional
vision available and needs to know the positioning of an object or the vacancy of an
area. Actions to receive the ball and to stop were deemed necessary when applying the
Framework to the middle-size league team CAMBADA: on the one hand, the reception
of passes is a considerably precision-demanding task, that needs active positioning and
controlling of the ball handler, while, on the other hand, when a robot is actively moving,

28 Setplay Framework

ObjectStaticObject MobileObject

OppGoal CornerFlag OwnGoal

...

Ball Referee PlayerReference

Figure 3.4: Object definition

it needs to be instructed to stop, or else the robot will continue moving due to inertia. The
action to move to the offside line only makes sense in leagues where there is a Offside
rule. This is the case in the 2D Simulation league, and such an action might be profitably
used in Setplays.

As argued, some actions are relevant only to particular leagues, and might be ignored
in leagues where they do not apply or are not meaningful. Since the Framework was
designed to apply to different leagues, this design option was taken, as it is a way to
allow the Framework’s application to all leagues without any change. In cases when an
action should not be used, an option that should be taken by the developer in charge of
the application, the action can simply be ignored and not implemented, as long as it is
checked that the action is not used in actually executed Setplays.

3.1.2 Conditions

The concept of Condition, already mentioned before, also plays a central role, and is
depicted as an UML class diagram in Fig. 3.5. Such Conditions have a wide field of
application, and deal with the whole domain of robotic soccer. Similarly to the Actions,
the basic Conditions in this framework were inspired in Clang. Examples of such Condi-

tions are players and ball being in particular positions or regions, ball ownership and play
mode. These elementary conditions, and their arguments, can be described as follows:

Player Position: takes a list of player references, a region and a minimum and maximum

as arguments, and succeeds if, from the player list, there are at least minimum and
at most maximum players located in that region (short name ppos).

Ball Position: takes a region as argument, and succeeds if the ball is located in that region
(short name bpos).

3.1 Framework Description 29

PlayerReference

min:PosInt
max:PosInt

PlayerPosition

player
1

1..*

Region
1

1

BallOwner

player

1

1

ClearPass

from

1

1

ClearPassToRegion
to1 1..*

ClearPassToPlayer

to

1

1..*

And

Or

Not

playMode
PlayMode

ClearShotAtGoal

BPos

11

Condition

*1

*
1

1

1

number: PosInt
logicOp

OurGoals
number: PosInt
logicOp

GoalDiff

number: PosInt
logicOp

OppGoals

NearOffsideLine

Figure 3.5: Condition definition

Ball Owner: takes a list of player references as argument, and succeeds if one of these
players has ball possession (short name bowner).

Play Mode: takes a token representing a play mode as argument, and succeeds if that is
the current play mode (short name playm).

Time: takes a comparison operator and a number as arguments, and succeeds if the com-
parison of current time with the numeric argument complies to that logical operator
(short name time).

Opponent Goals: takes a comparison operator and a number as arguments, and succeeds
if the comparison of the opponent’s score with the numeric argument complies to
that logical operator (short name opp_goals).

Our Goals: takes a comparison operator and a number as arguments, and succeeds if the
comparison of the own score with the numeric argument complies to that logical
operator (short name our_goals).

Goal Difference: takes a comparison operator and a number as arguments, and succeeds
if the comparison of the score difference with the numeric argument complies to
that logical operator (short name goal_diff).

30 Setplay Framework

And, Or and Not: take other conditions as arguments (singleton condition in the case of
not) and have the usual meaning for these logical operators (short names and, or

and not).

In the Setplay application domain, however, several new Conditions had to be intro-
duced, in order to model complementary situations. Particularly, some Conditions refer
to the possibility of accomplishing passes and shots, i.e., modeling the success of passes
to players and regions, and shots at goal. One should pay special attention to this kind of
Conditions: they are not based on a verifiable State-of-the World, but instead are an esti-
mation of a success probability. This could be considered as intrinsically different from
Conditions like player position, which are tangible and verifiable. Even these Conditions

are, though, in the scope of robotic soccer, also somehow an estimation: the players do
not know the exact State-of-the-World, they simply have their own estimation, built from
own observation and, possibly, from information shared by other team-mates. Therefore,
for the sake of simplicity and expressiveness, all these concepts are indistinguishably
considered Conditions. The newly introduced Conditions, also visible in Fig. 3.5, are as
follows:

Clear Shot at Goal: takes a list of player references as argument, and succeeds if one of
these players is in a good position to shoot at goal with a high success probability
(short name canShoot).

Clear Pass to Player: takes two lists of player references as argument (from and to), and
succeeds if one of the players in from is in a good position to pass the ball to one,
or more, of the players in to (short name canPassPl).

Clear Pass to Region: takes a list of player references and a region as arguments, and
succeeds if one of these players is in a good position to forward the ball to that
region (short name canPassReg).

Near Offside Line: takes a list of player references as argument, and succeeds if one, or
more, of these players is near the opponent’s offside line (short name nearOffside-

Line).

Some of the defined Conditions are very straightforward to check, e.g. those regarding
the score and time, while others are league-specific and somehow more fuzzy, like ball
possession and pass possibility. As such, some of these Conditions will have to be im-
plemented specifically for each team and league, while others can be checked by simply
evaluating basic information in the State-of-the-World. The Conditions that actually need
to be implemented when applying the Framework to a team are cited in section 3.4.

3.2 Inter-robot Communication 31

3.1.3 Regions

Regions are another concept in the core of the definition of Setplay, and are depicted in
the diagram in Fig. 3.6. The definition of these concepts originates from Clang, including
spatial entities like Points, Triangles, Arcs and Rectangles. Similarly, the concept of
Dynamic Point, referring to the location of a player or of the ball, is also introduced.
Named regions were added to the Framework, in order to model intuitive locations like
’our mid-field’ or ’their penalty box’, with names inspired by the ones defined in Reis and
Lau (2002).

RegionLineOffsideLine

DefenseLine

PointPointVar

DynamicPoint

BallPos

PlayerPos PlayerReference11

Rect

Tri

1

2
1

3
radius_small:Decimal
radius_large:Decimal
angle_begin:Angle
angle_span:Angle

Arc

11

Union

*

1

name:String
RegVar

Figure 3.6: Region definition

3.2 Inter-robot Communication

The major issue in this framework was how to achieve coordination between the robots
when executing a Setplay. The Setplay Framework application scenario considers that all
players in the team know the available Setplays. In practice, though, a complex Setplay

must follow several steps, and all participating players must be minimally synchronized in
order to achieve fruitful cooperation. The first step towards this objective was to define a
communication and synchronization policy, which should be as straightforward as possi-
ble, and can be seen in Fig. 3.7. This figure depicts the protocol that guides the interaction
between the participants in a Setplay.

32 Setplay Framework

leadPlayer: Player

alternative

participant1: Player

startSetplay(setplayID,
participants, parameters)

abort

participantN: Player

startSetplay(setplayID,
participants, parameters)

abort

finish

finish

stepMessage(currentStep,nextStep)

stepMessage(currentStep,nextStep)

Figure 3.7: Setplay interaction scheme

3.2 Inter-robot Communication 33

Setplay start is decided by one of the participating agents (a player, or, e.g. the coach,
depending from the team’s application policy), and communicated to the other partici-
pants through an InitMessage, which has three different parts:

1. the identification of the Setplay being started, through its numeric id;

2. the specification of the participating players, which will instantiate the Setplay’s
roles, through their player numbers;

3. the value of all the other parameters present in the Setplay’s definition.

To illustrate this kind of message, one can look at an example of a Setplay, whose
identification number was 4, in which three players participated and which had an integer
as sole argument. In order to instantiate such a Setplay, one possible InitMessage would
be:

(startSetplay :setplayID 4 :participants 2 3 4 :parameters 8)

This message indicates players 2, 3 and 4 as the participants, and 8 the value of the
single parameter. In settings where the bandwidth is limited, it is possible to write this
kind of message in a more concise format, as follows: S4 2 3 4 8.

After Setplay start, each step will be managed by the so-called lead player, which
takes the most important decisions. This player, which is possibly not fixed throughout the
Setplay, and can thus change from step to step, will monitor the execution of the Setplay,
instructing the other players on step entry and transition choice, through StepMessages,
which must contain two integers. The entry into a new step, which is decided by the
lead player in charge of the previous step, possibly implies the change of the lead player,
depending on Setplay definition. Using some more examples, a message to indicate that
Setplay execution’s current Step is identified by 3, and that the nextStep has already been
chosen, and is number 4, would be as follows:

(stepMessage :currentStep 3 :nextStep 4)

In a shorter format, the message could also be expressed as simply as ”3 4”. If the
nextStep was not chosen yet, the second element of the message would be -1. When the
Setplay reaches a successful finish, or is aborted, the current Step in the message will
be number -1, while the nextStep will be 1 if the Setplay was successful, and -1 if it was
aborted. These messages allow all players to be informed of the Setplay’s outcome, which
is important information for Setplay evaluation.

Details on the application of this communication protocol can be seen in the exam-
ple described in section 3.7. The format and encoding of the messages is not dictated

34 Setplay Framework

by the Framework, as different application settings and the teams’ options may influence
the actual communication procedure. The Framework does, though, supply a class that
models the different messages, and provides methods both to access the messages’ ele-
ments and to output it as text. It is up to the user/developer in charge of the Framework’s
application to choose the best way of transmitting the messages. The applications of the
Framework described in chapter 5 show that the messages’ transmission can be done in
different ways: as server-managed communication in the 2D Simulation league, and using
the team’s black-board in the Middle-size league, in the case of the CAMBADA team.

3.3 Practical Application and Usage profiles

When applying the Framework to a team, there are three different tasks that must be exe-
cuted to accomplish Setplay execution: Setplay selection, Action selection and execution,
and Communication management.

As this Framework was designed to be used in different environments, teams and
leagues, it may happen that the integration in the existing code is done in different ways,
to ease adaptation and avoid any type of redesign of the existent code. Thus, for two
of the previously mentioned tasks, there will be alternate usage profiles. The ultimate
goal was to keep the Setplay Framework as modular and encapsulated as possible, which
would bring two major advantages to the person doing the code integration, which will
from now on be called user/developer: abstraction from the Framework’s implementation
details and flexibility while integrating the Framework in any previously existent code.

Two particular aspects of the code integration are subject to flexible usage: Setplay
selection and activation on one side, action selection and execution on the other. These,
as well as Communication management, will be the subject of the next sections.

3.3.1 Setplay selection

The way Setplays are chosen depends heavily on the user/developer’s options: the Frame-
work supplies a tool to help with this task, but it always remains the possibility that the
user/developer prefers to make his own choice. This CBR-based tool, described fully in
section 4.2, is available as a method of the Framework’s class ’SetplayManagerWithCBR,
and can be seen pictured in Fig. 3.8.

3.3 Practical Application and Usage profiles 35

participatingPlayersDistanceFromMe
:vector<unsigned int>

participatingPlayersDistanceFromPositions
:vector<unsigned int>

participatingPlayersDistanceFromPosAsArg
:vector<unsigned int>

participatingPlayersGlobalDistanceFromPositions
:vector<unsigned int>

participatingPlayersGlobalDistanceFromPosAsArg
:vector<unsigned int>

deepCopy(): Setplay
inversion(): Setplay

SetPlay
feasibleSetplays():vector<Setplay>
activateSetplay(InitMessage):void
possibleActions():vector<vector< Action>>
possibleTransitions():vector<Transition>
chosenAction(unsigned int):void
chosenTransition(unsigned int):void
currentAction():Action
currentPositioning(unsigned int): Point
isSetplayActive(): bool
playerParticipates(): bool
willCommunicate(): bool
messageToSend(): SetplayMessage
processReceivedMessage(SetplayMessage):void

SetplayManager

autoActivateSetplay(): bool
SetplayManagerWithCBR

*1

Figure 3.8: Setplay Manager

3.3.1.1 External selection

If the user/developer wishes to perform this choice autonomously, outside the scope of
the Framework, he may call the method to check which Setplays are feasible (feasible-

Setplays), and subsequently instantiate one of these through the corresponding method
(activateSetplay), which accepts an InitMessage (see section 3.2) as the sole argument.

Among these arguments there will certainly be the Setplay’s participants. These have
to be chosen, by the user/developer, in order to instantiate the Setplay. To assist this
choice, the Framework supplies several tools, which are described in detail in section
4.1.2.

Besides the selection of players, any other parameter in the Setplay must be externally
selected, and also sent as a argument. The Framework does not provide any tools for
aiding the choice of these parameters.

3.3.1.2 Automatic selection

The user/developer may also choose to let the Framework take care of all the tasks nec-
essary for Setplay selection, instantiation and start. With these functionalities in mind,
a system inspired by Case-based Reasoning (CBR) was developed, which stores infor-
mation about Setplay execution and the corresponding success or failure. This system is
described in detail in section 4.2. If at a given moment in the game one or more Setplays
are feasible, this system will select the Setplay with the best evaluation. The evaluation
depends on prior success of the Setplay, both in this game and previous ones. This can be
done through the invocation of method autoActivateSetplay.

36 Setplay Framework

In this case, participating players are automatically chosen according to the distance
from their positions to the Setplay’s initial positions. Since there is no way of selecting
other Setplay parameters, these are not permitted to exist in this scope. Thus, for au-
tomatic selection of Setplays, one can only consider Setplays with no other parameters
besides participants.

3.3.2 Action selection and execution

When a Setplay is running, a player executing it will want to have the necessary actions
executed. Depending on the user/developer’s options, the player might also want to select
what action to perform, when there is more than one available. Is this scope there are
two different usage profiles: one is automatic, the other relies on external selection of
alternatives. This option is fully independent from the one taken for Setplay selection and
activation.

3.3.2.1 Automatic action selection and execution

From the point of view of the user/developer, this option is like a black box: execution
of actions, any inherent choices and Setplay management are done automatically, without
any external intervention. In this profile, the Setplay Framework does all the choices and
executes the actions without any intervention from the user/developer. This profile is thus
probably the easiest to adapt to a new team, since the user/developer only needs to make
sure that, at some point where an action should be executed, he calls a general method
(executeSetplay). This method invocation instructs the Setplay to update it’s internal state
and execute any necessary action.

3.3.2.2 External selection and execution of actions

In this profile, one can keep more control over the execution of Setplays, since the user/de-
veloper has to choose among alternative actions or transitions; he must also explicitly
order the execution of any necessary action; and, finally, he can execute complementary
tasks, such as positioning itself, when there are no explicit actions to execute.

The price of this rise in control level is that the management of internal state update,
alternative choice and action execution have to be explicitly invoked. Specifically, some
tasks must be taken care of, to ensure proper Setplay execution:

1. Update internal state: each time an action is to be executed, the Setplay’s inter-
nal state must be updated, because changes in the State-of-the-World might imply
changes in the Setplay, like Step changes or Setplay ending. Therefore, before the

3.3 Practical Application and Usage profiles 37

execution of each Step, the corresponding method (updateInternalState) should be
invoked.

2. Choice among alternatives: the Framework allows a Step to have alternative tran-
sitions, either to other Steps or to Setplay ending (abort or finish). When more than
one Transition is available, a choice between the existing alternatives must be made.
The possible actions or transitions can be accessed through dedicated, alternate
methods (possibleActions, which returns all possible Actions in a vector, and possi-

bleTransitions, whose value is a vector of Transitions). These alternative methods
are complementary, and can be used freely according to the user/developer’s choice:
the vectors returned will always have the same size, and they only differ in the con-
tent of the vector, as the first option only contains Actions, while the second contains
Transitions. This option is offered to the user/developer because in some cases (as
was the application of the Framework to the middle-size team CAMBADA) it is a
special agent (the team’s coach) that makes this kind of decisions, and it never ex-
ecutes any actions, since it is an intangible agent with no physical existence. After
having evaluated these alternatives, and consequently having chosen one of them, a
method must be invoked to inform the Framework of this choice (chosenAction or
chosenTransition, depending on which of the previous methods was used).

3. Execute the necessary action: when an Action is to be executed in order for the
Setplay to progress (which can be checked by invoking the method currentAction),
then the user/developer must make sure that it is effectively executed.

4. Optional tasks: besides the execution of actions, the user/developer he may choose
to perform other complementary tasks to enhance the execution of Setplays. He
may, for instance, ensure that the player, when possible, moves to the current Set-
play position (accessible through method currentPositioning), or control the look-
ing direction, pointing it e.g. to a relevant player (which is tentatively determined
by the method relevantPlayers of class Action).

3.3.3 Communication management

The joint execution of Setplays by a set of agents demands that the participants are min-
imally synchronized, which is a complex task in an open environment such as robotic
soccer. Even though all players know all Setplays definitions, it has somehow to be as-
sured that agents know at which Step the Setplay is at any given moment, as this will
dictate which actions must be executed, as well as the players positions.

38 Setplay Framework

Since perception is very unreliable in such a dynamic world, communication must
be used to ensure the necessary amount of shared knowledge and synchronization, as
described in section 3.2. The agents must, as seen in that section, be able to exchange
Setplay-related messages. To help accomplishing this task, the Framework provides three
simple tools, available as methods, and depicted in Fig. 3.8:

Need to communicate: to check if the agent should send a message to its teammates at
the present moment, it should use the corresponding boolean method (short name
willCommunicate). In this situation, the user/developer should ensure the sending
of the necessary message, as returned by the next method.

Message needing to be sent: if there is the need to communicate, the relevant message
is returned by the method messageToSend.

Process received Message: on the side of the message receivers, each time a new mes-
sage is received, its content should be made known to the Framework, through
the invocation of method processReceivedMessage, which is available both with a
string and a message as argument.

In this case of Communication management, the need to offer alternative usage pro-
files was not deemed necessary, and thus a single set of tools is offered to the user/developer.

3.3.4 Summary

The Framework was developed to be used with possibly different profiles, in order to
make the integration in previously existent code easier. There are two subjects where the
usage of the Framework can be done in different ways: Setplay selection and activation,
and Action selection and execution. In both cases, the Framework provides tools for
a automatic execution, or for a more detailed and interactive deployment. It is up to the
user/developer to choose the option that best fits his needs. The choice in Setplay selection
is independent from the one in action selection and execution.

3.4 Wrapper classes

The Setplay framework aims at being applied to different teams and leagues. The frame-
work was thus designed in a modular and easy to integrate way.

One important issue is that, while being used, the Framework, depending on the way it
is used and according to the usage profiles described previously, will need to gain access
to some of the league-specific features: it will need to be able to evaluate Conditions, e.g.,

3.4 Wrapper classes 39

to check if a Setplay is feasible by evaluating its pre-conditions, and it might also need
to order Actions to be executed, when actually running a Setplay. This was seen in more
detail in the previous section.

The Framework was thus designed with two wrapper classes, upon which the execu-
tion of Setplays depends. These are two abstract classes, which must be implemented by
the user/developer with league and team specific code, in order for the Setplay Framework
to be able to properly perform in this environment.

These two abstract classes are called Context and Action::Executor. The first one
should encapsulate code that models the State-of-the-World, and must be able to evaluate
the existing Conditions. This abstract class has thus a method, lookup, with signatures
accepting as arguments all the possible Conditions. This way, when the Framework is
for instance evaluating a Setplay’s pre-conditions, it will be able to ground these abstract
concepts and, e.g., be able to lookup if some player has ball possession, or if the team has
scored more than two goals.

The Context class also has some methods to check elementary data about the game,
such as positions of ball and players, field dimensions and game time. This information
is frequently used in Setplay management, and must therefore be available at any time.

As for Action::Executor, it is also an abstract class and, as the name suggests, it should
execute actions, thus encapsulating the code that is able to execute all the available ab-
stract Actions.

To better characterize these two classes, the UML diagram in Fig. 3.9 was drawn.

lookup(CondBallOwner): bool
lookup(CondClearShotAtGoal): bool
lookup(CondClearPassToPlayer): bool
lookup(CondClearPassToRegion): bool
lookup(CondTime): bool
lookup(CondOppGoal): bool
lookup(CondOurGoal): bool
lookup(CondGoalDiff): bool
lookup(CondNearOffsideLine): bool
time(): double
ballPos():Point
playerPos(PlayerID):Point
numPlayersPerTeam():int
fieldLength():double
fieldWidth():double
playMode():PlayMode
opponentName():String

Context
execute(ActPos):void
execute(ActForward):void
execute(ActPass):void
execute(ActMark):void
execute(ActMarkLinePlayer):void
execute(ActMarkLineReg):void
execute(ActDribble):void
execute(ActOffsideLine):void
execute(ActClear):void
execute(ActShoot):void
execute(ActHold):void
execute(ActIntercept):void
execute(ActTackle):void
execute(ActSeq):void
execute(ActStop):void
execute(ActAttentionToReg):void
execute(ActAttentionToObj):void
execute(ActMarkGoal):void
execute(ActReceiveBall):void
execute(ActMoveToOffsideLine):void

Action::Executor

Figure 3.9: Context and Executor Wrapper classes

40 Setplay Framework

3.5 Operations on Setplays

In the previous section, the concepts pertaining to the domain of Setplays were introduced.
With these, it is possible to describe a Setplay as a small plan involving several players,
that follow steps according to the Setplay definition.

In order to use these Setplays in a real soccer playing environment, some operations
were defined to ease their application. The present section describes in detail the main
operations available, whose integration in classes can be seen in Fig. 3.8. Some of these
operations were mentioned before, but will be looked upon here once more, to better
characterize their integration in the available classes.

3.5.1 Setplay management

Typically, a team using this framework will have a set of Setplays active in a game. These
Setplays need to be managed in some way. To cope with this need, the class SetplayMan-

ager was created. This class will store the library of Setplays, and offer some helpful
operations, provided as methods of this class:

activateSetplay: when a player receives a Setplay activation message (InitMessage, see
details in section 3.2), it must call this method, with the message as argument. The
method will deal with the message and, if the player is in the Participant list, will
activate the selected Setplay accordingly.

feasibleSetplays: at any point during the game, this method, with the Context as argu-
ment, can be used to check for Setplays that are feasible at that moment.

isSetplayActive: checks if there is any Setplay being executed.

playerParticipates: checks if the (self) player participates in the Setplay being executed.

Several other methods were created to ease the management of Setplays, and also to
allow debugging procedures, but they are too numerous to be described here, and thus
the interested reader is recommended to look at the documentation available within the
source code.

3.5.2 Setplay duplication

The class SetplayManager keeps a library of available Setplays, which can be consulted
and tested for feasibility, as described in the previous section. After the decision of starting
a Setplay, it does still have to be instantiated, i.e., its arguments (namely the participants)

3.6 Setplay Language 41

must be given some value. Since this instantiation is only valid while the Setplay is
being executed, it was considered wiser to create a copy of the stored Setplay and only
instantiate that copy. This way, after that Setplay is finished or aborted, it can simply be
discarded.

Setplays can have varying number of components, like Steps, Participants or Con-

ditions, which led these components to be designed making use of dynamic data types
(pointers), thus needing special care when being duplicated. This operation is done by the
method deepCopy of class Setplay. Similar methods will be called on all Setplay com-
ponents, assuring that a clean copy, with no shared memory, is created. Such a copy can
safely be instantiated, without compromising the original definition.

3.5.3 Setplay inversion

Some Setplays are designed in a way that makes them valid only on one side of the
field. As an example, a Setplay for playing a kick-in on the left side of the pitch may
require a second player some distance to the right of the ball. Such a Setplay could
theoretically also be used for kick-ins on the right side of the pitch, but that same second
player would have to position itself to the left side of the ball instead. The whole Setplay
could thus be labelled as invertible, which would mean it could be subject of a operation
of inversion. Such operation will create a new, independent Setplay, and is performed
by the method inversion (with no arguments), that will mirror all spatial references and
offsets with respect to the x-axis. This operation will also change both the Setplay name,
adding a ’_inv’ suffix, and its id, which will be inverted to a negative integer.

This operation will also have to be operated on all Setplay components, since Steps

and Conditions like ball position may also contain spatial references. The operation will
thus be performed in cascade, from the upper level, through all Steps, down to the deepest
components.

3.6 Setplay Language

Setplays are meant to be freely definable through text files that can be read upon agent
launching. To accomplish this goal, Setplays must have a defined syntax on which to base
both the writing of Setplays and the parser which will load them. In order to keep this
syntax familiar to the RoboCup community, it was based on s-expressions (Rivest, 1997),
which are already the building blocks of the communication language with the server and
with the coaching language, both from the Soccer Simulation 2D league.

42 Setplay Framework

The syntax of this Setplay definition language, written as a set of BNF statements
(Naur et al., 1960), is included bellow. In terms of BNF syntax, terminal symbols are in
regular type, non terminals in italics between the ’<’ and ’>’ symbols, and BNF specific
symbols in bold, with the following definitions being used:

::= : definition;

| : alternative;

? : 0 or 1 occurrences of the previous term;

* : any amount of occurrences of the previous term;

+ : 1 or more occurrences of the previous term.

Some comments will be inserted amidst the text to clarify some options. Generally
speaking, the language tried to use the concepts already present in CLang (Chen et al.,
2003), the standard coach language in the 2D Simulation league. In some cases, though,
practical experience showed that additional concepts were necessary, which were added
to the language.

In general terms, one should emphasize the following options:

• All references to players are done through the type PLAYER_REFERENCE;

• All operators (+, -, *, /, ==, !=, <, <=, >, >=) are prefix;

• Arguments of objects and functions have added labels, prefixed by a colon (e.g.
:label);

• All lists are built through the s-expression with the functor list , like, e.g., (list

<args>).

At general level, one will consider a Setplay a conjunction of a Parameter list, a Player

Reference list, an Abort Condition and a Step list, along with the Setplay’s name and id,
and indication if it is invertible.

<SETPLAY>::= (setplay :name <CLANG_STR> :id <INTEGER>

:invertible <BOOL> <PLAYER_REFERENCE_DEFINITION_LIST>

<PARAMETER_DEFINITION_LIST>?

:abortCond <CONDITION> <STEP_LIST>)

Parameters will be characterized by their name and type. The available types are only
numbers and spatial entities (points and regions).

3.6 Setplay Language 43

<PARAMETER_DEFINITION_LIST>::=

:parameters (list <PARAMETER_DEFINITION>+)

<PARAMETER_DEFINITION>::= (parameter :name <VAR> :type <TYPE>)

<TYPE>::= integer | decimal | region | point

Players can be referred to in two different ways: either through a full identification
by team and jersey number, or through the name of the role they will play in the Setplay.
When in the scope of the parameter definition, the full syntax of player roles and player
identification must be employed, as defined in PLAYER_REFERENCE_DEFINITION. In
other situations, inside the Setplay definition, player roles can simply be referred to by
their names, as per PLAYER_REFERENCE definition.

<PLAYER_REFERENCE_DEFINITION_LIST>::=

:players (list <PLAYER_REFERENCE_DEFINITION>+)

<PLAYER_REFERENCE_DEFINITION>::= (playerRole :name <VAR>)

| (player :team <TEAM> :number <PLAYER_NUM>)

<TEAM>::= our | opp

<PLAYER_NUM>::= [0-9] | 10 | 11

<PLAYER_REFERENCE_LIST>::= (list <PLAYER_REFERENCE>+)

<PLAYER_REFERENCE>::= <VAR>

| (player :team <TEAM> :number <PLAYER_NUM>)

Steps are, as said before, the main building blocks of Setplays, where they represent
intermediary stages in Setplay execution. As such, Steps must be precisely characterized.
Their id allows Steps to be referred in Transitions from other Steps. WaitTime represents
the time that needs to elapse before trying to transition to another Step, while abortTime is
the time after which the Setplay is to be aborted if no transition to another Step is possible.
Both time intervals must be non-negative integers. The condition must be satisfied before
entering the Step. The Step also contains a list of Participants and Transitions, described
hereafter.

