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Abstract 
 

Singing has an important role in our life, and although synthesizers have been trying to replicate 

every musical instrument for decades, is was only during the last nine years that commercial 

singing synthesizers started to appear, allowing the ability to merge music and text, i.e., singing. 

These solutions may present realistic results on some situations, but they require time consuming 

processes and experienced users. 

The goal of this research work is to develop, create or adapt techniques that allow the resynthesis 

of the singing voice, i.e., allow the user to directly control a singing voice synthesizer using his/her 

own voice. The synthesizer should be able to replicate, as close as possible, the same melody, 

same phonetic sequence, and the same musical performance.  

Initially, some work was developed trying to resynthesize piano recordings with evolutionary 

approaches, using Genetic Algorithms, where a population of individuals (candidate solutions) 

representing a sequence of music notes evolved over time, tries to match an original audio 

stream. 

Later, the focus would return to the singing voice, exploring techniques as Hidden Markov Models, 

Neural Network Self Organized Maps, among others. Finally, a Concatenative Unit Selection 

approach was chosen as the core of a singing voice resynthesis system.  

By extracting energy, pitch and phonetic information (MFCC, LPC), and using it within a phonetic 

similarity Viterbi-based Unit Selection System, a sequence of internal sound library frames is 

chosen to replicate the original audio performance. 

Although audio artifacts still exist, preventing its use on professional applications, the concept of a 

new audio tool was created, that presents high potential for future work, not only in singing voice, 

but in other musical or speech domains. 

 

 

Keywords: Resynthesis, Singing, Voice, Concatenative, Sampling, Audio Mosaic, Analysis, Feature 

Extraction, Synthesis, Pitch, Dynamics, Phonetics, Vocal, Speech, Music, Sound, Audio, Unit 

Selection, Music Transcription, Genetic Algorithms.
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Resumo 
 

A voz cantada sempre teve um papel importante nas nossas vidas, e embora há várias décadas 

que os sintetizadores tentam replicar todos os instrumentos musicais existentes, apenas nos 

últimos nove anos as primeiras soluções comerciais de síntese de voz cantada apareceram, 

permitindo a combinação de música e texto, ou seja, “cantar”. Essas soluções podem criar 

resultados realistas em determinadas situações, mas requerem processos muito morosos e 

utilizadores experientes. 

O objectivo deste trabalho de investigação é desenvolver, criar ou adaptar técnicas que permitam 

a re-síntese da voz cantada, isto é, que permitam ao utilizador controlar diretamente um 

sintetizador de voz cantada, usando a sua própria voz. Desta forma, o sintetizador deverá ser 

capaz de replicar, da melhor forma possível, a mesma melodia, a mesma sequência de fonemas e 

a mesma performance musical. 

Inicialmente, algum trabalho foi feito na re-síntese de gravações de piano com abordagens 

evolutivas, usando Algoritmos Genéticos, onde uma população de indivíduos (potenciais soluções) 

representa uma sequência de notas que evolui ao longo do tempo, tentando replicar o áudio 

original. 

Numa fase posterior o foco dirigiu-se para a voz cantada, explorando técnicas como Hidden 

Markov Models, Neural Network Self Organized Maps, entre outros.  

Finalmente, uma abordagem concatenativa baseada na seleção de unidades (Unit Selection) foi 

escolhida para núcleo de um sistema de re-síntese vocal.  

Extraindo a componente  dinâmica (energia), altura (notas musicais) e informação fonética (MFCC 

e LPC), e usando um sistema de selecção de unidades e semelhança fonética, uma sequência de 

frames da biblioteca interna de sons é escolhida para replicar a performance do áudio original. 

Embora ainda existam artefactos áudio, impedindo o seu uso em aplicações profissionais, foi 

criado o conceito de uma nova ferramenta áudio, que apresenta grande potencial para trabalhos 

futuros, não apenas para voz cantada, mas também para fala ou outros domínios musicais. 

Palavras: Re-síntese, canto, voz, concatenação, amostragem, mosaicos áudio, análise, extração de 

informação, síntese, dinâmica, fala, música, som, áudio, seleção de unidades, transcrição de 

música, algoritmos genéticos. 
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1. Introduction  

 

1.1 Context 

 

Since pre-historic times, music always had an important role on the human life. With time, better 

and more complex musical instruments were created, expanding the horizons of music. 

With the birth of electronics, the first synthesizers started to appear, which are devices capable of 

creating new sounds or recreating existing musical sounds, and having a great impact on the way 

music was made on the second half of the XX century. With them, musicians have at their disposal 

a huge amount of sounds, without the need of using the actual physical music instruments or 

needing to master their playing techniques, in addition to the ability to recreate completely new 

sounds. With time, the quality and realism of these “virtual” instruments increased and, in many 

situations, it is impossible, even for professionals, to distinguish between the original sounds and 

the synthesized ones [NorthernSounds, 2003]. 

Nevertheless, one highly used musical instrument continued to provide many difficulties to its 

simulation with synthesizers: the human voice. Although many musical instruments present 

several different registers, the human voice presents a unique characteristic that is responsible for 

its major complexity: the ability to associate text with music, i.e., singing. 

During the last decade, the first commercial solutions for singing voice synthesis were released 

[EASTWEST, 2001][EASTWEST, 2005][Yamaha, 2004][VirSyn, 2004]. Even though they presented 

some limitations, these solutions were finally able to associate text with music, through the 

simulation of a solo singer or a choir.  

Although the first barrier of singing synthesis was overcome  - the ability to merge text and music - 

the fact that the human voice allows so many different variations (musically and phonetically), 

creates a new problem for the user: how to instruct the synthesizer/computer to perform (sing) 

according to the wishes of the user? The way the text is pronounced; the duration of each 

phoneme; the transitions between phonemes; the melodic line; the desired music performance in 

terms of pitch effects (e.g. vibrato or portamento); the music characteristics of the attack of each 
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phoneme; the sound intensity dynamics; etc. – all these options are only a small subset of the 

possible choices that are needed to be done to be able to achieve realistic and professional 

sounding singing performances.  

Current solutions already allow some of those choices through graphical interfaces, but in most 

cases they represent a complex and time-consuming task even for experienced users, that may 

require several hours of work to achieve some seconds of realistic singing performance. 

A possible way to highly decrease the complexity of such work, increasing the process 

productivity, may involve using the user’s voice (or any other vocal recordings), to easily 

demonstrate how the singing performance should be obtained, creating a resynthesis process. For 

instance, a movie composer could use his/her voice to sing something, showing how his/her choir 

synthesizer should create the desired choir performance. It would be even possible to allow the 

editing of several parameters as a way to overcome some performance limitation of the users 

(out-of-tune notes, etc.). 

Since the synthesizer is controllable by an audio stream, the system could also be used on an 

“Audio Effect” context, transforming the input voice into another one, as Figure 1.1 suggest, 

keeping the same musical and phonetic characteristics, but replacing the timbre/sound 

characteristics. 

 

Figure 1.1 – Voice controlled singing synthesizer 

1.2 Motivation 

This PhD dissertation appears as a continuation of the work that the PhD student has been 

developing for some years now to the EASTWEST1 Company (Hollywood, USA). 

During 2001, EASTWEST released the “Quantum Leap - Voices of the Apocalypse” sound library 

[EASTWEST, 2001], with female and male choirs. Although the library contains vowels and 

consonant recordings, from the practical point-of-view, the user would use only one type of sound 

at each time (e.g. “ah” vowel).  

After a post on an internet forum [NorthernSounds, 2002] in April 2002, on which the PhD student 

suggested the creation of a software application that allows users to enter the text that should be 

                                                           
1
 One of the most successful soundware companies in the world [EASTWEST, 2010]. 
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sung by the virtual choir, a collaboration with the American company was started, although with 

some precautions from the company regarding the prospect of such tool. 

During the first months, a prototype was evolved until being released as a freeware utility in the 

summer of 2002, designated as “Voices of the Apocalypse Utility” *Fonseca, 2002+. With the 

appearance of a single text editor (similar to Notepad), the user could enter the text that he 

wishes to hear, using a pre-defined syntax. The application receives the melody by MIDI in real-

time, and based on the written text, it outputs, also in real-time, the required MIDI information to 

control the sampler2 in the desired way. In the next year (2003) a second version of the application 

was available (this time with an associated cost) with several new features, including a graphical 

editor and an internal English-phonetic convertor [Fonseca, 2003][Fonseca, 2003b]. 

In 2005, EASTWEST released the “EASTWEST/Quantum Leap Symphonic Choirs” package 

[EASTWEST, 2005], with completely new choir recordings (samples), a sampler software and a new 

text-to-sing application.  The new sound library3 included boys/sopranos/altos/tenors/basses choir 

voices; the sampler engine was a customized version of the Kontakt sampler (from the German 

company Native Instruments); and the text-to-sing application, named WordBuilder™ (Figure 1.2) 

and developed by the PhD student, corresponded to an evolution of previous applications (“VotA 

Utility”). 

 

Figure 1.2 – WordBuilder™ 

These sound library packages, including its applications “VotA Utility” and “WordBuilder™”, have 

received several awards [EASTWEST, 2001; EASTWEST, 2005] and were reviewed in several sound 

                                                           
2
 Device/software responsible for playing the pre-recorded samples. 

3
 Recorded by Prof. Keith O. Johnson, two times Grammy award (Best Engineered Classical Recording). 
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magazines [SoundOnSound, 2002; SoundOnSound, 2005; Keyboard, 2003; EM, 2006;EM, 2006b; 

Keyboard, 2006] and books [Gilreath, 2004], being also displayed on international music fairs. They 

are currently being used by composers all over the world in movies, TV series and game 

soundtracks.  

1.3 Goals, Challenges and Approaches 

Goals 

The goal of this PhD work is to develop, create or adapt techniques that allow the resynthesis of 

the singing voice, i.e., that allow the user to control a singing voice synthesizer using his/her own 

voice. The synthesizer should be able to replicate, as close as possible, the same musical 

performance, namely the same melody, same phonetic sequence, and the same personal music 

gesture4.  

Since many singing performances include non-existing words, one important requirement is that 

the system should be language-free (working with any language or with any phonetic sequence).  

Also, due to the nature of its application, the system will consider only monophonic audio 

material.  

Challenges 

The development of such a system presents several challenges: 

Musical performance replication – to achieve its goal, the system must be able to extract and 

replicate the musical performance of the singer, which represent a challenging task. 

Pitch extraction – although monophonic pitch extraction has been the object of intense research 

during decades, it still presents many issues, especially in the presence of noise or on unvoiced 

regions. 

Phonetic replication – similar to the music domain, the replication of phonetic information is a 

challenging task. 

Language Free – language free systems present two additional challenges: the need to handle rare 

or unknown phonemes; also, the fact that the system cannot benefit from language specific 

characteristics. Both of them limit the use of learning mechanisms. 

Synthesis model – most synthesizer approaches are note-oriented, since they are to be used with 

MIDI or in similar environments. This type of approach is probably the best for most applications, 

but it faces difficulties when the origin of control is a real audio stream, which shows a 

“continuous” behavior instead of a “discrete” note behavior. 

                                                           
4
 Not the timbre characteristics of the voice, but the singer’s interpretation of the song. 
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Timing - to reproduce the same musical/phonetic performance, the system must respect the 

original phonemes timings. This adds a new constrain to the synthesizer, by creating some time 

requirements for each phoneme.  

Approaches 

To accomplish the desired goals, the PhD work will try to explore the following approaches: 

Merging speech and music research – The area of singing voice lays on the frontier between 

speech and music research areas. As such, this PhD work will try to merge concepts and 

techniques from both worlds: speech analysis with music analysis, and, speech synthesis with 

music synthesis. 

Pitch extraction – Although pitch extraction has an important role on the system, several decades 

of research have been done on the subject of monophonic pitch extraction. As such, an existing 

monophonic pitch extraction system will be chosen and used, since trying to create new 

techniques could lead to the loss of focus regarding the PhD work.  

Sampling-based synthesis - Although many interesting research work is being done on other areas 

of music synthesis (e.g. spectral modeling or physical modeling), most current high-end virtual 

instruments that replicate existing instruments are sample based. As such, and considering the 

PhD student past experience on sampling solutions (see section 1.2 “Motivation”), the work will be 

based on sampling-based synthesis.  

1.4 Applications 

The concept of using a human voice to control a singing synthesizer can have multiple 

applications. 

Synthesizer User Interface – Singing synthesizers are becoming better, increasing the freedom of 

the user in terms of what the synthesizer can do. But this also increases the complexity of handling 

them, since there are too many parameters and choices to choose from. By controlling the 

synthesizer directly with the human voice, the job of the user is simplified, giving direct 

information on how the synthesizer should perform, and still giving the user the chance to make 

minor adjustment later on.  

Audio Transformation Tool (Audio Effect) – Since the internal synthesizer is controlled by an 

audio stream, the system can be considered as an audio transformation tool or an audio effect, 

whose output is a transformed version of the input. In this scenario, the synthesis is not the goal, 

but a tool to achieve the goal – an audio transformation process – transforming an audio stream 

into another, allowing the change of timbre characteristics as: gender (e.g. male to female), age 

(e.g. adult to child), number of voices (e.g. solo to choir), style (e.g. normal to operatic voice), 

singer (e.g. from singer A to singer B), etc. 
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Deceased people performance – With the use of old recordings audio material as the internal 

sound library, new songs can be recreated with the voice of a deceased singer (e.g. Pavarotti, 

Sinatra). By using a living singer and replacing his/her performance with someone’s old recordings, 

new audio material is created. 

Although the main focus of this PhD work is singing voice, the same principles can be applied to 

any other musical applications, creating a new paradigm in audio effects. As such, a new type of 

audio effects, based on sampled audio material, can appear in the future, taking audio as input 

and replacing it with “similar” audio material. This could lead to a new world of applications: 

Restoration – By accessing old recordings material, that presents degraded audio quality, and 

recreating the same music performance using high-end sample libraries. For instance, a 1940 

recording of a solo violin piece, that is replicated using a sound library with a Stradivarius violin 

samples, recorded on a high quality concert hall, with high definition audio quality – same musical 

performance, but a much higher sonic quality. 

Transynthesis – Transforming an instrument into another [Chang, 2006]. Either to achieve creative 

effects (e.g. using a violin to control a harpsichord sound, allowing portamento effects that the 

original harpsichord instrument does not allow), or as an orchestration tool (e.g. a trumpet player 

that uses his/her trumpet to create the music lines of each instrument of an orchestra passage), 

transynthesis can be an interesting application. 

Instrument enhancer – Increasing the quality of an instrument recording, by overcoming the lack 

of sound quality of the instrument (e.g. plastic recorder5 that is replaced with the sound of a 

custom-made wood recorder), or recording/environment limitations (e.g. low quality microphone, 

background noise). 

Many of these applications depend on pitch extraction methods. Due to the low success rate of 

existing polyphonic pitch extraction methods, the use of monophonic audio recording may still be 

necessary during several years.   

1.5 Main Contributions 

The main contribution of this PhD work was the creation of a new method for singing voice 

resynthesis, allowing the computer to replicate a singing performance using an internal sound 

library with vocal samples (presented in section 4). 

Other contributions were also made in the area of Sound and Music Computing: 

 A new sample-based parametric synthesis method, mainly focused to the singing voice, 

allowing a finer control over pitch, loudness (Dynamics) and phonetic/timbre parameters 

(presented in section 4.2). 

                                                           
5
 Not a recording device, but the woodwind musical instrument. 
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 New developments on using evolutionary approaches, based on Genetic Algorithms (GA) 

for automatic music transcription and resynthesis (presented in section 3.3). 

 Some developments on the performance optimization of applying Genetic Algorithms in 

sound processing applications (presented in section 3.4). 

 A new metric to evaluate music transcription systems (monophonic or polyphonic), which 

better correlate with the human perception (presented in section 3.5). 

1.5.1 Publications 

Based on this PhD research, several works have been published, including 7 international review-

based conference papers and 2 review-based national conference papers. Some of these works 

were reused or cited by other authors.  