<STEP_LIST>::= (list <STEP>+)

<STEP>::= (step :id <NON_NEG_INTEGER>

:waitTime <NON_NEG_INTEGER> :abortTime <NON_NEG_INTEGER>

:participants <PARTICIPATION_LIST> :condition <CONDITION>

:transitions <TRANSITION_LIST>)

44 Setplay Framework

A Participation identifies a player that takes part in the Step, and may optionally also
determine the player’s desired location for this Step, which shall be done through the
usage of the ’at’ functor.

<PARTICIPATION_LIST>::= (list <PARTICIPATION>+)

<PARTICIPATION>::= <PLAYER_REFERENCE>

| (at <PLAYER_REFERENCE> <REGION>)

Transitions are the options to move from one Setplay Step to another (through nextStep),
or to finish or abandon Setplays. In the case of transitions to other Steps, a list of Direc-

tives can be used to determine the actions the player should execute, in the case of the Do

directive, or avoid to execute, in the case of Dont.

<TRANSITION_LIST>::= (list <TRANSITION>+) | <TRANSITION>

<TRANSITION>::= <NEXT_STEP> | <FINISH> | <ABORT>

<NEXT_STEP>::= (nextStep :nextStepNumber <NON_NEG_INTEGER>

:condition <CONDITION> :directives <DIRECTIVE_LIST>)

<FINISH>::= (finish :condition <CONDITION>)

<ABORT>::= (abort :condition <CONDITION>)

<DIRECTIVE>::= (<DIRECTIVE_NAME> :players <PLAYER_REFERENCE_LIST>

:actions <ACTION_LIST>)

<DIRECTIVE_NAME>::= do | dont

<DIRECTIVE_LIST>::= (list <DIRECTIVE>+)

Actions, in the scope of the Setplay Framework, represent abstract concepts that model
the different high-level behaviors a player might need to execute. To keep the maximum
compatibility with previously existing concepts, all the actions defined in CLang (Chen
et al., 2003) were imported, with similar meanings and syntax. Some new actions had,
though, to be introduced, in order to deal with necessities not covered by the original set
of actions, as seen in section 3.1.1. These were the following:

receiveBall : receive a pass from another player, which is, implicitly, the ball owner.
Takes no arguments.

attentionTo(object or region) : direct visual and/or auditive attention to a particular ob-
ject or region, taken as argument.

seq : action sequence, is simply an aggregator of actions, that are given as arguments,
and should be executed sequentially.

3.6 Setplay Language 45

markGoal : position in a location suitable for avoiding opponent shots to enter the goal.

moveToOffSideLine : move near the offside line, avoiding at the same time to cross it.
The argument indicates the y-coordinate of the desired location.

stop : stop as quick as possible, making sure that any remaining inertia is adequately
counter-balanced.

<ACTION>::= (pos :region <REGION>)

| (bto :region <REGION>)

| (bto :players <PLAYER_REFERENCE_LIST>)

| (mark :players <PLAYER_REFERENCE_LIST>)

| (markl :players <PLAYER_REFERENCE_LIST>)

| (markl :region <REGION>)

| (markGoal) | (oline :region <REGION>)

| (clear :region <REGION>) | (hold)

| (dribble :region <REGION>) | (shoot)

| (tackle :players <PLAYER_REFERENCE_LIST>) | (intercept)

| (receiveBall) | (stop) | (attentionTo :region <REGION>)

| (attentionTo :object <OBJECT_LIST>)

| (moveToOffSideLine :y <DECIMAL>) | (seq <ACTION>+)

<ACTION_LIST>::= (list <ACTION>+) | <ACTION>

Objects are further characterized as being mobile or static, and can include all the
agents (human and robotic) as well as passive objects that can be possibly located on the
pitch. Static objects are not yet exhaustively defined.

<OBJECT_LIST>::= (list <OBJECT>+) | <OBJECT>

<OBJECT>::= <STATIC_OBJECT> | <MOBILE_OBJECT>

<STATIC_OBJECT>::= <POST> | <FLAG> | ...

<MOBILE_OBJECT>::= (ball) | <PLAYER_REFERENCE> | (referee)

Conditions were originally based on CLang, similarly to Actions, and more details
about these can be found in section 3.1.2. In this case, though, to better tune the some
specific situations, several new Conditions had to be created, as follows:

canPassPl: check if some player in the from list can execute a pass to some player in the
to list.

canPassReg: check if some player in the from list can execute a pass to the region given
as the to argument.

46 Setplay Framework

canShoot: check if some player in the players list can shoot at goal.

nearOffsideLine: check if some player in the players list is near the offside line, for
situations where a forward behind this line is to be done.

Conditions regarding score and time are done through dedicated keywords and the
usual comparison operators.

<CONDITION>::= (true) | (false)

| (ppos :players <PLAYER_REFERENCE_LIST> :min <INTEGER>

:max <INTEGER> :region <REGION>)

| (bpos :region <REGION>)

| (bowner :players <PLAYER_REFERENCE_LIST>)

| (playm <PLAY_MODE>)

| (canShoot :players <PLAYER_REFERENCE_LIST>)

| (canPassPl :from <PLAYER_REFERENCE_LIST>

:to <PLAYER_REFERENCE_LIST>)

| (canPassReg :from <PLAYER_REFERENCE_LIST> :to <REGION>)

| (nearOffsideLine :players <PLAYER_REFERENCE_LIST>)

| (and <CONDITION_LIST>)

| (or <CONDITION_LIST>)

| (not <CONDITION>)

| (<COND_COMP>)

<COND_COMP>::= <TIME_COMP>

| <OPP_GOAL_COMP>

| <OUR_GOAL_COMP>

| <GOAL_DIFF_COMP>

<TIME_COMP>::= (time <COMP> <INTEGER>)

<OPP_GOAL_COMP>::= (opp_goals <COMP> <INTEGER>)

<OUR_GOAL_COMP>::= (our_goals <COMP> <INTEGER>)

<GOAL_DIFF_COMP>::= (goal_diff <COMP> <INTEGER>)

<COMP>::= < | <= | == | != | >= | >

<PLAY_MODE>::= bko | time_over | play_on | ko_our | ko_opp

| ki_our | ki_opp | fk_our | fk_opp | ifk_our

| ifk_opp | ck_our | ck_opp | gk_opp | gk_our

| gc_our | gc_opp | ag_opp | ag_our

<CONDITION_LIST>::= (list <CONDITION>+)

Regions model sections of the pitch, and are organized around the usual concepts of
arcs, triangles and rectangles. In order to use names commonly used for well known
regions, a new region type was added (Named_Region), which may have a wide range of
pre-defined values, inspired in part by the ones defined by Coach-Unilang (Reis and Lau,

3.7 Setplay Example 47

2002). Several other areas, partitioning the whole field, were created to be used under the
scope of the Setplay selection tool, and more details on these are given in section 4.2.1.

As for points, there is a wide number of different operators to refer to static and dy-
namic points, as well as to perform some operations, namely translations, on these.

<REGION>::= <VAR> | (regVar :name <CLANG_STR>)

| (regVar :name <CLANG_STR> :value <REGION>)

| <POINT> | (regNamed :name <REGION_NAME>)

| (arc :center <POINT> :radius_small <REAL>

:radius_large <REAL> :angle_begin <REAL> :angle_span <REAL>)

| (triang :points (list <POINT> <POINT> <POINT>))

| (rec :points (list <POINT> <POINT>))

<REGION_NAME>::= field | outside | our_middle_field |

their_middle_field | left | right | far_left |

mid_left | centre_left | centre_right |

mid_right | far_right | our_back |

our_middle | our_front | their_back |

their_middle | their_front |

sl_1 | sl_2 | sl_3 | sl_4 | sl_5 | sl_6 |

sl_7 | sl_8 | sl_9 | sr_1 | sr_2 | sr_3 |

sr_4 | sr_5 | sr_6 | sr_7 | sr_8 | sr_9 |

our_penalty_box | our_goalie_area |

their_penalty_box | their_goalie_area

<POINT>::= <VAR> | (ptVar :name <CLANG_STR>)

| (ptVar :name <CLANG_STR> :value <POINT>)

| (pt :x <REAL> :y <REAL>) | (pt ball)

| (pt :player <PLAYER_REFERENCE>)

| (ptRel :x <REAL> :y <REAL> :pt <POINT>) | (<POINT_ARITH>)

<POINT_ARITH>::= (<OP> <POINT> <POINT>)

<OP>::= + | - | * | /

<REGION_LIST>::= (list <REGION>+)

<CLANG_STR>::= "[0-9A-Za-z().+-*/?<>_]+"

<VAR>::= [A-Z][a-zA-Z0-9]*

3.7 Setplay Example

In this section, a simple example is presented, to illustrate the actual definition of Setplays,
how the players (in this example, in the 2D Simulation league) deal with it, and how inter-
robot communication is deployed. The described Setplay was defined in a configuration

48 Setplay Framework

file, read upon player start-up, as seen in Fig. 3.10. The communication protocol and the
syntax of the deployed messages can be seen in section 3.3.3.

A situation where a Setplay can be properly used is the corner-kick: it is an offensive
situation close to the opponent goal and holes in the defense can be exploited. To keep this
example clear, a simple situation, with only three participants, will be described, and can
be seen in Fig. 3.11. This Setplay’s script is simple: there are three participating players,
with the corner kick taker placing itself near the ball, the shooter in front of the goal, and
another player, the receiver, between them. In Step 0, the ball is passed by the corner
kick taker to the receiver. Next, in Step 1, the receiver makes a second pass towards the
shooter. When this player gets ball possession, Step 3 is reached, and the ball is shot at
goal. Step 4 is reached if a goal is actually scored and the corresponding play mode is
reached.

One will now look at the Setplays execution with more detail, and elaborate on the
exchanged messages. The Setplay initiator triggers execution, by sending an instantiation
message, where S0 identifies the start of the chosen Setplay with number 0, representing
its identification number (id). In this case, the lead player is the corner kick taker nr. 10
(taking role cornerP), and the two other participants nrs. 7 and 11 (roles receiver and
shooter). This message can be constructed by creating a new object of the InitMessage

type. When converted to plain text, the message would be as follows:

(startSetplay :setplayID 0 :participants 10 7 11 :parameters)

In step 0 of the Setplay, the participating players reach their positions, after which the
cornerP tries to reach step 1, passing the ball to the receiver, as depicted in Fig. 3.11(a).
The figure shows some execution monitoring messages printed on top of the actual game,
which is possible with help of the FCPortugal debugger. One can thus see who the lead
player is trying to pass the ball to, and where it is looking at, which in this case typically
coincides. This phase of the Setplay’s execution would be signaled by a StepMessage,
which, in a textual representation, would look as follows:

(stepMessage :currentStep 0 :nextStep 1)

Upon gaining possession of the ball, receiver starts being the new lead player and
immediately sends a message to the other players, informing them that the Setplay is
currently in step 1, and that the receiver will try to reach step 2, as follows:

(stepMessage :currentStep 1 :nextStep 2)

3.7 Setplay Example 49

(setplay :name simpleCorner :id 3 :invertible true
:players (list (playerRole :roleName cornerP)

(playerRole :roleName receiver)
(playerRole :roleName shooter))

:steps (seq
(step :id 0 :waitTime 15 :abortTime 70

:participants (list (at cornerP (pt :x 52 :y 34))
(at receiver (pt :x 40 :y 25))
(at shooter (pt :x 36 :y 2)))

:condition (playm ck_our) :leadPlayer cornerP
:transitions (list

(nextStep :id 1 :condition (canPassPl
:from cornerP :to receiver)
:directives (list

(do :players cornerP
:actions (bto :players receiver))

(do :players receiver
:actions (receiveBall))))))

(step :id 1 :waitTime 5 :abortTime 70
:participants (list (at receiver (pt :x 40 :y 25))

(at shooter (pt :x 36 :y 2)))
:condition (and (bowner :players receiver)

(playm play_on))
:leadPlayer receiver
:transitions (list

(nextStep :id 2
:condition (canPassPl :from receiver

:to shooter)
:directives (list

(do :players receiver
:actions (bto :players shooter))

(do :players shooter
:actions (receiveBall))))))

(step :id 2 :abortTime 70
:participants (list (at shooter (pt :x 36 :y 2)))
:condition (and (bowner :players shooter)

(playm play_on))
:leadPlayer shooter
:transitions (list

(nextStep :id 3
:condition (canShoot :players shooter)
:directives (list (do :players shooter

:actions (shoot))))))
(step :id 3

:participants (list shooter) :condition (playm ag_our)

:leadPlayer shooter :transitions (list (finish)))))

Figure 3.10: Corner Setplay definition

50 Setplay Framework

(a) (b) (c)

Figure 3.11: Corner Setplay execution steps.

When the receiver verifies that it can make a pass to the shooter, it will do so, as
depicted in Fig.3.11(b). In this figure, the receiver is looking at the shooter in order
to accomplish a good pass, as it was the case in the precedent image. At this point of
execution, the receiver will try to pass the ball to the shooter, which will be signaled
through the following message:

(stepMessage :currentStep 2 :nextStep 3)

Finally, as soon as it considers that shooting at goal is possible, the shooter executes
the shot (see Fig. 3.11(c)) and moves to step 3, which simply finishes the Setplay. At this
moment, the shooter will send a message stating that it reached step 3, and that there is
no further step in the Setplay:

(stepMessage :currentStep 3 :nextStep -1)

3.8 Summary

This chapter presented the general design of The Setplay Framework, as well as its organi-
zation through concepts and related tools. Details were given on the underlying language
and the related communication model. As the Framework was designed to be used in

3.8 Summary 51

different teams, several usage profiles were envisaged. An example of a simple Setplay
was also presented to aid the understanding of the Framework’s functioning.

In the next chapter, the implementation of the Framework and its related tools is de-
scribed, while on the following, chapter 5, the application of the Framework to different
teams is looked upon in detail. The results of these application processes are considered
critically in chapter 6.

52 Setplay Framework

Chapter 4

Framework Implementation

The Framework’s outline and objectives, described in chapter 3, demand a modular com-
ponent to be developed, comprising all the data structures, algorithms and tools that will
support the definition and execution of Setplays. This module is meant to be applied to
arbitrary robotic soccer teams through an as simple as possible process.

This chapter will describe the development of the Framework module, and the related
tools. The next chapter, in turn, will describe the processes that led the Framework to be
applied to different teams, in the Simulation League, as well as in the Middle-size league.

4.1 Implementation of a C++ library

The Setplay Framework was, from the beginning on, intended to be applicable to different
teams and leagues: the Framework should be applied in different leagues and, further, it
should be possible to mix players from different originating teams in one single, mixed
team, through the execution of Setplays.

Since the initial implementation and testing were planned to be conducted on top
of the FCPortugal (Simulation) and CAMBADA (Middle-size) teams, both implemented
using C++, it was decided to develop a C++ library, with two goals: ease the application to
these teams, or any other implemented in C++; and maintain a common, stable framework
that would be applied to all teams.

The implementation intends to provide as much tools as possible, and therefore the
following features were developed:

Setplay definition parser Since Setplays can be freely defined according to the model
described in the previous chapter, or edited using a separate graphical tool (see
section 4.3), it was obviously necessary to develop a parser to load files and read
them into C++ objects. Details in section 4.1.1.

53

54 Framework Implementation

Setplay participants selection Alternative algorithms to select the Setplay’s participants,
according to their positions, have been developed. Details in section 4.1.2.

Setplay execution engine A Setplay execution is determined by its definition and real-
time instantiation. Therefore, the framework provides an execution engine to be
easily used, out-of-the-box. Details in section 4.1.3.

Setplay evaluation and selection At different moments in the game, one will need to
decide whether to start the execution of a Setplay, and choose the most appropriate,
when more than one is valid at the moment. With this purpose, a Case Based
Reasoning inspired tool was developed, and is described in section 4.2.

Setplay graphical editor To aid the definition of Setplays, and allow users to edit these
in a graphical environment, a stand-alone editor (SPlanner) was developed, which
assists the definition of Setplays through the positioning of players on the field and
the design of their moves and actions on the pitch. This tool is described in section
4.3.

With these tools, namely the Setplay evaluation and selection mechanism described
in section 4.2, a team using the Framework does not have to worry about the execution
details of a Setplay: it simply has to implement the abstract actions and conditions (see
next chapter), and create the necessary Setplays, eventually using the graphical editor
described in section 4.3.

The rest of this section will describe in more detail, but still from a high level point
of view, how the Framework was developed as a library and some of the more important
design options.

4.1.1 Setplay definition parser

Setplays were designed to be freely configurable and easily changeable. It was therefore
out of the question to let them be, somehow, hard-coded inside the agent, since that would
compromise these objectives. To accomplish these requirements, it was chosen to let Set-
plays be defined in an external configuration file, using a well established syntax, already
presented in section 3.6. This way, Setplays can be manually edited, or created through
the tool SPlanner, which saves them as text files.

This design option requires the Framework to be equipped with a parser that efficiently
reads the (possibly extensive) configuration file, that will typically include several Setplay
definitions.

4.1 Implementation of a C++ library 55

This parser was, in a first effort, developed from scratch, using C++’s native methods
to handle strings. This proved to be a difficult, time-consuming and error-prone develop-
ing process. In spite of this, the parser was fully developed and used in the initial versions
of the Framework. However, when later there were changes to the Framework’s model
(e.g., new Actions and Conditions), one verified that this parser was hard to change and
easy to corrupt. At this point, it was considered that this kind of parser was generally a
too rudimentary tool.

This experience led to the redesign of the whole parser, this time built upon a well
tested parser tool. From the different options considered, the Spirit library (de Guzman
and Nuffer, 2003)1, available as part of the latest Boost (Walker, 2003)2 distributions,
was chosen. It is a quite simple tool which allowed the rapid prototyping, and later full
development, of the necessary parser, used in the final version. The same tool was used
to parse the messages exchanged by the agents during Setplay execution.

4.1.2 Selection of players participating in a Setplay

After selecting a Setplay for execution, one subsequent crucial choice is the selection
of the players participating in the Setplay. Since Setplays can, at each Step, include the
intended position for each participating player, the positions in Step 0 can be seen as the
Setplay’s initial positions. The participants’ choice is important, since a bad or aleatory
choice could result in selecting distant players, which would take long, and spend a lot of
energy, to reach the initial Setplay positions. Such a delay could jeopardize the Setplay’s
success, and compromise the players’ energy reserves.

4.1.2.1 Selection from Distance to lead player

To cope with this question, several different selection algorithms were developed. Ini-
tially, a simple algorithm chose the players according to their distance to the player
that starts the Setplay, i.e., the lead player (method name: participatingPlayersDistance-

FromMe). This algorithm, naturally, may only be used if the lead player is one of the field
players: it makes no sense when the lead player is an intangible agent like the coach. This
algorithm pays no attention to the Setplay’s initial positions: it simply iterates the partici-
pants list and allocates available players according to their distance to the lead player. All
possible players are considered as candidates, excluding the lead player, which is already
participating, and the Goalie, which is left out, when not the lead player, since it should

1URL: http://boost-spirit.com/
2URL: http://www.boost.org/

56 Framework Implementation

always keep full attention to its particular tasks. The algorithm of this selection method
can be seen in Alg. 1.

Algorithm 1 Select numRoles(s) participants for Setplay s by distance to lead player

Require: (lead(goalie) ∧ numRoles(s) ≤ numPlayers) ∨ (¬lead(goalie) ∧
numRoles(s)≤ numPlayers−1)
if lead(goalie) then

availablePlayersList← all players except goalie
else

availablePlayersList← all players except goalie and lead player
end if
chosenPlayersList←{leadPlayer}
roles← roles(s) except leadRole(s)
for all role r in roles do

chosenPlayer← player in availablePlayersList closest to leadPlayer
remove chosenPlayer from availablePlayersList
add chosenPlayer to the end of chosenPlayersList

end for
return chosenPlayersList

Two scenario of this algorithm’s usage can be seen in Fig. 4.1. In this case, as men-
tioned before, the position of roles is not considered in player selection, and thus their
position in the diagram is meaningless. In Fig. 4.1(a) one sees in which order players are
considered for selection: by distance from the lead player. Fig. 4.1(b) shows how this kind
of selection might prove inefficient in particular situations, e.g. when roles are ordered in
the Setplay participant’s list inversely to their distance from the lead player. In this figure,
distances to the lead player are shown in dashed arrows, and allocation of players to roles
in regular arrows.

4.1.2.2 Selection from Player’s individual distance to Setplay positions

Since the initial selection algorithm was far from optimal, a new, greedy strategy was
implemented, considering the distance to the Setplay’s initial positions (method name:
participatingPlayersDistanceFromPositions). In this case, the participant’s list is iterated,
and the available player closest to each position is chosen immediately. This means that
the algorithm is greedy, which makes it sub-optimal: the distances are considered, in
general a good allocation is chosen, but there is no guarantee that this is the case. In
the example shown in Fig. 4.2, the selection is not optimal, and the paths the players
have to follow to reach the Setplay’s positions intersect, which may cause collisions and
consequent delays in positioning. This can be particularly important in leagues using real
robots, like the Middle-size league.

4.1 Implementation of a C++ library 57

Lead
Player

P1

P2

P3

Roles
1,2,3

Ball

1st

2nd
3rd

(a)

Lead
Player

P1

P2

P3

2nd
Role

3rd
Role

1st
Role

Ball

2nd

1st

3rd

(b)

Figure 4.1: Player Selection from distance to Lead Player

58 Framework Implementation

Lead
Player

P1

P2

P3
Role

1

Role
2

Role
3

Ball

Figure 4.2: Player Selection from distance to Setplay Positions

4.1 Implementation of a C++ library 59

The algorithm for this selection strategy is as follows:

Algorithm 2 Select numRoles(s) participants for Setplay s by distance to each role’s
position

Require: (lead(goalie) ∧ numRoles(s) ≤ numPlayers) ∨ (¬lead(goalie) ∧
numRoles(s)≤ numPlayers−1)
if lead(goalie) then

availablePlayersList← all players except goalie
else

availablePlayersList← all players except goalie and lead player
end if
chosenPlayersList←{leadPlayer}
roles← roles(s) except leadRole(s)
for all role r in roles(s) do

chosenPlayer← player in availablePlayersList closest to position(r)
remove chosenPlayer from availablePlayersList
add chosenPlayer to the end of chosenPlayersList

end for
return chosenPlayersList

4.1.2.3 Player global distance to Setplay positions

In order to overcome the weaknesses identified with the second approach, a third alter-
native algorithm was developed. Each possible player arrangement’s summed distances
to the Setplay’s initial positions are computed. The set of players with the minimum dis-
tance is kept as the solution. With this algorithm, the case presented previously would
have a different selection, minimizing the global path distance (method name: participat-

ingPlayersGlobalDistanceFromPositions). This strategy is described in Alg. 3
Naturally, this algorithm might prove to be computationally too demanding for Set-

plays with many participating players: a Setplay with 6 participants will possibly have 15
120 player arrangements in teams with 11 players. Therefore, this algorithm should not
be applied in this kind of situations, since it might hinder timely response from the player
choosing the participants.

In the two algorithms that involve positions in the selection process, the actual player’s
location is consulted through a method of the class that represents the State-of-the-World
(Context). This means that the positions considered correspond to the present location
of the players. In some cases, though, it can be useful to consider other positions, like
strategic positions, during the selection process (see section 3.3.1.1). To cater to this kind
of needs, two other versions of these algorithms were created: the rationale behind them
is exactly the same, but the positions considered for calculation are sent as argument to

60 Framework Implementation

Algorithm 3 Select numRoles(s) participants for Setplay s by global distance to all roles’
positions

Require: (lead(goalie) ∧ numRoles(s) ≤ numPlayers) ∨ (¬lead(goalie) ∧
numRoles(s)≤ numPlayers−1)
if lead(goalie) then

availablePlayersList← all players except goalie
else

availablePlayersList← all players except goalie and lead player
end if
chosenPlayersList←{leadPlayer}
currentMinDistance← ∞

roles← roles(s) except leadPlayer
for all sequence seq of distinct numRoles(s) players in availablePlayersList do

tempDistance← 0
for i← 0 to size of roles do

ri← ith element in roles
seqi← ith element in seq
tempDistance← tempDistance+distance(position(ri), position(seqi))

end for
if tempDistance < currentMinDistance then

currentMinDistance← tempDistance
chosenPlayersList← seq

end if
end for
return chosenPlayersList

4.1 Implementation of a C++ library 61

Lead
Player

P1

P2

P3
Role

1

Role
2

Role
3

Ball

Figure 4.3: Player Selection from global distance to Setplay Positions

62 Framework Implementation

the method (method names: participatingPlayersDistanceFromPosAsArg and participat-

ingPlayersGlobalDistanceFromPosAsArg).

To better describe the different algorithms behavior, Fig. 4.4 shows an example situ-
ation, and the different players’ choice: the selection from distance to the lead player is
shown in dashed arrows, while the greedy selection from players’ distances is shown in
doted arrows, and the selection according to the global distances is represented through
thick arrows. From the arrows’ lengths, one can verify that the latter algorithm is the most
efficient.

Lead
Player

P1

P2

P3

Role
1

Role
2

Role
3

Ball

P0

Figure 4.4: Player Selection by all algorithms: distance to lead player (dashed arrows),
distance to individual roles (dotted), global distance to positions (thick).

4.1 Implementation of a C++ library 63

4.1.3 Setplay execution engine

After choosing a Setplay to be executed, and the corresponding participating players (as
well as, eventually, other parameters in the Setplay), the Framework will be ready to ac-
tually execute the Setplay, according to its definition. This execution will be primarily
managed by the Framework itself, but some necessary tasks have to be triggered, as de-
scribed in section 3.3. The Framework needs thus to support these tasks, supplying the
corresponding methods.

The first necessary task is to activate the chosen Setplay, which can be done in dif-
ferent ways, as described in the aforementioned section 3.3. In any case, this process of
activation will be done through the execution of two sub-tasks:

1. creation of a copy of the chosen Setplay, in order to keep the original definition
unchanged and to allow the unrestrained manipulation of the copy;

2. instantiation of the copy’s participants and other parameters, in order to ground the
Setplay’s arguments to actual values.

These two tasks are easily and efficiently accomplished, since the Framework’s struc-
ture was designed with them in mind: the copy of the Setplay is simply done through
the invocation of the corresponding dedicated method (deepCopy); the instantiation of
parameters is done by a simple attribution of the new values, through the corresponding
methods (set). Since all references to each parameter were linked to the same instance
during the parsing process, the attribution of new values will have global repercussion.

After the activation, the Setplay is ready to be executed. This execution consists
mainly of three tasks:

Monitoring of the State-of-the-World: by checking the Conditions existent in the Set-
play’s definition: finish, abort and Step conditions. When some of these condi-
tions are satisfied, the internal state of the Setplay will change, by, respectively,
abandoning the Setplay and reaching a new Step. This reaction to changes in the
State-of-the-World is performed through the method updateInternalState.