A journal submission was also done, currently waiting for its review. 

During the same time period, some publications were also obtained, although not directly related 

with the PhD work, including 1 book, 1 journal white paper and 1 domestic conference paper. 

Annex A presents the full list of publications and citations.  

1.6 Outline of the Dissertation 

The rest of this dissertation contains four chapters. Chapter 2 presents an overview of relevant 

background information, techniques and related state-of-the-art. Due to the multi-disciplinary 

area of Sound and Music Computing, introduction information is presented on related topics. 

 

Chapter 3 proposes an initial resynthesis approach. Before entering the singing voice domain, 

some work was done on the resynthesis of piano recordings, based on evolutionary techniques 

(Genetic Algorithms): an initial note sequence that evolves over time to better match the original 

audio recording. Besides resynthesis, the chapter also presents work done on the optimization of 

Genetic Algorithms for music applications, and a new metric to evaluate music transcription 

systems. 

 

Chapter 4 proposes a singing voice resynthesis system, and presents the work done during its 

development, such as: the creation of a new synthesis approach; the extraction of pitch from the 

original audio stream; the extraction and replication of sound intensity behavior (dynamics); and 

extraction and replication of phonetic content. It also presents an evaluation of the proposed 

resynthesis system done with human listening tests.  

 

Chapter 5 completes the dissertation with the final conclusions and possible directions for future 

work.  

 

Published material and related citations are presented in annex A. 
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2. Singing Voice: overview 

 

2.1 Introduction 

Most music produced and heard nowadays is centered on vocal performance, where the human 

(singing) voice appears as the leading music line. The singing voice has two important 

characteristics when compared to other musical instruments: it can handle text, allowing to 

transmit a message; and it is the most human related musical instrument, since it is built on the 

human body and is used by everyone since childhood. 

This chapter presents an overview of the singing voice and voice-related techniques. Section 2.2 

presents the human voice system; section 2.3 explores several existing approaches for synthesis, 

either for speech, music or singing; section 2.4 explores methods related to the transformation of 

audio, focusing on voice-related effects; and finally, section 2.5 presents several artificial 

intelligence related techniques used on signal processing.  

2.2 The human voice 

The human voice has a fundamental role in human life, since it is responsible for most of the 

communication between humans. Even today, with so many electronic forms of communication, 

the loss of the human voice, or even other mild or severe voice disorders, can easily lead to 

traumatic experiences. Voice is the natural acoustic support for speaking, singing, whispering, 

laughing and other related sounds. All these sounds are produced by the vocal organ, originated 

by an airstream created on the lungs that is processed by the vocal folds and modified by the 

vocal/nasal tract [Sundberg, 1987]. As such, we can divide the vocal organ in three different 

components: the breathing apparatus, the vocal folds and the vocal tract (see Table 2.1). 

Table 2.1 – Vocal Organ 

Function Organ Activity Major Agents 

Compressor Lungs Breathing Abdomen and Diaphragm Muscles 

Oscillator (source) Vocal Folds  Phonation Laryngeal Muscles, Aerodynamics  

Resonator (filter) Vocal Tract  Articulation Lip, Tongue and Jaw Muscles 
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The lungs act as a compressor, using abdomen and diaphragm muscles to create an airstream. This 

airstream passes through the vocal folds at the glottis, where phonation takes place. Here, the 

vocal folds vibrate, opening and closing the passage to the airstream. This very quick movement 

creates an acoustic signal that excites the vocal and nasal tracts. However, between the moment 

this acoustic signal is generated at the glottis and the moment it is radiated to the acoustic space 

outside the mouth, the sound must travel through the vocal tract - the path between the vocal 

folds and the lips/nostrils (Figure 2.1). Due to the physical variations of the different sections 

inside the vocal tract, i.e., due to articulation, the acoustic signal suffers transformations, similar to 

the effect of a resonator (i.e. a filter). Since some of these sections can change its position or 

characteristics, a human is capable of controlling the way the voice sound is shaped. 

 

Figure 2.1 – Schematic view of a profile cut of the head (from [Degottex, 2010] 

As long the vocal folds open and close the glottis at a constant time interval, the phonation will 

produce a periodic acoustic signal, designated as a voiced signal6. But this is not always the case. In 

some situations, the vocal folds might even not vibrate, with the airstream passing by, but due to 

turbulence effects, a noise-like acoustic signal is created, which is designated as unvoiced signal. 

From the hearing point-of-view, it is important to understand what is the actual contribution of 

the phonation (vocal folds) and what is the contribution of articulation (vocal tract). Phonation will 

be responsible for two important behaviors: the choice between voiced/unvoiced sounds and, in 

the case of voiced sounds, the rate of the glottis vibration (fundamental frequency (F0) that is 

                                                           
6
 Characterized in the frequency domain by a series of harmonic partials at a decreasing amplitude of 12 dB 

per octave [Kent, 2004] 
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perceived as pitch).  On a speech context, this frequency is used to express intonation7, whereas in 

a singing context it is used to represent a melodic line. 

On the other hand, articulation is responsible for shaping the sound in time and frequency, being 

the major responsible for the creation of phonemes. Although phonemes require a voiced or 

unvoiced phonation (for instance, all vowels are mainly voiced sounds), articulation is the main 

responsible for the differences between phonemes. 

Figure 2.2 (from [Degottex, 2010]) presents an interesting schematic view of the voice production 

models. 

 

Figure 2.2 – Schematic view of voice production models (from [Degottex, 2010]) 

                                                           
7
 For instance, if the pitch raises at the end of a sequence of words, it is probably indicative of a question. 
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2.2.1 Speaking vs. singing  

There are important differences between the use of voice on a speech context and its use on a 

singing context.  

Speech is characterized by a very smooth and continuous change of pitch, while singing uses a 

much more “jumping” behavior, since pitch is perceived as music notes. Also, singing (especially 

classic singing) is characterized by the usual presence of vibrato effects - a slight modulation of 

pitch, between 5 and 7 Hz, with up to ±2 semitones of pitch modulation [Kent, 2004]). 

Another important difference between speaking and singing is the pitch range. Singing uses a 

much wider range of pitches, especially in higher frequencies. In some note/phoneme 

combinations, the fundamental frequency of the note might even be higher than the typical value 

of that phoneme first formant (F1). In those situations, the singer changes his/her F1 position (for 

instance, by opening the jaw) to move the first formant frequency above the F0 value [Kent, 

2004], increasing its intelligibility. As such, the typical formant locations of speech phonemes may 

not apply to the singing voice.  

Regarding the use of voicing, it is known that a singing voice uses much more voiced sounds than 

speaking voice (90% vs. 60% [Cook, 1990]), mainly due to the increase of vowel durations. 

One interesting characteristic of singing, especially present on classic trained singers8, is the 

existence of a “singer” formant [Sundberg, 1974], i.e., a special resonance of the vocal organ that 

allows the singer to increase the vocal loudness9 at a particular frequency range (between 2.5 kHz 

and 5 kHz, depending on the singer), by clustering formants together (F3, F4 and even F5). This 

technique allows them to better detach themselves from the instrumental background (e.g. 

opera). Interestingly, this “formant” is only used for singing, and not with other vocal sounds.  

It is also important to mention that sometimes the frontier between speaking and singing is not 

very clear, especially in some vocal performances as poetry, chant or rap music [Gerhard, 2003]. 

2.3 Synthesis 

Synthesis, within an audio context, is the process of creating a new audio stream, usually based on 

symbolic or high level information, and it plays an important role in many music or speech 

applications. To better understand the process of singing resynthesis, it is important to 

comprehend the current approaches in music, speech and singing synthesis. 

2.3.1 Musical sound synthesis 

Musical sound synthesis can probably be split in two main classes: parametric synthesis and 

concatenative synthesis [Schwarz, 2004], as illustrated in Figure 2.3. Parametric synthesis (also 

                                                           
8
 Especially male singers and altos [Kent, 2004]. 

9
 Up to 20 dB higher than “normal” speech situations *Sundberg, 1987+ 
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know as Model based synthesis) is based on models/parameters of the sound; concatenative 

synthesis is based on existing audio material. 

 

Figure 2.3 – Musical Sound Synthesis 

Parametric synthesis can be subdivided in physical models and signal models. On physical 

modeling systems, the desired sound is obtained by modeling the physical characteristics of the 

instrument. For instance, to recreate a guitar sound, the idea is to model the behavior of a 

vibrating string, considering its mass, length, the acoustic response of the guitar resonance, among 

other physical behaviors. In signal systems, with well known approaches as additive synthesis or 

subtractive synthesis, the synthesis is obtained by using signal models of the sound. In the additive 

synthesis, the major goal is to add several single frequencies as a way to create the complex 

musical sound, by controlling the amplitude and frequency of each one. Subtractive synthesis 

starts with a complex waveform (e.g. a sawtooth signal) with many harmonics that passes by 

several filters that remove the unwanted harmonics.  

Concatenative synthesis uses pre-recorded material (also known as samples10) to obtain the final 

audio stream. Granular synthesis uses very short samples, which will act as a sound grain, whereas 

Sampling uses longer recorded samples that recreate the original musical instrument. In Unit 

Selection systems, instead of a fixed inventory, audio fragments (units) are selected depending on 

the required target sound. 

Although the main concepts of musical sound synthesis can be classified on such classes, some 

hybrid techniques may contain a mixed approach. For instance, Spectral Modeling Synthesis (SMS) 

[Serra, 1990], that may be considered both additive and subtractive synthesis by modeling sound 

as a combination of harmonic content (created by adding sinusoids as harmonics) and 

noise/residual content (created by filtering white noise with filters), can also use pre-recorded 

audio as the model baseline data. 

 

                                                           
10

 To prevent some confusion between the concepts of sample as a time instant value (digital processing 

context), and as a pre-recorded audio stream (music synthesis context), we will represent the second one 

with an italic format. 
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2.3.2 Speech synthesis 

The first references to speech synthesis began in 178011 – von Kempelen has shown that the 

human voice could be modeled, creating a mechanical device that probably would be the first 

voice synthesizer of the world (Figure 2.4).  

 

Figure 2.4 – von Kempelen's speaking machine 

The next important milestone regarding voice synthesis was the presentation on the World Fair in 

S. Francisco in 1939, of the “Voder”, a voice synthesizer created by Homer Dudley *Gold2000] 

(Figure 2.5). 

 

Figure 2.5 – Voder 

With the appearance of digital electronics, and later, of computers, the technologies for voice 

synthesis have improved not only in terms of quality but also in terms of diversity of existing 

solutions. Nowadays, speech synthesis can be divided almost in the same groups as musical sound 

synthesis, as illustrated in Figure 2.6 [Schwarz, 2004]. 

                                                           
11

 Although there was already some previous work, it was very limited and was mainly focused on vowels. 
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Figure 2.6 – Speech waveform synthesis 

On the parametric side, source-filter synthesis (also known as formant synthesis) considers the 

human voice as a source-filter system, combining glottal pulse excitation (i.e. the source) and 

resonances of the vocal tract (i.e. the filter) [Holmes, 1983], similarly to a subtractive approach. 

Articulatory systems are based on the physical characteristics of organs producing the voice (i.e. 

physical modeling) [Shadle, 2002], using parameters directly related to the physical characteristics 

of the human vocal organ. 

In concatenative systems, pre-recorded material is used. In fixed inventory, short audio fragments 

of audio are used, by dividing the audio material in diphones, triphones or demisyllables, whereas 

nonuniform unit selection allows the use of any fragment size (from single phoneme to entire 

words), as long it proves to be the best solution for the desired target sound. 

2.3.3 Singing voice synthesis 

Given that the application field for singing voice is music, most of the existing research and 

solutions came from the music research world. With the appearance of the electronic music 

synthesizers, people began trying to simulate the singing voice, although initially with only a single 

phoneme sound (e.g. “ah”, “oh”), allowing musicians to play melodies with a “vocal” kind of 

sound, but without any text. The ability to sing text would take several years to be implemented. 

Singing voice synthesis can use almost the same segmentation as speech or music synthesis, with 

parametric approaches or concatenative approaches, although most often hybrid techniques are 

used. 

The formant based CHANT project [Rodet, 1984], although expanded to general synthesis, was 

originally conceived for singing voice, based on Formant Wave Functions (FOF - Forme d’onde 

formatique) (Figure 2.7). 
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Figure 2.7 – FOF synthesizer [Rodet, 1984] 

In SPASM [Cook, 1992] (Figure 2.8) a physical modeling approach is used, based on Digital 

Waveguide Filters (WGF) with shape parameters. The nasal tract is also based on WGF and glottal 

source pulses are stored and retrieved from wavetables. A noise component is also present 

(filtered pulse noise) to simulate the turbulence generated as air flows though the oscillating vocal 

folds. 

 

Figure 2.8 – SPASM [Cook, 1992] 

The LYRICOS system [Macon, 1997] uses sinusoidal models based on pre-recorded material. It 

merges concatenation and unit selection with sinusoidal models that synthesize the output signal 

using overlap-add (OLA) (Figure 2.9). The system first selects the vowels and, on a second pass, fills 

up the consonants. Later, FLINGER (Festival Singer) [Macon, 2000] has taken the concepts of 

LYRICOS, while using the Festival TTS as its engine. 
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Figure 2.9 – LYRICOS [Macon, 1997] 

In [Fonseca, 2003a], the author of this dissertation proposes a simple but effective concatenative 

approach for choir singing synthesis, with a pure sampling approach and without signal processing, 

other then simple cross-fades. By receiving MIDI information with the melody, and looking at the 

text and time editor’s information, the engine activates or schedules samples on an external 

sampler (Figure 2.10). 

 

Figure 2.10 – VotA Utility engine [Fonseca, 2003a] 

A significant milestone is the work of Jordi Bonada, by using performance sampling and spectral 

models [Bonada, 2007][Bonada, 2008]. Pre-recorded audio is used as models, and spectral 

processing allows its modification and concatenation. Figure 2.11 presents a simple vowel EpR 

(Excitation plus Resonances) synthesizer [Bonada, 2008] (the final system considers vowels and 

consoants). The system considers a sonic space as presented in Figure 2.12. During synthesis, 

information from several templates are combined (pitch/loudness/tempo/phonetic (A) + vibrato 

(B) + articulation (C)) to create the singing output.  
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Figure 2.11 – A vowel synthesizer from [Bonada, 2008]. 

 

Figure 2.12 – Proposed subspaces of the singing voice sonic space [Bonada, 2008] 

The commercial availability of research work is sometimes an interesting measure of its quality. 

The first commercially available singing synthesizer, with text building features, was probably 

“Voices of the Apocalypse” (VotA) *Eastwest, 2001+ with its “VotA Utility”, developed by the 

author of this dissertation [Fonseca,2002] and released in 2002, and it was able to recreate a choir 

sound with real-time support. Later “EW/QL Symphonic Choirs” and its “WordBuilder” software 

[Eastwest, 2005], also based on the work of [Fonseca, 2002] were released (also for choir), almost 

at the same time as Vocaloid [Yamaha, 2004], which was based on the work of Jordi Bonada and 

Xavier Serra [Bonada, 2007]. The Vocaloid engine was used on several sound libraries, mainly for 

solo voice. In Vocaloid 2, new features were added including real-time support. Another 

commercial solution, also available for solo voice, is “Virsyn Cantor” *Virsyn, 2004], although its 

internal concepts are not known. There are other virtual instruments with a limited number of 



Chapter 2. Singing Voice: an overview 

 

19 
 

recorded syllables [VSL, 2010][Cinesamples, 2010], but they only allow a very small set of available 

words that can be sung.  

It is also important to mention how user interface works with singing synthesizers, and what can 

be done to improve the interaction between man and machine. 

For text singing, the virtual instrument requires both music information (e.g. musical notes) and 

text information (e.g. sequence of phonemes). Some systems, such as Vocaloid [Yamaha, 2004], 

handle both music and text together, being text just one additional characteristic of each note 

(Figure 2.13 – left). Other systems, such as Symphonic Choirs [Eastwest, 2005], use a text only 

editor (Figure 2.13 – right), with music information being playback by the DAW software or 

delivered in real-time. 

      

Figure 2.13 – User interface for Vocaloid (left) and WordBuilder (Symphonic Choirs) (right) 

Since most users do not have experience with phonetic alphabets, most solutions include phonetic 

translating tools, allowing users to enter English text that is internally converted to its phonetic 

equivalent, and still allowing the user to tweak the desired phonetic sound. 

Although current singing synthesizers present interesting results with basic information (sequence 

of notes and words), these results are very unrealistic and unnatural, forcing the user to spend a 

lot of time making small adjustments, both regarding music information (e.g. adding vibratos or 

changing pitch attacks) and phonetic information (e.g. replacing phonemes or editing phoneme 

durations or intensities). Realistic or near-realistic results are usually possible (especially in the 

case of English, since almost used phonemes are covered), but it represents a very time consuming 

task, even for experienced users. 

One of the most interesting solutions for such problem is the use of the human voice as an 

interface with the virtual instrument. By using his/her voice, the user could easily specify how such 

track could be sung.  

The concept of using a human voice to control a synthesizer is not new. In [Janer, 2004] several 

examples are mentioned.  In [Janer, 2006], the human voice is used to control a singing 
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synthesizer, but phonetic information must be manually inserted. In [Nakano, 2009], a similar 

system is proposed, where a singing voice is also used as the main source of information to control 

a singing synthesizer. Unfortunately, the system also requires the user to manually enter the 

phoneme sequence. Both systems extract pitch and dynamics information, and are able to align 

the manually entered phoneme sequence with the singing input stream.  

Systems that allow the human voice to fully control a singing synthesizer (including phonetic 

information) are currently unavailable. 

2.4 Audio transformation 

Transforming an audio stream into another is a common situation in the life of any audio-related 

professional, especially when using digital audio effects. Modifying the sound characteristics of the 

input audio stream is the main goal of digital audio effects [Zolzer, 2002]. Effects as delay, reverb, 

equalization (EQ), dynamic processing and others, are widely used and usually handle any type of 

audio material. When it comes to processing the human voice, either speech or singing, all these 

generic audio effects continue to be used by professionals, but usually they are not able to modify 

specific voice characteristics. 

To change voice characteristics, several techniques exist. One of the most common known 

examples of voice transformation is the vocoding [Zolzer, 2002], used for creating robot voices and 

similar effects. This effect takes two inputs and it creates a combination of both streams, by 

“spectrally shaping” the first sound by the second one, while preserving the pitch of the first 

sound. It is almost like applying the vocal tract of the second sound to the first sound. 

Other common voice transformation effects are based on source-filter concepts and techniques 

[Verfaille, 2004][Robel, 2010]. The same way that human voice is produced by phonation (acting 

as source) and articulation (acting as filter), source-filter based effects try to separate the two 

components and change them independently.  A common application is pitch-shifting with 

formant preservation. Traditional pitch-shifting techniques are able to change pitch, but will also 

change the location of formants, since all frequency information is “moved”, i.e., equally 

displaced. For instance, increasing the pitch of a male voice can easily result on a sound similar to 

a female, child or even cartoon-type of voice, since the characteristics of his vocal tract are 

changed, acting as if the dimensions of the vocal tract were reduced. Source-filter approaches 

allow the pitch to be shifted while keeping the same vocal-tract (filter) characteristics, or vice-

versa, by keeping the same pitch while changing the overall characteristics of the vocal tract. 

Examples of several representative methods can be found in [Zolzer, 2011]. 

Changing the number of perceived voices (e.g. changing a solo voice into a choir) is also a common 

voice transformation goal: from techniques that overlap several variations of the input stream, to 

traditional chorus effects (that use delay modulation to recreate the effects of slightly out-of-tune 

voices), or even more complex methods such as spectral processing [Bonada, 2005]. In fact, 

spectral processing has been responsible for many different techniques of voice-oriented effects 

[Mayor, 2009]. 
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Other approach for transforming audio streams is resynthesis (the act of creating a new synthesis) 

- using an input audio stream and recreating a new stream based on the previous one. Resynthesis 

usually involves a two-step approach: first a feature extraction module, allowing to extract the 

relevant information from the original audio, and then a synthesis module, allowing to synthesize 

an audio stream based on the extracted information. The synthesis process of the Resynthesis can 

use any of the previously mentioned synthesis approaches. On the parametric side, some work 

was been done with additive synthesis [Klingbeil, 2005], additive/subtractive synthesis [Chang, 

2006], spectral models [Bonada, 2005]. On the concatenative side, there is the work of [Schwarz, 

2006], [Cardle, 2003], [Hoskinson, 2001], among others. 

Some authors make a separation between Resynthesis and Transynthesis [Chang, 2006], 

considering Resynthesis when keeping the same type of timbre (trumpet → trumpet), and 

Transynthesis when timbre is not maintained (trumpet → violin).  

When Resynthesis is implemented with concatenative techniques, it may be referred to as mosaic 

or similar terms (e.g. audio mosaicing) [Schwarz, 2005]. Following the concept of image mosaics, 

where images are created using small fragments of existing images, audio mosaics (or mosaicing) 

is the concept of concatenating audio fragments, considering a desired target. The desired target 

can be based on an existing audio recording or it could be a high level description given by the 

user.  

The difference between concatenative synthesis and audio mosaic is essentially a difference of 

context. Although they share the same concepts, concatenative synthesis has the focus on 

synthesis (creating better synthesizers), whereas audio mosaic has the focus on the mosaic effect 

(not a perfect synthesis, but an interesting one). 

 

2.5 Artificial Intelligence methods for signal processing 

Significant research work has carried out by applying Artificial Intelligence methods to sound-

related research.  Due to its use in this dissertation, some approaches are presented in the next 

sections. 

2.5.1 Neural Networks 

A Neural Network (NN), also known as Artificial Neural Network (ANN) is a computational 

intelligence technique that is based on the concept of the human brain and its neural connections. 

Figure 2.14 presents a simple perceptron, the first and simplest type of NN [Rosenblatt, 1958]. 

Considering inputs x1 … xn, the output is given by equation 2.1 and equation 2.2, where w0…wn 

represent the internal weights of the NN that need to be adjusted during training. Instead of a 

binary output, a continuous output can be used, by changing the activation function (e.g. tanh(x) 

instead of sign(x)). 

                                                            (2.1) 
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                                                           (2.2) 

 

Figure 2.14 – A simple perceptron 

The simple perceptron is very limited, but, by using several perceptrons (nodes) organized on 

more than one layer (Figure 2.15), highly complex systems can be obtained [Mitchell, 1997]. 

During training, the internal weights are adjusted to minimize the output error12, by using 

Backpropagation or any other NN learning method13. 

 
Figure 2.15 – MultiLayer Perceptron (MLP) 

Other types of neural networks also exist [Haykin, 1994]. For instance, in recurrent neural 

networks, outputs or hidden nodes values act as inputs. This feedback connection allows the 

neural network behavior to be dependent of previous results, acting as a memory feature. 

Self Organized Maps (SOM) [Kohonem, 1984] is a special neural network with unsupervised 

training. Contrary to supervised training approaches, where the system is fed with several training 

examples consisting of input data and the system’s correct answer (target) for each situation, in 

unsupervised learning the target solution is not given or known. As such, the system must be able 

to improve its behavior, not directly, but indirectly, by using features like joining similar examples. 

In the case of self-organized maps, the neural network presents several outputs (for instance, 

representing a 2D mesh), and in each situation, only one output is activated, corresponding to the 

                                                           
12

 Difference between the output value and desired value.  

13
 Backpropagation and most other NN learning methods are supervised, which means that the desired 

target is known during training. 
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output with the higher value (“the winner takes it all”). During the training, the internal weights 

are changed so that similar input data could fire the same outputs, or at least outputs located near 

each other. During the test phase, the output position can be used as data distance parameters, 

i.e., the distance between the outputs of two test data vectors can be used to measure the 

similarity between them. One of the first applications of such systems was in phonetics, where a 

SOM is used as a phonetic typewriter [Kohonem, 1988].  

2.5.2 SVM 

Support Vector Machines (SVM) is a learning approach based on statistical learning theory. This 

relatively new approach, introduced by Vapnik and co-workers [Boser, 1992] [Vapnik, 1998] is a 

very powerful method that outperforms most alternative systems in a variety of applications 

[Cristianini, 2000]. 

SVM uses a hypothesis space of linear functions in a high dimensional feature space, trained with a 

learning algorithm from optimization theory based on statistical learning theory. For instance, on 

an example as the one illustrated in the Figure 2.16, to classify a 2-class problem within a 2D 

space, some other learning method could stop their training with a situation similar to that 

illustrated in Figure 2.10 A, since all training examples get divided on their own classes (Figure 2.16 

A). SVM, not only try to separate classes, but also try to find the hyperplane that maximizes the 

separation margin between classes (Figure 2.16 B). As such, some training examples are chosen as 

support vectors (the ones crossed by the dash lines in Figure 2.16 B). 

 

Figure 2.16 – Classification on a 2-class problem within a 2D space: some learning method (A) vs. SVM (B) 

Since it is not always possible to use a hyperplane to divide classes on a linear space, kernel 

approaches can be used, transforming the data to a space where hyperplane separation is possible 

[Cristianini, 2000]. 

Although SVM uses a binary classification approach (only 2 classes), multiclass SVM can be easily 

obtained by dividing a k-class problem in binary approaches (e.g. one-against-all, pairwise 

classification) [Aisen, 2006]. 

2.5.3 HMM  

Hidden Markov Model (HMM) is a statistical Markov model, but with hidden states [Rabiner, 

1989]. A Markov chain (the simplest Markov model) models a system with a finite number of 

states (S1… Sn), where the next state only depends on the current state and not the previous ones 

(Figure 2.17). The probability that the system changes from state i to state j, is given by a state 
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transition probability (aij). Unfortunately, in most systems that need to be modelled, the states are 

not directly visible. What is visible is what the state produces, that are designated as observations 

(vi). The probability that a state i produces an observation j, is given by observation probabilities 

(bij).  

 

Figure 2.17 – Hidden Markov Model, with states (S), state transition probabilities (a), observations (v) and observation 
probabilities (b) 

To create the model, the system tries to find the state transition probabilities and the observation 

probabilities that best models the training sequence(s). After this learning process, the model can 

be used. Given a sequence of observations (e.g. a signal), the system will find the best sequence of 

states that could present such observations (usually done with a Viterbi Algorithm [Rabiner, 

1989]). For instance, on a phonetic recognizer where HMM states represent phonemes, the 

sequence of states correspond to the sequence of phonemes. 

HMM are well known for their application on voice recognition [Becchetti, 1999], due to their 

ability to handle sequences of data. 

2.5.4 Search approaches 

When searching for a solution to a problem, several approaches can be used. If the search space14 

is relatively small, a full search can be made, by testing all available solutions and choosing the 

best one. Unfortunately, most problems present huge search spaces, preventing the use of a full 

search. 

One possible approach to deal with huge search spaces is the use of heuristics. By creating a set of 

rules or a set of steps, the programmer creates a method that allows the computer to come up 

with a solution that hopefully will be near the optimum solution, in a small amount of time (when 

compared to a full search) by looking to a subset of the search space. 

Another approach is to use local search methods, like Hill Climbing, on which a (random) candidate 

solution “looks” in its neighborhood for better solutions, improving its position iteration after 

                                                           
14

 The space spanning the universe of possible solutions 
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iteration until a maximum is obtained. Although it is quite effective in some kind of problems, it 

has the drawback of being stuck at local maxima, preventing it to find the global maximum. 

A set of search approaches that are currently receiving particular attention from the research 

community are evolutionary approaches. Starting with a set of candidate solutions (in most cases, 

random solutions), several operations are created allowing those solutions to evolve iteration 

after iteration, searching for the best solution. Within evolutionary approaches, there are several 

well-known techniques like: genetic algorithms [Holland, 1992], memetic algorithms [Hart, 2004], 

Particle Swarm Optimization (PSO) [Kennedy, 1995], among others. 

The concept of genetic algorithms [Holland, 1992] is based on the idea of natural evolution from 

Darwin. Better-prepared individuals are more likely to survive and reproduce more often, creating 

new individuals that will likely have the relevant genetic code of their parents. After several 

generations, the quality of the population increases.  

From the computer science point-of-view, the idea is to start with an initial population of 

individuals, where each individual represents a possible solution to the problem. Generation after 

generation (iteration), individuals are evaluated and chosen as parents (selection) depending on 

their fitness (score): more fitted individuals will more likely be chosen as parents than less fitted 

individuals. By combining two different individuals, new individuals are created (recombination), 

that share their parents genes (information) and that are also susceptible of minor changes 

(mutation). After several generations, the best individual can be chosen as a solution to the 

problem. 

Memetic algorithms [Hart, 2004] can be seen as an extension of Genetic algorithms that use local 

search features. For instance, after recombination, several different mutations can be tested and 

evaluated. Although Genetic Algorithms are known for their capabilities in finding good areas on 

huge search spaces, their capability for fine tuning their solution are not so great. Memetic 

algorithms allow a better local convergence, and in some specific practical problems are know for 

their success [Hart, 2004]. 

Swarm intelligence is an evolutionary approach that is based on the behavior of some social 

animals (e.g. antz, birds, fishes) that mix individual behavior with a group behavior. In the case of 

Particle Swarm Optimization (PSO) [Kennedy, 1995], a set of particles (each particle is a candidate 

solution) move around the search space where the direction/velocity depends on three factors: 

the global best (the best solution ever found by any particle), the neighborhood best (obtained by 

communicating with a subset of all particles) and the local best (the best solution ever found by 

that particle). 
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2.6 Summary 

This chapter presented an overview of the singing voice, focusing both on the human vocal organ 

and on the synthesis of speech and singing materials. Initially, a brief presentation of the human 

vocal organ is presented, analyzing the differences between speaking and singing.  

Later, several approaches were mentioned regarding the synthesis of speech, generic musical 

sounds, and singing, which will have an important role on this dissertation work. Besides synthesis, 

this chapter also presents a very summarized overview of the audio transformation of vocal 

sounds. 

Finally, a small summary is presented regarding the use of some Artificial Intelligence approaches 

in signal processing, to better contextualize some of the work done in this dissertation. 
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3. Evolutionary Resynthesis of Musical Instruments using 

Genetic Algorithms 

 

3.1 Introduction 

Although the main goal of this PhD work is to achieve singing voice resynthesis, our work will begin 

by focusing on a simpler scenario – the resynthesis of a musical instrument. By disregarding the 

phonetic complexity, a simpler resynthesis approach can be tested and evaluated.  

Of all available instruments, the piano seems an interesting choice: it is probably one of the most 

studied musical instruments and much research work is currently being done on analysis of piano 

recordings (mainly for polyphonic music transcription). From the technical point of view, it also 

presents some simplifications, especially regarding synthesis. Although the part of being a 

polyphonic15 music instrument increases the analysis complexity, the synthesis results simplified 

since each note is independent of any other and there is no need to synthesize note transitions. By 

using a sampling approach, good synthesis results can be achieved by simply adding notes samples 

on top of each other. 

This chapter presents the work being done trying to resynthesize piano audio recordings. Section 

3.2 explores possible approaches to re-synthesis; section 3.3 explores a search space approach 

using Genetic Algorithms and presents relevant work done in this area; section 3.4 explores 

methods proposed to decrease the computational power required by such approaches; section 3.5 

explores some side research done in the area of music transcription metrics; and finally, section 

3.6 presents the final conclusions of the chapter.  

It is also important to mention that some of the work presented in this chapter (section 3.3 and 

3.4.1) was a collaborative research with another PhD student (Gustavo Reis) from Universidad de 

Extremadura, Spain. 