Transition choice: Setplays execution might progress from a Step to several other, through
alternative Transitions. These can be followed only when their Conditions are sat-
isfied, which might happen simultaneously to several Transitions. When this hap-
pens, there are several valid Transitions, and thus the user/developer must choose
among these. When there is only one (valid) Transition, then the choice is obviously
trivial.

64 Framework Implementation

Execution of actions: every time the Setplay’s definition determines it, the participating
players will need to execute the corresponding actions. This must be done in one of
the alternative ways described in section 3.3.

To sum-up the description of the Setplay execution process, one can observe that
the progress through the Setplay steps is conducted internally by the Framework, which
keeps track of the updates in the State-of-the-World which imply changes in the Setplays
internal state. This management must, though, be triggered from outside the Framework
at certain moments, by the player invoking the corresponding method. When there are
alternative Transitions between Steps, the user/developer must choose among the valid
ones.

4.2 Setplay Evaluation and Selection: Case-based Rea-
soning

For the Setplay Framework to be as self-sufficient as possible, it must provide a way to
automatically evaluate and select Setplays at run-time. Such a mechanism can be very
useful for the Framework’s deployment in teams with no or little expertise in using Set-
plays. Such a mechanism should function autonomously, by choosing the best Setplay to
perform in each moment. Naturally, this choice is a very difficult one, since it depends on
an enormous set of factors, namely: opponent style and game quality, positioning on the
field, momentary positioning of opponents, player’s types and stamina, etc.

Several options could be considered to tackle this problem. Initially, when first consid-
ering this challenge, it was thought that, at each moment, one could consider the available
Setplays and evaluate two different issues: on the one hand, the probability of Setplay’s
success (PSn), estimated, e.g, by comparing the predicted execution with the opponent
players positions; and, on the other hand, the Setplay outcome’s utility (OutSn), such that
a goal would get a very high score, a simple progression on the field a low positive score,
and a kick back to our goalie a negative score, etc. The combined evaluation of these two
issues would sum up to be the Setplay’s evaluation, and could be used to choose among
alternative, possible Setplays. The evaluation formula for Setplay n (Sn) would look as
follows:

Eval(Sn) = PSn ·OutSn

This kind of evaluation is not based on previous experience: it relies on estimations
of the success of passes, shots and other moves, that depend on the topological relations
of players and other objects, as well as on the prediction of players’ behavior. Such an
analytical algorithm would, thus, be very difficult to develop and implement, and would

4.2 Setplay Evaluation and Selection: Case-based Reasoning 65

have limited applicability: even if it proved to be appropriate to a particular team or
league, it might be useless in other settings with different characteristics. For instance, the
probability of ball interception depends highly on the league’s and team’s characteristics,
and would be very difficult to abstract to the whole RoboCup domain.

As this initial idea seemed very difficult to develop, a more empirical algorithm was
deemed necessary. This algorithm should perform an evaluation of Setplays, based on
its previous performance, both in past and the current games. Setplays with a higher
success rate would be chosen with higher priority, while unsuccessful ones would only
be chosen rarely, to assure that they would still have a chance to be executed, in order to
check if they have had their performance enhanced, for some circumstantial reason, like
changes in opponent’s game strategy. This mechanism would, thus, base the choice on
past experiments’ success.

A mechanism with such characteristics can be inspired by Case-Based Reasoning
(CBR) principles (Aamodt and Plaza, 1994). CBR systems record past experiments or
reasoning processes as cases, in a so-called Case Base, the common name for the Knowl-
edge Bases underlying this kind of systems. When a new situation (commonly referred to
as problem) arises, the CBR reasoner searches the Case Base for a case similar to the new
problem. If it manages to find a case similar enough to this new problem, the solution
attached to the recorded case is retrieved. Depending on the particular CBR implementa-
tion’s option, this solution can be applied immediately, or revised to better fit the problem
at hand. After applying this solution, it’s success can be monitored. If the system consid-
ers that the new problem, together with the applied solution, shows enough novelty with
regard to the existing cases, it may choose to insert it in the Case Base as a new case. If
this is done, the new case will be available for choice to solve future problems.

From this empirical point of view, a CBR system will perform four different tasks, as
depicted on Fig. 4.5, when considering a new problem:

1. Retrieve: search the Case Base for the most similar case to the new problem at
hand;

2. Reuse: combine the retrieved case with the problem at hand into a proposed solu-
tion to the problem;

3. Revise: test or evaluate the proposed solution, and possibly change it, if it is unsuc-
cessful;

4. Retain: if the new problem and solution are considered interesting, store them in
the Case Base.

66 Framework Implementation

Case Base

Problem

Solved
Case

Tested
Case

Learned
Case

Previous
Case

Previous
Case

Previous
Case

Previous
Case
Previous

Case

Retrieve

R
eu

se

Revise

R
etain

Retrieved
Case

Figure 4.5: CBR cycle, adapted from Aamodt and Plaza (1994)

This mechanism must, thus, record the performance and application conditions of
each execution of every Setplay, in order to collect data to evaluate their performance
and, consequently, the usefulness of each Setplay in similar conditions. This data should
be examined and consolidated (e.g. by abstraction or generalization) in order to better
estimate the performance of a Setplay in common situations.

This general CBR architecture has to be adapted to the RoboCup domain in order to be
fully functional and competitive. Two of the previously cited tasks must be adapted: case
retrieval is based on resemblance between recorded cases and the new problem, and thus
needs a measure of similarity, while case revision would need some kind of adaptation
algorithm for Setplays to be reused outside their original scope. These issues will be
looked into in the following sections.

4.2.1 Case characterization

Case similarity can be estimated upon comparison of the different characteristics that de-
scribe each case. In the RoboCup domain, a CBR system for Setplay choice will consider
cases as particular executions of a Setplay. These executions must be properly character-
ized and described, as these characteristics will be the information on which case compar-
ison and selection will be based. This choice of characteristics must be a well balanced

4.2 Setplay Evaluation and Selection: Case-based Reasoning 67

one: it must include the relevant information, but should not be too thorough, since this
would increase the amount of information to be analyzed, making the comparison process
more time consuming.

In the present approach, the choice was directed towards simplicity: the Setplay de-
tails stored in each case are simply the spatial localization of the case, the opponent and
the Setplay’s success. The most delicate part in this characterization is probably the lo-
calization: on the one hand, a Setplay takes place in an extended area, which is difficult to
describe, and, on the other hand, minor spatial differences should be disregarded, in order
to attain an acceptable level of generalization. With the goal of keeping the representa-
tion simple, case localization is made through the Setplay’s starting point: since Setplay
execution does not typically differ much between executions, the point where the Setplay
is started can be seen as a very simple, yet significant, spatial reference. Concerning spa-
tial abstraction, one opted for grouping nearby Setplays: instead of storing the Setplay’s
starting-point, the representation just records this point’s inclusion in three different par-
titions of the field. This was done by simply marking five intermediary, equally spaced
points on the field’s big edge, and doing the same on the small edge. By linking these
points transversally and longitudinally, two partitions were made, seen in figures 4.6 and
4.7.

Figure 4.6: Transversal partition of the pitch

68 Framework Implementation

Figure 4.7: Longitudinal partition of the pitch

To better characterize the location with respect to the opponent’s goal, another parti-
tion was designed, by connecting the points on each of the long edges and the own short
edge with the opponent goal centre. This partition, referred to as radial, can be seen in
Fig. 4.8. Since every point will be considered as belonging to an area in each of these
partitions, one can consider that the field will be divided in quite small areas, as depicted
on Fig. 4.9. In all these figures, the penalty areas are depicted only to aid the reader’s un-
derstanding: they play no role in the partitions. One should also note that the localization
of Setplays is only done when this is relevant: when the game mode is a kick-off or a
goalie catch, the location is fixed, in the former case, and freely choosable in the latter, in
the case of the Simulation 2D league. Thus, in these cases, the location of the Setplay is
not decisive.

This option for Setplay localization results in case aggregation: all executions of a
Setplay initiated in (usually distinct) points of one of the areas in Fig. 4.9 will be aggre-
gated in the same case. These executions will, though, probably have different outcomes:
some are successful while others fail. Therefore, each case aggregation will contain in-
formation about the total number of Setplay executions, and the fraction, among these,
when the Setplay was successful.

4.2 Setplay Evaluation and Selection: Case-based Reasoning 69

Figure 4.8: Radial partition of the pitch

4.2.2 Case spatial similarity

When analyzing a new problem, the CBR system needs to compute its similarity with
each of the cases in the Case Base. This similarity will determine each case’s relevance
to the choice.

The first issue in this computation is spatial proximity: the closer a past case is to
the current problem, the more it should be considered. As seen in the previous section,
case localization is stored, and thus aggregated, as membership of areas that partition the
field. With such a discrete representation, it is not viable and does not make sense to use
a metric distance.

Since, in this situation, one is dealing with adjacent areas, resulting from partitions, it
was chosen to use a discrete distance between the areas: one area will of course have
a zero distance from itself, while adjacent areas, like ’OurBack’ and ’OurMiddle’ in
Fig. 4.6, will have a distance of 1. Since this kind of area distance is empirically ex-
pected to grow rapidly as separation increases, ’OurBack’ and ’OurFront’ will have a
distance of 4, which corresponds to the square of the simple separation between the ar-
eas, i.e., 22, and so on for the other areas. The formula for transversal distances between
areas a1 and 2 is thus disttrans(a1,a2) = numberO f FrontiersBetween(a1,a2)

2. For the
longitudinal partition, a similar calculation is used and thus, for instance, the distance be-
tween ’MidLeft’ and ’MidRight’ will amount to 9, i.e. 32. The radial partition of the field

70 Framework Implementation

Figure 4.9: Global partition of the pitch

contains much more areas, which led the distance to be calculated with a more subtler
increase with separation. In this case, the separation is only raised to 1.5, according to
the formula distrad(a1,a2) = numberO f FrontiersBetween(a1,a2)

1.5. As such, one will
for instance have a distance of 5.2 between ’L7’ and ’R9’, i.e. 31.5. With this kind of
calculation, distances according to the longitudinal and transversal partitions are limited
to a maximum value of 25 (52), while the radial partition never exceeds 70.1 (171.5).

Naturally, these three topological distances must be combined. If this was to be done
through a sum, the result would be inversely proportional to the similarity between lo-
cations: the bigger the distance, the less the locations are similar. One must, thus,
consider a way to rework this result such that the result ranges between zero and one,
where zero represents maximum difference, and one a high similarity. The formula em-
ployed is as follows, with abbreviations such as atrans(pproblem) meaning the transver-
sal area where the problem’s location is located, and so on: simil(pproblem, pcase) =

0.5disttrans(atrans(pproblem),atrans(pcase))+distlong(along(pproblem),along(pcase))+distrad(arad(pproblem),arad(pcase)))

Departing from the ball’s location, which describes the current problem, the algorithm
to combine the three distance values and to compute the similarity to one particular case,
will work as follows, using the same kind of abbreviations:

With this algorithm, a case located in the same partitions as the problem will have
a spatial similarity of 0.502+02+01.5

= 1. When, on the other hand, one tries to com-
pare a case located in ’OurBack’, ’FarRight’ and ’R5’ with a very distant problem, lo-

4.2 Setplay Evaluation and Selection: Case-based Reasoning 71

Algorithm 4 Compute the spatial similarity between a point p and a case c

disttrans← disttrans(atrans(p),atrans(c))
distlong← distlong(along(p),along(c))
distrad ← distrad(arad(p),arad(c))
return 0.5disttrans+distlong+distrad

cated in ’TheirBack’, ’FarLeft’ and ’L1’, the similarity would amount to 0.552+52+131.5 ∼=
0.596.87 ∼= 6.91 ∗ 10−30 ∼= 0. Such spatial similarity values are in line with what was de-
sired.

4.2.3 Case retrieval

In this implementation’s context, case selection is not a trivial task: since the localization
of a case plays a very important role in case storage, it is very common for the same
Setplay to have been executed in different locations. As an example, the same kick-in
might have been executed at different points along the touch-line, with different levels of
success. It would be too simplistic to use a nearest neighbor approach and select only
the nearest case: this would neglect information in other nearby cases. Thus, the differ-
ent cases pertaining to the same Setplay can be used to estimate that Setplay’s success,
with different weights corresponding to their characteristics in common with the current
problem. These weights depend on the spatial similarity level described in the previous
section, but also on some other configurable factors, which will be described hereafter.

The case base contains, as seen in section 4.2.1, the registry of different Setplays’
executions, against the current and other teams, both in the present and past games. Since
these execution details differ considerably, one might want them to consider different
evaluation weights in the CBR choice: typically, executions against this same team will
have a higher weight than executions against other opponents, while executions done
previously in this same game will have a still higher weight. The relative importance
given to each of these situations might be different between teams or leagues: one team
might choose to give a very high weight to the cases in the current game, while other might
want to have the same weight to all situations. Thus, these three weights (of executions in
this game, in previous games against the same opponent, and in previous games against
other opponents) are configurable as arguments to the CBR algorithm.

In still different situations, a Setplay might have no record of previous executions
in the Case Base. In such a situation, that Setplay would never be chosen in a pure
CBR setting, which relies solely on past experience. To ensure that such a Setplay might
nevertheless be chosen, the system is also prepared to receive, by convention, a default
evaluation value for Setplays with no previous record of execution. This value should

72 Framework Implementation

be low (e.g. corresponding to a Setplay with almost all executions failed), to avoid the
Setplay to be chosen with high probability. Naturally, this default value is only used in
the Setplay’s first execution.

This retrieval method is better described through a practical example: one will con-
sider a new problem in a game against a team called opp1, which consists of a kick-in in
a point placed in the three following areas: ’OurFront’, ’FarLeft’ and ’L4’. When analyz-
ing this problem, the system will only consider Setplays that are possible at that moment,
i.e., that have their pre-condition satisfied. Therefore, only Setplays that are possible in
the kick-in game mode would be possible. Considering only three particular Setplays,
called kick-in1, kick-in2 and kick-in3, one might have the following cases:

1. kick-in1 placed in ’OurFront’, ’FarLeft’ and ’L4’ against opp1 in the current game,
one trial with one success;

2. kick-in1 placed in ’TheirFront’, ’FarLeft’ and ’L3’ against opp1 in a past game, two
trials with one success;

3. kick-in2 placed in ’OurBack’, ’FarLeft’ and ’L6’ against opp2 in a past game, three
trials with one success;

4. no record for the execution of kick-in3.

The first step for the evaluation of these cases will be the computation of the posi-
tions’ similarity: each case’s positioning has to be compared with the current problem’s
position. As an example, let us look at case 2: the longitudinal area is the same, but there
are differences of 1 in the transversal and radial partitions. As a reminder, the formula
for calculating the spatial similarity, presented is section 4.2.2, is simil(pproblem, pcase) =

0.5disttrans(atrans(pproblem),atrans(pcase))+distlong(along(pproblem),along(pcase))+distrad(arad(pproblem),arad(pcase)).
Therefore, the topological similarity will be given by the expression s2 = 0.502+12+11.5

=

0.52 = 0.25. Using the same algorithm, one will have s1 = 0.502+02+01.5
= 0.50 = 1 and

s3 = 0.502+22+21.5
= 0.56.828 ∼= 0.009.

To put forth these cases’ evaluation, one has to consider the weights for executions in
this same game, in past games against this team and in past games against other teams.
These will be, in this example, respectively, wg = 4, wt = 2 and wo = 1. With these
values, one can proceed to the final evaluation of the cases, using the formula e = s∗w∗
(numtries

num f ails
−0.8), where s stands for the topological similarity, w for the opponent specific

weight, numtries for the number of times the Setplay has been executed, and num f ails for
the number of executions that were unsuccessful. The subtraction of 0.8 was done to
privilege more successful Setplays: a Setplay with no successful executions will have a

4.2 Setplay Evaluation and Selection: Case-based Reasoning 73

rating of 0.2 to be multiplied by the spatial and opponent specific weights, while a Setplay
with only one failed execution in three will multiply the weights by 2.2. If one applied this
formula to the data in case 1, it would yield the following value: e1 = s1 ∗wg ∗ (numtries

num f ails
−

0.8) = 1 ∗ 4 ∗ (1
0 − 0.8), which is impossible to calculate, due to the division by zero. In

these cases, one has to apply one exception and consider a fake value for the number
of fails. This value was set to 0.5, with the goal of having an increasing evaluation as
the number of successful executions grows. In this case, the corrected value will thus
be e1 = s1 ∗wg ∗ (numtries

num f ails
− 0.8) = 1 ∗ 4 ∗ (1

0.5 − 0.8) = 4.8. For the remaining cases, the

general formula will be used: e2 = s2 ∗wt ∗(numtries
num f ails

−0.8) = 0.25∗2∗(2
1−0.8) = 0.6 and

e3 = s3 ∗wo ∗ (numtries
num f ails

−0.8) = 0.009∗1∗ (3
2 −0.8)∼= 0.006. As for the kick-in3 Setplay,

there are no recorded cases, and it will be awarded a default value (0.4, by convention,
corresponding to the double of a Setplay with all fails), which will be multiplied by the
weight relative to this game, and will be later referred to as e4 = 0.4∗wg = 1.6, in order
to make its choice possible.

4.2.4 Case selection and reuse

With all active cases evaluated, the moment to select the Setplay to be executed is reached.
A straightforward strategy would be to simply choose the case with the highest evaluation.
Such a strategy would, though, neglect other cases, which might have a low evaluation due
to past executions with other opponents, but that might be competitive due to, for instance,
good adaptation to the present opponent. To overcome this issue, another strategy was
setup, which privileges cases with higher evaluation, while still leaving a chance for other
cases to be selected.

Returning to the example from the previous section, one had come to four different
case evaluations, with individual evaluations e1 = 4.8, e2 = 0.6, e3 = 0.006 and e4 = 1.6.
The sum of these values is 7.006. In this step of the CBR algorithm, a random value will
be generated, with possible values between zero and the sum of evaluations. To select a
Setplay, the individual evaluations will be accumulated, in order of case retrieval. When
the accumulator equals or exceeds the random value, the Setplay under consideration is
chosen. In the present example, a random value of 4 would output the Setplay related
to case 1, while 5 would select the Setplay of case 2, 5.403 the one related to case 3
and, finally, a random value of 6 would select the Setplay of case 4. This algorithm will
allow any Setplay with a positive evaluation to be selected, while keeping the selection
probability proportional to the evaluation. This was the behavior desired for the system.
To better illustrate the logic behind this choice, one can refer to Alg. 5.

74 Framework Implementation

Algorithm 5 Select a Setplay from a list listEval of their evaluation values
Require: listEval is not empty

sumEval← sum of all values in listEval
rand← random value in [0, sumEval[
runningSumEval← 0
for i← 0 to size of listEval do

runningSumEval← runningSumEval + listEval[i]
if runningSumEval ≥ rand then

return i
end if

end for

Setplays can primarily use two different kinds of spatial coordinates: absolute, and
relative to the ball or a player. If the second kind is used in a Setplay definition, then the
Setplay can be displaced freely around the field, accompanying the ball’s position. The
Setplay definition should always define the field areas where the Setplay is usable, both
when the CBR system is used and when not, to avoid invalid positions, e.g with players
outside the field.

When using Setplay selection by CBR, the user/developer should therefore pay atten-
tion to this issue: as Setplays might be executed in different locations, all spatial refer-
ences should be relative. Such Setplays need no adaptation to new settings. Using this
kind of Setplays only, one avoids any kind of adaptation in case reuse.

4.2.5 Case revision

Revision is in this domain practical: the selected Setplay is tested by execution in game
situations. Its success is determined by wether the execution reached the desired finish,
or, on the contrary, if it was aborted. Success has thus a boolean value.

Since Setplays are very complicated combinations of players positions and actions,
and related timings, if was deemed difficult to design a system to automatically fine-tune
or evolve a Setplay. Therefore, when the Setplay is unsuccessful, it is not altered.

4.2.6 Case retention

Since the cases are stored in an aggregated manner, the storage of an individual case does
not typically change the case base considerably: if the region it was executed was already
present in the case base, it simply demands a change in the number of executions and
successes; if that area is new, one entry is added to the case base, which can later store
information about other executions of the same Setplay.

4.3 Graphical Design of Setplays: SPlanner 75

Under these circumstances, it was decided to always retain new cases, since the results
of execution in the present game are the ones that present the most valuable information
for decision. Thus, every execution’s result is retained in the case base.

If the user/developer decides to do so, he may configure the CBR system to write the
case base to file, in order for the results of the game to be considered in future Setplay
selections by the CBR system.

4.3 Graphical Design of Setplays: SPlanner

In an effort parallel to this thesis and based on the Setplay Framework, a graphical tool
(SPlanner) was developed to design Setplays. A tool for the graphical design of Setplays
can act as a catalyst for Setplay creation and dissemination. Such a tool is essential for
usage by non-specialists, e.g. real soccer coaches, who will not be able to edit Setplays
in their textual format. The tool as a whole is described in Cravo (2011), but the Setplay
design procedure will be looked into hereafter.

4.3.1 Other strategy tools

Some tools have been developed with the goal of assisting the definition of strategy in
human soccer, like Coach-Helper3, ForCoach Tactics Viewer and ForCoach of Soccer4.
These tools are commercial and their functionality is focused on soccer tactical panels
for the definition of team formations. These tools do not provide any support for the
definition of Setplays.

The video-game industry has grown considerably over the last decades. There are
many soccer games, like FIFA Soccer 2011 5 or Championship Manager 20106, available
in different platforms,which allow the definition of some strategies.

Online games are quite simple, offering few tools for strategy management. Soccer
simulators offer a larger set of tools in order to allow the adjustment of different playing
styles. FIFA Soccer 2011 offers tools to define team strategy during a game, with dif-
ferent levels of detail. It allows the definition of the players’ positions in the field and
mentality. Team management games present richer functionalities to define strategies.
Championship Manager 2010 was the only tool providing the possibility to build setplays
and thus inspired SPlanner’s design.

3URL: http://www.coach-helper.com
4URL: http://www.forcoach.com
5URL: http://www.ea.com/soccer/fifa
6URL: http://www.championshipmanager.co.uk/

76 Framework Implementation

Several tools have also been developed by the robotic soccer community. Playmaker
(Lopes et al., 2010) was a previous effort, inside the FCPortugal team, for the graphical
definition of Setplays. The provided interface was not adequate for use by non-expert
users, which led to the decision of building a new, more user-friendly tool, inspired in
applications for real soccer.

4.3.2 General Architecture

SPlanner was developed in C++, using the Qt graphical libraries (Nokia, 2011). A general
overview of the SPlanner tool architecture is presented in Fig. 4.10.

Figure 4.10: SPlanner tool architecture overview

The development of the tool was done with modularity in mind, in order to easily allow
the future integration of new strategy modules (e.g. formation editor, tactics manager).
Three different interfaces were defined to separate the import and export functionality
from other plan-based frameworks, external programs and game log viewer, to analyze
all situations in past games.

This application includes shortcuts that allow the testing and debugging of a Setplay,
using the Soccer Server and Monitor tools (Noda et al., 1998), as well as the FC Portugal
Debug LogPlayer (Lau and Reis, 2007).

4.3 Graphical Design of Setplays: SPlanner 77

4.3.3 Interface design

The interaction with the main interface of SPlanner, presented in Fig. 4.11, is done pri-
marily using the mouse and keyboard.

Figure 4.11: SPlanner main GUI for the definition of a Setplay

This interface is organized in 3 main areas: the menu bar, the Setplays separators (for
editing more than one Setplay at once) and the Setplay workspace. Possible actions are
to create, import and export a Setplay. In order to swiftly execute tests, one can start the
execution of a Setplay, or debug a previously executed Setplay through the Soccer Server
and Monitor tools and the FCPortugal Log Player Debugger.

The central area of the Setplay workspace is essentially an image for the soccer pitch,
where the players participating in the Setplay will be positioned and their respective ac-
tions defined, and a substitution bench, which will contain the players not participating in
the Setplay. In the left panel, one can see general information that describes the Setplay
and its abort conditions (step-independent), the flow of executions of a Setplay mapped
into a graph (further explained in Section 4.3.4) and the abort and wait times for the cur-
rently chosen step. In the bottom area of this workspace a collapsible panel was created
to provide additional relevant information regarding the current active player.

A wizard was designed to assist the user in the creation of Setplays in a more intuitive
fashion. Based on the experience gathered from the analysis of similar software tools and
after studying the typical task flow for the creation of a Setplay the following steps were
defined:

78 Framework Implementation

1. Define the type of Setplay (offensive or defensive) to create;

2. Choose the game state (e.g. free-kick) where the Setplay is possible;

3. Select the location in the field (e.g. opponent front wing) that combined with the
game situation will trigger the Setplay. It should be noted that some positions will
be omitted based on the chosen game situation (e.g. kick-off) as they can only start
from one specific location.

The location on the field chosen in the third step of the previous procedure will be
visually highlighted with a textured shape for the user to know where the Setplay will be
possible. If a region on the field is chosen, the tool will constrain the ball position and
consequently the leader, which is assumed to own the ball in every step. Although the
Setplay grammar allows a leader to be an arbitrary player participating in a step, in the
majority of cases, the ball owner will lead the Setplay.

The players that will be participating in the Setplay must all be added in its first step.
Afterwards, the user can only define new positions for Setplay in subsequent steps by
means of assigning actions to them in the transitions that lead to those steps. By estimating
the effects of the actions specified for players using an estimation model based on the ones
applied by Soccer Server to the players and the ball, the tool estimates the players and ball
future positions in subsequent steps of the Setplay, and they cannot be changed.

In order to assign a player to the set of participants of a Setplay, the user just needs to
drag it from the team’s bench onto the field area. It is also possible to add a player not
participating in a step (it will have a jersey with transparency in Fig. 4.12) as a participant,
if he has already been added to the list of Setplay participants in the first step. This is
done automatically through the allocation of an action to this player. The execution of the
inverse action, dragging a player to his team’s bench or simply out of the field, removes
him from the list of the step participants. This metaphor will appear natural for users with
some knowledge of the domain as a strong connection exists with the reality in which
players that are sitting on the substitution bench are inactive and thus not participating in
the running game, contrarily to the players that are positioned on the field.

Players are represented by a numbered and colored jersey that provides information
to about their status (see Fig. 4.12) and can be selected or dragged.

Figure 4.12: Types of players jerseys in the SPlanner GUI

A right mouse-click on a step participant pops up a context menu, as depicted in
Figure 4.13, where the user can specify its actions and initial position, or simply remove

4.3 Graphical Design of Setplays: SPlanner 79

it from the step. In this context menu, only feasible actions will be presented to the user
(e.g. a pass action will only be present if the player owns the ball). Furthermore, for
some specific feasible action, there might be only small set of relevant options to choose
from and these are thus filtered for the user. For example, in a step scene where 3 players
A, B and C participate, a pass action chosen for A will have as possible destination only
players B and C.

Figure 4.13: Menu with feasible actions for the active player

4.3.4 Execution flows of a Setplay

In order to provide a general comprehension of the defined Setplays execution flows a
graph visualization was designed. This graph contains a representation of identifiable
steps (numbered circles) and the defined transitions between them (directed arrows) in
the Setplay, allowing the user to understand all its possible execution flows as depicted in
Fig. 4.14. There can only be one start step, but an arbitrary number of intermediate and
final steps.