3.2 Resynthesis 

The concept of resynthesis can be achieved with two different approaches: a serial approach and a 

parallel approach. The serial approach consists of two independent modules: the feature 
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 able to play several notes at the same time 
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extraction (analysis) and the synthesis. First, a feature extraction process will extract, from the 

original audio stream, the relevant symbolic/semantic information (e.g. pitch, dynamics, 

phonemes when working with singing voice, etc.). With all that information, the synthesizer will 

then be able to recreate a similar audio stream.  In this approach, the feature extraction module 

and the synthesizer module do not interfere with each other and are completely independent, it is 

just necessary that they agree on the information interface between them (for instance, using 

standard MIDI information). This means that it is possible to change one of the modules without 

affecting the other. Also, most of the current research can be applied individually to each module. 

For instance, state-of-the-art music transcription system can be applied to the first module, or a 

state-of-the-art music synthesis can be applied to the second module. Due to this module 

independency, we will designate it as a serial approach (Figure 3.1). 

 

Figure 3.1 – A serial resynthesis approach 

The other possible approach for resynthesis is based on the idea of integrating analysis and 

synthesis altogether, which means that analysis is no longer done independently. In this approach, 

that we will designate as parallel (Figure 3.2), analysis is mainly done by comparing the original 

audio with the synthesized one, looking for the best way to resynthesize a given sound, 

considering the existing synthesizer and its characteristics.  

 

Figure 3.2 – A parallel resynthesis approach 

Although widely used in many engineering fields such as speed/audio compression and adaptative 

filtering, this approach is much less explored by the research community devoted to music 

resynthesis, not due to worst results, but simply because the area of application is less common 

(many applications require only the analysis methods or only the synthesis methods). Also, it can 

be seen as an indirect approach (almost like reverse engineering) to the problem.  

One interesting feature of this parallel approach is that if we output the analysis results instead of 

the synthesis results (without changing the internal structure), we change our resynthesis system 

into a music transcription system based on an analysis-by-synthesis approach, i.e., a music 

transcription system that uses an internal synthesis as a way to improve its analysis capabilities. 

Either as a resynthesis system or as an analysis-by-synthesis music transcription system, the 
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internal structure is exactly the same. The only difference is outputting the results from the 

internal synthesizer module or the internal analysis module. 

3.3 A search space approach to resynthesis using Genetic Algorithms  

It is possible to look at resynthesis as a search space problem, by searching for the best sequence 

of information that allows us to synthesize a similar audio stream.  This last sentence highlights the 

three important concepts: search, synthesis and similarity.  By using a search space method, the 

analysis/synthesis problems are converted on search/synthesis/similarity problems. Since piano 

synthesis can be easily achieved with sampling methods (by playing pre-recorded “samples” of 

each piano note) [Nemesys, 1998], the main remaining problems are searching and similarity.  

To resynthesize a piano recording, we will want to search for the note sequence that best models 

(presents the best musical similarity with) the original audio recording. But this search-space 

approach has a major handicap – the size of its search space. Since we are dealing with so many 

complex dimensions (time, pitch that can be polyphonic, dynamics), the search space will be 

enormous. As such, the decision was made of using Genetic algorithms. 

Genetic Algorithms (GA)16 is a search space technique that is known for its ability to work on large 

search-spaces, by using only a very small subset of that search-space. In this case, the GA would be 

searching for the best sequence of notes that, by passing through the synthesizer, would create 

the most similar audio stream. Their use in a music transcription scenario was initially explored by 

[Garcia, 2001] and [Lu, 2006], although on simple situations. 

But the use of Genetic Algorithms for this resynthesis task raises some questions: 

 How should the information be encoded on the individuals (candidate solution)? 

 How should individuals (candidate solutions) be evaluated? 

 How should selection, recombination and mutation work? 

 How do we create the initial population? 

 

The following sections present information regarding the use of Genetic Algorithms in our 

resynthesis approach. 

 

3.3.1 Encoding 

Since each individual represents a candidate solution, it should be encoded as the sequence of 

events that will be presented to the synthesizer. As such, each individual will be a sequence of n 

note events (Figure 3.3). Since we do not know how many notes are present in the original audio 

recording, the number of note events is variable from individual to individual, and will probably 

change during evolution.  
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 More information in section 2.5.4 
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Figure 3.3 – Gene Encoding 

Each note event will need the following information: 

 Onset (the start time of the note) 

 Duration of the note 

 Note pitch 

 Dynamics of the note (a.k.a. loudness, MIDI velocity) 

 

This encoding allows us to represent a candidate solution for the problem, where each note event 

acts as a gene of the individual.  

 

3.3.2 Selection, Recombination and Mutation 

Genetic Algorithms use three main operations: Selection, Recombination and Mutation. The goal 

of Selection operation is to select parents to generate new individuals. The selection of parents 

should not be fully random, but based on the quality of existing individuals, i.e., the most fitted 

individuals17 should have more probability to be selected as parents than less fitted individuals. 

But, since we want to overcome local maxima and explore different areas of the search space, we 

cannot use only the two best individuals to create all childs. From all traditional G.A. selection 

methods tested, we selected the method of Deterministic Tournament [Goldberg, 1991] with five 

individuals: five individuals from the population are randomly selected, and the one with the best 

fitness is selected as parent. This selection method offered good results and required less 

processing power than other alternative methods. 

Unlike traditional GA implementations, that usually use a fixed number of genes, our encoding 

uses a variable number of genes (since we do not know how many notes exist on the audio 

stream), which will affect the recombination operator. So, instead of using the traditional n-point 

crossover, where one or more random points are chosen to split the parent’s genes, we used what 

we called “one time point crossover” (Figure 3.4) - during recombination, a random point in time is 

chosen, splitting the parent’s genes in two: the note events that occur before and the note events 

that occur after that time period. If a note is being played during that time point, the note event is 

split in two.  

                                                           
17

 Fitness measures the score of an individual regarding the problem. The most fitted individual is the one 

that presents the best solution for the problem. 
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Figure 3.4 – Recombination 

The mutation operator is responsible for adding slight changes to the individual genes, as a way to 

explore new areas of the search space that are not present at the parents genes, achieving a 

better search. In our system, instead of applying random bit changes, since our genes are very 

musical oriented (each gene have four musical parameters), we have decided to use music related 

parameter changes, like: 

 Pitch shift – the note event changes its pitch value with ± 1 semitone. 

 Octave shift – the note event changes its pitch value up to ± 2 octaves. 

 Onset shift – the note events changes its onset value within a x second range. 

 Duration – the note event increases or decreases its duration x%. 

 Dynamics – the note event increase or decrease its dynamics x%. 

 Note split – the note event is split on two with a random interval between them 

both. 

 Note merge – two note events with the same pitch are merged into a single 

event. 

 Delete event – the note event gets deleted. 

 Random add – a new note is created. This note can be completely random or it 

can be a copy of an existing one with a different pitch. 

 

3.3.3 Initial Population 

Any Genetic Algorithm needs an initial population to start with. Although in most G.A. applications 

the system is initialized with a random population, which is good to explore completely different 

areas of the search space, presenting an initial population that is somehow related with the final 

solution improves immensely the processing time. As such, our initial population will not be 

randomly created, but created considering the FFT peaks of the original audio. 

Using the original audio stream, for each time frame an FFT is calculated, the peak with the highest 

value is obtained. Based on the frequency of that peak, a note event is created (or a previous one 

is maintained, by increasing its duration) (Figure 3.5).  
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Figure 3.5 – Example of an original audio spectrogram and its initial individual 

The use of FFT will, of course, create many errors. In most cases it can even present an error rate 

of 100% (e.g. missing fundamental, etc). Nevertheless, this is not an issue, since we are only 

creating an initial population. The Genetic Algorithm will be responsible to evolve this initial 

solution to a better one. Having an initial solution that is closer to the right solution than a pure 

random one, will result on a highly improvement of required computational power, since much 

less generations will be needed to achieve a similar performance. 

Other approaches were also tested, but did not produce better results (worst precision and recall 

results): 

 k FFT peaks – instead of using only the highest peak on each time frame, the system 

considers the k highest peaks, being k a user defined constant. 

 Threshold FFT peaks – instead of using only the highest peak on each time frame, the 

system consider all peaks within a x amplitude range, being x a user defined constant. 

 Cepstrum domain – using a similar approach, but applying a cepstrum analysis instead of 

an FFT. 

 

To improve the quality of the first individual, trying to achieve a better fitness, several pre-

generations are used: the individual passes through a hill-climber method that applies some 

special mutations equally to all genes, changing the notes dynamics, duration or onset. 

Since we only have one individual and an initial population is needed, the additional individuals 

are mutation versions of this initial individual (by cloning it and applying n forced mutations). 

3.3.4 Individual Evaluation (Measuring similarity) 

Most of the concepts that were addressed so far regarding our GA system (encoding, operators, 

population, etc.) will affect essentially the search capability of the system: its speed, the ability to 

overcome local maxima, etc. But, probably the most important aspect of the system is the 

individual evaluation. And it is here where the concept of similarity plays a decisive role. 

The system must be able to “look at” each individual note sequence and measure how close it is, 

from the musical point of view, to the original audio. To achieve that, each individual’s note 
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sequence must be converted first into an audio stream, using a synthesizer. Then, both audio 

streams (the original and the synthesized one) are compared. These two tasks are described next. 

Synthesis 

The internal synthesizer is based on sampling. The system has 30-second recordings of each piano 

note, taken at a medium dynamics (MIDI velocity 64), from piano sample libraries, that included a 

Steinway, a Bosendorfer and a Bechstein pianos. The user can choose which piano should be used 

as the internal synthesizer. 

The release time of each note is created by applying a fade-out curve to the audio sample and the 

dynamic behavior of the synthesizer is done by controlling a gain parameter with a dynamic range 

of 50 dB. 

Audio similarity 

After transforming the individual note sequence into an audio stream, a comparison is made with 

the original audio. The way audio is compared has a fundamental role on the system. The goal is to 

have a method that gives importance to aspects that are perceptual and musically relevant, and 

disregard other aspects that are not perceptual or musically important. For instance, doing a 

simple sample comparison (comparing the error between each sample of the original stream and 

the synthesized one) will have bad results – even two identical signals, but with opposed phase, 

will present a very bad result. 

To test the enormous amount of possibilities regarding audio similarity, a testing application was 

developed, using Microsoft VisualStudio, Intel C++ Compiler and Intel IPP libraries. Although 

several G.A. frameworks already exist, it was important to create everything from scratch, not only 

to allow us a better understanding of G.A. choices, but mainly to have full development flexibility 

and highly optimized code, since performance is a critical factor. The use of Intel C++ Compiler was 

important for performance gain and the use of Intel IPP libraries allows us to run signal processing 

tasks (FFT, etc) in a very efficient way. 

The evaluation unit was done using an architecture comprising six modules (see Figure 3.6): 

 Pre-Synthesis processing – responsible for processing notes before synthesis is done. 

 Synthesis – responsible for converting the note sequence into audio. 

 Framing – responsible for converting the audio streams into time frames 

 Domain – responsible for converting each time frame to a specific domain (e.g. FFT) 

 Post-processing – responsible for applying some kind of pos-processing to the obtained 

values 

 Measuring differences – responsible for applying a numeric method to compare the 

obtained values (e.g. sum of the quadratic differences) 
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Figure 3.6 – Fitness evaluation unit 

 

Pre-Synthesis processing 

During pre-synthesis processing, several features were available to use:  

 Discard notes with durations smaller than n ms;  

 Discard notes with dynamic values x dB below the highest dynamic note on the note 

neighborhood;  

 Dynamics Average, forcing all notes to share the same dynamics value (calculated by doing 

the average between all notes);  

 Overlapping removal, preventing two notes with the same pitch to play at the same time; 

Framing 

Regarding framing, the user was able to choose the frame size, hop size and window type 

(Rectangular, Hamming or Hanning). The size of the time frame is, of course, a trade-off between 

temporal resolution and frequency resolution – smaller sizes improve temporal resolution, larger 

sizes improve frequency resolution. 

Domain 

Several domains were available: 

 FFT with linear scale 

 FFT with logarithmic scale 

 Filter banks 

 Cepstrum 

 Hybrid (FFT and Cepstrum) 

 Autocorrelation (ACF) 

 Summary autocorrelation (SACF). 
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Post-Processing 

During post-processing, several rules were available:  

 Peaks only, considering only data from the local peaks  

 Dynamic range, disregarding values x dB bellow the highest frame value 

 Normalization, applying a gain factor (up to ±20 dB) to the synthesized frame data (as a 

way to decrease the impact of attack/decay/release differences between the original 

audio and the synthesized one). The gain could be calculated considering the average 

frame data, the frame data peak or iteratively trying several gains, with decreasing steps, 

until the best gain was detected to achieve the lowest error 

 Data Blur. Bluring data by applying a low-pass filter to the frame data. The low-pass 

process was used by applying a window (rectangular, triangle, gauss), with a predefined  x 

octave width, with symmetrical (same frequency width on both sides) or asymmetrical 

(same octave width on both sides) form. 

Error Measurement 

The final measurement was obtained by summing the frame errors over time, using frequency 

information from 27.5 Hz (lowest piano note) till the Nyquist frequency (i.e., half of the sampling 

frequency). The frame error could be obtained using one of the equations (3.1 – 3.9). The available 

equations range from traditional error measurements (equation 3.1 – 3.3), area interception 

(equation 3.6), correlation (equation 3.9) and other variations. 

 

The measurement process also allows some features that could be applied, which change the way 

the error is obtained: 

 Frequency normalization I. In most domains, different octaves have different number of 

bins (for instance, FFT doubles the number of used bins in each octave). As such, a 

normalization process can be easily obtained by dividing the data bin by the bin number, 

i.e., higher bins (that present less octave widths) will have less impact than lower bins. 

 Frequency Normalization II. The same as previous but dividing the bin error, instead of 

dividing each data bin. 

 Logarithmic intensity scale, obtained by applying a log10 formula to each data bin. 

Instead of summing all frame errors, experiments were also done by calculating a 2D correlation in 

time/frequency between the original audio and the synthesized audio. 
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3.3.5 Initial tests and observations 

Hundreds of tests were performed, looking for the best combination of parameters. Since 

synthesis was not a problem (our internal piano synthesizer (sampler) presented a good audio 

quality), we could focus on the analysis area, that would correspond to the system ability to search 

and measure similarity.  

To evaluate the success of the tests, and since it was difficult to have non-human methods to 

evaluate the success of resynthesis itself18, the choice was to evaluate the success of the system as 

a music transcription process, allowing to easily use numeric methods to measure its success. As 

such, the chosen metric was based on the onset-only Mirex metric [MIREX07], considering an 

onset time tolerance of ± 100 ms, using recall and precision values (comparing the original note 

sequence with the individual note sequence) to obtain a F-measure result. If the system was able 

to find a right note sequence, then the resynthesis would be successful. 

Even from early tests19, the system normally presents an evolution similar to the ones in Figure 

3.7. The original notes would be detected (raising recall value), and precision values would rise for 

some time (deleting wrong notes) followed by a precision decrease (addition on new wrong 

notes). 

 

Figure 3.7 – Typical recall and precision evolution results over 1000 generations, with several tests with different 
configurations  

Since our testing application allows the user to see, in real-time, the “piano-roll” of the original 

audio stream20 as well as the piano-roll of the best individual of each generation, one of the issues 

observed was the fact that most errors were additional notes that were created in harmonic 

                                                           
18

 This is actually what we are trying to evaluate: comparing 2 audio streams in term of musical information 

similarity. 

19
 Initial tests made during the development of the system, but not presented here. 

20
 as long as there was a MIDI file with that information 
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locations of the original ones, usually with lower amplitudes and equal or smaller durations (Figure 

3.8).  

 

Figure 3.8 – Common errors occurring with additional low intensity notes on harmonic locations 

Due to differences between the original timbre and the synthesized one, which would be 

responsible for differences on the amplitude of the harmonics, the system would create additional 

notes on those harmonic locations, usually with low amplitudes, as a way to decrease the 

differences between the original spectrum and the synthesized audio one.  