Figure 4.14: Graph of a Setplay with all possible execution flows

To facilitate the distinction between different types of steps (start, intermediate or
final) three different colors were applied. The start step is filled black and has the number
0, while the other steps are filled gray. Moreover, the final step is distinguished through
a double black contour around it. The rendering of the graph is done automatically in
real-time as the Setplay definition is updated.

80 Framework Implementation

4.3.5 Defining actions for participants

SPlanner has currently built-in support for 8 actions, for which different icons were de-
fined (see Fig. 4.15), in order to make them clearly distinguishable for a user analyzing a
Setplay.

Figure 4.15: Icons for player actions

Among these actions, five require the step participant to own the ball at the time of
its execution (direct pass, forward pass, dribble, hold the ball and shoot), contrarily to the
remaining three (wait, run and position near the opponent offside line). The actions that
are presented to the user when he selects a participant are filtered based on this criteria
to prevent semantical errors (e.g. defining a dribble action for a participant that does not
own the ball).

4.3.6 Positions of players and action targets

The positions of the Setplay participants can be undefined, absolute field coordinates or
relative to the ball or another participant. Each position type is distinguished visually in
the Setplay representation using the icons shown in Fig. 4.16.

Figure 4.16: Types of positions (relative, absolute and undefined) for players and action
targets

In Fig. 4.16, player nr. 4 has an undefined position (although in this case it will be
within the marked region), player nr. 7 is positioned at (-10,-10) relative to the ball (which

4.4 Summary 81

in this case is supposed to be held by player nr. 4), player nr.5 is absolutely positioned at
(-23,30) and player nr. 8 is positioned at (10,0) relative to nr. 7, and also performs a run
to position (18,0) relative to player nr. 7. Player nr. 9 is shown with an opacity because it
participated in the previous step, but in the current step it has no defined action and thus
its position remains the same.

The letter R is placed on the top left corner of a player’s jersey and on the middle of
the iconography of an action to represent an initial relative position towards a player and
for the intended action respectively. This letter can be followed by a number identifying
the player to whom that player is relatively positioned (e.g. R2) or the letter B if he is
positioned relatively to the ball. When the letter D is placed on the top left corner of a
player’s jersey it represents an undefined position for that player.

In order to demonstrate the simplicity in defining a Setplay, a step-by-step example of
the process for defining a corner-kick Setplay with 3 participants is described in Fig. 4.17,
and its manual definition is presented in Fig. A.1 in the Appendix.

4.4 Summary

This chapter described the implementation, as a C++ library, of the classes supporting
the Framework, as well as the auxiliary tools: Setplay parser, mechanisms for choos-
ing participating players, execution engine, CBR-based Setplay selection algorithm and
graphical designer. With these tools at hand, a user/developer can quickly proceed to
applying the Framework to a team. Two such efforts, in the Simulation and Middle-size
leagues, are described in the next chapter.

82 Framework Implementation

(a) Choose the type, sit-
uation and start position

(b) Pl. 4 is placed auto-
matically in the corner

(c) Pl. 8 is dragged
from the bench to its
initial absolute position

(d) Pl. 9 is dragged
from the bench to its
initial absolute position

(e) Pl. 9 runs to the en-
try of the penalty area

(f) Pl. 4 passes to pl. 8 (g) Pl. 8 dribbles to-
wards the goal line

(h) Pl. 9 waits for pl. 8
to complete his dribble

(i) Pl. 9 runs to the bor-
der of the goalie area

(j) Pl. 8 performs a for-
ward pass to pl. 9

(k) Pl. 9 shoots at goal (l) Player nr. 9 ulti-
mately scored a goal

Figure 4.17: Step-by-step definition of a corner-kick Setplay with three participants

Chapter 5

Framework Application to RoboCup
Teams

5.1 Introduction

The Setplay Framework provides, as described in the previous chapters, the main com-
ponents for Setplay execution: parser, execution engine, Setplay selection, and other
auxiliary tools. While applying the Framework to specific teams and leagues, there is,
though, the need to ground the Framework on league-specific concepts. In the Simulation
2D league, passes and kicks can only be done at ground level, while in the Middle-size
league, some teams are capable of executing chip-kicks, and other teams are not. This
means that the same abstract action, in this example a kick, will be performed very differ-
ently in different teams and in different leagues. This implies that each application of the
framework is team and league specific.

In order to be able to deploy the Framework to its full extent, a team will have to ac-
complish the following tasks, which can be considered a check-list before implementation
(see section 3.3):

Implementation of Actions: The team must be able to execute the abstract skills defined
as Actions in the Framework, like kicks, passes to regions and shots, as well as
movements to points, marking of opponents and regions, and ball reception and
interception.

Implementation of Conditions: Concepts like ball possession and evaluation of pass
and shot success likelihood must be evaluated by the team. Such concepts cor-
respond to Conditions in the Framework model.

83

84 Framework Application to RoboCup Teams

Setplay Selection for Execution: The team must either decide autonomously what Set-
plays to execute, and when, or let the Framework select the Setplays it considers
more promising at a given moment, as described in section 4.2 .

Action Choice and execution: At each execution cycle, the team must check for actions
needing to be executed, as determined by the Framework, and select one to execute,
when there is more than one available. When no such action exists, each player may
opt to proceed to other tasks, like positioning itself.

Inter-robot Communication: The lead player, that can be a fixed player like the coach,
or change along Steps according to Setplay definition, must be able to send simple
text messages to the other players. This communication can be uni-directional.

The Framework has been applied to three different teams as part of the development
that supports this thesis. This application to teams required the fulfillment of the tasks
that have just been described. The next sections describe how these tasks were achieved
in the selected teams.

5.2 Application to the 3D Simulation League

As an initial testbed for the Setplays, the code of the 2006 champion in the 3D simulation
league, FC Portugal (Lau and Reis, 2006), was used. This code already had the main
building blocks for the application of Setplays: Conditions and Actions were implemented
based on the existing code dealing with world-state, skills and actions.

The Framework was applied to a functional state: some Setplays were tested, namely
one with players passing the ball among themselves. Some screenshots of the execution
of such a Setplay, in this case with three players arranged on a triangle, can be seen in
Fig. 5.1.

Setplays were tested experimentally and ran smoothly, with passes being done with
success. At this development phase, the focus was on Setplay execution: one examined
the execution of different Setplays and looked any for unexpected behavior, correcting the
problems initially present on the Framework. There was, at the time, still no work done
on Setplay evaluation and selection. Also, the Framework’s model only contained limited
sets of Actions and Conditions: only later, while applying the Framework in competitions,
did one feel the need to define more complicated Setplays. The results reached at this
phase were published in Mota and Reis (2007a).

5.2 Application to the 3D Simulation League 85

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Setplay example: 3D Simulation League (Sphere model)

The rules and organization for the 3D competition were largely changed from RoboCup
2007 on: the robots changed from the sphere model to humanoids, and each team was ini-
tially composed of only two players. Since the new simulated robots initially demanded
research on low-level questions like robot movement and ball kicking (and, from a high-
level point of view, still do), there was temporarily no place for high-level concepts like
Setplays. The development in this league was thus suspended and can only be picked up
again when these elementary skills are better developed, which will happen in the near
future: as soon as teams reach a development state where the game flow is continuous and
allows inter-player skills like ball passing, the Setplay Framework can again be applied to
this league. Before such a development state is reached, Setplays will not be able to play
a significant role in the strategy, which makes its use inappropriate. Due to this change,
the development of the Setplay Framework had to be put forth in other leagues, presented
hereafter, where the basic skills and moves are more advanced, and hence game pace is
faster. Such is the appropriate application scenario for Setplays.

86 Framework Application to RoboCup Teams

5.3 Application to the 2D Simulation League

The 2D simulation league is the most developed league in RoboCup, in terms of game
flow and high-level cooperation. FCPortugal has been participating in this league since
2000, with very competitive results, including several titles, namely champions at world
and european tournaments.

The FCPortugal code has several features available: a mature State-of-the-World,
which considers both the player’s own observations and information shared by other play-
ers, and which includes prediction of action and interaction effects; and a set of actions
and skills that allows the mapping of abstract actions as defined in the Setplay framework
to concrete executions in the 2D simulator. The application of the Setplay Framework to
this team was presented in Mota et al. (2010b).

This application was achieved after following the steps mentioned in section 5.1,
which are described in the next sections.

5.3.1 Implementation of Actions

The Simulation 2D server only accepts very low level actions, like dash (accelerate), turn,
kick (in a certain direction, with a certain power) and tackle. To support the development
of a player in such an environment, it is easier to think in terms of more abstract actions,
like going to a point, passing to a teammate and shooting at goal. Such abstract actions
generally have to be defined as a sequence or combination of several of the more low-level
server-specific actions.

Since the FCPortugal team has a story that dates back to 2000, and also due to the
changes in the Simulation 2D rules, the original set of high-level, abstract actions has
evolved, in a way that led to the existence of several versions of some of these skills,
which may be used alternatively. Therefore, the array of available actions is numerous.

The Actions in the Setplay model are, though, in a still higher level of abstraction,
since sometimes they will demand some kind of preparation phase, before executing the
actual, nominal action. Namely, in order, e.g., to pass the ball to a teammate, a player
will need to get possession of the ball, position itself adequately, and finally kick the ball
towards the teammate. This procedure is depicted in Fig. 5.2. The execution of the action
only ends, as depicted, when the player has definitively kicked the ball, since this action
might be done as a multi-kick, i.e., applying sequential kicks in different execution ticks.
The implementation of this particular action was quite straightforward, since the Action
definition considers several execution options, namely the pass type, which in this case
is used to characterize the passing speed. In other application scenarios, e.g. in other

5.3 Application to the 2D Simulation League 87

leagues, there could possibly be other values for this pass type, like plain or chip kicks
in the Middle-size league. In any case, the pass action execution merely has to get hold
of the ball, position the player appropriately and perform the kick according to the pass
type.

Begin

ball
kickable? fast pass? pass at maximum

speed

slow pass?calculate speed pass at half
speed

pass at normal
speed

get ball

yes yes

yes

no

no

nono

label pass as
done

End

ball definitively
kicked?

yes

receive sensing

send commands
to server

Figure 5.2: Decision process for a pass

Other actions require a more complex planning for their execution. For instance, the
’Shoot’ action, which models a shot towards the opponent goal, does not consider any kind
of options. However, the execution of this action should always try to effectively score a
goal, by trying to execute the shot with the maximum success probability. Every time that
this action is executed, the State-of-the-World will be different, and there will be different,
concurrent shooting options, All these options will have to be taken in consideration, in
order to determine the shooting speed, direction and starting moment. This choice is
complex, considerably more than in the aforementioned case of the passing action. In

88 Framework Application to RoboCup Teams

the current stage of development, the shooting point is calculated by the State-of-the-
world module. The kicking speed in presently set to the maximum speed. This is only a
sub-optimal choice: if the speed was considered in more detail, one might choose a kick
whose intermediate points would be outside the goal-keeper’s catching area. The details
to the execution of a shot can be seen in Fig. 5.3. All other Actions were implemented
according to similar processes: check what domain actions could be used, and sequence
their execution, while calculating the appropriate parameters for these.

Begin

ball
kickable?

calculate
shooting point

shoot at goal
(max speed)

label shot as
done

yes

yes

no

no
get ballball definitively

kicked?

End

receive sensing

send commands
to server

Figure 5.3: Decision process for a shot at goal

In terms of class structure, it was decided to make the class modeling the player in FC-
Portugal (PortugalInfo) an extension of class Action::Executor from the Setplay Frame-
work, as described in section 3.4. This way, a set of methods is inherited and has to be
implemented: there are 20 execute methods, with different signatures, one for each Ac-

tion type. With these methods implemented in this way, any Action can simply be given
as argument to the method execute.

5.3.2 Implementation of Conditions

The Framework requires the abstract class Context to be implemented or inherited by
some class in the team code. This is necessary to evaluate the Conditions used in the

5.3 Application to the 2D Simulation League 89

Setplay. Since Conditions refer mainly to physical concepts in the soccer game and to the
game state (score, time, etc), this should be done by the class that models the State-of-the-
World. In the case of the FCPortugal team, this is modeled by the class WorldState. This
class implements all the lookup methods referred in section 3.4 and visible in Fig. 3.9 on
page 39.

As an example, one can look at the way ball possession is tested. This condition takes
a list of player references as argument. The lookup method for this condition will iterate
every player in the list received as argument, and test two conditions: if the distance of
the player to the ball is below a certain threshold (currently, 1m), and if this player has the
lowest ball interception time, which is different from, and more meaningful than, being
the player closest to the ball. Other conditions are evaluated through checking of other
concepts in the State-of-the-World.

5.3.3 Setplay Selection for Execution

The Setplay usage scenario chosen, taking in account the current level of play, was de-
cided to take place in situations like corners, kick-ins and free-kicks, since these situations
are non-play-on and clearly announced by the server, and thus all players can prepare to
participate in the Setplay. There will always be some time available before Setplay start,
which allows the start-up message to be repeated by the lead player, and therefore heard
by all players participating in the Setplay. Ideally, the lead player would be the team
coach, since it has access to an error-free state-of-the-world. The 2D Simulation rules
do, though, strictly restrict the sending of messages by the coach, in order to avoid that
it coordinates the players in real-time. Specifically, all messages sent by the coach are
subject to a delay. With such restrictions, the coach cannot efficiently act as lead player.
Thus, in the Setplays executed in the 2D Simulation league, the lead player will be a field
player, which can possibly change from Step to Step, e.g., in order to allow the current
ball owner to act as lead player.

In the initial experiments with Setplays in this 2D team, the algorithm for Setplay se-
lection was of utmost simplicity. Since there were only one or two Setplays for each game
situation (kick-in, corner, etc), the options were few and the choice could be done arbi-
trarily, in this case randomly. This procedure allowed the use of Setplays for optimization
purposes: one could set up a limited set of Setplays and perform tests with them, in order
to empirically evaluate their execution, or fine tune the implementation of Actions and
Conditions.

These empirical experiments are appropriate for getting a good understanding of the

90 Framework Application to RoboCup Teams

practical functioning of Setplays, and to perform debug procedures. However, the suc-
cessful use of Setplays in a competitive environment depends on the selection and fine-
tuning of particular Setplays, preferably with specific opponents in mind. Since such a
process would be very time consuming, there should be, with this goal in mind, some
(semi-)automatic procedure to test, evaluate and select Setplays for each opponent.

To empower the Framework to store the results of each Setplay execution, a system
inspired by Case-based Reasoning (CBR) was developed, as described in section 4.2.
Further, this system can choose which Setplays to execute, based on the stored evaluation,
which includes data representing the success in execution, but also spatial information and
the identification of the opponent.

This CBR-based Setplay selection tool was applied in the 2D Simulation FCPortugal
team, which means that the Setplay selection process is performed by the Framework
autonomously. This option of auto-selection of Setplays for execution was described in
section 3.3.1.2, and includes the selection of the players that will participate in the Setplay.

The usage of this CBR-based system faced some difficulties. Since there is no fully
shared State-of-the-World among the players, it is both possible and common that differ-
ent players see events differently. It might happen, for instance, that a striker, acting as
the lead player, sees that some particular condition is satisfied, and thus concludes that the
Setplay has reached its end. This will trigger, according to the communication strategy, a
Setplay ending message to be sent to all players through the communication channel. It
might happen, though, that a defender, or the goalie, are located too far away to receive
this message, due to the server’s communication limitations, as described in section 5.3.5.
This defender and the goalie would wrongly conclude that the Setplay ended unsuccess-
fully if, for instance, some abort timeout elapsed meanwhile, or some abort condition
was met. Such a discrepancy would result in a distinct evaluation of that Setplay’s suc-
cess, and thus would result in different registries in the different players’ Case Base. This
discrepancy should obviously be avoided, but that is difficult to prevent with the current
communication limitations.

5.3.4 Choice and execution of Actions

When the Setplay is being executed, all main management tasks and flow control are
done internally by the Framework. The agent just needs to decide which action to execute,
when there is more than one available, and, subsequently, take care of the actual execution
of the chosen action. Besides these mandatory tasks, in the moments where there is no
action to be executed, the agent may also position itself adequately for Setplay execution,

5.3 Application to the 2D Simulation League 91

and direct its gaze towards the relevant players. The general execution flow is depicted in
Fig. 5.4, and will be described in detail in the next paragraphs.

Begin

actions
available?

choose available
action

yes

yes

no

no dribble to Setplay
position

action chosen
and active?

End

am lead player
and action not

finished?

yes

move to Setplay
position and turn
to relevant player

no

execute chosen
action

Figure 5.4: Decision process for Action choice and execution

The choice of actions was implemented very straightforwardly, as the first available
action is chosen. This option was made since the Setplays in usage during testing and in
actual games never considered alternative transitions between Steps. In such cases, there
will be at most one action available at every moment in Setplay execution, and thus no real
choice needs to be done. Is this setting, the simple algorithm of choosing the first available
action trivially does what is needed. If more complex Setplays were to be used, namely
with the mentioned alternate transitions, the action decision method could be changed,
e.g., through an aleatory decision process, which would avoid similar, repeated Setplay
executions, or through an enhancement of the CBR system, which would be extended to
consider these choices in Setplay execution storage.

At particular stages in Setplay execution, there will be no actions active for execution
by the robot: this may happen due to ’waitTime’ settings in Steps, because a robot has
no action to execute in the current Step, or because the active action has already been
executed. In these situations, the robot might remain inactive, or, with advantage to the
Setplay execution, position and orientate itself according to the Setplay settings. In these

92 Framework Application to RoboCup Teams

situations, the robot is able to access the information regarding its current Setplay posi-
tion, and which is the relevant player in the current Step. The player’s position is defined
explicitly in each Step’s definition. As for the relevant player (or players), there is a
method which returns a list of these, defined as PlayerID’s (method relevantPlayers, with
no arguments). In some situations, these two issues might be contradictory: the move to-
wards the Setplay position can be irreconcilable with looking towards the relevant player.
To prevent potential conflicts between these two issues, it was decided to give a higher
priority to the movement towards the Setplay position, while the player is far from it.

When the player’s distance to the Setplay position is below a threshold, the focus will
then be on looking towards the relevant players. Since the player’s viewing area is limited,
when there are more than one relevant players, the robot will direct its gaze towards the
first player in the list. This list depends on the active action: if the player is, e.g., passing
the ball to a teammate, the receptor will be the relevant player, while when the active
action is to tackle a player, the relevant player will, naturally, be the one to tackle.

5.3.5 Inter-robot Communication

One major challenge in this application was how to deal with the limited communication
means allowed by the server, which manages all allowed messaging. To cope with the
restrained, single-channel communication, the lead player, in this case usually the player
with ball possession, will be the only player allowed to send messages.

The content of communication must be as concise as possible, in order to follow the
2D simulator’s limitations (messages under 10 bytes in length, only one message per team
and cycle) and to leave enough place for the sharing of world-state information, necessary
for the maintenance of a satisfactory and up-to-date world model by all players. In order to
comply with these limitations, it was chosen to only use Setplays without extra arguments,
since these would use much space in the startup messages (as explained in section 3.2).
The Setplay startup message does therefore only contain the participating player numbers
as arguments, besides the identification of the Setplay, through its numerical id.

5.3.6 Summary

The application of the Setplay Framework to the 2D Simulation league was quite a suc-
cessful one: actions and conditions were implemented based on the existing code, and
it was possible to deploy complex Setplays, involving several players and attaining the
foreseen goals. Though the league’s settings presented some limitations, namely the re-
strictions on communication, it was possible to execute Setplays successfully, involving

5.4 Application to the Middle-size League 93

several players, even if some simplifications were made: the executed Setplays do not use
parameters besides the participating players, in order to comply to the allowed message
length.

The general evaluation on the application of the Framework to this league must thus
be a strong positive one, as stated in chapter 6, where experimental results are presented
and discussed.

5.4 Application to the Middle-size League

The Middle-size league has been a part of RoboCup championships since their first edi-
tion. Teams are presently made of five multi-wheeled, fully autonomous robots. These
robots must thus carry all the hardware to fulfill their tasks, namely cameras and other
sensors to estimate the State-of-the-World, as well as the actuators (wheels, kicking de-
vices,...) which enable them to actively interact with the ball and other robots. According
to the present rules, the field measures 12 by 18m, and the game is played with an official
soccer ball. Teams may deploy a coach in an external computer, and all agents (players
and coach) may freely communicate through a wireless network supplied by the compe-
tition organization, as long as some bandwidth and protocol restraints are respected.

After successful application of the Framework to the 2D Simulation league, it was
decided to apply it to this real-world environment, the Middle-size League. This league’s
development has, in recent years, seen the leading teams’ effort to enhance the high-level
performance, through team level coordination and cooperation schemes, as seen in chapter
2. Namely, team CAMBADA1, from the University of Aveiro, in Portugal, has previously
developed configurable team-play for set pieces, which have, though, a fixed structure:
the participating players, and the actions between them are pre-determined, but can be
partially configurable, through parameters, and can be executed in different spots on the
field. This cooperation scheme has been developed and fine-tuned, and has led to very
successful competitive results, namely RoboCup champions in 2008. It remains, though,
limited by its rigid structure, and hard to develop further. It was thus considered timely to
take this kind of team-play one level higher: fully integrate the Setplay framework, which
allows the execution of freely definable collective Setplays.

Development was, in a first moment, conducted in a simulated environment: CAM-
BADA has developed a full-blown simulator to ease the development process and avoid
the constant use of the robots. The simulator fully emulates the robots’ low-level func-
tions (sensors and actuators), and hence the high-level software can be directly applied,

1URL: http://www.ieeta.pt/atri/cambada/

94 Framework Application to RoboCup Teams

without any modification or adaptation, both to the robots and to the simulator, with only
minor inconsistencies in the robot behavior, when compared to the real-world deploy-
ment. Development in the simulated environment is easier, and, after implementing the
abstract Conditions and Actions, the robots were quickly executing Setplays.

In the CAMBADA team, agent’s behavior is modeled through so-called ’Roles’, which
manage the player’s decisions from an high level of abstraction. Currently, in a normal
play-on situation, examples of Roles would be Goalie, Defender, Midfielder and Striker.
There are, also, Roles for specific situations, like penalties and free-kicks.

Since, when taking part in a Setplay, a player will have a particular kind of control
strategy, which in fact is following the Setplay’s Steps and execute the corresponding Ac-

tions, it was decided that all players participating in a Setplay will be running a dedicated
Role, in this case called RoleSetplay.

5.4.1 Setplay Selection for Execution

Setplay instantiation and startup is taken care of by the team’s coach, which has access
to the team’s shared State-of-the-World and will act as lead player. This intangible agent,
that does not have to deal with low-level activities, has plenty computing power to man-
age Setplay execution, namely Setplay selection through the CBR-based sub-system. This
scenario differs significantly from the one found in the 2D Simulation league, where re-
strictions in communication made it impossible for the coach to act as lead player. This
means that, in the Middle-size league, only the coach manages Setplay execution, and
thus needs to send messages to the other agents, which makes Setplay management far
easier.

In every execution cycle, the coach will monitor the Setplays loaded in the Framework
and check if any of these has its pre-conditions satisfied. If this is the case, a Setplay will
be chosen with assistance from the CBR sub-system, described in section 4.2. When a
Setplay is chosen, a instantiation message will be posted on the shared-memory space,
accessible to all agents, as described in section 5.4.5. Each player will see this message
and, if it participates in the Setplay, will activate RoleSetplay, which will deal with Setplay
execution appropriately.

As the coach is the agent responsible for Setplay selection, it will also be its task to
manage the Setplay execution and, finally, to register Setplay success or failure.

5.4 Application to the Middle-size League 95

5.4.2 Choice and execution of Actions

As seen in the previous section, the coach, acting as lead player, is the sole responsible
for Setplay choice and activation. Since the coach will centralize the Setplay manage-
ment issues, it will also be up to it to do all other management tasks and decisions, since
it has access to the shared State-of-the-World, and is thus able to supervise Setplay ex-
ecution without interference from other players. Complying to this strategical option,
the coach will also do other relevant tasks, such as updating the Framework’s internal
states, choosing among possible, alternative actions included in the Setplay’s definition,
and checking for Setplay termination. As consequences of these tasks, the coach will
update the Setplay-related messages, which will subsequently be read by the players.

Every player is able to detect if a Setplay is being run by checking the Setplay-related
message written by the coach on the shared memory space, as described in section 5.4.5.
Each time this message is changed from an empty text to an instantiation message, the
player feeds the received message to the Framework, and the corresponding Setplay is
set up. Always when the Setplay message is non-empty, the players are managed by the
dedicated RoleSetplay. In this role, the player’s behavior is very simple: it simply needs
to check, at every execution cycle, if the Setplay-related message has changed, and feed it
to the Framework. If some action is active, the player reads its active action, through the
dedicated method, and sets up the corresponding own behavior. If there is no active action,
due to the player not participating in this step, the wait time not having yet elapsed, or the
action being already completed, the player will move to its Setplay position or orientate
itself towards the present relevant player, in this respect similarly to what happens in the
2D Simulation league, as described in section 5.3.4.

The application of the Framework to the Middle-size league differs considerably from
the application in the 2D Simulation league: since all choices are done by the coach, the
player simply has to execute the action determined by the Framework, if it is active, or
else position and orientate itself according to the Setplay’s settings. Fig. 5.5 depicts the
execution flow, and should be compared with Fig. 5.4: one can note that in this case, the
action choice step is missing, since this is done by the coach.

5.4.3 Implementation of Actions

As to the implementation of the Framework’s abstract actions, the process was consider-
ably more meticulous than the one in the 2D Simulation league, since actions are more
difficult to prepare and execute, as they are situated in a real environment, and not under
discrete, simulated settings. This implied that some of the execution flows had to recur to
some extra preparation steps.

96 Framework Application to RoboCup Teams

Begin

yes

no dribble to Setplay
position

action chosen
and active?

End

ball possession? yes

move to Setplay
position and turn
to relevant player

no

execute chosen
action

Figure 5.5: Decision process for Action execution

As an example, one will look at the implementation of the passing-related actions:
the actual pass on the one hand and the ball reception on the other. In this scenario, the
kicker cannot simply turn to the receiver and pass the ball: the latter has to be properly
positioned, and aligned with the kicker, for the reception to be successful. If the alignment
is imperfect, the ball will probably bounce at the receiver, and consequently go astray.
This problem had naturally already presented itself to team CAMBADA, and had been
solved by the use of some communication flags, to signal when the players are in position.
One will thus look at the execution procedure of these two actions, which will make use
of two different communication flags, and are depicted in Fig. 5.6. All code to execute
these and all other actions is defined inside RoleSetplay.

The ball passer will start by getting possession of the ball and engaging it in the
kicking device. At this phase, the passer’s coordination flag will be set to ’TryingToPass’.
At the same time, the ball receiver will examine the other players’ flags, to locate the
player presently trying to pass the ball. When that player is determined, the receiver will
position itself to receive the pass, and then set its own flag to ’Ready’. The passer will be
monitoring the receiver’s flag, and will only pass the ball when it verifies that the flag’s
state has switched to ’Ready’. The passer may then execute the pass, and will set its
own flag to ’BallPassed’. At this point, the receiver will actively position itself for ball
reception, which implies slightly moving away from the ball upon contact with it, to avoid
bounces.

5.4 Application to the Middle-size League 97

Ball Passer Ball Receiver

TryingToPass

locate
passer

get
ball

prepare
reception

prepare
pass

Ready

pass
ball

receive
ball

BallPassed

Figure 5.6: Decision and synchronization process for a ball pass

5.4.4 Implementation of Conditions

As mentioned before, the Framework requires the abstract class Context to be imple-
mented by some class in the team code, in order to evaluate the Conditions used in the
Setplay definitions. As Conditions refer mainly to physical concepts in the soccer game
and to the game state (score, time, etc), this implementation is preferably done by the
class that models the State-of-the-World. In the case of team CAMBADA, this class is
called WorldState, and thus it was made a subclass of the Context class in the Framework.

Special attention was given to passes between players: the new canPassPl Condition

has to assure that both players have no obstacles between them, or else the pass will
frequently fail, since the ball catching capabilities of the robots are limited, and obstacles
might hinder ball visibility.

5.4.5 Inter-robot Communication

Communication in the Middle-Size League is not subject to strict limitations: although
the robots are fully autonomous, they can freely communicate through a wireless net-
work, using standard protocol 802.11. In championship settings, it is common that the

98 Framework Application to RoboCup Teams

network has high traffic and is consequently over-loaded, but this situation is normally
under control.

The CAMBADA team uses a black-board approach with a shared State-of-the-World
for communication. This architecture, called RTDB (Real Time Database - Lau et al.
(2008); Santos et al. (2009)) has been used both for posting perception information and
coordination flags in previous tackles at team-level coordination. The RTDB was there-
fore used for the posting of the Setplay messages by the coach, since these can be read
by all the team robots. All kinds of Setplay-related messages, namely for instantiation,
Step change and Setplay end, are written in a particular location in the shared memory,
which is known and accessible by all players. As this message changes along with Set-
play execution, players will use it to update the Framework’s internal state, by calling
the processReceivedMessage method. This actualization will determine the active actions
at each moment, as described in section 5.4.2. As this communication framework was
already fully functional and permanently used, its usage by the Setplay Framework only
required a minor change in the information architecture, namely the addition of a specific
field to convey the Setplay-related messages.

5.4.6 Summary

The application of the framework to the CAMBADA team was considerably different
from the application to the 2D Simulation team. For once, the low-level perception and
action mechanisms are far more complex and thus subject to malfunctions and other un-
certainties or unexpected events. This implied that the application of the Framework to
this team, and the necessary adaptation of components, had to be more finely tuned. On
the other hand, the existence of a central shared memory, with free access by all agents,
made the process of Setplay choice and management clearly considerably simpler.

The resulting Setplays were executed smoothly and effectively. In a first stage, the
already existent, rigid Setplays were successfully reenacted, by defining new Setplays
with similar behavior. These Setplays could further profit from the advantages offered by
the CBR-based system: when competing Setplays had different success rates, the more
unsuccessful alternatives were chosen more seldomly. Additionally, since the Framework
is free from the previous limitations, it was possible to define new Setplays, namely for
usage in play-on situations. The results of the execution of such Setplays are described in
chapter 6.

Chapter 6

Evaluation of the Setplay Framework

As the Setplay Framework aims at being a practical tool, that is ready to be integrated in
real-game situations, its evaluation must be based on credible situations, i.e., on games
according to the actual rules. Since the Framework application to a team brings several
advantages that should be evaluated, several of its characteristics must be tested.

One should remember, from page 4 of the Introduction in Chapter 1, that Setplays
should be considered “small multi-player plans in the robotic soccer domain”, and they
should be applicable “to any league in RoboCup”. Specifically, the Framework claims to
exhibit several qualities:

Efficacy: a Setplay should be effective in gaining advantages in the particular situations
and against the opponents for which it was designed.

Generality: the Framework should be applied seamlessly to different teams and leagues,
as it has already been described in the previous chapter. Further, the same Setplay
should possibly be executed in different leagues, with different constraints in terms
of action execution and communication.

Configurability: a Setplay can possibly contain several parameters, and its definition
is highly configurable, in terms of player positions, as well as which actions to
execute, and when to do so. This configurability provides a high level of fine-
tuning, that can be decisive in the Setplays success.

Adaptability: when the Framework is managing different Setplays in the course of a
game, it should adapt to the current opponent, by choosing the most promising
Setplays, while avoiding those which prove to be unsuccessful.

Experiments will focus on the comparison of the team behavior in specific situations,
where alternative executions with use of Setplays will be compared to situations where the

99

100 Evaluation of the Setplay Framework

Setplay Framework is inactive. The qualities just mentioned will be subject to qualitative
and quantitative testing in the remainder of this chapter.

6.1 Testing in the Middle-Size League

Over the recent years, Set-pieces have been used extensively by team CAMBADA: in
fact, these collective moves have been one of the strong points of the team, giving them a
decisive competitive advantage. Set-pieces are fixed, yet configurable, collective collabo-
ration schemes, and have been applied to situations like free-kicks, corners and kick-ins.
Setplays are particularly suited to this kind of situations, even if they can be applied in
other settings. As such, the initial experiments made tried to reenact this kind of collective
moves, and situations like kick-offs and kick-ins, among others, were effectively executed
and their outcome monitored.

6.1.1 Set-pieces: Throw-in

In order to illustrate Setplay execution, a throw-in will be used as example. There are three
robots involved: the replacer, which kicks the ball into play by passing it to the receiver1,
that positions itself at a configurable x_offset behind the ball. An auxiliary receiver2

simply positions itself at a fixed offset relative to the ball and has no further participation
in the Setplay. Naturally, there can be more complex Setplays, with more parameters or
varying receivers: such complexities are avoided in this example for clarity’s sake. This
Setplay’s definition can be seen in Fig. A.2, in appendix A.

The Setplay is initiated by the coach upon announcement, by the referee, that the
throw-in in favor of team CAMBADA can be taken. The participating players are chosen
according to their distance from the Setplay positions. At this moment, the coach posts the
following message on the team’s black-board (RTDB), stating that the participant players
have jersey numbers 4, 2 and 3, and 2m for the x_offset argument:

(startSetplay :setplayID 0 :participants 4 2 3 :parameters 2)

Upon reading this message, these players position themselves in the desired positions
(see diagram on Fig. 6.1(a)). After the players reach their positions and the referee sends
the ’start’ signal, the coach will announce, as follows, that the desired next step is nr. 1,
which in this case is the only available option:

(stepMessage :currentStep 0 :nextStep 1)

6.1 Testing in the Middle-Size League 101

The replacer will then pass the ball to the receiver1 (see, again, Fig. 6.1(a)). This
robot will accomplish the ’receiveBall’ action by waiting for the ball and, when it comes
close, moving back to avoid it to bounce and go astray (Fig. 6.1(b)). After catching the
ball, the coach will check if it considers a shot at goal possible, in which case it will post
a new step change message, which triggers the a dribble to the shooting position and shot
at goal through a kick behavior, visible on Fig. 6.1(c):

(stepMessage :currentStep 1 :nextStep 2)

In case the shot is not possible or desirable, the setplay will be aborted, with the
corresponding message being sent, where -1 stands for an inexistent state:

(stepMessage :currentStep -1 :nextStep -1)

If the shot is successful and a goal is scored, the pre-condition to step 3 will be sat-
isfied. This will make the Setplay to follow a ’Finish’ transition, which represents a
successful Setplay end. This would be signaled to the players in the team through the
message that follows:

(stepMessage :currentStep 3 :nextStep -1)

6.1.2 Setplay in play-on mode

In order to illustrate Setplay execution in a play-on situation, a very simple interaction
will be used as example, possible when the ball is in possession of our team, in a specific
region (intersection of mid_left and their_back). There are two robots involved: the striker

will turn and then pass the ball to the shooter, which will position itself in a central point
and, upon reception of the pass, will shoot at goal. This Setplay’s definition can be seen
in Fig. A.3, in appendix A.

The execution of this Setplay will be illustrated through images, displayed in Fig. 6.2,
of an actual execution in CAMBADA’s simulator, which uses the same code that runs on
the actual robots.

The Setplay is initiated by the coach upon verification that the conditions for entry
in step 0 are satisfied: play-mode is play-on, ball is in the desired region and one CAM-
BADA player has ball possession. The participating players are chosen according to their
distance from the Setplay positions. At this moment (see diagram on Fig. 6.2(a)), the
coach posts the following message on the RTDB, stating that the Setplay with ’id’ 1, with
the participant players with jersey numbers 6 (representing the coach), 5 and 3:

(startSetplay :setplayID 1 :participants 6 5 3 :parameters)

102 Evaluation of the Setplay Framework

(a)

(b) (c)

Figure 6.1: Throw-in Setplay example

Upon reading this message, these players position themselves in the desired positions.
Since the desired pass can be accomplished, the coach will announce, as follows, that the
desired next step is nr. 1:

(stepMessage :currentStep 0 :nextStep 1)

This will allow the striker to rotate towards the shooter (Fig. 6.2(b)). After the players
reach their positions, another step progress is announced by the coach:

(stepMessage :currentStep 1 :nextStep 2)

The striker will then pass the ball to the shooter (see Fig. 6.2(c)). The shooter will
accomplish the ’receiveBall’ action by waiting for the ball and, when it comes close,

6.1 Testing in the Middle-Size League 103

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Play-on Setplay execution steps.

moving back to avoid it to bounce (Fig. 6.2(d)). After catching the ball, the coach will
evaluate if it considers a shot at goal possible, in which case it will post a new step change
message:

104 Evaluation of the Setplay Framework

(stepMessage :currentStep 2 :nextStep 3)

This triggers the preparation (see Fig. 6.2(e)) for a shot at goal through a kick behavior,
which in turn is visible on Fig. 6.2(f). In case of a goal being scored, the Setplay will be
finished, with the corresponding message being written on the RTDB by the coach, where
-1 stands for an inexistent state:

(stepMessage :currentStep 3 :nextStep -1)

6.2 Testing in the 2D Simulation League

The main testbed for Setplay execution was the 2D Simulation FCPortugal team. In
this team, most actions and conditions were implemented and allowed the appropriate
execution of various Setplays, in different settings, namely in real games in competitions.
Some actions, like marking a player, were not actually tested, as they are useful only in
defensive scenarios, while, at this point, only offensive Setplays were applied.

Even though some of the actions may still lack a final round of fine-tuning, which
might enhance performance, one may conclude, based on evidence shown in the next
sections, that the results reached are a considerable improvement upon the original team’s
behavior.

6.2.1 Own Goalie Catch

The goalie catch is a very common situation in real games, since opponents frequently try
to forward the ball to FCPortugal’s penalty area, and the goalie is capable of intercepting
the majority of these. After a goalie catch, a free kick is awarded, and the goalie may
move (“warp”) twice to different positions before actually taking the free kick.

The team’s original handling of these situations showed there was room for improve-
ment, since it allowed, too frequently, ball interception by the opponent inside the own
half, originating difficult situations and, sometimes, goals by the opponent.

6.2.1.1 Nemesis

In order to overcome the weaknesses in goalie catch situations, several different Setplays
were designed, namely for usage against one frequent and competitive opponent: Neme-
sis, from the Amirkabir University of Technology, in Iran (Norouzitallab et al., 2010).
This team ranked 5th in RoboCup 2010 and 8th in the previous year. In both occasions,
Nemesis’ rank was near, but above, FCPortugal’s rank. One might thus say that Nemesis

6.2 Testing in the 2D Simulation League 105

is a team with which FCPortugal competes for rankings in the same range, and is, due to
this fact, a frequent opponent. As such, Nemesis’ 2010 binary was an obvious opponent
to be considered when Setplays were designed to be used in competition. It was believed
that, if existent flaws could be exploited, Setplays could make a difference in the final
score of the games.

For a better understanding of the advantages of Setplay use, one will first analyse FC-
Portugal’s performance without the application of Setplays. In order to centre the analysis
on this kind of situations, goalie catchs were repeatedly provoked, through operations on
the 2D Simulation monitor1: the ball was dropped on the penalty area, in play-on mode,
in a place where the goalie could catch it. The game continues normally from this point
on, until the opponent gains persistent possession of the ball, or until the game is inter-
rupted by the referee, due to, e.g., some foul or the ball getting kicked out of the pitch. At
that moment, the momentary position of the ball and game mode are recorded, and a new
goalie catch is induced.

To analyse the performance of this kind of situations, one can not rely on the number
of scored goals, as rarely a goal is reached as a direct result of a goalie catch. A simple,
empirical utility function was designed to rate the outcome of each of the trials. The ball’s
final position was awarded points according to how far from the own goal it was situated,
as defined in Table 6.1. A special category was created for situations where the ball was
shot at goal. This spatial ranking will be doubled in situations when the ensuing game
mode will result in FCPortugal’s ball possession, like own kick-ins and free-kicks.

Area Points
shot 12
their_back 6
their_middle 5
their_front 4
our_front 3
our_middle 2
our_back 1

Table 6.1: Ranking according to final ball position.

Ten different games were run, and, in each game, five goalie catches were induced, in
favor of FCPortugal. Fig. 6.3 depicts graphically the performance of this series of tests:
each column represents a game, for a better representation of the disparity between differ-
ent games. The x-axis shows the number of goalie catches, while the y-axis represents the

1URL: http://sourceforge.net/projects/sserver/files/rcssmonitor/

106 Evaluation of the Setplay Framework

accumulated evaluation. For instance, in execution number three, the value depicted will
be the sum of evaluations from executions one to three, shown separately for each game.
In general terms, the average outcome amounted to 3.4, which spatially would roughly
correspond to the half-way line. Globally, the ball was handled across the half-way line
in only 40% of all goalie catchs.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5

Ac
cu

m
ul

at
ed

 e
va

lu
at

io
n

Goalie Catch execution number (in each game)

Goalie catch against Nemesis with Setplays deactivated: 10 games

Games: 1
2
3
4
5
6
7
8
9

10
Aver.

Figure 6.3: Goalie catch with Setplays deactivated

The diagram on Fig. 6.4 gives useful information in terms of speed of handling the
ball across the half-way line. Each execution in each of the ten games is characterized by
the time taken for the ball to cross to the opponent’s half. Executions where the ball never
crossed the half-way line are labeled with the value -1.

Setplay efficacy Different Setplays were designed with the goalie catch situation in
mind, and then fine-tuned to take advantage of Nemesis positioning on the field in this
situation. Some of these Setplays showed better results, and were thus chosen to be used
in competition. To evaluate the advantages brought by these Setplays, two of them were
chosen to be presented here. These will be distinguished in this text by the number of
participating own players: four in the first case, and six in the second.

The Setplay with four players is quite simple, and is depicted through screenshots
on Fig. 6.5: besides the goalie, three other players, the right defender, mid-fielder and
forward position themselves half-way near the right touch line, as seen in Fig. 6.5(a) .
When the goalie is about to kick the ball, it moves to the right of the penalty area, and all

6.2 Testing in the 2D Simulation League 107

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5

Ti
m

e
to

 c
ro

ss
 m

id
dl

e
lin

e
(in

 s
er

ve
r c

yc
le

s)

Setplay execution number (in each game)

Goalie catch against Nemesis with Setplays deactivated: 10 games

Games: 1
2
3
4
5
6
7
8
9

10

Figure 6.4: Goalie catch with Setplays deactivated: time to cross middle line

other players move towards the touch line. The ball is then passed from the goalie to the
defender (Fig. 6.5(b)), and then from the defender to the mid-fielder (Fig. 6.5(c)), and on
to the forward (Fig. 6.5(d)), at which point the Setplay ends, close to the half-way line.
This Setplay’s textual definition can be seen in Fig. A.4. Since this Setplay is invertible,
it was also used, during the tests, on the left side of the field.

The Setplay with six players is both more complex and more ambitious, and is de-
picted through screen-shots in Fig. 6.6. Similarly to the previous Setplay, some players,
in this case four, position themselves half-way to the touch line (Fig. 6.6(a)), and the ball
is sequentially passed forward along these (Fig. 6.6(b)-6.6(d)), until it reaches the last
player, which in this Setplay is named ’Kicker’ (nr. 9). Upon gaining the ball possession
(Fig. 6.6(e)), the ’Kicker’ will dribble towards the opponent’s goal line, as it was observed
that Nemesis left this whole right flank unattended. While the ’Kicker’ is dribbling, an-
other player, called ’Runner’ (nr. 10), will run towards the opponent’s offside line. The
Setplay might end successfully in two different situations. If the ’Runner’ reaches the
offside line and the ’Kicker’ judges possible to forward the ball to a point ahead of the
’Runner’, this kick forward is executed (Fig. 6.6(f)). If, before such a forward kick is
possible, some opponent comes near the ’Kicker’ and tries to dispute the ball possession,
the Setplay is immediately terminated, and the game continues normally with the ball at
the ’Kicker’s’ discretion. Fig. A.6 contains the textual definition of this Setplay. This
Setplay is also invertible.

108 Evaluation of the Setplay Framework

(a) (b)

(c) (d)

(e)

Figure 6.5: Goalie catch with four players: FCPortugal pictured yellow, Nemesis dark
blue, ball in centre of the pink circle.

The performance of these Setplays was evaluated in exactly the same terms as in the
case with no Setplays, presented previously. Ten games with five goalie catchs were
run, and the out-coming ball position and game mode were rated according to the same
algorithm, based on the points shown in Table 6.1. These results are presented graphically

6.2 Testing in the 2D Simulation League 109

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Goalie catch with six players: FCPortugal pictured yellow, Nemesis dark blue,
ball in centre of the pink circle.

110 Evaluation of the Setplay Framework

in Fig. 6.7.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5

Ac
cu

m
ul

at
ed

 e
va

lu
at

io
n

Setplay execution number (in each game)

Goalie catch against Nemesis with 2 Setplays activated: 10 games

Games:1
2
3
4
5
6
7
8
9

10
Aver.

Figure 6.7: Goalie catch with 2 Setplays activated

In terms of Setplay evaluation, the total average amounts to 5.18, which is approxi-
mately a 50% increase with respect to the evaluation of the games without Setplays. Other
interesting results concerning the time the ball took to cross the halfway line can be seen
in Fig. 6.8. Not only are these times typically in the range of 30 to 40 cycles, but one
should also note that only in 5 executions did the ball not cross the half-way line. This
number of flawed executions is only 10% of the total number of executions, which differs
considerably from the 60% in the previous case with no Setplays.

There were, in these tests, two Setplays available, and choice among them was done
by the CBR-based selection algorithm. No previous experience was, though, considered,
which means that only experience in each game was taken in account. Even so, there
was a considerable bias towards the choice of the Setplay with 4 players. This result is
understandable: that Setplay is simpler, with less participating players, and ends earlier
than the Setplay with six players. In fact, the Setplay with 4 players had a 84% success
rate, while the one with six players managed to be successful in 67% of the cases. Since
the CBR algorithm favors considerably the Setplays with more success, the Setplay with
4 players was chosen in 76% of the total of executions.

From another point of view, the average evaluation of the Setplay with 4 players was
4.79, while for the Setplay with 6 players the figure was 6.42, which is considerably
better. Moreover, all executions where the ball did not cross the half-way line were of

6.2 Testing in the 2D Simulation League 111

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5

Ti
m

e
to

 c
ro

ss
 m

id
dl

e
lin

e
(in

 s
er

ve
r c

yc
le

s)

Setplay execution number (in each game)

Goalie catch against Nemesis with 2 Setplays activated: 10 games

Games: 1
2
3
4
5
6
7
8
9

10

Figure 6.8: Goalie catch with 2 Setplays activated: time to cross middle line

the Setplay with 4 players. This evaluation data is, though, not considered on CBR-based
Setplay choice, which relies solely on past Setplay success rates. One must thus note that
the Setplay with the best evaluation was not chosen more frequently. This result should be
considered, and possibly motivate enhancements in the CBR-based selection algorithm.

6.2.2 Corner Kick

Corner kicks are situations that are clearly suitable for Setplay execution, since opponents
tend to use a stable player positioning strategy for field covering that often depends on ball
position, and is thus always similar in corner kick situations. Such a situation is therefore
easy to exploit. Similarly to the goalie catch, several Setplays were designed for corner
kicks. This section will look at the performance in corner kicks both against Nemesis and
team Bahia.

6.2.2.1 Tests against Bahia

Team Bahia2 has started participating in RoboCup competitions only recently, since 2007.
The team has been continually developed, but it still remains a not very competitive team.
FCPortugal has performed efficiently in games against Bahia, but it is interesting to see
how this performance could be enhanced by the application of Setplays. As such, games

2URL: http://www.acso.uneb.br/brt/

112 Evaluation of the Setplay Framework

against Bahia can be a suitable testbed for different aspects in Setplay development, and
Bahia has thus been extensively used as an opponent for Setplay development.

Specifically with respect to corner kicks, Bahia’s 2010 binary has been used as an
opponent to test different aspects of the Setplay Framework, which will be presented in
the remainder of this section. Initially, a set of tests was done with the Setplay Framework
deactivated. The results of these executions can be seen on Fig. 6.9. From these result,
one may highlight that 13 goals were scored, which corresponds to 26% of all executions.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (p

er
 g

am
e)

Corner execution number (in each game)

Corner against Bahia with Setplays deactivated: 5 games

Games: 1
2
3
4
5

Aver.

Figure 6.9: Corner against Bahia with Setplays deactivated.

Setplay efficacy A Setplay was developed specifically to take advantage of Bahia’s
positioning on the field, and has been fine-tuned in sequential iterations. The definition of
this Setplay can be seen in Fig. A.9, in Appendix A.

This Setplay involves the participation of five players, as depicted in Fig. 6.10. The
kick taker (nr. 11) passes the ball to the receiver (nr. 9, Fig. 6.10(a)), which forwards the
ball to the left striker (nr. 8, Fig. 6.10(b)). This player is in line with two other strikers
(players nr. 7 and 10), to whom the ball is passed along (Fig. 6.10(c) and 6.10(d)). When
the ball reaches the right striker, it is shot at goal (Fig. 6.10(e)).

The results from the execution of this Setplay were quite encouraging, since they
clearly outperformed the executions without Setplays, as seen on Fig. 6.11, which shows
the number of accumulated goals per execution, in five different games. The total number
of goals was 28, from a total of 38 shots at goal. This amounts to a 56% success rate,

6.2 Testing in the 2D Simulation League 113

(a) (b) (c)

(d) (e) (f)

Figure 6.10: Corner with Setplays activated: FCPortugal pictured yellow, Bahia dark
blue, ball in centre of the pink circle.

up from 26% in the case of executions with the Setplays deactivated. As seen by the line
representing the average on the figure, the accumulated number of goals increases steadily
as more corner kicks are executed.

114 Evaluation of the Setplay Framework

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (p

er
 g

am
e)

Setplay execution number (in each game)

Corner against Bahia with 1 Setplay activated: 5 games

Games: 1
2
3
4
5

Aver.

Figure 6.11: Corner against Bahia with an activated Setplay.

To get a clearer view of the difference of performance with and without Setplays,
the diagram in Fig. 6.12 was drawn, putting the average performances side to side. The
error bars depict the standard deviation, in terms of accumulated goals, in each of the
executions. As clearly visible on the diagram, average performance is very different,
and there is no overlap between the standard deviations. This emphasizes the difference
between the two performances.

Since the samples with and without Setplay usage have an equal dimension, in this
case above 30, one can assume that the average of the experiences have a normal distribu-
tion. Thus, one will apply a two-tailed t-student test to the null hypothesis H0 : µ1 = µ2,
i.e., that the average of both samples, with and without the usage of Setplays, is equal.

To evaluate this hypothesis, one will calculate the following t-student test:

T =
X1−X2√

S2
1+S2

2
n

(6.1)

In equation 6.1, X1 and X2 represent the average of goals in the samples with and
without the usage of Setplays, which are, respectively, 0.26 and 0.52. S1 and S2 represent
the standard deviation in each of these samples, which amount to 0.44 and 0.50. n stands
for the number of experiments in each sample, which is 50. Applying this data to the
formula, one comes to 2.74 for the value of T. For a significance level of 0.01, the value
on a t-student distribution table with 98 degrees of freedom (2n− 2) is 2.63. Since the

6.2 Testing in the 2D Simulation League 115

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (p

er
 g

am
e)

Setplay execution number (in each game)

Corner against Bahia, comparison between average accumulated goals with and without Setplays : 5 games

Setplays activated
Setplays deactivated

Figure 6.12: Corner against Bahia with and without an activated Setplay

obtained value of 2.74 is higher than 2.63, one rejects the null hypothesis, and thus there
is statistical evidence to affirm that the average of goals with and without Setplay usage
is different.

CBR performance The CBR-based Setplay selection algorithm was already present in
the goalie catch tests against team Nemesis, but its influence in game playing was not
adequately assessed. In this section, tests made specifically to examine this system’s
performance will be presented and critically discussed.

The previous section presented a Setplay, with five participating players, which per-
formed quite satisfactorily against Bahia. In the present set of executions, again, five
games were run, and ten corner kicks were induced in each game. FCPortugal will pos-
sibly execute two different Setplays: the competitive one, with five players, from the
previous section, and a new Setplay, which simply consists of forwarding the ball to the
front of the goal, which has a much lower success rate, and will be referred to as simple
corner, and whose definition can be seen in Fig. A.11, in Appendix A.

The question to be clarified in this section is how the CBR-based Setplay selection
algorithm behaves in discriminating successful Setplays from unsuccessful ones. In order
to determine the departure situation, one should look at a scenario where the two available
Setplays, the one with five players and the simple corner, are randomly selected. The
results of execution in such a scenario are visible in Fig. 6.13. In the total number of

116 Evaluation of the Setplay Framework

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (

pe
r g

am
e)

Setplay execution number (in each game)

Corner against Bahia with 2 Setplays activated, ramdomly chosen: 5 games

Games:

1
2
3
4
5

Aver.
/10

Figure 6.13: Corner with 2 random-chosen Setplays

executions, 18 goals were scored and, as seen from the figure, these accumulated number
of goals grow regularly with the number of executions in each game. The line labeled as
’/10’ is simply a magnification by 10 of the percentage of choice of the Setplay with five
players, to ease the visualization of this data. Since this line oscillates wildly around 5 in
the diagram, one should recognize that the selection of each Setplay is done in roughly
50% of all executions, as expected.

In a second test, the CBR-based Setplay selection algorithm was activated, but it
worked from scratch: no previous experience was considered, as the case base was ini-
tially empty. This was done for all ten games in this set of executions: the team would
begin the game with an empty case base, and was able to build it as Setplays were exe-
cuted. At the end of each game, the case base was retained, for later analysis, but was not
considered in the subsequent games. As such, all ten games in this set depart from the
same situation, with no previous experience. This set of experiences contains ten games,
instead of the usual five, because Setplay choice, when there is no previous information,
behaves initially quite randomly, an aspect which one wished to minimize in the analysis.
The result of these executions can be seen graphically in Fig. 6.14. All figures are drawn
with the same scale, to ease the comparison of results.