We have designated this behavior as “harmonic overfitting”, because the system adds these notes 

as a way to decrease the error (fitting) on harmonic locations (harmonic), but using wrong notes 

(over-fitting) since it cannot decrease the error using only right notes. 

This issue of harmonic overfitting will be probably one of the major issues that our system must 

handle, so several techniques were created to overcome it, and that was the reason behind many 

of the available pre-processing and post-processing features of our framework, always looking for 

new ways of preventing this harmonic overfitting behavior. 

The following paragraphs present the main observations on the main modules of the system. 

Pre-synthesis processing 

The pre-synthesis processing revealed to be an important feature of the system, by cleaning up 

many garbage notes. Overlapping notes needed to be avoided, and notes with very small 

durations (< 50 ms) or small dynamics when compared to their neighborhood notes (<10 dB 

below) most probably exist due to harmonic overfitting. By applying these features, better results 

were obtained (a precision improvement around 15%).  
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Forcing all notes to have the same dynamics values, although this leads to better results when 

transcribing audio files created with a similar behavior, it is not a realistic feature, and presented 

worst results on more “real life” audio recordings.  

Synthesis 

Synthesis did not present a real impact on results. Of course, some internal pianos presented best 

results with one audio recording than another, but globally there was not any piano sound library 

that was able to systematically present better results than the others. 

Framing 

Tests were done with several settings, namely frame size from 512 to 8192 samples, hop sizes 

from 0% to 50%, and different windows (Hamming, Hann, rectangular, Gaussian, Blackman). The 

best results were obtained with a frame size of 4096 samples (92 ms at a sampling frequency of 

44.1 kHz) and a hop size of 1024 samples (23 ms), showing that more resolution was needed in 

frequency than in time (although the offset tolerance of the music transcription metric could 

eventually benefit this situation). The Hann window presented the best results.  

Domains 

Regarding finding the best domain to compare audio, two interesting surprises were found. One of 

them was the fact that FFT with a linear scale on the magnitude axis presented best results than 

using a logarithm scale, especially considering that the human perception has a behavior much 

more similar to the logarithm scale than the linear one. Probably, the reason could be related to 

the fact that the linear scale increases the importance of higher amplitude frequency components 

when compared to a logarithm scale. 

Some expectations existed regarding the SACF domain, since it is currently being used in many 

polyphonic music transcription and melody extraction systems ([Klapuri, 2008]), but, on our tests, 

FFT domain continued to present better results. As such, the domain with the best results was FFT 

with linear scale. 

Post-processing 

A post-processing feature that presented better results was the ability to limit the dynamic range. 

By considering only the frequency components on the top 40dB range, a better comparison is 

achieved, disregarding irrelevant frequency information. 

The other available features, like “peaks only”, normalization and data blur did not present better 

results on our tests. 

Error Measurement 

The best results were obtained by using equation. 3.1 with frequency normalization II, i.e., like in 

equation 3.10: 
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 (3.10) 

Calculating the 2D correlation between original audio and the synthesized audio, on a logarithmic 

FFT domain, presented interesting results, but still worst results than with the already mentioned 

measuring approach. 

3.3.6 Harmonic Structure Evolution 

On a second phase of the work, the architecture of the system went through several changes. The 

goal was to be able to evolve, not only the note sequence, but also the synthesizer characteristics 

to better model the original piano sound. 

There are several aspects that can be different between two piano sounds. Thus, it is important to 

identify what sound characteristics can two piano sounds have, so that the synthesized piano 

sound could be changed into the original, if not completely, at least partially. Among them, we 

consider the following five domains: 

 Time envelope – the behavior of the amplitude over time is an important factor. The way 

the attack occurs, how long it takes to decay and how it behaves on release (note release). 

 Spectral envelope – what is the amplitude relation between harmonics. 

 Inharmonicy/harmonic locations – harmonic are usually not perfectly aligned, i.e., 

harmonics are not always on multiple locations of the fundamental frequency. 

 Dynamics – how time/spectral envelopes are affected by playing the same note at 

different dynamics. 

 Static resonances/recording frequency response – how different is the behavior of the 

piano internal resonances and how different is the frequency response of the recording 

process (regarding microphone locations, frequency responses and directivity patterns). 

All these five domains represent dimensions of the same sonic space (Figure 3.9) that cannot be 

handled separately. The time envelope depends on the spectral envelope, since each harmonic 

will have its own time envelope. But, once again, each harmonic time envelope will also depends 

on the dynamics, not only by a constant gain form, but because a “soft” note will have a different 

timbre than a “forte” note. 
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Figure 3.9 – Several dimensions of the sonic space 

The initial approach was to begin by considering the spectral envelope and inharmonicity. As such, 

each individual will have, not only a note sequence as candidate solution, but also harmonic 

structure information (see Figure 3.10), consisting of 19 gains and 19 shifts21, that would indicate 

to the synthesizer, which gain/shift should be applied to each of the first 19 harmonics above the 

fundamental frequency. The gain represents the gain (in dB) that should be applied to the 

harmonic FFT bin, and the shift represents the amount of bins that should be shifted. 

 

Figure 3.10 – Example of an Individual with a 4 note sequence and harmonic structure info 

Since we are working on the FFT domain, it is simpler to apply these changes to the spectrum of 

each note/frame than using filters to accomplish such task. So, instead of applying filters to each 

note sample, add the resulting audio to create the final audio stream, and then create the FFT 

information based on the polyphonic audio, we use a different approach (Algorithm 3.1). For each 

time frame (n), the frames of the sound notes were converted to its FFT information, harmonic 

                                                           
21

The main idea is to control the first 20 harmonic components of the sound. Since we consider that the 

fundamental frequency will have a fixed gain of 0dB and no shift, it is only important to evolve the remaining 

19 harmonic components. 
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gains and shifts were applied to the FFT information, and then, the FFT information of each note 

was combined to create the final FFT data that was compared to the original FFT frame data.  

 Output_FFT[] = 0; 

For each (sounding) note 

  Note_FFT[] = CalcFFT(GetNoteFrame(note,n)) 

  Note_FFT[] = Apply(gains, shifts, Note_FFT); 

  Output_FFT[] += Note_FFT[] 

Algorithm 3.1 – Method for obtaining the FFT of frame n, by applying frequency gains/shifts on frequency domain 

To combine the FFT data of the several notes, tests were made with and without phase 

information, i.e., to verify if just adding magnitudes was sufficient or if phase values should be 

taken into consideration, since they have an impact on the final magnitude (e.g. two signals with 

opposing phase result on zero amplitude). As expected, considering phase values presented a 

slightly better result (~3%). 

With a new individual encoding scheme, it is required to change recombination and mutation 

operators to support it. As such, recombination, besides splitting the note sequence in two, will 

also split the gain vector and the shift vector (different random cut points for each vector). 

Regarding mutation, two new operations were added: a gain mutation, by applying a gain change 

within the range of ±0.5 dB; and a shift mutation, applying a change within ±3 to the shift value. 

Tests were made with 30s audio from Mozart’s Piano Sonata No. 17 in B flat (K570) using two 

different piano recording files as internal samples (Bosendorfer and Steinway). Table 3.1 and 

Figure 3.11 present the obtained results, considering a music transcription metric [MIREX 2007] 

with “onset only” and “onset/offset”.  

 Recall Precision F-Measure Overlap Ratio 

Bosendorfer 

“Onset only” 

67.3% 72.6% 69.9% 63.1% 

Steinway 

“Onset Only” 

65.9% 74.5% 69.9% 63.1% 

Average results 

“Onset only” 

66.6% 73.6% 69.9% 63.1% 

Bosendorfer 

“Onset/Offset” 

36.9% 39.8% 38.2% 79.8% 

Steinway 

“Onset/Offset” 

36.8% 39.8% 38.3% 79.8% 

Average results 

“Onset/Offset 

36.9% 39.8% 38.3% 79.8% 



Singing Voice Resynthesis using Concatenative-based Techniques 

 

42 
 

Table 3.1 – Results (recall, precision,f-measure and overlap ratio) using Bosendorfer or Steinway piano samples, with 
“onset only” and “onset/offset” metrics. 

 

Figure 3.11 – Evolution of the f-measure results (average between pianos) over 1500 generations. 

This harmonic structure evolution presented very similar results with different pianos, showing 

that different pianos were able to adjust to minimize timbre differences, making an approximation 

to the original piano sound.  

The method and results presented in this section have been the object of a conference paper [Reis 

et al, 2007b]. 

3.3.7 Future directions 

Additional work has been done with three new set of features: synthesizer layers evolution, onset 

detection and hostile evaluation. These features were implemented and preliminary tests 

presented very interesting results. However, since there was the need to refocus the PhD work 

back to the singing voice, these new features were not exhaustively tested, which did not allow us 

to take strong conclusions regarding them. Nevertheless, it may be important to mention them for 

future reference. 

Synthesizer Layers Evolution 

Instead of using only one pair of gain/shift vectors, several pairs were added to control different 

situations. For instance, four pairs of vectors may be used to represent four different situations in 

dynamics and pitch extremes (corners at Figure 3.12). Then, for each synthesized note, an 

interpolation is made between the four corners and the inside note position, to define the 

gain/shift vector values that should be used on that particular note. 
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Figure 3.12 – Two layers (dynamics, pitch) for synthesis evolution. 

The same concept can be increased with additional dimensions/layers. For instance, Figure 3.13 

shows a three layer situation, adding a time dimension and four additional pairs of vectors. 

 

Figure 3.13 – Three layers (dynamics, pitch, time) for synthesis evolution. 

Instead of using only two possible situations for each layer, more points can be added. A possible 

simplification can be accomplish, by handling each layer individually, and still interpolating values 

between layers, although losing some of its ability to handle the synthesizer sonic space. 

Onset Detection 

Since onset locations are one of the dimensions of our search-space, which we handle with a 1 ms 

resolution, a significant space reduction could be accomplished if we could know the location of 

onset events. Since we are working with piano recordings (that do not have slow-attack behavior), 

it is possible to try to use some sort of onset detection and force note events to start on that 

available onset positions. Even an onset detector with a very high rate of false positives, will 

present a search-space improvement. 

Hostile Evaluation 

The idea behind hostile evaluation is that the note sequence of each individual should not be 

evaluated using only one synthesizer, but using several ones. Since we want the resynthesis or 

music transcription system to focus on the music notes and disregard minor harmonic timbre 

differences between the original piano and the synthesized piano, this new feature would allow 
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each individual to be evaluated by using different pianos at the same time. During the evaluation 

of each individual, the system would create not one synthesized audio stream, but several audio 

streams (one for each available piano sound library). Each one of these synthesized streams would 

then be compared to the original audio stream and a fitness value would be obtained. The final 

fitness value would be obtained by combining all piano’s fitness values. As already mentioned, this 

would allow the system to focus more on the harmonic structure of the pitches, and less on its 

spectral/timbre differences. It is important to refer that this is different from creating a new piano 

sound library where each note is a mix of all pianos samples. Doing this, we were simply creating a 

new piano sound, and harmonic overfitting would continue to easily exist.  

 

3.4 Performance Enhancement on evolutionary resynthesis  

One of the major drawbacks of search space approaches is their computational cost. Although 

Genetic Algorithms highly reduce the size of the used search space while finding for a solution, the 

need for a performance boost still exists. 

3.4.1 Gene Fragment Competition 

Genetic Algorithms are often very good at rapidly identifying good areas of the search space 

(exploration), but they perform poorly at refining near-optimum solutions (exploitation) [Hart, 

2004]. One variation of Genetic Algorithms that presents a significant performance increase in 

some applications [Hart, 2004], by adding a local-search operation on the process, is called 

Memetic Algorithms. As can be seen in Figure 3.14, Memetic Algorithms use the same concept as 

GA, but consider an additional step that performs a “small” local search during the creation of 

each child. This local-search, that can consist, for instance, on a hill-climber, allows each child to 

perform better than using only recombination and mutation. 

 

Figure 3.14 – Traditional Genetic Algorithms vs Memetic Algorithms 
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The main problem with the use of Memetic Algorithms in our application is that the main 

computational overhead happens during evaluation (synthesis, FFT calculation, etc.). Since local 

search methods require several evaluations, the amount of computational work would greatly 

increase. For instance, a Memetic Algorithm with a hill-climber that examines five neighbors would 

increase nearly five times the amount of computational cost, since each child would require not 

one evaluation (in G. A.) but six evaluations (original child plus five child neighbors in M. A.). It is 

important to discover a way to improve our local search ability without highly increase the 

computational cost. 

In many applications, like our own, the fitness value of the individual is obtained by adding a 

sequence of numbers. In our case, the overall fitness is the sum of the frame’s errors. This means 

that it is possible to fragment the genes of the individuals and even evaluate each fragment 

independently. On a traditional GA, an individual with an optimum gene fragment can be easily 

discarded if the remaining fragments are poor, because it only considers the overall fitness of the 

individual. Based on these ideas, we have created a new operator that was designated as Gene 

Fragment Competition, which replaces the traditional recombination operation. 

Proposed Method 

In the traditional GA approach, two parents are selected, their genes are recombined, creating two 

new individuals, that (after a mutation) are placed on the current population (Figure 3.15). We can 

consider that traditional recombination operators include two phases (Figure 3.15 a): 

fragmentation (parent genes are divided in two or more gene fragments) and merging (these gene 

fragments from parents are combined to create new individuals). The main concept of gene 

fragmentation competition is to include two additional steps inside recombination: fragment 

evaluation and fragment selection (Figure 3.15 b).  

 

Figure 3.15 – Traditional Recombination (a) vs. Gene Fragment Competition (b). 
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During Gene Fragment Competition, the genes of the parents are split in n fragments. Then, each 

fragment is evaluated separately, and for each fragment location, a selection method is applied to 

choose the best gene fragment. The selected fragments are then merged to create the new 

individual. It is almost like creating a competition between gene fragments. 

While traditional GA generates two new individuals during recombination, in this case, only one 

individual is created, having the best gene fragments of its parents. Also, with this approach, it is 

possible to have more than two parents. For instance, five parents may be combined to create a 

new individual (that will have the best gene fragments of the five parents).  

To better explain the concept of Gene Fragment Competition, let us focus on a small example: the 

“OneMax” problem. This binary maximization problem is made of a sequence of n bits, and the 

fitness function is simply the number of genes set to “1”. Of course, the perfect solution is a 

sequence of only 1’s. Figure 3.16 shows an example of two parents. 

 

Figure 3.16 – Gene Fragment Competition on the OneMax problem, with 2 parents, considering 3 fragment 

On the top of the Figure 3.16 the two parents A and B can be seen (in this case we are considering 

two parents, but it could be any number of parents). The first step is to fragment parent’s genes 

(in this case we have considered fragments with four bits width). Next, each fragment is evaluated 

- the number bellow each fragment presents the fragment fitness value (its number of “ones”). 

Next, the fragment selection is made. In this case, we consider the best fragment but any 

traditional GA selection method [Goldberg, 1989]  (roulette, tournament, etc.) could be used. 

Finally, the new individual is created using the best fragments from parents (the first two 

fragments from parent A, and the last fragment from parent B). 

Instead of using a global search approach like traditional GA or different global/local search 

operators like Memetic Algorithms, Gene Fragment Competition performs a type of search 

somewhere in the middle (a quasi-global/quasi-local search). 

Resynthesis application 

Gene Fragmentation Competition is only possible on situations where the evaluation of a gene 

fragment is possible. For instance, on signal or image processing applications, individuals may be 

split in time fragments or spatial fragments. But this does not mean that a direct gene evaluation 

is required. In our case, genes represent note events and it is not possible to evaluate each note 

(gene) individually, especially in polyphonic music. However it is possible to evaluate time 
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fragments. So, our approach is to split the individual note sequence in small time fragments. If a 

fragmentation point occurs in the middle of a note, that note would be split in two (one for each 

side of the fragment point). 