Looking at the diagram, one does verify that the behavior is not homogeneous, and
different games show somewhat different performances. This is not surprising, as said
before, due to the initial random component. If, in the first runs in a game, the Setplay

6.2 Testing in the 2D Simulation League 117

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (

pe
r g

am
e)

Setplay execution number (in each game)

Corner against Bahia with 2 Setplays activated, no previous experience: 10 games

Games:
1
2
3
4
5
6
7
8
9

10
Aver.

/10

Figure 6.14: Corner with 2 Setplays: CBR choice without experience

with five players is not successful, or if the simple corner is chosen frequently, the overall
result will be lower.

The total number of goals scored was 57, an average of 5.7 per game, up from 3.6
in the previous test with the random selection of Setplays, which corresponds to a 60%
increase. The diagram still contains further interesting information: the percentage of
choice of the more performing Setplay is shown, multiplied by ten, through the line la-
beled as ’/10’. This figure, in the first few executions lies in the 0.4-0.7 range, but then
rises abruptly to values in the 0.8-1.0 range. This is a clear proof that the CBR-based
selection system performed well, prioritizing the choice of this Setplay.

The next testing scenario will explore, again, the selection of Setplays by the CBR-
based system, but this time previous knowledge will be used to ground Setplay selection.
Since all games in the previous test set recorded the Setplay execution results, one can
simply choose one of these games as the case base for the new set of games. Since game
2 was the one closest to, but nevertheless below, the average values, its’ resulting case
base was chosen.

The results from these tests are presented graphically in Fig. 6.15. The total number
of goals is in this case 29, which gives an average of 5.8 goals per game, a small increase
relatively to the CBR-based choice system without previous experience. More interesting
is that the percentage of executions of the more performing Setplay is high right from
the first execution, with only minor drops, due to the intended randomness introduced

118 Evaluation of the Setplay Framework

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (

pe
r g

am
e)

Setplay execution number (in each game)

Corner against Bahia with 2 Setplays activated, with 1 game previous experience: 5 games

Games:

1
2
3
4
5

Aver.
/10

Figure 6.15: Corner with 2 Setplays: CBR choice with previous experience

in the Setplay choice algorithm. The number of goals in different games is also more
homogeneous, when compared to the situation without previous experience, in Fig. 6.14.
Other aspect to consider is that, on a normal game, a typical number of corner kicks will
be quite small, either one or two. If one looks at the average of goals after two executions,
one will have 0.8 for the situation without previous experience, and 1.6 for the one with
previous experience.

Configurability After having thoroughly tested the corner kick Setplay against Bahia,
several particular questions still lingered: was this the optimal Setplay for this situation?
Would a small change in players positions alter considerably the performance?

In order to answer these questions, three alternative Setplays were created, by simply
changing the players’ positions. The general execution scheme of the Setplay remained
similar, as the number of players, and the actions between them were kept identical.

In the first case, the right striker, which shoots at goal, was simply moved exactly
three meters to the left, closer to the center striker. All other players’ positions remained
identical. The same set of tests (five games with ten corner kicks each) was run with this
new Setplay. In this case, the total number of goals scored was 28, which is slightly better
than the original Setplay, that managed to score 26. In this case, moving the shooter to
the right did not make a considerable difference.

6.2 Testing in the 2D Simulation League 119

In the second alternative Setplay, the shooter was moved to the right, in this case two
meters. All other players remained in the original locations. With this change, the total
number of goals scored was 32, which means a 23% increase with respect to the original
Setplay. In this case, the small change in positioning had a considerable, positive effect.

In the final alternative scenario, the whole line of strikers was moved three meters to
the back, thus further away from the goal. In this case, the total number of goals scored
was 19, a considerable performance degradation.

These results lead to the conclusion that minor changes in Setplay definitions might
alter the performance considerably. The manual fine-tuning of Setplays has proven to
be tiresome, time consuming and clearly sub-optimal, since even after having reached
satisfactory results, described earlier in this section, it was still possible to enhance the
performanceby simply changing players’ positions. This result suggests that Setplays
might benefit from the application of optimization (or machine learning) techniques that
did automatically fine-tune the Setplay definition.

6.2.2.2 Nemesis

The corner kick was also considered for Setplay usage against team Nemesis, since some
areas uncovered by the opponent were spotted. In this case, Setplay design was done
privileging speed and swiftness.

The behavior originally displayed, without using Setplays, by FCPortugal in corner
kick situations against Nemesis was quite poor. Five different games were run, and in
each game ten different corner kicks were awarded. As seen in Fig. 6.16, there was only
one goal scored, in a total of 50 corner kicks, a 2% success ratio.

Setplay efficacy The best performing Setplay against Nemesis is one with five partic-
ipating players, and its definition can be seen in Fig. A.12, while some screenshots are
shown in Fig. 6.17. Before the corned kick is actually taken, three participants gather
close to the near penalty area corner, in order to attract opponents (Fig. 6.17(a)). Just be-
fore the kick is taken, one of these players (Receiver, nr. 8 in the image) moves to receive
a pass, while other moves towards the goal (StrikerLeft, nr. 7), as seen on Fig. 6.17(b).
Just as the ’Receiver’ gets hold of the ball, it forwards it to StrikerLeft (Fig. 6.17(c)). As
soon as possible, StrikerLeft shoots at goal (Fig. 6.17(d)). The two remaining players,
StrikerCenter and StrikerBack (nr. 10 and 6), take no direct action in the Setplay: they
simply position themselves in front of the goal, in case the shot or StrikerLeft’s reception
fail. If that is the case, these players are at a good position to intercept the ball and try to
shoot at goal.

120 Evaluation of the Setplay Framework

-1

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (p

er
 g

am
e)

Corner execution number (in each game)

Corner against Nemesis with Setplays deactivated: 5 games

Games:
1
2
3
4
5

Aver.

Figure 6.16: Corner with no Setplays

With this Setplay activated, the performance was quite better. For once, there were 23
goals scored, which corresponds to success in 46% of all executions, as seen in Fig. 6.18.
The Setplay was successful in only 20 occasions (40%), which means that even in some
situations where the Setplay was not led to its finish, players were still able to react and
take advantage of the situation at hand, and scored extra goals. In the corner kick’s case,
one sees that the performance was dramatically enhanced by the use of Setplays.

For a comparative view of the difference of performances with and without Setplays,
the data in Fig. 6.19 was compiled, with the average performances side to side. The
error bars correspond to the standard deviation of accumulated goals in each execution.
One can verify on the diagram that performance differs considerably, and the standard
deviation bars do not overlap, similarly to the corner against team Bahia.

The t-student test defined in equation 6.1 was also applied to the data of the samples
of executions of corner kicks against Nemesis, with and without usage of Setplays. In this
case, the relevant values were X1 = 0.02 and X2 = 0.46, representing the average of goals
with and without the usage of Setplays. S1 = 0.14 and S2 = 0.50 represent the standard
deviation in each of these samples. n stands for the number of experiments in each sample,
which is 50. In this case, one comes to a value of T equal to 5.95, which leads us to the
conclusion that, at a significance level of 0.01, one can reject the null hypothesis, and
there is statistical evidence fo affirm that the average of goals with and without Setplay
usage is different.

6.2 Testing in the 2D Simulation League 121

(a) (b)

(c) (d) (e)

Figure 6.17: Corner Kick with six participants: FCPortugal pictured yellow, Nemesis
dark blue, ball in centre of the pink circle.

6.2.3 Kick-in

6.2.3.1 Bahia

To study the robustness of the Setplay Framework, an extra test was made: a Setplay
originally designed for use with the CAMBADA middle-size team was executed in the
FCPortugal 2D Simulation team. One should understand that this Setplay was designed

122 Evaluation of the Setplay Framework

-1

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (p

er
 g

am
e)

Setplay execution number (in each game)

Corner against Nemesis with one Setplay activated: 5 games

Games:
1
2
3
4
5

Aver.

Figure 6.18: Corner with an activated Setplay

according to a typical middle-size strategy: priority is set on passing the ball securely
to a team mate in a shooting position, which is just about anywhere on the opponent’s
half, since CAMBADA’s kicking device is very powerful and frequently scores goals.
With this aspect is mind, it was never expected to score goals in 2D Simulation with
such a straightforward strategy: one simply aimed at verifying that the Setplay executed
correctly.

Since the Setplay management, in CAMBADA, is done in all Setplays by the coach,
the Setplay was subject to a minor adaptation: the lead player was changed to the player
holding the ball in each Step, as usual in Setplays in this league.

This Setplay’s execution is very simple: in a kick-in, the kick taker simply passes
the ball to a teammate, which shoots directly at goal, no matter where he is located. It’s
definition can be seen in Fig. A.14, in the Appendix.

Setplay generality Ten executions were done against team Bahia, from different points
on the left line, on the opponent’s half. Two goals were scored, but never as direct con-
sequence of the Setplay’s shot action, since the shot was always done from a position
very distant from the goal. Nevertheless, on two occasions the ball was not conveniently
cleared from the opponent’s penalty area, and the FCPortugal players, having already fin-
ished the Setplay, reacted adequately and managed to get hold of the ball and execute a

6.3 Summary 123

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 g
oa

ls
 (p

er
 g

am
e)

Setplay execution number (in each game)

Corner against Nemesis, comparison between average accumulated goals with and without Setplays : 5 games

Setplays activated
Setplays deactivated

Figure 6.19: Corner against Nemesis with and without an activated Setplay

further shot at goal. In an execution very close to the opponent’s goal line, one offside
occurred.

These executions show that the Setplay adapted from the middle-size league was ex-
ecuted correctly, and even made it possible to score goals against the opponent.

6.3 Summary

This chapter presented numerous executions of Setplays, both in the FCPortugal 2D Sim-
ulation team and on the CAMBADA middle-size team. This application to such different
teams shows that the Framework is very flexible, and relies on a high, yet appropriate,
level of abstraction.

Setplays have proved to be effective, since the behavior exhibited by the teams run-
ning Setplays was consistently better than the original alternative, without Setplays. Evi-
dence was also presented that Setplays are highly configurable, and that this characteristic
allows the fine-tuning of the players’ positions and interactions. Such changes in configu-
rations were shown to have a considerable impact on Setplay success, and thus led to the
suggestion of new research topics, described in section 7.3.

Finally, it was also shown that the CBR-based Setplay selection algorithm manages to
prioritize the choice of the more performing Setplays, thus enhancing the team’s perfor-
mance in unknown circumstances. At the same time, this algorithm was capable of using

124 Evaluation of the Setplay Framework

knowledge from previous games to select the best Setplays.

Chapter 7

Conclusions

This chapter aims at wrapping up the presentation of the work done in this thesis. The
tools and results achieved are underlined, and attention is drawn to future lines of research
and dissemination.

7.1 Achievements

The major outcome of the thesis is the Setplay Framework, which will be publicly avail-
able for application in any team. This will allow it to be subject of improvements and
adapted to the evolution of the RoboCup domain. At this moment, the Framework pro-
vides several tools and definitions, which will be enumerated in the next paragraphs.

Setplay language. A language that defines a full vocabulary for robotic soccer and that
allows the definition of multi-participant and multi-step Setplays was defined.

Graphical editor for Setplays. A graphical editor for Setplays allows the definition of
the positionings and interactions of the participating robotic agents. This tool is specially
suited for experts in the human soccer domain, who normally are not acquainted with
common, raw computational formats. The usage of the graphical editor fosters a wider
dissemination of the Setplay Framework.

Setplay parser. Setplay definitions in the textual format can be read using the dedicated
parser that was developed, for usage inside or outside the Framework.

125

126 Conclusions

CBR-based Setplay evaluation and selection framework. The selection between pos-
sible Setplays at each moment can be performed through a CBR-based selection mecha-
nism, where the most successful Setplays in past executions are chosen preferably.

Setplay execution engine. Setplay execution can be easily applied to an arbitrary robotic
soccer team through the usage of the dedicated execution engine, which manages the
progress along the Setplay and determines actions for the robots to execute.

Algorithms for the Selection of players. Some algorithms were developed to select
the participating players when starting a Setplay. These were designed to minimize the
robots displacements and thus speed up Setplay start.

Communication management tools. Setplay management relies on the limited ex-
change of coordination messages. The Framework offers tools to manage message emis-
sion and reception, which simply have to be sent when required, and fed to the Framework
when received.

7.1.0.2 Results

The Framework was shown to be effective, through comparison of the performance in
similar situations, with the usage Setplays activated and deactivated. Performance was
measured to be considerably superior when Setplays were used.

The usage of the Framework was also shown to be flexible, as it was applied to the
CAMBADA middle-size team, as well as to the 2D Simulation league and, as a prototype,
to the 3D Simulation league. The application to different teams and leagues also showed
the Framework’s generality, in terms of abstraction.

Practical experiments were described in different game situations, and minor changes
in Setplay definition were shown to have a considerable impact on the team’s perfor-
mance. Such experiments showed the Framework’s configurability to different teams
and situations.

The Framework was also shown to change the Setplay selection according to each
Setplay’s success history, considering data both against a specific team and against all
opponents, which proves its adaptability.

These results show that the design, development and application of the Framework
were successful procedures. This suggests that the Framework may be applied to other
teams and leagues, and that the Framework may have significant impact on the perfor-
mance of these teams in the future.

7.2 Publications 127

7.2 Publications

During the research work that led to this thesis, several papers were written and sub-
ject to peer review for publication. Their publication timeline clearly highlights the way
development and research were conducted throughout the project.

Mota et al. (2006) describes a draft scenario where heterogeneous robots cooperate
while playing for the same team, and discusses how communication could be used to
foster teamwork. Mota and Reis (2007b) continued this line of research, with a proposal
for the communication framework.

Mota and Reis (2007a) is the first sketch of the Setplay Framework, and was the basis
of all development on this framework: it defined a first version of the Setplay language,
but still lacked practical results and further developments such as the CBR-based Setplay
selection algorithm. Mota and Reis (2008) was a development of the Setplay Framework,
suggesting its inclusion in a wider model for robotic agent control.

In an expanded article (Mota et al., 2011), the application of the Framework to the 2D
Simulation and Middle-size leagues was described in more detail, highlighting the differ-
ences of the experience in each. Mota et al. (2010a) and Mota et al. (2010b) described the
application to the 2D Simulation team FCPortugal in more detail.

Lopes et al. (2010) describes the development of a graphical tool, which allowed the
design of Setplays without actually editing the underlying text files.

While this research work was being conducted, the FCPortugal team kept participat-
ing in the international RoboCup championships, which lead to the publication of sev-
eral Team Description Papers, where the different phases of the application of the Set-
play Framework were described (Reis et al., 2007, 2008, 2009, 2010; Lau et al., 2011).
Gimenes et al. (2007) describes the development of a Mixed Reality team, which partic-
ipated in RoboCup 2007 in Atlanta, reaching the second place in this league’s general
rank. In this time frame, some other relevant results were reached in the 2D Simulation
competition of the German Open: 2nd place in 2007 and 2011, and 3rd place in 2008 and
2009.

7.3 Future Work

The application of the Setplay Framework was taken to a competitive level, enhancing the
underlying teams’ performance. In spite of this, there is place for new developments, that
open new research challenges.

128 Conclusions

Application to other teams. The Framework has been applied, with different levels of
detail, to three different teams: CAMBADA in the middle-size league, and the FCPor-
tugal teams in the 2D and 3D Simulation leagues. The Framework’s generality could be
shown even further if it was applied to still other teams and leagues. The application to
other teams could take profit of these teams’ strongnesses, and thus improve these teams’
results.

Usage of optimization algorithms. Practical results of the Framework’s application to
the 2D Simulation league showed that the fine-tuning of Setplays’ details could make a
considerable difference in their performance. This kind of fine-tuning, when done through
a human operator, is a difficult and error-prone task. Research should thus be done on the
application of optimization and machine learning techniques, leading to improvements in
the Setplay’s performance.

Extraction of Setplays from past games. Regardless of the existence of formal in-
tention, some collective moves by agents in any team might be a good source for new
Setplays. As an example, a team might perform well when executing a corner kick. Past
executions of such successful, implicit Setplays might be analysed, and treated as new
Setplays.

Testing in the Middle-Size League - Real robots. After the full implementation in
the simulated environment, that fully resembles the real-world setting, tests should be
conducted with the real robots, to ascertain the quality of the application to this league.
These tests, if successful, can lead to the integration of the Setplay framework in the
CAMBADA team, in real competitions. Such an application would allow new, more
advanced cooperation possibilities to the team.

Testing with Heterogeneous Real or Virtual robots. An interesting research topic is
the integration of robots with different origins in the same team. With this purpose, the
Setplay Framework could be used as a starting point to the creation of a mixed team,
in any possible league. This is surely a research topic that has to be investigated in the
future, as there is a trend to create this kind of teams. This idea is based on the fact that
different robots, from different teams, might have complimentary strong and weak points.
A promising strategy would be to use the strongest robots in each role or task. These
heterogeneous robots would naturally need to cooperate, which could be done with the
help of the Framework, concomitantly with other tools or frameworks.

7.4 Concluding remarks 129

Dissemination of results. Some of the results presented in this thesis are yet to be prop-
erly disseminated. Namely, the quantitative results of application to the 2D league, pre-
sented in chapter 6, were not subject to publication as a paper. Moreover, the CBR-based
evaluation and selection algorithm presented in section 4.2 has also not been published
with the necessary emphasis. These contributions to the RoboCup domain are certainly
interesting, and are currently being prepared for submission.

7.4 Concluding remarks

The work presented in this thesis has plainly reached the goals originally drawn, with
tangible results. Some aspects, like the CBR-based Setplay selection algorithm, were not
considered from scratch, but were added to the Framework to maximize its utility, adding
to its available set of tools, which are believed to be a consistent base for the application
of Setplays in any RoboCup soccer team.

130 Conclusions

Appendix A

Setplay definitions used in tests and
evaluation

131

132 Setplay definitions used in tests and evaluation

(setplay :name ck-right-3p :id 1 :invertable true :version splanner_1.0
:comment (Corner-kick from the right side with 3 participants)
:players (list (playerRole :roleName Player4)

(playerRole :roleName Player8)
(playerRole :roleName Player9))

:abortCond (or (bowner :players (player :team opp :number 0))
(and (not (playm play_on)) (not (playm ck_our))))

:steps (seq
(step :id 0 :waitTime 0 :abortTime 28

:participants (list (at Player4 (pt :x 52.5 :y 34))
(at Player8 (pt :x 38.5 :y 22.5))
(at Player9 (pt :x 33 :y -5)))

:condition (and (playm ck_our)
(bpos :region (regNamed :name right)))

:leadPlayer Player4
:transitions

(nextStep :id 1
:condition (canPassPl :from Player4 :to Player8))
:directives (list
(do :players Player8 :actions (intercept))
(do :players Player9 :actions (pos :region (pt :x 33.5 :y 0.5)))
(do :players Player4 :actions (bto :players Player8))))

(step :id 1 :waitTime 0 :abortTime 38
:participants (list (at Player8 (pt :x 38.5 :y 22.5))

(at Player9 (pt :x 33.5 :y 0.5)))
:condition (and (playm play_on) (bowner :players Player8))
:leadPlayer Player8
:transitions

(nextStep :id 2
:directives (list
(do :players Player8 :actions (dribble :region (pt :x 50 :y 22.5)))
(do :players Player9 :actions (stop)))))

(step :id 2 :waitTime 0 :abortTime 32
:participants (list (at Player8 (pt :x 50 :y 22.5))

(at Player9 (pt :x 33.5 :y 0.5)))
:condition (and (playm play_on) (bowner :players Player8))
:leadPlayer Player8
:transitions

(nextStep :id 3
:condition (canPassReg :from Player8 :to (pt :x 44 :y 5.5))
:directives (list
(do :players Player8 :actions (bto :region (pt :x 44 :y 5.5)))
(do :players Player9 :actions (intercept)))))

(step :id 3 :waitTime 0 :abortTime 24
:participants (at Player9 (pt :x 44 :y 5.5))
:condition (and (playm play_on) (bowner :players Player9))
:leadPlayer (playerRole :roleName Player9)
:transitions

(nextStep :id 4 :condition (canShoot :players Player9)
:directives (do :players Player9 :actions (shoot))))

(step :id 4 :waitTime 0 :abortTime 0
:participants (at Player4 (pt :x 52.5 :y 34))
:condition (playm play_on) :leadPlayer Player4
:transitions (finish))))

Figure A.1: Example Setplay definition of a corner-kick in SPlanner

Setplay definitions used in tests and evaluation 133

(setplay :name throw-in :id 0
:players (list (playerRole :roleName replacer)

(playerRole :roleName receiver1) (playerRole :roleName receiver2))
:parameters (parameter :name x_offset :type decimal)
:steps (seq

(step :id 0 :waitTime 1.5 :abortTime 15.0
:participants (list (at replacer (pt ball))
(at receiver1 (ptRel :x x_offset :y 0.5 :pt (pt ball)))
(at receiver2 (ptRel :x 0 :y 1.5 :pt (pt ball))))

:condition (playm ki_our) :leadPlayer (player :team our :number 6)
:transitions (list
(nextStep :id 1
:condition (and (playm start)

(canPassPl :from replacer :to receiver1)
(ppos receiver1 (ptRel :x x_offset :y 0.5 :pt (pt ball)))
(ppos receiver2 (ptRel :x 0 :y 1.5 :pt (pt ball))))

:directives (list
(do :players replacer :actions (bto :players receiver1))
(do :players receiver1 :actions (receiveBall))))))

(step :id 1 :waitTime 0.0 :abortTime 10.0
:participants (list (at receiver1 (pt ball)))
:condition (and (bowner :players receiver1) (playm play_on))
:leadPlayer (player :team our :number 6)
:transitions (list
(nextStep :id 2
:condition (canShoot :players receiver1)
:directives (list (do :players receiver1 :actions (shoot))))

(abort :condition (not (canShoot :players receiver1)))))
(step :id 2 :waitTime 0 :abortTime 5

:participants (list receiver1)
:condition (playm ag_our) :leadPlayer (player :team our :number 6)
:transitions (list (finish)))))

Figure A.2: Throw-in Setplay definition

134 Setplay definitions used in tests and evaluation

(setplay :name playOnCambadaLeft :id 1
:comment (Only works on left side because of the positioning

of ball. Pass can only be done to shooter)
:players (list (player :team our :number 6)

(playerRole :roleName striker) (playerRole :roleName shooter))
:steps (seq

(step :id 0 :abortTime 5
:participants (list (player :team our :number 6)

(at striker (pt ball)) (at shooter (pt :x 0 :y 4.5)))
:condition (and (playm play_on)

(bpos :region (regNamed :name mid_left))
(bpos :region (regNamed :name their_back))
(bowner :players (player :team our :number 0)))

:leadPlayer (player :team our :number 6)
:transitions (list (nextStep :id 1

:condition (and (canPassPl :from striker :to shooter)
(bowner :players striker))

:directives (list (do :players striker
:actions (attentionTo :object shooter))))))

(step :id 1 :abortTime 5
:participants (list (player :team our :number 6)

(at striker (pt ball)) (at shooter (pt :x 0 :y 4.5)))
:condition (and (playm play_on)

(ppos :players shooter :region (arc :center (pt :x 0 :y 4.5)
:radius_large 1)))

:leadPlayer (player :team our :number 6)
:transitions (list

(nextStep :id 2 :condition (canPassPl :from striker :to shooter)
:directives (list
(do :players striker :actions (bto :players shooter))
(do :players shooter :actions (receiveBall))))))

(step :id 2 :abortTime 3
:participants (list (player :team our :number 6) striker

(at shooter (pt ball)))
:condition (and (playm play_on) (bowner :players shooter))
:leadPlayer (player :team our :number 6)
:transitions (list (nextStep :id 3

:condition (and (playm play_on) (canShoot :players shooter))
:directives (list (do :players shooter :actions (shoot))))))

(step :id 3 :abortTime 1
:participants (list (player :team our :number 6) striker shooter)
:condition (playm ag_our)
:leadPlayer (player :team our :number 6)
:transitions (list (finish)))))

Figure A.3: Middle-size league Setplay definition for play-on

Setplay definitions used in tests and evaluation 135

(setplay :name goalieCatch_left_dynamic_goto_positions_fast :id 32 :invertable true
:comment (The goalie kicks the ball in to a teammate on his left. This teammate,

and to ones after him, keep passing the ball to the left and front)
:players (list

(playerRole :roleName Goalie)
(playerRole :roleName LeftDefender)
(playerRole :roleName LeftMidfielder)
(playerRole :roleName LeftForward)
(playerRole :roleName Runner))

:abortCond (or (bowner :players (player :team opp :number 0))
(and (not (playm gc_our)) (not (playm play_on))))

:steps (seq
(step :id 0 :waitTime 30 :abortTime 50

:participants (list
Goalie
(at LeftDefender (pt :x -30 :y -20))
(at LeftMidfielder (pt :x -18 :y -20))
(at LeftForward (pt :x -0.5 :y -15))
(at Runner (pt :x -0.5 :y -18)))

:condition (and (playm gc_our)
(bpos :region (regNamed :name our_penalty_box)))

:leadPlayer Goalie
:transitions (list
(nextStep :id 1
:directives (list

(do :players Goalie
:actions (pos :region (pt :x -37 :y -17)))))))

(step :id 1 :waitTime 10 :abortTime 20
:participants (list
Goalie
(at LeftDefender (pt :x -35 :y -28))
(at LeftMidfielder (pt :x -18 :y -25))
(at LeftForward (pt :x -0.5 :y -20))
(at Runner (pt :x -0.5 :y -18)))

:condition (and (playm gc_our)
(bpos :region (regNamed :name our_penalty_box)))

:leadPlayer Goalie
:transitions (list
(nextStep :id 2
:condition (canPassPl :from Goalie :to LeftDefender)
:directives (list

(do :players Goalie :actions (bto :players LeftDefender :type fast))
(do :players LeftDefender :actions (receiveBall))
(do :players LeftMidfielder
:actions (pos :region (pt :x -18 :y -32)))))))

Figure A.4: Setplay definition for Goalie Catch against Nemesis: four participating play-
ers, continues in A.5

136 Setplay definitions used in tests and evaluation

(step :id 2 :waitTime 0 :abortTime 30
:participants (list

(at LeftDefender (pt :x -35 :y -28))
(at LeftMidfielder (pt :x -18 :y -32))
(at LeftForward (pt :x -0.5 :y -20))
(at Runner (pt :x -0.5 :y -18)))

:condition (and (playm play_on) (bowner :players LeftDefender))
:leadPlayer LeftDefender
:transitions (list

(nextStep :id 3
:condition (canPassPl :from LeftDefender :to LeftMidfielder)
:directives (list
(do :players LeftDefender

:actions (bto :players LeftMidfielder :type fast))
(do :players LeftMidfielder :actions (receiveBall))
(do :players LeftForward :actions (pos :region (pt :x -0.5 :y -33)))))))

(step :id 3 :waitTime 5 :abortTime 30
:participants (list

(at LeftMidfielder (pt :x -18 :y -32))
(at LeftForward (pt :x -0.5 :y -33))
(at Runner (pt :x -0.5 :y -18)))

:condition (and (playm play_on) (bowner :players LeftMidfielder))
:leadPlayer LeftMidfielder
:transitions (list

(nextStep :id 4
:condition (canPassPl :from LeftMidfielder :to LeftForward)
:directives (list
(do :players LeftMidfielder

:actions (bto :players LeftForward :type fast))
(do :players LeftForward :actions (receiveBall))))))

(step :id 4 :waitTime 0
:participants (list LeftForward Runner)
:condition (and (playm play_on) (bowner :players LeftForward))
:leadPlayer LeftForward
:transitions (list (finish)))))

Figure A.5: Setplay definition for Goalie Catch against Nemesis: four participating play-
ers, continued from Fig. A.4

Setplay definitions used in tests and evaluation 137

(setplay :name goalieCatch_left_dynamic_forward_positions_6players_fast
:id 31 :invertable true
:comment (The goalie kicks the ball in to a teammate that backs to his left. This

teammate, and the ones after him, keep passing the ball to the left and front)
:players

(list (playerRole :roleName Goalie)
(playerRole :roleName LeftDefender)
(playerRole :roleName LeftMidfielder)
(playerRole :roleName LeftForward)
(playerRole :roleName Runner)
(playerRole :roleName Kicker))

:abortCond (or (bowner :players (player :team opp :number 0))
(and (not (playm gc_our)) (not (playm play_on))))

:steps
(seq

(step :id 0 :waitTime 30 :abortTime 35
:participants (list
Goalie
(at LeftDefender (pt :x -30 :y -20))
(at LeftMidfielder (pt :x -28 :y -20))
(at LeftForward (pt :x -15 :y -15))
(at Kicker (pt :x -0.5 :y -18))
(at Runner (pt :x -4 :y -15)))

:condition
(and (playm gc_our) (bpos :region (regNamed :name our_penalty_box)))

:leadPlayer Goalie
:transitions (list
(nextStep :id 1

:directives (list
(do :players Goalie

:actions (pos :region (pt :x -47 :y -17)))
(do :players LeftDefender

:actions (pos :region (pt :x -40 :y -24)))))))
(step :id 1 :waitTime 10 :abortTime 20
:participants (list
Goalie
(at LeftDefender (pt :x -40 :y -24))
(at LeftMidfielder (pt :x -30 :y -30))
(at LeftForward (pt :x -15 :y -25))
(at Kicker (pt :x -0.5 :y -28))
(at Runner (pt :x -1 :y -25)))

:condition
(and (playm gc_our) (bpos :region (regNamed :name our_penalty_box)))

:leadPlayer Goalie
:transitions (list
(nextStep :id 2

:directives (list
(do :players Goalie

:actions (bto :region (pt :x -40 :y -24) :type normal))
(do :players LeftDefender :actions (intercept))
(do :players LeftMidfielder

:actions (pos :region (pt :x -30 :y -30)))))))

Figure A.6: Setplay definition for Goalie Catch against Nemesis: six participating players,
continues in Fig. A.7

138 Setplay definitions used in tests and evaluation

(step :id 2 :waitTime 0 :abortTime 30
:participants (list

(at LeftDefender (pt :x -40 :y -24))
(at LeftMidfielder (pt :x -30 :y -30))
(at LeftForward (pt :x -15 :y -30))
(at Kicker (pt :x -0.5 :y -30))
(at Runner (pt :x -1 :y -25)))

:condition (and (playm play_on) (bowner :players LeftDefender))
:leadPlayer LeftDefender
:transitions (list

(nextStep :id 3
:directives (list

(do :players LeftDefender
:actions (bto :region (pt :x -30 :y -32) :type fast))

(do :players LeftMidfielder :actions (intercept))
(do :players LeftForward
:actions (pos :region (pt :x -15 :y -32)))))))

(step :id 3 :waitTime 0 :abortTime 30
:participants (list

(at LeftMidfielder (pt :x -30 :y -30))
(at LeftForward (pt :x -15 :y -32))
(at Kicker (pt :x -0.5 :y -32))
(at Runner (pt :x -1 :y -25)))

:condition (and (playm play_on) (bowner :players LeftMidfielder))
:leadPlayer LeftMidfielder
:transitions (list

(nextStep :id 4
:directives (list

(do :players LeftMidfielder
:actions (bto :region (pt :x -15 :y -32) :type fast))

(do :players LeftForward :actions (intercept))
(do :players Kicker
:actions (pos :region (pt :x -0.5 :y -32)))))))

(step :id 4 :waitTime 0 :abortTime 30
:participants (list

(at LeftForward (pt :x -15 :y -32))
(at Kicker (pt :x -0.5 :y -31.5))
(at Runner (pt :x -0.5 :y -25)))

:condition (and (playm play_on) (bowner :players LeftForward))
:leadPlayer LeftForward
:transitions (list

(nextStep :id 5
:directives (list

(do :players LeftForward
:actions (bto :region (pt :x -0.5 :y -31) :type fast))

(do :players Kicker :actions (receiveBall))))))

Figure A.7: Setplay definition for Goalie Catch against Nemesis: six participating players,
continued from Fig. A.6, continues in Fig. A.8

Setplay definitions used in tests and evaluation 139

(step :id 5 :waitTime 0 :abortTime 70
:participants (list
(at Kicker (pt :x -0.5 :y -31))
(at Runner (pt :x -0.5 :y -25)))

:condition (and (playm play_on) (bowner :players Kicker))
:leadPlayer Kicker
:transitions (list
(nextStep :id 6

:directives (list
(do :players Kicker

:actions (dribble :region (pt :x 50 :y -30.5)))
(do :players Runner :actions (moveToOffSideLine :y -23))))))

(step :id 6 :waitTime 0 :abortTime 30
:participants (list
(at Kicker (pt :x 50 :y -31))
Runner)

:condition (and (playm play_on) (bowner :players Kicker)
(or (nearOffsideLine :players Runner)
(ppos :players (player :team opp :number 0)

:region (arc :center (pt ball) :radius_large 3))))
:leadPlayer Kicker
:transitions (list
(nextStep :id 7

:condition
(and (canPassReg :from Kicker

:to (ptRel :x 3 :y 0 :pt (pt :player Runner)))
(bpos :region (regNamed :name their_back)))

:directives (list
(do :players Kicker

:actions (bto :region (ptRel :x 5 :y -2
:pt (pt :player Runner))

:type slow))
(do :players Runner :actions (intercept))))

(nextStep :id 7
:condition
(and (canPassReg :from Kicker
:to (ptRel :x 8 :y 0 :pt (pt :player Runner)))

(not (bpos :region (regNamed :name their_back))))
:directives (list
(do :players Kicker

:actions (bto :region (ptRel :x 12 :y -2
:pt (pt :player Runner)) :type slow))

(do :players Runner :actions (intercept))))
(finish
:condition
(not (canPassReg :from Kicker

:to (ptRel :x 3 :y 0 :pt (pt :player Runner)))))))
(step :id 7 :waitTime 0
:participants (list Runner)
:condition (and (playm play_on) (bowner :players Runner))
:leadPlayer Runner
:transitions (list (finish)))))

Figure A.8: Setplay definition for Goalie Catch against Nemesis: six participating players,
continued from Fig. A.7

140 Setplay definitions used in tests and evaluation

(setplay :name cornerKickParaBahiaLMmotaFastLinhaSemCondShoot
:id 1 :invertable true
:version splanner_1.0
:players (list

(playerRole :roleName Player6)
(playerRole :roleName Player8)
(playerRole :roleName Player9)
(playerRole :roleName Player10)
(playerRole :roleName Player11))

:abortCond (or (bowner :players (player :team opp :number 0))
(and (not (playm ag_our)) (not (playm play_on)) (not (playm ck_our))))

:steps (seq
(step :id 0 :waitTime 10 :abortTime 35

:participants (list
(at (playerRole :roleName Player6) (pt :x 52.5 :y -34))
(at (playerRole :roleName Player8) (pt :x 36 :y 0.5))
(at (playerRole :roleName Player9) (pt :x 36.5 :y -9))
(at (playerRole :roleName Player10) (pt :x 36 :y -27.5))
(at (playerRole :roleName Player11) (pt :x 49.5 :y -21.5)))

:condition (and (playm ck_our) (bpos :region (regNamed :name left)))
:leadPlayer (playerRole :roleName Player6)
:transitions (list

(nextStep :id 1
:condition (canPassPl :from (list (playerRole :roleName Player6))

:to (list (playerRole :roleName Player11)))
:directives (list
(do :players (list (playerRole :roleName Player6))

:actions (list (bto :players (playerRole :roleName Player11)
:type fast)))

(do :players (list (playerRole :roleName Player11))
:actions (list (receiveBall)))))))

(step :id 1 :waitTime 1 :abortTime 26
:participants (list

(at (playerRole :roleName Player10) (pt :x 36 :y -27.5))
(at (playerRole :roleName Player11) (pt :x 49.5 :y -21.5))
(at (playerRole :roleName Player8) (pt :x 36 :y 0.5))
(at (playerRole :roleName Player9) (pt :x 36 :y -9)))

:condition (and (playm play_on)
(bowner :players (playerRole :roleName Player11)))

:leadPlayer (playerRole :roleName Player11)
:transitions (list

(nextStep :id 2
:condition (canPassPl :from (list (playerRole :roleName Player11))

:to (list (playerRole :roleName Player10)))
:directives (list
(do :players (list (playerRole :roleName Player10))

:actions (list (receiveBall)))
(do :players (list (playerRole :roleName Player11))
:actions (bto :players (playerRole :roleName Player10)

:type fast))))))

Figure A.9: Setplay definition for corner kick against Bahia, continued in Fig. A.10

Setplay definitions used in tests and evaluation 141

(step :id 2 :waitTime 1 :abortTime 28
:participants (list
(at (playerRole :roleName Player9) (pt :x 36 :y -9))
(at (playerRole :roleName Player10) (pt :x 36 :y -27.5))
(at (playerRole :roleName Player11) (pt :x 49.5 :y -21.5))
(at (playerRole :roleName Player8) (pt :x 36 :y 0.5)))

:condition (and (playm play_on)
(bowner :players (playerRole :roleName Player10)))

:leadPlayer (playerRole :roleName Player10)
:transitions (list

(nextStep :id 3
:condition (canPassPl :from (list (playerRole :roleName Player10))

:to (list (playerRole :roleName Player9)))
:directives (list

(do :players (playerRole :roleName Player9) :actions (receiveBall))
(do :players (list (playerRole :roleName Player10))

:actions (bto :players (playerRole :roleName Player9) :type fast))
(do :players (list (playerRole :roleName Player11))

:actions (list (moveToOffSideLine :y -15)))))))
(step :id 3 :waitTime 0 :abortTime 28

:participants (list
(at (playerRole :roleName Player9) (pt :x 36 :y -9))
(at (playerRole :roleName Player10) (pt :x 36 :y -27.5))
(at (playerRole :roleName Player11) (pt :x 49.5 :y -21.5))
(at (playerRole :roleName Player8) (pt :x 36 :y 0.5)))

:condition (and (playm play_on)
(bowner :players (list (playerRole :roleName Player9))))

:leadPlayer (playerRole :roleName Player9)
:transitions (list

(nextStep :id 4
:condition (canPassPl :from (list (playerRole :roleName Player9))

:to (list (playerRole :roleName Player8)))
:directives (list

(do :players (playerRole :roleName Player8) :actions (receiveBall))
(do :players (playerRole :roleName Player9)

:actions (bto :players (playerRole :roleName Player8) :type fast))))))
(step :id 4 :waitTime 0 :abortTime 15

:participants (list Player8)
:condition (and (playm play_on)
(bowner :players (list (playerRole :roleName Player8))))

:leadPlayer (playerRole :roleName Player8)
:transitions (list
(nextStep :id 5
:directives (list

(do :players (playerRole :roleName Player8) :actions (shoot))))))
(step :id 5 :waitTime 0 :abortTime 0

:participants (list
(playerRole :roleName Player8))

:condition (playm ag_our)
:leadPlayer (playerRole :roleName Player8)
:transitions (list (finish :directives (list))))))

Figure A.10: Setplay definition for corner kick against Bahia, continued from Fig. A.9

142 Setplay definitions used in tests and evaluation

(setplay :name cornerKickMuitoSimples2 :id 2 :invertable true
:version splanner_1.0
:players (list

(playerRole :roleName Player6)
(playerRole :roleName Player8))

:abortCond (or (bowner :players (player :team opp :number 0))
(and (not (playm play_on)) (not (playm ck_our)) (not (playm ag_our))))

:steps (seq
(step :id 0 :waitTime 3 :abortTime 30

:participants (list
(at (playerRole :roleName Player6) (pt :x 52.5 :y -34))
(at (playerRole :roleName Player8) (pt :x 46 :y 0)))

:condition (and (playm ck_our) (bpos :region (regNamed :name left)))
:leadPlayer (playerRole :roleName Player6)
:transitions (list

(nextStep :id 1
:directives (list
(do :players (list (playerRole :roleName Player6))

:actions (list (bto :region (pt :x 46 :y 0) :type normal)))
(do :players (list (playerRole :roleName Player8))
:actions (list (receiveBall)))))))

(step :id 1 :waitTime 1 :abortTime 23
:participants (list

(at (playerRole :roleName Player8) (pt :x 46 :y 0)))
:condition (and (playm play_on)

(bowner :players (list (playerRole :roleName Player8))))
:leadPlayer (playerRole :roleName Player8)
:transitions (list

(nextStep :id 2
:condition (canShoot :players (list (playerRole :roleName Player8)))
:directives (list
(do :players (list (playerRole :roleName Player8)) :actions

(list (shoot)))))))
(step :id 2 :waitTime 0 :abortTime 0

:participants (list
(at (playerRole :roleName Player8) (pt :x 46 :y 0)))

:condition (playm ag_our)
:leadPlayer (playerRole :roleName Player8)
:transitions (list (finish :directives (list))))))

Figure A.11: Setplay definition for simple corner kick against Bahia

Setplay definitions used in tests and evaluation 143

(setplay :name ck2aLMota :id 52 :invertable true
:comment (Receiver and StrikerLeft cross start running

in different directions from near the penalty box corner.
Receiver receives the ball next to the nearest goal post
and makes a straight pass to the middle of the penalty
box to StrikerLeft, StrikerCenter or StrikerBack to score.)

:players (list
(playerRole :roleName Taker)
(playerRole :roleName Receiver)
(playerRole :roleName BackReceiver)
(playerRole :roleName StrikerLeft)
(playerRole :roleName StrikerCenter)
(playerRole :roleName StrikerBack))

:abortCond (or (bowner :players (player :team opp :number 0))
(and (not (playm ck_our)) (not (playm play_on))

(not (playm ag_our))))
:steps (seq

(step :id 0 :waitTime 16 :abortTime 35
:participants (list Taker
(at BackReceiver (pt :x 42 :y -20))
(at Receiver (pt :x 41 :y -20))
(at StrikerLeft (pt :x 38 :y -20))
(at StrikerCenter (pt :x 37 :y 0))
(at StrikerBack (pt :x 34 :y 0)))

:condition
(and (playm ck_our) (bpos :region (regNamed :name our_left)))

:leadPlayer Taker
:transitions (list

(nextStep :id 1
:directives (list (do :players Taker :actions (intercept))))))

(step :id 1 :waitTime 13 :abortTime 25
:participants (list Taker

(at BackReceiver (pt :x 46 :y -24))
(at Receiver (pt :x 51 :y -12))
(at StrikerLeft (pt :x 46 :y -7))
(at StrikerCenter (pt :x 43 :y -2))
(at StrikerBack (pt :x 42:y 0)))

:condition (and (or (playm ck_our) (playm ki_our)))
:leadPlayer Taker
:transitions (list

(nextStep :id 2
:directives (list
(do :players Taker :actions (bto :region (pt :x 51 :y -12)

:type fast))
(do :players Receiver :actions (receiveBall))))))

Figure A.12: Setplay definition for Corner against Nemesis: six participating players,
continues in Fig. A.13

144 Setplay definitions used in tests and evaluation

(step :id 2 :waitTime 0 :abortTime 10
:participants (list Receiver

(at StrikerLeft (pt :x 46 :y -7))
(at StrikerCenter (pt :x 47.5 :y -5))
(at StrikerBack (pt :x 47.5 :y 0)))

:condition (and (bowner :players Receiver) (playm play_on))
:leadPlayer Receiver
:transitions (list

(nextStep :id 3
:directives (list
(do :players Receiver :actions (bto :region (pt :x 46 :y -7) :type fast))
(do :players StrikerLeft :actions (receiveBall))))))

(step :id 3 :waitTime 0 :abortTime 8
:participants (list StrikerLeft (at StrikerCenter (pt :x 50 :y -5))

(at StrikerBack (pt :x 50 :y 0)))
:condition (and (playm play_on)

(bowner :players (list StrikerLeft StrikerCenter StrikerBack)))
:leadPlayer StrikerLeft
:transitions (list

(nextStep :id 4
:condition (canShoot :players (list StrikerLeft))
:directives (list
(do :players StrikerLeft :actions (shoot))))))

(step :id 4 :waitTime 0 :abortTime 0
:participants (list StrikerLeft StrikerBack StrikerCenter)
:condition (or (playm ag_our)

(and (playm play_on) (bowner :players (list StrikerCenter StrikerBack))))
:leadPlayer StrikerLeft
:transitions (list (finish))))

Figure A.13: Setplay definition for Corner against Nemesis: six participating players,
continued from A.12

Setplay definitions used in tests and evaluation 145

(setplay :name kickInCambadaLeft :id 1 :invertable true
:comment (Only works on left side because of the positioning of players.

At this point without aligning with the goal...)
:players (list (playerRole :roleName replacer) (playerRole :roleName receiver)

(playerRole :roleName supporter))
:abortCond (or (bowner :players (player :team opp :number 0))

(and (not (playm ki_our)) (not (playm play_on)) (not (playm ag_our))))
:steps (seq

(step :id 0
:participants (list
(at replacer (ptRel :x 0 :y 0.6 :pt (pt ball)))
(at receiver (ptRel :x 0 :y -1 :pt (pt ball)))
(at supporter (ptRel :x 1 :y 0 :pt (pt ball))))

:condition (playm ki_our)
:leadPlayer replacer
:transitions (list

(nextStep :id 1
:condition (and (playm ki_our) (canPassPl :from replacer :to receiver))
:directives (list

(do :players replacer :actions (bto :players receiver))
(do :players receiver :actions (receiveBall))))))

(step :id 1
:participants (list

(at replacer (ptRel :x 0 :y 4 :pt (pt ball)))
(at receiver (pt ball))
(at supporter (ptRel :x 1 :y 0 :pt (pt ball))))

:condition (and (playm play_on) (bowner :players receiver))
:leadPlayer receiver
:transitions (list

(nextStep :id 2
:condition (playm play_on)
:directives (list (do :players receiver :actions (shoot))))))

(step :id 2
:participants (list receiver)
:condition (playm ag_our)
:leadPlayer receiver
:transitions (list (finish))))

)

Figure A.14: Setplay definition for kick-in from CAMBADA

146 Setplay definitions used in tests and evaluation

References

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. AI Communications, 7(1):39–59, March
1994.

Wouter H. T. M. Aangenent, Jeroen J. T. H. de Best, B. H. M. Bukkems, F. M. W. Kan-
ters, K. J. Meessen, J. J. P. A. Willems, R. J. E. Merry, and M. J. G. v.d. Molengraft.
TechUnited Eindhoven Team Description 2009. In Baltes et al. (2009).

Hidehisa Akiyama and Itsuki Noda. Multi-Agent Positioning Mechanism in the Dynamic
Environment. In Visser et al. (2008), pages 377–384.

Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot Soccer World Cup II,
volume 1604 of Lecture Notes in Artificial Intelligence, 1999. Springer.

John Atkinson and Dario Rojas. Generating dynamic formation strategies based on human
experience and game conditions. In Visser et al. (2008), pages 159–170.

Jacky Baltes, Michail G. Lagoudakis, Tadashi Naruse, and Saeed Shiry, editors. RoboCup
2009: Robot Soccer World Cup XIII, CD proceedings, 2009.

Jacky Baltes, Michail G. Lagoudakis, Tadashi Naruse, and Saeed Shiry, editors. RoboCup
2009: Robot Soccer World Cup XIII, volume 5949 of Lecture Notes in Computer Sci-
ence, 2010. Springer.

Julien Beaudry, Julian Choquette, Pierre-Marc Fournier, Louis-Alain Larouche, and
François Savard. Robofoot ÉPM team description – RoboCup2006 MiddleSize League.
In Lakemeyer et al. (2006).

Sven Behnke and Marcell Missura. Nimbro teensize 2011 team description. In Röfer
et al. (2011b).

Ralf Berger and Gregor Lämmel. Exploiting past experience – case-based decision sup-
port for soccer agents. In KI 2007: Advances in Artificial Intelligence, 2007.

Ralf Berger, Michael Gollin, and Hans-Dieter Burkhard. AT Humboldt 2004 & AT Hum-
boldt 3D team description. In Nardi et al. (2004).

Ralf Berger, Daniel Hein, and Hans-Dieter Burkhard. AT Humboldt & AT Humboldt 3d
team description 2006. In Lakemeyer et al. (2006).

147

148 REFERENCES

Andreas Birk, Silvia Coradeschi, and Satoshi Tadokoro, editors. RoboCup-2001: Robot
Soccer World Cup V, volume 2377 of Lecture Notes in Artificial Intelligence, 2002.
Springer.

Joschka Boedecker and Minoru Asada. Simspark - concepts and application in the
RoboCup 3D Soccer Simulation League. In SIMPAR-2008 Workshop on The Universe
of RoboCup Simulators, Venice, Italy, 2008.

Michael Bowling, Brett Browning, and Manuela Veloso. Plays as effective multiagent
plans enabling opponent-adaptive play selection. In Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS), pages 376–383, 2004.

Ansgar Bredenfeld, Adam Jacoff, Itsuki Noda, and Yasutake Takahashi, editors.
RoboCup-2005: Robot Soccer World Cup IX, volume 4020 of Lecture Notes in Ar-
tificial Intelligence, 2006. Springer.

Brett Browning, James Bruce, Michael Bowling, and Manuela Veloso. Stp: Skills, tactics
and plays for multi-robot control in adversarial environments. IEEE Journal of Control
and Systems Engineering, 219:2005, 2004.

Sean Buttinger, Marco Diedrich, Leo Hennig, Angelika Hoenemann, Philipp
Huegelmeyer, Andreas Nie, Andres Pegam, Collin Rogowski, Claus Rollinger, Timo
Steffens, and Wilfried Teiken. The Dirty Dozen Team and Coach Description. In Birk
et al. (2002), pages 43–52.

Claudio Castelpietra, Luca Iocchi, Daniele Nardi, Maurizio Piaggio, A. Scalzo, and Anto-
nio Sgorbissa. Communication and coordination among heterogeneous mid-size play-
ers: Art99. In Stone et al. (2001).

Claudio Castelpietra, A. Guidotti, Luca Iocchi, Daniele Nardi, and Riccardo Rosati. De-
sign and implementation of cognitive soccer robots. In Birk et al. (2002), pages 86–95.

Mao Chen, Ehsan Foroughi, Fredrik Heintz, Spiros Kapetanakis, Kostas Kostiadis, Johan
Kummeneje, Itsuki Noda, Oliver Obst, Patrick Riley, Timo Steffens, Yi Wang, and
Xiang Yin. Users manual: RoboCup soccer server manual for soccer server version
7.07 and later, 2003. URL http://sourceforge.net/projects/sserver/.

Philip R. Cohen and Hector Levesque. Teamwork. Technical report, Center for the Study
of Language and Information SRI International, 1991.

André Scolari Conceição, A. Paulo Moreira, Luís Paulo Reis, and Paulo J. Costa. Ar-
chitecture of cooperation for multi-robot systems. In Daniel Polani, Andrea Bonarini,
Brett Browning, and Kazuo Yoshida, editors, First IFAC Workshop on Multivehicle
Systems (MVS’06), volume 3020 of Lecture Notes in Artificial Intelligence, pages 458–
469. Springer, Berlin, Heidelberg, New York, 2006.

João Guilherme Bettencourt Cravo. SPlanner: Uma aplicação gráfica de definição flexível
de jogadas estudadas no RoboCup. Master’s thesis, Faculdade de Engenharia da Uni-
versidade do Porto, 2011.

http://sourceforge.net/projects/sserver/

REFERENCES 149

Rodrigo da Silva Guerra, Joschka Boedecker, Norbert Mayer, Shinzo Yanagimachi, Ya-
suji Hirosawa, Kazuhiko Yoshikawa, Masaaki Namekawa, and Minoru Asada. Intro-
ducing physical visualization sub-league introducing physical visualization sub-league.
In Visser et al. (2008), pages 496–503.

HesamAddin Torabi Dashti, Nima Aghaeepour, Sahar Asadi, Meysam Bastani, Zahra De-
lafkar, Fatemeh Miri Disfani, Serveh Mam Ghaderi, Shahin Kamali, Sepideh Pashami,
and Alireza Fotuhi Siahpirani. Dynamic Positioning based on Voronoi Cells (DPVC).
In Bredenfeld et al. (2006), pages 219–229.

John Davin, Patrick Riley, and Manuela Veloso. CommLang: Communication for coach-
abe agents. In Nardi et al. (2005), pages 46–59.

Jeroen de Best, René van de Molengraft, and Maarten Steinbuch. A novel ball handling
mechanism for the robocup middle size league. Mechatronics, 21(2):469–478, 2011.

Joel de Guzman and Dan Nuffer. The spirit library: Inline parsing in c++. C/C++ Users
Journal, 21(9):22, September 2003.

Javier Ruiz del Solar, Eric Chown, and Paul Ploeger, editors. RoboCup 2010: Robot
Soccer World Cup XIV, CD proceedings, 2010.

Javier Ruiz del Solar, Eric Chown, and Paul Ploeger, editors. RoboCup 2010: Robot
Soccer World Cup XIV, volume 6556 of Lecture Notes in Computer Science, 2011.
Springer.

Alessandro Farinelli, Giorgio Grisetti, and Luca Iocchi. SPQR-RDK: a modular frame-
work for programming mobile robots. In Nardi et al. (2005), pages 653–660.

Alexander Ferrein, Gerhard Lakemeyer, and Stefan Schiffer. Allemaniacs 2006 team
description. In Lakemeyer et al. (2006).

M. Friedmann, J. Kuhn, S. Kohlbrecher, K. Petersen, D. Scholz, D. Thomas, J. Wojtusch,
and O. von Stryk. Darmstadt dribblers team description for humanoid kidsize league
of robocup 2011. In Röfer et al. (2011b).

Ulrich Furbach, Jan Murray, Falk Schmidsberger, and Frieder Stolzenburg. Model check-
ing hybrid multiagent-systems for the RoboCup. In Visser et al. (2008), pages 262–269.

Thomas Gabel and Martin Riedmiller. On progress in robocup: The simulation league
showcase. In del Solar et al. (2011).

Brian P. Gerkey and Maja J. Mataric. On role allocation in RoboCup. In Polani et al.
(2004), pages 43–53.

Ricardo Gimenes, Luís Mota, Luís Paulo Reis, Nuno Lau, and João Certo. Simula-
tion meets reality: A cooperative approach to robocup’s physical visualization soccer
league. In José Maia Neves, Manuel Filipe Santos, and José Manuel Machado, editors,
13th Portuguese Conference on Artificial Intelligence, EPIA 2007, 2007.