As mentioned before, in our resynthesis approach, most of the computational power is used on 

evaluation, due to the need of converting individual notes to an audio stream (synthesis), followed 

by audio analysis (ex: FFT differences). Although the Gene Fragment Competition approach 

increases the number of evaluations, and since we are evaluating both individuals (for parent 

selection) and individual fragments (for fragment competition), the overall required computational 

power does not increase significantly, due to the existence of a cache mechanism. During the 

individual evaluation, whose fitness value is the sum of frame errors, each frame error value is 

kept on a cache repository (which does not require a significant amount of memory). Later, during 

fragment evaluation, the fragment fitness is simply obtained by accessing the cache repository and 

summing the fragment frames errors, without needing a new synthesis or signal analysis process. 

Tests 

To analyze the impact of this method, tests were done comparing traditional GA approaches with 

Gene Fragment Competition. Table 3.2 and Table 3.3 show the used parameters. 

Parameters Values 

Population/Offspring 100/100 

Survivor Selection Best 100 individuals (population size) 

Crossover probability 75% 

Mutation probability 1% 

Note minimal duration 20 ms 

Fitness Equation 3.10 

Table 3.2 – Common parameters 

 

Traditional GA 

Selection Deterministic Tournament (5 individuals) 

Recombination 1-point time crossover (with eventual note split) 

Gene Fragment Competition 

Individual Selection Deterministic Tournament (5 individuals) 

Fragment Selection Non-deterministic Tournament (5 individuals) 

Fragment size 5 seconds 

Table 3.3 – Traditional GA parameters vs. Gene Fragment Competition parameters 

Our concept of Gene Fragment Competition can be used with two different approaches regarding 

fragment sizes: the fragment sizes can be static (fixed) for all operations, which means that the 
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fragment points are always in the same locations through all generations; or, the fragment sizes 

can be dynamic, which means that fragmentation points are randomly selected each time a new 

child is created. We tested both situations. 

The tests were performed trying to resynthesize/transcribe a 30s piano performance of Schubert’s 

Impromptu No. 2 in E Minor. Each bank of tests were done with 1 000 generations and with four 

different runs (although results between runs were very similar, within a range < 3%). Table 3.4 

and Figure 3.17 show the evolution of the obtained fitness over the 1 000 generations (choosing 

the fitness of the best individual in each generation/run and doing an average between the four 

runs). Once again, it is important to mention that in our system, since fitness is an error 

measurement, lower values mean better results. 

 

Figure 3.17 – Fitness value over 1.000 generations using traditional GA, using Gene Fragment Competition with static 
fragment size and dynamic fragment size. 

Generation GA Static GFC Dynamic GFC 

250 1,808 e12 1,718 e12 1,670 e12 

500 1,690 e12 1,580 e12 1,554 e12 

750 1,621 e12 1,512 e12 1,492 e12 

1.000 1,571 e12 1,464 e12 1,455 e12 

Table 3.4 – Average fitness values over 250, 500, 750 and 1000 generations using traditional GA and Gene Fragment 
Competition with static and dynamic fragment size. 

This first bank of tests shows that, apparently, the proposed method achieves a better 

performance than the traditional GA approach. Nevertheless, more situations and hypotheses 

needed to be tested before taking definitive conclusions. 

A second bank of tests were made to check if changing the selection method of traditional GA 

from “Deterministic Tournament” to “Non-deterministic tournament” presents significantly 

different results (since “non-deterministic tournament” was used on fragment selection). The 

results were identical within a range <0.1%. 
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Since Gene Fragment Competition works with gene fragments smaller than the traditional GA 

approach, probably the mutation probability affects the results. As such, a third bank of tests was 

made to test other mutation probabilities. Figure 3.18 and Table 3.5 show the results. 

 

Figure 3.18 – Fitness value over 1.000 generations using traditional GA with mutation probabilities of 0.5%, 1% and 
5% vs. using Gene Fragment Competition with static fragment size and dynamic fragment size. 

Generation GA (pm= 1%) GA (pm= 0.5%) GA (pm= 5%) Static GFC Dyn. GFC 

250 1,808 e12 1,839 e12 1,882 e12 1,718 e12 1,670 e12 

500 1,690 e12 1,708 e12 1,811 e12 1,580 e12 1,554 e12 

750 1,621 e12 1,624 e12 1,765 e12 1,512 e12 1,492 e12 

1.000 1,571 e12 1,563 e12 1,728 e12 1,464 e12 1,455 e12 

Table 3.5 – Average fitness values over 250, 500, 750 and 1000 generations using traditional GA  with several 
mutation probabilities (0.5%, 1%, 5%) and Gene Fragment Competition with static and dynamic fragment size. 

Once again, changing mutation probabilities did not present significant different results. A larger 

value (5%) results in worst values and a smaller value (0.5%) results on similar values. 

Tests were also done with different audio recordings, but always achieving similar results. For 

instance, Figure 3.19 shows the fitness evolution when resynthesizing/transcribing 30s of Mozart’s 

Piano Sonata No. 17 in B flat K570. 



Singing Voice Resynthesis using Concatenative-based Techniques 

 

50 
 

 

Figure 3.19 – Fitness value over 1 000 generations using traditional GA and using Gene Fragment Competition with 
static fragment size and dynamic fragment size – Mozart’s Piano Sonata. 

Tests have shown that Gene Fragment Competition could achieve similar results in 50% of the 

generations, which correspond to near 50% less computational power. The tests also shown that 

dynamic fragment sizes offers slight better results than static fragment sizes. 

The method and results presented in this section have been the object of a conference paper [Reis 

et al, 2008a]. 

3.4.2 Fragment and frontier evolution 

Although Gene Fragment Competition results on a computation improvement of about 50%, the 

need to improve the overall speed of the process continues to exist, especially to handle larger 

audio files. As such, additional work was done in this subject, by continuing to explore the 

advantages of fragmentation, but from a different perspective – fragmenting the problem instead 

of fragmenting the candidate solution. 

Fragmentation can be a powerful tool for the optimization of search space problems like GA, since 

the simple act of fragmenting the problem into smaller parts, creating independent populations to 

solve each sub-problem, can boost the performance of the GA, since the decrease of the search 

space is quite dramatic. For instance, on a problem encoded as a 1024 bit sequence, the size of the 

search space is 21024, which is twice the size of a 1023 bit sequence (not of a 512 bit sequence). 

With the fragmentation of the 1024 bit sequence in two halves (with 512 bits), each fragment will 

have a search space reduction of 2512 times. Nevertheless, it may not be so simple, since problems 

could arrive, especially on the fragment frontier zones. To handle those issues, a method was 

created that tries to get the benefits of fragmentation, but still resolving the frontier issues. 

The proposed method has two important requirements that are quite common in similar 

approaches: the problem that we want to solve must allow its decomposition on smaller 

problems, and an independent evaluation of each sub-problem must be possible.  

The approach consists of several phases (see Figure 3.20). On the first phase, the problem (that we 

want to resolve) is fragmented on smaller problems. For instance, if we are dealing with an audio 
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file, the audio is split in small audio fragments; if it is an image, new smaller fragments of the 

image are created, etc.  

 

Figure 3.20 – Fragmentation and Frontier evolution 

On the next phase, a population of GA individuals will be created for each fragment and will try to 

resolve that fragment problem “at its own”, evolving during a defined number of generations 

using a traditional GA approach: Individuals are evaluated, parents are selected, new individuals 

are created and mutated, etc. During this phase, there is no interaction between different 

populations.  

After the evolution of each fragment population (over a fixed number of generations), the phase 

of aggregation will occur: the best22 individual of each fragment population is chosen (that we will 

designate as the fragment champion) to represent that fragment. All champions are merged to 

create our global candidate solution.  

After this aggregation, the method will analyze all genes present on the candidate solution, and 

mark the genes that might have been affected by standing on a fragment frontier. This decision 

will be based on the problem, and could be as simple as defining a fragment frontier 

neighborhood distance, or a much more complex task where several factors are evaluated for 

each gene.  

On the final phase, a frontier evolution using a hill-climber approach [Russel, 2003], performs a 

local search by applying special mutation operations only on the marked genes: during a defined 

number of iterations, a gene is randomly chosen between the genes that were marked on the 

previous phase (frontier genes), and a mutation is applied. If its overall fitness is better than that 

of the candidate solution, then it will become the new candidate solution. If the GA 

implementation supports several mutation operators, in this phase the system should only use 

mutation operators that might help to overcome problems created with the fragment cuts. This 

                                                           
22

 The individual with the best fitness value 
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last phase, responsible for the frontier evolution, has a crucial impact, since there are situations 

that simply cannot be resolved (or evolved) during a fragment evolution. For instance, applying a 

mutation operator that changes the note duration may help correct fragmentation issues, but 

using a pitch-related operator will probably not benefit the system, since fragmentation cuts will 

not change the pitch of existing notes. 

As mentioned before, most of the required computational power is used on the evaluation of 

individuals. By creating N fragments, we are increasing N times the number of evaluations, but 

since each fragment will have 1/N of the original size, the required computational power to 

evaluate each fragment will decrease near N times when compared to the original audio. Since, 

most of the required computational power is used for evaluation, increasing the number of 

populations and its operations (selection, recombination, mutation, etc) will not represent a 

significant increase of CPU time. As such, the proposed method, although it may need some 

additional processing power, that will probably not be prohibitive or even significant. 

Resynthesis application 

To apply this proposed method to a resynthesis/transcribing application, some specificities must 

be taken into consideration. 

During fragmentation (stage 1), the original audio is fragmented on smaller lengths. For instance, 

on three seconds blocks. Then, during fragment evolution, different GA populations are created 

for each audio block, which will evolve during many generations. In the end of this stage, the best 

individual of each population is chosen to represent its block and the candidate solution is created 

(aggregation). During frontier identification, the system will look at the candidate solution for note 

events that are located near the fragment frontiers. For instance, the system can identify notes 

that start or end on a 250ms range from the former fragmentation points (Figure 3.21).  

 

Figure 3.21 – Example of a Frontier identification process 

During the last stage (frontier evolution), an iterative cycle occurs, where special mutation 

operations will be applied to one of the marked notes. Since the goal of this final stage is to 

resolve problems associated with the fragmentation (split notes, notes detected on one fragment 

but not on the other, etc.), the system must focus on mutation operations that can handle such 
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issues. For instance, creating a new note or changing a note pitch, although important during 

fragment evolution, will probably not resolve frontier issues. 

Tests 

Several tests were performed to help analyze the impact of the proposed method. The GA 

parameters used on the evolution of fragments were the same as in previous section (3.4.1), with 

some minor changes presented in Table 3.6. Since GA will work with smaller fragments, a higher 

mutation probability was chosen. 

Population / offspring 200/100 

Elite size 200 

Mutation probability 10% 

Table 3.6 – Used GA parameters. 

In our test we used a 30s recording of Mozart’s Piano Sonata No. 17 in B flat K570, and each test 

bank used four different runs (the presented results correspond to the average among the four 

runs). For frontier identification, the criterion was identifying notes that end at a 250 ms range of 

the frontier. During the last stage (frontier evolution), a 500 cycle was considered with two 

possible mutation operations: duration increase (up to 1 second) and note merging (merging the 

note with the next occurrence of the same pitch). 

The following paragraphs present some of the test results. 

GA Generations 

The first bank of tests compares the traditional GA vs. the proposed method (with different 

fragmentation sizes), during 400 generations. The obtained fitness values are presented in Table 

3.7 and Figure 3.22. The fitness values of the proposed method were obtained by summing the 

fitness value of the best individuals of the complete fragment population. Figure 3.22 also shows 

the fitness evolution during the frontier evolution. 

 Fitness 

(25 gen.) 

Fitness 

(100 gen.) 

Fitness 

(400 gen.) 

Final Fitness 

Traditional GA 121.96 118.68 110.24 110.24 

Proposed method (6s) 113.18 97.61 83.75 84.26 

Proposed method (3s) 104.22 85.81 74.10 76.80 

Proposed method (1.5s) 97.64 78.33 68.58 73.24 

Proposed method (0.75s) 91.46 73.86 65.88 74.99 

Table 3.7 – Fitness values after 25, 100 400 generations and the final values, considering traditional GA and the 
proposed method with fragment sizes of 6, 3, 1.5 and 0.75 seconds. 
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Figure 3.22 – Fitness evolution over 400 generations, using traditional GA and the proposed method with fragment 
sizes of 6, 3, 1.5 and 0.75 seconds. 

As can be seen from Figure 3.22 and Table 3.7, for achieving some fitness value, the proposed 

method needs much less generations than the traditional approach. 

Figure 3.22 shows a behavior that might look strange: the fitness value slightly increase in the 

transition between the fragment evolution and the frontier evolution. Although fragment fitness 

and global fitness are calculated in the same way (the sum of FFT differences over all frames), it is 

normal that value changes occur, since notes in one fragment can affect the next fragment with its 

release/decay behavior, situations that are not considered during the fragment evaluation. 

It can also be seen that the value used for fragment size has an important role. By decreasing the 

fragment size, each fragment population can evolve much more quickly since the search space is 

substantially reduced. However, by decreasing too much the fragment size, the impact of 

fragmentation on the genes will increase. The smaller the fragment size, the larger the number of 

genes (notes) directly affected (split) or indirectly affected (genes near the fragmentation cut 

neighborhood). In this case, although the fragment size of 0.75 seconds presents the best 

evolution during the fragment evolution, as soon as the fitness is processed on a global base, the 

impact of the frontiers shows up. The global fitness is much more reliable that the sum of 

fragment fitness values, since it also considers the impact between fragments (e.g. a note from 

one fragment may continue to sound on the next fragment). And although apparently the smaller 

fragments (0.75 s) presented better fitness values during fragment evolution, since the moment 

global fitness is used, they change to second place. 

Impact of mutation probability 

The traditional approach must handle larger audio lengths, so its individuals have a larger number 

of genes. Considering the same mutation probability (as the proposed method) could be a wrong 

decision, since too much mutation may happen in each individual, which is bad from the 

performance point of view. To test if mutation probability values could be responsible for that 
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performance gap, several tests were made with the traditional approach, considering mutation 

probabilities of 10%, 3.3%, 1%, 0.33% and 0.1%. Results are presented in Table 3.8. 

Mutation probability Final Fitness 

10 % 110.22 

3.3 % 98.89 

1 % 94.96 

0.33 % 95.77 

0.1 % 103.26 

Table 3.8 – Test results with different mutation probabilities on the traditional approach. 

 

As can be seen, although mutation probability could in fact affect the performance of the 

traditional approach, it still continues to have a performance evolution slower than the proposed 

method. 

Frontier Evolution 

Although the need of a frontier evolution could be validated from the theoretic point of view, 

since fragmentation might introduce issues that could not be resolved within the fragment 

evolution, it is important to analyze the importance of the frontier evolution from the practical 

point of view. Table 3.9 shows the fitness values before23 and after the hill-climber process. Based 

on these two values, Table 3.9 also presents the number of generations (prior to hill-climber) 

needed to achieve the same amount of fitness improvement.  

 Fitness before 

hill-climber 

Fitness after 

hill-climber 

Generations needed to get the 

same fitness improvement 

Proposed method (6 s) 85.00 84.26 27 

Proposed method (3 s) 77.26 76.80 32 

Proposed method (1.5 s) 73.87 73.24 52 

Proposed method (0.75 s) 76.13 74.99 125 

Table 3.9 – Fitness values before and after the frontier evolution phase, after 400 GA generations. 

As can be seen, the smaller the fragment size, the greater the importance of the hill-climber 

process to resolve frontier issues. If we consider that during the hill-climber phase (500 cycles), 

500 individuals are created; that each GA generation creates 100 new individuals (by fragment); 

and that the major task (from the computational point of view) is individual evaluation, then the 

500 hill-climber cycle will have a CPU requirement similar to 5 GA generations.  As such, results 

show that the hill-climber phase contributes for a performance gain of the proposed method. 