150 REFERENCES

Roland Hafner and Martin Riedmiller. Reinforcement learning on an omnidirectional
mobile robot. In IEEE/RSJ IROS 2003 Workshop on Robotics for Nanosciences and
Nanotechnology, 2003.

Patrick Heinemann, Juergen Haase, and Andreas Zell. A novel approach to efficient
monte-carlo localization in robocup. In Lakemeyer et al. (2007), pages 322–329.

Patrick Heinemann, Frank Sehnke, Felix Streichert, and Andreas Zell. Towards a
calibration-free robot: The act algorithm for automatic online color training. In Lake-
meyer et al. (2007), pages 322–329.

Luca Iocchi and Daniele Nardi. Self-localization in the robocup environment. In Veloso
et al. (2000), pages 227–242.

Luca Iocchi, L. Marchetti, Daniele Nardi, Pedro Lima, Marco Barbosa, Hugo Pereira, and
Nuno Lopes. SPQR + ISocRob RoboCup 2007 qualification report. Technical report,
Sapienza Universitá di Roma, Italy; Instituto Superior Técnico, 2007.

Luca Iocchi, Hitoshi Matsubara, Alfredo Weitzenfeld, and Changjiu Zhou, editors.
RoboCup 2008: Robot Soccer World Cup XII, CD proceedings, 2008.

Luca Iocchi, Hitoshi Matsubara, Alfredo Weitzenfeld, and Changjiu Zhou, editors.
RoboCup 2008: Robot Soccer World Cup XII, volume 5399 of Lecture Notes in Ar-
tificial Intelligence, 2009. Springer.

Gal Kaminka, Pedro Lima, and Raúl Rojas, editors. RoboCup-2002: Robot Soccer World
Cup VI, volume 2752 of Lecture Notes in Artificial Intelligence, 2003. Springer.

Alankar Karol, Bernhard Nebel, Christopher Stanton, and Mary-Anne Williams. Case
based game play in the RoboCup four-legged league part i the theoretical model. In
Polani et al. (2004), pages 739–747.

Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I, volume 1395 of Lecture
Notes in Artificial Intelligence, 1998. Springer.

Alexander Kleiner and Thorsten Buchheim. A plugin-based architecture for simulation
in the F2000 league. In Polani et al. (2004).

Marco Kögler and Oliver Obst. Simulation league: The next generation. In Polani et al.
(2004).

Jelle R. Kok and Nikos Vlassis. Collaborative Multiagent Reinforcement Learning by
Payoff Propagation. Journal of Machine Learning Research (JMLR), 7:1789–1828,
2006.

Jelle R. Kok, Matthijs Spaan, and Nikos Vlassis. Multi-robot decision making using
coordination graphs. In 11th International Conference on Advanced Robotics (ICAR
2003), pages 1124–1129, 2003.

REFERENCES 151

Jelle R. Kok, Matthijs T. J. Spaan, and Nikos Vlassis. Non-Communicative Multi-Robot
Coordination in Dynamic Environments. Robotics and Autonomous Systems, 50(2-3):
99–114, 2005.

Hatice Kose, Kemal Kaplan, Cetin Mericliand Utku Tatlidede, and Levent Akin. Market-
driven multi-agent collaboration in robot soccer domain. In Cutting Edge Robotics,
pages 407–416. pIV pro literatur Verlag, 2005.

Vadim Kyrylov and Eddie Hou. While the Ball in the Digital Soccer is Rolling, Where
the Non-Player Characters Should go in a Defensive Situation? In Bill Kapralos, Mike
Katchabaw, and Jay Rajnovich, editors, Proceedings of the Conference on Future Play,
pages 90–96, Toronto, Canada, 2007. ACM.

Vadim Kyrylov and Eddie Hou. Pareto-Optimal Collaborative Defensive Player Position-
ing in Simulated Soccer. In Baltes et al. (2010).

Vadim Kyrylov and Serguei Razykov. Pareto-Optimal Offensive Player Positioning in
Simulated Soccer. In Visser et al. (2008), pages 228–237.

R. Lafrenz, O. Zweigle, U.-P. Käppeler, H. Rajaie, A. Tamke, T. Ruhr, M. Oubbati,
M. Schanz, F. Schreiber, and P. Lev. Major scientific achievements 2006 - CoPS
Stuttgart registering for world championships in Bremen. Technical report, University
of Stuttgart, 2006.

Gerhard Lakemeyer, Elizabeth Sklar, Domenico G. Sorrenti, and Tomoichi Takahashi,
editors. RoboCup-2006: Robot Soccer World Cup X, CD proceedings, 2006.

Gerhard Lakemeyer, Elizabeth Sklar, Domenico G. Sorrenti, and Tomoichi Takahashi,
editors. RoboCup-2006: Robot Soccer World Cup X, volume 4434 of Lecture Notes in
Artificial Intelligence, 2007. Springer.

Sascha Lange and Martin Riedmiller. Evolution of computer vision subsystems in robot
navigation and image classification tasks. In Nardi et al. (2005), pages 184–195.

Sascha Lange, Christian Müller, and Stefan Welker. Tribots: Soccer Strategy. RoboCup
Workshop Kassel 2008,
http://www.ni.uos.de/fileadmin/user_upload/tribots/Research/Kooperation.pdf, 2008.
Last visited: 21 of July 2009.

Valerio Lattarulo and Sander G. van Dijk. Application of the “alliance algorithm” to
energy constrained gait optimization. In Röfer et al. (2011b).

Andreas D. Lattner, Andrea Miene, Ubbo Visser, and Otthein Herzog. Sequential pattern
mining for situation and behavior prediction in simulated robotic soccer. In Bredenfeld
et al. (2006), pages 118–129.

Nuno Lau and Luís Paulo Reis. FC Portugal 2001 team description: Configurable strategy
and flexible teamwork. In Birk et al. (2002), pages 1–10.

152 REFERENCES

Nuno Lau and Luís Paulo Reis. Coordination methodologies developed for FC Portugal
3D 2006 team. In Lakemeyer et al. (2006).

Nuno Lau and Luis Paulo Reis. FC Portugal - High-level Coordination Methodologies
in Soccer Robotics, pages 167–192. Itech Education and Publishing, Vienna, Austria,
2007.

Nuno Lau, Luis Seabra Lopes, and Gustavo Corrente. CAMBADA: Information shar-
ing and team coordination. In Eighth Conference on Autonomous Robot Systems and
Competitions, pages 27–32, Aveiro, Portugal, 2008. Universidade de Aveiro.

Nuno Lau, Luis Seabra Lopes, Gustavo Corrente, and Nelson Filipe. Multi-robot team co-
ordination through roles, positionings and coordinated procedures. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems - IROS 2009,, St. Louis,
USA, October 2009.

Nuno Lau, Luis Seabra Lopes, Gustavo Corrente, Nelson Filipe, and Ricardo Sequeira.
Robot team coordination using dynamic role and positioning assignment and role based
setplays. Mechatronics, 21(2):445–454, 2010.

Nuno Lau, Luís Paulo Reis, Luís Mota, and Fernando Almeida. FC Portugal 2D Simula-
tion: Team Description Paper. In Röfer et al. (2011b).

Martin Lauer, Sascha Lange, and Martin Riedmiller. Calculating the perfect match: An
efficient and accurate approach for robot self-localisation. In Bredenfeld et al. (2006),
pages 142–153.

Rui Lopes, Luís Mota, Luís Paulo Reis, and Nuno Lau. Playmaker: Graphical definition
of formations and setplays. In Workshop em Sistemas Inteligentes e Aplicações - 5.
Conferência Ibérica de Sistemas e Tecnologias de Informação (CISTI’2010), 2010.

Martin Lötzsch, Joscha Bach, Hans-Dieter Burkhard, and Matthias Juengel. Designing
agent behavior with the extensible agent behavior specification language XABSL. In
Polani et al. (2004), pages 114–124.

Nathan Lovell and Vladimir Estivill-Castro. A descriptive language for flexible and robust
object recognition. In Nardi et al. (2005), pages 540–547.

Jie Ma and Stephen Cameron. Combining policy search with planning in multi-agent
cooperation. In Iocchi et al. (2009), pages 532–543.

Carlos Marques and Pedro Lima. A localization method for a soccer robot using a vision-
based omni-directional sensor. In Stone et al. (2001), pages 96–107.

Colin McMillen and Manuela Veloso. Distributed, play-based role assignment for robot
teams in dynamic environments. In 8th International Symposium on Distributed Au-
tonomous Robotic Systems (DARS 2006), Minnesota, USA, 2006.

REFERENCES 153

António Paulo Moreira, Paulo Costa, André Scolari, Armando Sousa, and Paulo Marques.
5dpo-2000 team description for RoboCup 2006. Technical report, University of Porto
(UP), 2006.

Luís Mota and Luís Paulo Reis. Setplays: Achieving coordination by the appropriate use
of arbitrary pre-defined flexible plans and inter-robot communication. In Alan F. T.
Winfield and Jason Redi, editors, First International Conference on Robot Commu-
nication and Coordination (ROBOCOMM 2007), volume 318 of ACM International
Conference Proceeding Series, page 13. IEEE, 2007a.

Luís Mota and Luís Paulo Reis. An elementary communication framework for open co-
operative RoboCup soccer teams. In The Third International Workshop on Multi-Agent
Robotic Systems (MARS 2007), at the 4th International Conference on Informatics in
Control, Automation and Robotics - ICINCO 2007, Angers, France, 2007b.

Luís Mota and Luís Paulo Reis. A Common Framework for co-operative robotics: an
open, fault tolerant architecture for multi-league RoboCup teams. In Stefano Carpin,
Itsuki Noda, Enrico Pagello, Monica Reggiani, and Oskar von Stryk, editors, Interna-
tional Conference on Simulation, Modeling and Programming for Autonomous Robots
(SIMPAR 2008), volume 5325 of Lecture Notes in Computer Science, pages 171–182.
Springer, 2008.

Luís Mota, Luís Paulo Reis, and Hans-Dieter Burkhard. Communication challenges
raised by open co-operative teams in RoboCup. In Encontro Científico do Festival
Nacional de Robótica, Guimarães, Portugal, 2006.

Luís Mota, Nuno Lau, and Luís Paulo Reis. Multi-robot coordination using setplays in
the simulation league. In Encontro Científico do Festival Nacional de Robótica, Leiria,
Portugal, 2010a.

Luís Mota, Luís Paulo Reis, and Nuno Lau. Co-ordination in RoboCup’s 2D Simulation
League: Setplays as flexible, multi-robot plans. In IEEE International Conference on
Robotics, Automation and Mechatronics (RAM 2010), Singapore, 2010b.

Luís Mota, Luís Paulo Reis, and Nuno Lau. Multi-robot coordination using setplays in
the middle-size and simulation leagues. Mechatronics, 21(2):434–444, March 2011.

Jan Murray. Specifying agent behaviors with UML statecharts and StatEdit. In Polani
et al. (2004).

Daniele Nardi, Martin Riedmiller, Claude Sammut, and José Santos-Victor, editors.
RoboCup-2004: Robot Soccer World Cup VIII, CD proceedings, 2004.

Daniele Nardi, Martin Riedmiller, Claude Sammut, and José Santos-Victor, editors.
RoboCup-2004: Robot Soccer World Cup VIII, volume 3276 of Lecture Notes in Arti-
ficial Intelligence, 2005. Springer.

Peter Naur, John W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and

154 REFERENCES

M. Woodger. Report on the algorithmic language algol 60. Commun. ACM, 3(5):
299–314, June 1960.

António J. R. Neves, Bernardo Cunha, Armando J. Pinho, and Ivo Pinheiro. Autonomous
configuration of parameters in robotic digital cameras. In 4th Iberian Conference
on Pattern Recognition and Image Analysis (ibPRIA 2009), pages 80–87, Póvoa de
Varzim, Portugal, June 2009.

Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soccer server: A tool
for research on multiagent systems. Applied Artificial Intelligence, 12(2–3):233–250,
1998.

Nokia. Qt - A cross-platform application and UI framework, 07 2011. URL http:
//qt.nokia.com/products/.

Mehrab Norouzitallab, Amin Javari, Alireza Noroozi, S.M.A. Salehizadeh, and Kourosh
Meshgi. Nemesis team description 2010. Technical report, Amir Kabir Univer-
sity of Technology, Tehran, Iran, 2010. URL http://julia.ist.tugraz.at/
robocup2010/tdps/2D_TDP_Nemesis.pdf.

Pier Francesco Palamara, Vittorio A. Ziparo, Luca Iocchi, Daniele Nardi, and Pedro Lima.
Teamwork design based on Petri Net plans. In Iocchi et al. (2009), pages 200–211.

Lynne E. Parker. Alliance: an architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automation, 14(2):220–240, April 1998.

Daniel Polani, Brett Browning, Andrea Bonarini, and Kazuo Yoshida, editors. RoboCup-
2003: Robot Soccer World Cup VII, volume 3020 of Lecture Notes in Artificial Intelli-
gence, 2004. Springer.

Ali Ajdari Rad, Navid Qaragozlou, and Maryam Zaheri. Scenario-based teamworking,
how to learn, create, and teach complex plans? In Polani et al. (2004).

Nelson Ramos, Marco Barbosa, and Pedro Lima. Multi-robot systems middleware applied
to soccer robots. In Encontro Científico do Festival Nacional de Robótica, Paderne,
Portugal, 2007.

Luís Paulo Reis and Nuno Lau. FC Portugal team description: Robocup 2000 simulation
league champion. In Stone et al. (2001), pages 29–40.

Luís Paulo Reis and Nuno Lau. Coach unilang - a standard language for coaching a (robo)
soccer team. In Birk et al. (2002), pages 251–265.

Luis Paulo Reis, Nuno Lau, and Eugénio Oliveira. Situation based strategic positioning
for coordinating a simulated robosoccer team. In M. Hannebauer, J. Wendler, and
E. Pagello, editors, Balancing React. and Social Deliberation in MAS, volume 2103 of
Lecture Notes in Artificial Intelligence, pages 175–197. Springer, 2001.

Luís Paulo Reis, Nuno Lau, and Luís Mota. FC Portugal 2007 – 2D Simulation Team
Description Paper. In Visser et al. (2007).

http://qt.nokia.com/products/
http://qt.nokia.com/products/
http://julia.ist.tugraz.at/robocup2010/tdps/2D_TDP_Nemesis.pdf
http://julia.ist.tugraz.at/robocup2010/tdps/2D_TDP_Nemesis.pdf

REFERENCES 155

Luís Paulo Reis, Nuno Lau, Luís Mota, Artur Pereira, Bernardo Cunha, and João Certo.
Mixed Reality Competition: FC Portugal Team Description Paper. In Iocchi et al.
(2008).

Luís Paulo Reis, Nuno Lau, and Luís Mota. FC Portugal 2009 - 2D Simulation Team
Description Paper. In Baltes et al. (2009).

Luís Paulo Reis, Nuno Lau, and Luís Mota. FC Portugal 2D Simulation: Team Descrip-
tion Paper. In del Solar et al. (2010).

Martin Riedmiller and Artur Merke. Using machine learning techniques in complex
multi-agent domains. In I. Stamatescu, W. Menzel, M. Richter, and U. Ratsch, edi-
tors, Adaptivity and Learning, pages 311–328. Springer, 2003.

Martin Riedmiller, Artur Merke, David Meier, Alex Sinner, Ortwin Thate, and
R. Ehrmann. Karlsruhe Brainstormers - a reinforcement learning way to robotic soccer.
In Stone et al. (2001), pages 367–372.

Max Risler and Oskar von Stryk. Formal behavior specification of multi-robot systems
using hierarchical state machines in XABSL. In AAMAS08-Workshop on Formal Mod-
els and Methods for Multi-Robot Systems, page 7, Estoril, Portugal, 2008.

Ronald Rivest. S-Expressions Internet-Draft. MIT Laboratory for Computer Science,
Room 324, 545 Technology Square Cambridge, MA 02139, May 1997. URL http:
//people.csail.mit.edu/rivest/Sexp.txt.

Thomas Röfer. An architecture for a national robocup team. In Kaminka et al. (2003),
pages 417–425.

Thomas Röfer, Joerg Brose, Eike Carls, Jan Carstens, Daniel Goehring, Matthias Juen-
gel, Tim Laue, Tobias Oberlies, Sven Oesau, Max Risler, Michael Spranger, Christian
Werner, and Joerg Zimmer. Germanteam 2006 the german national robocup team.
Technical report, Deutsches Forschungszentrum fuer Kuenstliche Intelligenz, Univer-
sitaet Darmstadt, Universitaet Bremen and Humboldt-Universitaet zu Berlin, 2006.

Thomas Röfer, Tim Laue, Colin Graf, Tobias Kastner, Alexander Fabisch, and Christian
Thedieck. B-human team description for robocup 2010. In del Solar et al. (2010).

Thomas Röfer, Norbert Michael Mayer, Jesus Savage, and Uluç Saranlı, editors. RoboCup
2011: Robot Soccer World Cup XV, CD proceedings, 2011b.

Raquel Ros and Manuela Veloso. Executing multi-robot cases through a single coordi-
nator. In Proceedings of the 6th international joint conference on Autonomous agents
and multiagent systems (AAMAS 07), pages 215:1– 215:3. ACM, 2007.

Raquel Ros, Manuela Veloso, Ramon López de Màntaras, Carles Sierra, and Josep Lluís
Arcos. Advances in Case-Based Reasoning, volume 4106 of Lecture Notes in Computer
Science, chapter Retrieving and Reusing Game Plays for Robot Soccer, pages 47–61.
Springer, 2006.

http://people.csail.mit.edu/rivest/Sexp.txt
http://people.csail.mit.edu/rivest/Sexp.txt

156 REFERENCES

Raquel Ros, Ramon López de Màntaras, Josep Lluís Arcos, and Manuela Veloso. Case-
Based Reasoning Research and Development, volume 4626 of Lecture Notes in Com-
puter Science, chapter Team Playing Behavior in Robot Soccer: A Case-Based Rea-
soning Approach, pages 46–60. Springer, 2007.

Myriam Arias Ruiz and Jorge Ramirez Uresti. Team Agent Behavior Architecture in
Robot Soccer. In Proceedings of the Latin American Robotic Symposium, pages 20–
25, 2008.

Frederico Santos, Luís Almeida, Luís Seabra Lopes, José Luís Azevedo, and M. Bernardo
Cunha. Communicating among robots in the robocup middle-size league. In Baltes
et al. (2010), pages 320–331.

Nima Shafii, Luís Paulo Reis, and Nuno Lau. Biped walking using coronal and sagittal
movements based on truncated fourier series. In del Solar et al. (2011), pages 324–335.

Shuhei Shiota, Yasuyuki Yamazaki, Shinichi Takahashi, Yosuke Taniguchi, and Ikuo
Takeuchi. Yowai2006 team description. In Robocup 2006 Symposium. University of
Tokyo, Japan, 2006.

Marco A. C. Simões, Josemar R. de Souza, Fagner de A. M. Pimentel, and Diego Frias.
MR-Simulator: A simulator for the Mixed Reality competition of RoboCup. In del
Solar et al. (2011), pages 82–96.

Hendrik Skubch, Michael Wagner, Roland Reichle, and Kurt Geihs. A modelling lan-
guage for cooperative plans in highly dynamic domains. Mechatronics, 21(2):423 –
433, 2011. Special Issue on Advances in intelligent robot design for the Robocup Mid-
dle Size League.

Russell Smith. Open Dynamics Engine v0.5 User Guide, http://www.ode.org/, 2004.

Christopher Stanton and Mary-Anne Williams. Grounding robot sensory and symbolic
information using the semantic web. In Polani et al. (2004), pages 757–764.

Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer. MIT Press, 2000.

Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelligence, 110
(2):241–273, 1999.

Peter Stone, Tucker Balch, and Gerhard Kraetzschmar, editors. RoboCup-2000: Robot
Soccer World Cup IV, volume 2019 of Lecture Notes in Artificial Intelligence, 2001.
Springer.

Kai Stoye and Carsten Elfers. Intuitive plan construction and adaptive plan selection. In
Visser et al. (2008), pages 278–285.

REFERENCES 157

Freek Stulp, Michael Isik, and Michael Beetz. Implicit coordination in robotic teams
using learned prediction models. In 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., 2006.

Freek Stulp, Hans Utz, Michael Isik, and G. Mayer. Implicit Coordination with Shared
Belief: A Heterogeneous Robot Soccer Team Case Study. Advanced Robotics, 24(7):
1017–1036, 2010.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(1):1633–1685, 2009.

Hans Utz, Freek Stulp, and Arndt Muehlenfeld. Sharing belief in teams of heterogenous
robots. In Nardi et al. (2005).

José Luis Vega, Ma. de los Ángeles Junco, and Jorge Ramírez. Major behavior definition
of football agents through XML. In Tamio Arai, Rolf Pfeifer, Tucker R. Balch, and
Hiroshi Yokoi, editors, Proceedings of the 9th International Conference on Intelligent
Autonomous Systems, pages 668–675, University of Tokyo, Tokyo, Japan, 2006. IOS
Press. ISBN 1-58603-595-9.

Manuela Veloso, Enrico Pagello, and Hiroaki Kitano, editors. RoboCup-99: Robot Soccer
World Cup III, volume 1856 of Lecture Notes in Artificial Intelligence, 2000. Springer.

Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and Frank Dellaert, editors. RoboCup-
2007: Robot Soccer World Cup XI, CD proceedings, 2007.

Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and Frank Dellaert, editors. RoboCup-
2007: Robot Soccer World Cup XI, volume 5001 of Lecture Notes in Artificial Intelli-
gence, 2008. Springer.

Andrew Walker. An Introduction to Boost. The Code Project, Jul 2003. URL http:
//www.codeproject.com/KB/stl/boostintro.aspx.

Thilo Weigel, Willi Auerbach, Markus Dietl, Burkhard Dumler, Jens-Steffen Gutmann,
Kornel Marko, Klaus Müller, Bernhard Nebel, Boris Szerbakowski, and Maximilian
Thiel. Cs freiburg: Doing the right thing in a group. In Stone et al. (2001), pages
52–63.

Jan Wendler and Joscha Bach. Recognizing and predicting agent behavior with case based
reasoning. In Polani et al. (2004), pages 729–738.

Henry Work, Eric Chown, Tucker Hermans, Jesse Buttereld, and Mark McGranaghan.
Player positioning in the four-legged league. In Iocchi et al. (2009), pages 391–402.

K. Yokota, K. Ozaki, N. Watanabe, A. Matsumoto, D. Koyama, T. Ishikawa, Kuniaki
Kawabata, Hayato Kaetsu, and Hajime Asama. Uttori united: Cooperative team play
based on communication. In Asada and Kitano (1999), pages 479 – 484.

http://www.codeproject.com/KB/stl/boostintro.aspx
http://www.codeproject.com/KB/stl/boostintro.aspx

158 REFERENCES

Stefan Zickler, Tim Laue, Oliver Birbach, Mahisorn Wongphati, and Manuela Veloso.
SSL-Vision: The shared vision system for the RoboCup Small Size League. In Baltes
et al. (2010), pages 425–436.

Vittorio A. Ziparo, Luca Iocchi, Daniele Nardi, Pier Francesco Palamara, and Hugo
Costelha. Petri net plans: a formal model for representation and execution of multi-
robot plans. In Proceedings of the 7th International Joint Conference on Autonomous
Agents & Multiagent Systems, volume 1 of AAMAS’08, pages 79–86, Richland, SC,
2008. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
978-0-9817381-0-9.

Oliver Zweigle, Reinhard Lafrenz, Thorsten Buchheim, Uwe-Philipp Käppeler, Hamid
Rajaie, Frank Schreiber, and Paul Levi. Cooperative agent behavior based on special
interaction nets. In Intelligent Autonomous Systems 9: IAS-9, 2006.

Oliver Zweigle, U.-P. Käppeler, H. Rajaie, K. Hüssermann, R. Lafrenz, A. Tamke,
F. Schreiber, M. Höferlin, M. Schanz, and P. Levi. CoPS Stuttgart team description
2008. In Iocchi et al. (2008).

	Front Page
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Motivating Scenario
	1.3 Objectives
	1.4 Thesis Structure

	2 State of the Art
	2.1 RoboCup
	2.1.1 Simulation League
	2.1.2 Small-size League
	2.1.3 Middle-Size League
	2.1.4 Standard Platform league
	2.1.5 Humanoid league

	2.2 Agent Architectures in RoboCup
	2.2.1 Internal Agent Architecture
	2.2.2 Multi-agent System Architecture

	2.3 Modeling and Communication Languages
	2.4 Team level Coordination in RoboCup
	2.4.1 Role allocation
	2.4.2 Positional Coordination
	2.4.3 Setplays

	2.5 Summary

	3 Setplay Framework
	3.1 Framework Description
	3.1.1 Directives and Actions
	3.1.2 Conditions
	3.1.3 Regions

	3.2 Inter-robot Communication
	3.3 Practical Application and Usage profiles
	3.3.1 Setplay selection
	3.3.2 Action selection and execution
	3.3.3 Communication management
	3.3.4 Summary

	3.4 Wrapper classes
	3.5 Operations on Setplays
	3.5.1 Setplay management
	3.5.2 Setplay duplication
	3.5.3 Setplay inversion

	3.6 Setplay Language
	3.7 Setplay Example
	3.8 Summary

	4 Framework Implementation
	4.1 Implementation of a C++ library
	4.1.1 Setplay definition parser
	4.1.2 Selection of players participating in a Setplay
	4.1.3 Setplay execution engine

	4.2 Setplay Evaluation and Selection: Case-based Reasoning
	4.2.1 Case characterization
	4.2.2 Case spatial similarity
	4.2.3 Case retrieval
	4.2.4 Case selection and reuse
	4.2.5 Case revision
	4.2.6 Case retention

	4.3 Graphical Design of Setplays: SPlanner
	4.3.1 Other strategy tools
	4.3.2 General Architecture
	4.3.3 Interface design
	4.3.4 Execution flows of a Setplay
	4.3.5 Defining actions for participants
	4.3.6 Positions of players and action targets

	4.4 Summary

	5 Framework Application to RoboCup Teams
	5.1 Introduction
	5.2 Application to the 3D Simulation League
	5.3 Application to the 2D Simulation League
	5.3.1 Implementation of Actions
	5.3.2 Implementation of Conditions
	5.3.3 Setplay Selection for Execution
	5.3.4 Choice and execution of Actions
	5.3.5 Inter-robot Communication
	5.3.6 Summary

	5.4 Application to the Middle-size League
	5.4.1 Setplay Selection for Execution
	5.4.2 Choice and execution of Actions
	5.4.3 Implementation of Actions
	5.4.4 Implementation of Conditions
	5.4.5 Inter-robot Communication
	5.4.6 Summary

	6 Evaluation of the Setplay Framework
	6.1 Testing in the Middle-Size League
	6.1.1 Set-pieces: Throw-in
	6.1.2 Setplay in play-on mode

	6.2 Testing in the 2D Simulation League
	6.2.1 Own Goalie Catch
	6.2.2 Corner Kick
	6.2.3 Kick-in

	6.3 Summary

	7 Conclusions
	7.1 Achievements
	7.2 Publications
	7.3 Future Work
	7.4 Concluding remarks

	A Setplay definitions used in tests and evaluation
	References