Table 3.10 shows the same parameters but considering only the 1,5 s fragment size, over 50 

generations. In this case, with so little GA generations, the impact of the frontier evolution is very 
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 After aggregation stage. 
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modest, since there is probably much more work to be done on the global scale, than on the local 

scale of the frontiers. 

 Fitness before 

hill-climber 

Fitness after 

hill-climber 

Generations needed to get the 

same fitness improvement 

Proposed method (1.5 s) 88.57 87.05 5 

Table 3.10 – Fitness values before and after the hill-climber phase, but after 50 GA generations. 

CPU Time 

Although the first tests compare the same number of generations between the traditional method 

and the proposed method, it is true that the fact that the proposed method has several genetic 

populations running, may add much more overhead. For instance, if the original problem is split in 

ten fragments, there will be ten times more recombination operations, ten times more mutation 

operations, etc. Therefore, it seems somehow unfair to take conclusions about its performance 

looking only to the same generation number. To analyze the real performance impact of the 

proposed method, an additional bank of tests was performed, testing different situations and 

considering different number of generations. Table 3.11 shows the obtained fitness values and the 

required CPU time (considering a Core 2 Duo processor - 2.0 GHz) for each one of these tests. 

 Fitness value 

(lower is better) 

CPU time 

Test A – Traditional GA 

- 400 generations 

- Mutation prob: 1% 

94.96 27 645 s 

(7:40:45) 

Test B – Proposed Method (1.5s) 

- 30 generations 

- Mutation prob: 10% 

93.37 1 518 s 

(0:25:18) 

Test A – Traditional GA 

- 1000 generations 

- Mutation prob: 1% 

83.44 72 268 s 

(20:04:28) 

Test B – Proposed Method (1.5s) 

- 75 generations 

- Mutation prob: 10% 

83.00 3 620 s 

(1:00:20) 

Table 3.11 – Fitness values and required CPU time required for each test to complete 

 

By comparing tests A and B, we can notice that even using the traditional approach with the best 

mutation probability (1%) during 400 generations, it takes only 5.5 % of the CPU time for the 

proposed method, with only 30 generations, to achieve a better fitness result. But, if we continue 

to increase the number of generations of the traditional approach (test C with 1000 generations), 

the performance gain continues to increase, with the proposed method needing only 5.0 % of the 
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CPU time (test D). The main reason is that the hill-climber phase requires the same amount of CPU 

time, independently of the number of previous generations. The greater the number of 

generations, the less impact will hill-climber has on the final CPU time, improving the performance 

gain of the proposed method. 

The results show that the optimization is highly effective on the music transcription problem, 

requiring much less computational power. Some tests even suggest that performance benefits can 

achieve 20 times less CPU processing. Besides the performance boost, the method also takes 

special attention to internal damages created with its fragmentation. The advantages of the 

proposed method are maximized in the case of complex, high demanding, evaluation tasks, like 

this resynthesis/music transcription approach (using many FFT operations). If the evaluation is a 

simple process (from the processing point-of-view), although fragmentation could drastically 

reduce the search space, the overhead of creating additional population will have a stronger 

impact on the final performance.  

The method and results presented in this section have been the object of a conference paper 

[Fonseca, 2008]. 

3.4.3 Conclusions and discussion 

While GA only uses a small subset of the search-space, that subset continues to have an enormous 

size, requiring a lot of computational power. As such, every attempt to reduce the required CPU 

time is important.  

Although the proposed approaches cannot be used in all kinds of problems, in the situations that 

allow fragmentation and that have complex evaluation tasks, both proposed methods could 

present an interesting optimization approach, especially the fragmentation and frontier evolution. 

In the future, besides deeper and longer tests, many variations could be used with this last 

method: different local search methods in the last stage (frontier evolution); instead of using only 

the best individual of each fragment, several individuals may be chosen to form a population, 

which could evolve by the means of a memetic algorithm; overlapping frontier regions as a way to 

decrease the impact of fragment cuts. 

 

3.5 Evaluation and Metrics for Music Transcription 

As mentioned before, this proposed approach for resynthesis can be also used as a music 

transcription tool. Instead of using the created audio stream as the output of the system, by using 

the sequence of notes that originated that audio stream, and use it as output, we change from a 

resynthesis system to a music transcription system. And although much work is being done in 

music transcription research, the evaluation of music transcription techniques is less addressed by 

the research community and is even considered perhaps the weakest aspect of research on the 
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subject [Wang & Brown, 2006]. In most cases, the evaluation of music transcription results does 

not get much attention, besides brief paper paragraphs explaining how results were obtained. 

Due to the existence of such lack of attention on this matter, some “side” research work has been 

done in this area, since it is fundamental to measure the results obtained by such systems, not 

only as a tool to improve them, but also as a way to compare the results of different approaches. 

There are two main approaches for measuring the results of music transcription. The most 

common is note oriented - the first step is to identify what are the correctly transcribed notes, and 

the second step is to use that information for obtaining a final score. The other approach is time 

(frame) oriented, where original and transcribed “piano-rolls” are compared, frame-by-frame. 

In note-oriented approaches ([Dixon, 2000], [MIREX 2007], [Ryynanen, 2005], [Reis, 2007]), notes 

are usually considered as correctly transcribed notes or as errors (there is no between). In order to 

be considered a correctly transcribed note, its parameters (pitch, onset and in some cases offset) 

must be within some tolerance values. Since most music pieces (especially western music) 

consider a musical resolution of a semitone, pitch tolerance of ± ½ semitone is widely accepted. 

Timing tolerances are more heterogeneous. Onset tolerances usually are between ± 25 ms and ± 

150 ms. 

In the less common time/frame oriented approaches, original and transcribed notes are 

represented as notes vs frames matrices, which are used as a mean to calculate their overlapping. 

The final value can be based on frame-level accuracy (use overlap values at frame level to 

calculate accuracy), or based on “speaker diarization error score” *Graham, 2007]. 

More recently, some interesting methods were proposed. For example, [Tavares, 2008] presents 

one idea to measure the distance between an original note and a transcribed one considering two 

Euclidean spaces. After calculating all the possible distances between each original note and each 

transcribed note, a one-to-one match process takes place. Finally, a performance evaluation array 

is created with diverse statistics information. Unfortunately, the method does not output a global 

measure for the music transcription. 

In [Daniel, 2008], some human perceived tests were done and a new metric was proposed. It is 

still a note-oriented approach, but the transcription errors were divided in classes. Based on their 

human tests, each class of errors has an associated weight, depending on its perceptual impact on 

the music transcription. Although the amount of the error is not considered (still a binary 

approach: “correct note”/”error”), the impact of that type of error is considered, achieving, 

according to their tests, a metric closer to the human perception. 

3.5.1 Impact of Transcription Errors 

To be able to find good metrics for measuring music transcription results, it is important to identify 

what are the contributions to a good transcription and what are the common issues found on 

most current metrics. 
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Onset time tolerance 

Everyone agrees that notes with onset values within a range of ±1 ms can be considered as 

successful transcriptions, but applying that small time tolerance to transcription systems will not 

provide us with real information about its transcription capabilities, since several “correctly” 

transcribed notes might not fall within such tight time tolerance. On the other extreme, applying a 

time tolerance of ±200 ms in transcription systems might tell us more information about their 

capabilities, but if a transcription achieves 100% success, we could not be sure that a perfect 

transcription was obtained. Some systems tend to use a time tolerance around 25-50 ms, probably 

because of the error margin of the ground truth and/or due to the proximity effect, also known as 

the Haas effect [Haas, 1972], since human note time resolution may be around 25-50 ms (sounds 

arriving to the ear with lower time intervals are perceptually merged). 

In a music transcription, if a note is shifted by ±40 ms (regarding the original note), probably that 

shift is not even perceived. But it is important to analyze the impact of such time shifts, not only 

between original and transcribed notes, but also within transcribed notes. For instance, if two 

notes that should be played simultaneously are shifted respectively +40ms and -40ms, although 

they stay within a ±40 ms range of the original ones, they became apart by 80 ms, which can be 

easily perceived as a small transcript error. 

Impact of the instrument time envelope 

The behavior of the instrument time envelope (sound intensity behavior over time) can be an 

important factor in the music transcription process. For a better understanding of these issues, let 

us focus on two (extreme) types of musical instruments, which we will designate as “decay” 

instruments and “sustain” instruments (see Figure 3.23). Let’s define “decay” instrument as a 

musical instrument with a very fast decay behavior (e.g. percussion, high notes from a harp, 

pizzicato violin, etc). And let’s define “sustain” instruments as the ones characterized by having a 

constant energy/timbre behavior over the note duration (almost like “legato” woodwinds, strings, 

organ, but even with less timbre variations during attack). 

 

Figure 3.23 – A decay instrument and a sustain instrument 

When transcribing music pieces of “decay” instruments, and depending on the instrument, the 

concept of offset might not even exist (e.g. glockenspiel), which means that to measure the 

transcription we should only focus on the note and on the onset. Even when the offset concept 

can be applied, and since most of the energy is concentrated on the initial moment of each note, 

from the perception point of view, the offset time value will not be as important as its onset time 

value. Also, in this type of instruments, the offset time is only important in a limited period of 

time, because after some point the sound energy will be below the threshold of hearing [Zwicker 

& Fastl, 1999], even if from the musician point of view the note is still playing. For instance, it is 
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almost impossible to detect or perceive if the higher C of a piano plays for three seconds or thirty 

seconds. 

When transcribing “sustain” instruments, the importance of offset values highly increase 

(although it might continue to have slight less importance than onset values). 

If offset values are not as important as onset values, it is important to find a way to take them into 

consideration but without giving them the same amount of importance as onset or pitch.  

If we compare these differences between the transcription of decay and sustain instruments, with 

the differences of measuring transcription results using a note oriented approach or a time 

oriented approach, it may seem that decay instruments transcription may be better measured 

with note-oriented approaches, but sustain instruments transcription may be better measured 

with time/frame oriented approach. The major issue is that the majority of musical instruments 

are not fully “decay” or fully “sustain” based. Most instruments with a decay envelope end-up 

having a not so short decay time, and most “sustain” instruments, that may even have a constant 

energy behavior, end-up having an important timbre variation at the attack that may perceptually 

increase their impact compared to the rest of the note duration. 

One-to-one mapping 

Some works [Ryynanen & Klapuri, 2005], [MIREX 2007] refer the need of a one-to-one mapping 

when comparing transcription results, i.e., if a match is detected between an original note and a 

transcribed one, none of those can be used again on other note matches. The main idea is to avoid 

situations in which two different original notes could be matched to a single transcribed one (for 

instance, two quick notes being transcribed as one), or vice-versa, allowing a perfect score even in 

situations that have different number of notes. This rule is important, but it is usually incomplete, 

since it is not specified what should happen if an original note could be matched against two 

possible transcribed notes (or vice-versa). 

For instance, on a 50 ms tolerance system, imagine an original note (W) at 960 ms and other 

original note (X) at 1020ms, that are transcribed as a 1000 ms note (Y) and a 1060 ms note (Z), like 

in Figure 3.24 (let’s ignore offset values and consider same pitch for all notes). What should be the 

transcribed note pair of note X? The best match (Y, a 20 ms difference) or the first available (Z, 

since Y was first mapped against W – a 40 ms difference)? 

 

Figure 3.24 – Example of transcription (onsets only) 

If we map X-Y, W and Z cannot be mapped because there is a 100 ms gap. If we map X-Z and W-Y, 

we get full mapping, although not mapping the best notes with X and Y. Of course, these types of 
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situations are probably rare on a global perspective, but they could be less rare within a special 

transcription system or within a special audio fragment. 

Binary approach to transcription 

Almost all metrics used on the subject employ a binary approach regarding the transcription of a 

note: the original note is perfectly transcribed or it is not transcribed at all. This binary approach 

has the advantage of being the simplest one, nevertheless, it might create some unfairness 

(regarding time tolerances, but also in others situations). Should all errors be treated equally? If 

some transcription errors have lower impact than others, should metrics take that into 

consideration? 

For instance, splitting or merging notes are common situations: one note that is transcribed as a 

sequence of shorter notes (with same pitch), or a sequence of notes that are transcribed as only 

one note. Although these errors are easily perceived on decay sounds, it might be difficult to 

detect and perceive on sustain sounds (especially sounds with high release time values). Octave 

errors are also very frequent in music transcription systems and are usually treated as common 

errors. But although these octave errors are perceived by humans, their impact on perception is 

lower when compared to other pitch errors. 

3.5.2 Proposed Method 

Taking into consideration all of these issues regarding music transcription metrics, a new method 

is proposed, on which the final measure of a music transcription is obtained by the means of two 

different processes, based on the idea that “decay” and “sustain” sounds have different 

requirements regarding music transcription, and that most musical sounds have a combination of 

decay and sustain behavior. 

In the first process, named “decay process”, the transcription is evaluated as if the musical sounds 

have all decay behavior, so only pitch and onsets are considered. On the sustain process, we 

consider that sounds are “sustain” based, and overlapping of both “piano-rolls” (original and 

transcribed) are obtained (considering pitches, onsets and offset). 

Decay Process 

In the decay process, only pitches and onsets are considered. Instead of a binary approach, made 

with “correctly” transcribed notes and “incorrect” transcribed notes, the system will produce a 

score for each pair of original/transcribed notes that will range from 0 (“completely incorrect” 

note transcription) to 100% (“completely correct” note transcription). The goal of this note score is 

to be able to obtain the maximum amount of information about the transcription performance of 

the system. Applying a threshold only, does not take into account several important aspects, so 

our approach considers that some transcription errors can be smaller than others. 

If the pitch is correct (± ½ semitone), and if onsets are within a 25 ms interval, a full score is 

obtained (100%). If the onsets are separated by more than 200 ms, the score is 0. For situations 

between, a linear value is obtained as can be seen in equation 3.11 and in Figure 3.25. In the case 
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of octave errors (differences of ±1 octave between original and transcribed notes) a note score is 

also produced, but considering 30% of the values obtained with equation 3.11. 

 

(3.11) 

 

     

Figure 3.25 – Note Score 

To prevent the issue of one-to-one mapping already mentioned, all original notes are mapped to 

the transcribed note that generates the higher NoteScore. On a separated process, all transcribed 

notes are mapped to the original note that generates the higher NoteScore. Mappings of n-to-1 

and 1-to-n are allowed and there could be situations in which the mappings are not bidirectional 

(see Figure 3.26). 

 

Figure 3.26 – The best mappings between original and transcribed notes 

Each note (original or transcribed) will have an individual weight value (WO or WT) with a default 

value of 1. However, if the note (original/transcribed) ends-up never being picked as the best 

match for any other note (transcribed/original), their weight is reduced to 0.5. For instance, in 

Figure 3.26, notes W and Z will have weights of 0.5 because no other notes have chosen them as 

best match.  

Although the application of the weights (WO or WT) might increase the complexity of the 

algorithm, they are responsible for three important features: 

• Note sequences are commutative (exchanging original and transcribed note 

sequences will produce the same final score). 

• Splitting/merging note errors are not so penalized. 
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• Since the proposed process does not have a binary approach to correct/incorrect 

transcribed notes, forcing one-to-one maps would require the existence of an important 

optimization process to be able the choose the right one-to-one mappings as a way to get 

the best overall score. 

A variation of recall and precision is calculated (equation 3.12 and equation 3.13), where NO and 

NT represent the number of original notes and the number of transcribed notes. The DecayRecall 

just considers the best NoteScore of each original note, and DecayPrecision just considers the best 

NoteScore of each transcribed note.  

 
(3.12) 

 
(3.13) 

Although it might look that the obvious choice for a final decay score would end-up on using the f-

measure formula, the choice was made to use accuracy as final decay score, since it is a more 

linear behavior and most of f-measure advantages [Manning 2008] do not apply. By disregarding 

true negatives (TN), accuracy can be calculated as seen in equation 3.14. 

 
(3.14) 

The final decay score is calculated as equation 3.15. 

 
(3.15) 

Sustain Process 

In the sustain process, the main idea is to measure the overlapping between the original notes and 

transcribed ones, almost like analyzing the overlapping of their “piano-rolls”, considering the pitch, 

onset and offset of each note. For each note, up to a 25 ms tolerance on the onset and on the 

offset are considered. The idea is to be able to get a 100% score even if notes timings are slightly 

different (within a 25ms range). To achieve that, a value between 0 and 25 ms can be subtracted 

to the onset value or added to the offset value, in original or transcribed notes, as a way to 

increase their interception, i.e., the duration of the original note or the duration of the transcribed 

note can be increased by up to 25 ms on its onset and up to 25 ms on its offset (Figure 3.27). 
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Figure 3.27 – Interception between an original note and a transcribed one 

After this transformation on the timings of original notes and transcribed notes, a variation of 

recall and precision values are obtained using equation 3.16 and equation 3.17. 

 
(3.16) 

 
(3.17) 

It is important to refer that the values used on equations 3.16 and 3.17 are the ones calculated 

after timing transformation (with added tolerances), and not based on the real original and 

transcribed notes. 

The final sustain score, once again based on the concept of accuracy, can be calculated using its 

recall and precision values according to equation 3.18. 

 
(3.18) 

 Octave errors are also considered, but once again with only 30% of the time value obtained with 

the interception. An original note fragment and a transcribed note fragment can be considered as 

an interception if they are one octave apart and if they do not intercept with other 

notes/fragments. If this is the case, 30% of their time value is considered as the interception, and 

the remaining 70% of the time value are considered as not intercepted value. As can be easily 

seen, on the sustain process, longer notes have a larger impact on the final score than smaller 

notes. The sustain process also allows to benefit some errors that otherwise would be considered 

as ordinary transcription errors like errors in missed onset determination on small-attack sounds, 

note merging/splitting, etc. 

Final Score 

The final result is the average of the values obtained on the decay process and on the sustain 

process (equation 3.19), and will range between 0 and 100 %. 

 
(3.19) 

From the analysis point of view, the process makes available seven different parameters that 

present important information about the transcription capabilities of the system: DecayRecall, 

DecayPrecision, DecayScore, SustainRecall, SustainPrecision, SustainScore and FinalScore. 
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Implementation 

An implementation of the proposed method, for the Matlab Framework or C/C++, is freely 

available at http://www.estg.ipleiria.pt/~nfonseca.  

3.5.3 Perception Tests 

Although it makes sense to use a metric that considers different types of errors and different 

amounts of errors, it is important to compare the proposed method with other methods and also 

with human perception tests. 

To validate our approach, we used the test materials created by [Daniel et al, 2008], consisting on 

three different music fragments (from Bach, Debussy and Mozart piano pieces) that were 

transcribed with four music transcription systems (15 files, considering the reference files also). A 

group of 31 listeners were asked to rate the discomfort of each transcription on a scale between 0 

and 1. 

To evaluate which metric correlates best with the human results, three methods were used (as 

presented in [Emiya, 2008]): 

• Pearson linear correlation coefficient (prediction accuracy), which measures the linear 

correlation between two sets of values. 

• Spearman rank order coefficient (prediction monotonicity), which disregards the actual 

values, considering only their order. 

• Outlier ratio (prediction consistency), which validates that there is not any value too far 

apart from the correct value. 

Table 3.12 shows the obtained results of [Daniel et al, 2008] (marked with *) and the ones of the 

proposed method (individual decay and sustain scores are also presented). 

Metrics Prediction 
accuracy 

Prediction 
monotonicity 

Prediction 
consistency 

F-measure* 83.4 % 83.5 % 0 % 
Perceptive F-measure* 84.1 % 84.9 % 0 % 
PTD* 60.3 % 61.6 % 0 % 
Perceptive PTD* 64.8 % 89.6 % 6.7 % 
    
Decay Score 89,2 % 84,3 % 0 % 
Sustain Score 85.0 % 80.0 % 0 % 
DecaySustain Score 90.5 % 82.8 % 0 % 

Table 3.12 – Prediction accuracy, monotonicity and consistency for several metrics when compared to the human 
listening test results 

Discussion 

The proposed method presents the best prediction accuracy with the human results presenting a 

significant improvement over the other methods. Like most other metrics, the method also does 
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not present outliers (prediction consistency = 0%). The only parameter with lower results is the 

Prediction monotonicity. Since this parameter is particularly used on non-linear situations, and 

since the linear correlation value is above 90%, it seems to us that its importance can be slightly 

reduced. 

The results also show that although the human tests were done with piano transcriptions, that 

might be considered a “more” decay instrument, the combined use of decay and sustain methods 

gives the best score. 

Although the test set could be used as a way to partially validate the proposed method, it does not 

have the necessary size or diversity to truly validate the proposed method, much less to tune its 

internal parameters. For instance, additional tests were made using the same test set and 

changing internal values of the proposed method, allowing better results. Nevertheless, those 

values are not presented since it is our opinion that those better results simply represent a best 

fitting with the small test set, and that would probably not improve the overall capabilities on 

other test sets. 

3.5.4 Conclusions And Future Work 

A different metrics approach to music transcription was proposed. Its main features are the 

following:  

• music transcription errors are different from each other, either on type and on amount;  

• offset has a smaller impact than onset (since it is considered only on “sustain” 

processes);  

• timing variations have a more gradual impact (instead of a discrete impact);  

• the process is commutative (exchanging original and transcribed note sequences 

generates the same final score);  

• octave errors have a slight lower impact than other pitch errors;  

• merging or splitting notes has a slight lower impact than in traditional metrics;  

• slow-attack sounds are better handled than traditional metrics. 

Nevertheless, the proposed method still presents some drawbacks: it is more complex than 

standard metrics (although a free implementation is available) and it still does not analyze the 

impact of note dynamics, which can be important in some music transcription scenarios. 

In the future, more attention should be given to music transcription metrics by the research 

community. Besides pitch, onset and offset, future metrics should also be able to analyze other 

music features that future transcription systems may extract, like dynamics, timbre identification, 

pitch variations (vibrato, portamento, etc), etc. Regarding the proposed metric, larger perception 

tests are needed as a mean to better understand the impact of each type of transcription error, 

the impact on different types of instruments, and also as a way to allow tuning of metrics internal 

parameters.  
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Although these metrics were created for music transcription, this approach can be also used in 

other areas of MIR, like the measure of similarity between note sequences (e.g. measuring melody 

extraction, resynthesis). 

The method and results presented in this section have been the object of a conference paper 

[Fonseca, 2009]. 

 

3.6 Final Conclusions 

Although the evolutionary approach presents some interesting concepts to resynthesis (or to 

music transcription), it still possesses some characteristics that could act as obstacles to its 

adoption in real-life applications. 

One of the main drawbacks is the required computational power. Even using a very small subset of 

the entire search-space (by employing Genetic Algorithms) and applying some optimization 

features (like fragmentation and frontier evolution), the amount of computational power required 

is still very high. Not only this prevents any type of real-time application, but also demands too 

much CPU power on off-line situations. 

One characteristic of Genetic Algorithms, also present in many other computational intelligence 

methods, is its non-deterministic behavior. In this case, different runs of the same problem may 

present different solutions, due to the random evolution of the individuals. Although not being a 

problem at its own (since it presents a possible solution to the problem, probably not the optimal 

solution, but a near one), this type of behavior may not be seen as desirable on such systems. 

Probably, these evolutionary approaches are not the best way to resolve problems from the 

theoretical point-of-view (non-deterministic behavior, not-optimal solution assurance, etc). The 

ultimate goal is to find methods that allow us to always get the optimal solution. Nevertheless, 

from the practical point-of-view, there will be always problems that due to its complexity or due to 

the lack of better solutions created by the research community, will push evolutionary methods as 

very interesting approaches, probably achieving better results, during some time period, than 

other methods. For instance, in applications like polyphonic music transcription, that probably will 

continue to be an unresolved problem for years or decades to come, evolutionary approaches may 

eventually present very good results until a satisfactory solution to the problem is found. 

Since the main goal of this PhD work is the resynthesis of the singing voice, it is important to re-

focus the scope of the research that eventually got a little deviated from its main focus. And 

although this line of research may not be continued by us, it is still important to mention what 

future work could be done in this area, that can be of interest to other researchers working on the 

subject. 

The main problem with this type of approach regarding polyphonic music is the harmonic 

overfitting. Since there are always differences between the original musical instruments and the 
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internal synthesized ones, it is important to reduce such differences. And to achieve that, two 

concerns must be simultaneously taken into consideration: the synthesizer must be able to better 

imitate the original sound, and the way audio streams are compared must also try to minimize 

timbre/harmonic differences, focusing more on their perceptual similarity.  Regarding the first goal 

(similarity between original sound and synthesized one), many techniques can be used, either 

evolving the synthesizer characteristics (changing its time, dynamics and spectral dimensions with 

greater resolution) or using different types of synthesis methods (for instance, using an additive 

approach). Regarding the second goal (audio comparison, by focusing on the sounds pitch-related 

harmonic structure and disregarding their timbre-related harmonic differences), a possible way 

could involve testing hybrid method that combine different domains (for instance, SACF as in 

[Klapuri, 2008] and FFT). An interesting approach could be the use of Genetic Programming, which 

would try to discover a better method for audio comparison, based on perceptual examples. In 

such system, programs evolve to better match the desired behavior. And eventually a completely 

new method or audio domain could be created, achieving a new paradigm in audio analysis. 

Regarding the CPU power requirements of evolutionary approaches and its optimizations for 

signal processing, much work can be done, especially using fragmentation as a tool (as already 

mentioned in section 3.4). 

 

3.7 Summary 

This chapter presented the work done regarding an evolutionary approach to resynthesis.  

Initially, some resynthesis concepts here introduced, including possible architectures.  

Later, a Genetic Algorithms approach for resynthesis was proposed, with a focus on the 

resynthesis of piano recordings. 

Due to the demanding computation requirements of the GA approach, two performance 

enhancement methods were proposed. A new metric for the evaluation of music transcription was 

also presented. 

Finally, some conclusions were taken, to refocus the research on the main problem of the singing 

voice.
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4. Singing Voice Resynthesis 

  

4.1 Introduction 

As mentioned in the first chapter, the main goal of this PhD work is to create a resynthesis 

approach for the singing voice. After some work on the resynthesis of piano recordings (chapter 

3), the focus returns to the singing voice. 

Within the singing voice resynthesis, there are essentially three domains that need to be 

replicated from the original to the resynthesized audio: Dynamics24, with its time varying effects 

and performance (e.g. crescendo); Pitch, with its melodic line and fine pitch information regarding 

pitch related effects and performance (e.g. vibrato or portamento); and Phonetics, replicating the 

same phoneme sequence and allowing its intelligibility. 

In this context, this chapter will present the work being done trying to resynthesize singing voice 

recordings. Section 4.2 explores a synthesis approach for singing voice; section 4.3 explores the 

extraction of pitch; section 4.4 explores the replication of dynamic information; section 4.5 

focuses on the replication of phonetic information; section 4.6 addresses the combination of all 

modules to create a resynthesis system; section 4.7 presents some approaches to improve the 

audio quality of the system; and section 4.8 presents an evaluation of the obtained results. 

 

4.2 Synthesis  

A synthesizer is responsible for converting symbolic information into an audio stream, and it has a 

fundamental role on the resynthesis process. Most synthesizers receive that symbolic information 

using an event-based approach, where a sequence of discrete events (in most cases, note events) 

is fed to the synthesizer. Common events include starting notes (e.g. MIDI Note On), stopping 

notes (e.g. MIDI Note Off), changing instruments (e.g. MIDI Program Change) or changing 

parameter values of the synthesizer (e.g. MIDI Control Change). Several factors contribute to the 

use of an event-based approach: music sheets represent music events; most virtual instruments 
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Singing Voice Resynthesis using Concatenative-based Techniques 

 

70 
 

handle MIDI, which is an event-based musical interface; most Digital Audio Workstations (DAW) 

base their user interaction on musical events.  

Although this event-based approach presents many advantages, probably being the best approach 

for the interaction between user (musician) and synthesizer, it may presents some issues, 

especially when it comes to resynthesis. The main problem is that it may be difficult to identify 

where does a note event end and a new event starts. For instance, a portamento effect (a gradual 

shift between two different musical notes) is difficult to deliver and control on a note-based 

system. On a resynthesis system, where the synthesizer is controlled by an audio stream, it is more 

difficult to clearly identify the note events, being much easier and reliable to simply identify the 

evolution of different audio features. Instead of identifying note events (and the information of 

each event), a resynthesis system can extract the different domain information (pitch, sound 

intensity, timbre information) and transmit that information to the synthesizer. On this scenario, 

the synthesizer does not use an event-based approach, but a domain-based approach, receiving 

independent information for each domain (Figure 4.1). 

 

Figure 4.1 – Synthesis: Event-based approach vs. Domain-based approach 

As mentioned in chapter 1, one of the goals of this PhD work was to continue the work that had 

been done by the author in the area of singing voice synthesis using concatenative approaches. 

Due to its virtual instrument and sampler-based nature, the original singing voice synthesizer 

[Fonseca, 2003a] used a note-based approach, and presented some limitations: 

 Portamento effects (sliding from one note to another note) were almost impossible to 

reproduce, unless a pitch-bending mechanism was used, which would change both pitch and 

formants of the sample, creating a “Mickey Mouse effect” ([Zolzer, 2002]). 

 Vibrato (low frequency variation of the pitch) was only controllable by a unique control, which 

would cross-fade between different samples with different vibrato amounts. Since the original 

singing synthesizer worked with choir voices, the higher number of voices would help to mask 

phase artifacts during transitions or when different samples were playing at the same time. 

With solo voices such artifacts would become audible. 

With these issues, and considering the challenges of event-based synthesis on a resynthesis 

system, the decision was made to change the singing voice synthesizer to a domain-based 

approach. The synthesizer would still be based on sampling (but without modeling its behavior, 

like [Bonada, 2007]), and would try to minimize the amount of signal processing applied to the 

sample, keeping its full naturalness. As such, instead of an event-based input, the synthesizer 
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would use domain-based inputs, continuously receiving parametric information of the desired 

behavior in three different domains: pitch, sound intensity, timbre/phonetics. 

To improve the system’s sound quality, the decision was made to consider an offline resynthesis 

system (with an offline synthesis module) that would not work in real-time, allowing it to have the 

desired computational complexity (no time constraints for processing), no latency restrictions, and 

most important, allowing the system to analyze the full input audio stream to extract the best 

information and make the best decisions. Of course, such decision prevents its use in real-time 

applications like live concerts. Nevertheless, future work could later be done to adapt the system 

to such requirements. 

4.2.1 Main concepts 

The singing synthesizer will have three independent domain inputs that represent the desired 

output behavior in terms of pitch, dynamics (sound intensity) and timbre (phonetics).  

 Pitch should indicate the exact pitch value of the output. Not only the actual music note, 

but also fine tune information. This input is the one to be used to create pitch related 

effects like portamento or vibrato. 

 Dynamics should indicate the desired sound intensity of the output. Timbre differences 

that may occur due to the use of different dynamics (fff vs. ppp) should be covered by the 

timbre domain input. 

 Timbre should indicate the desired characteristics of the timbre of the output. In the case 

of a singing voice, this domain also represents the phonetic information. Unlike the 

previous inputs that require a single value to represent them, this input may require a 

vector of values to represent the desired information. 

The synthesizer will have an internal sound library with monophonic singing material. These 

recordings cover several different pitch values and different phonemes. As expected, the larger 

the amount of pitch values and the amount of phonetic situations, better results can be obtained.  

Based on the domain inputs, frames from the internal sound library are selected and used as 

output frames. Some additional processing will probably be required, not only to comply with the 

desired dynamics and pitch values, but also to prevent sound artifacts. Nevertheless, this signal 

processing should be as minimal as possible, as a way to keep the naturalness of the used samples. 

It is important to mention that the dynamics input will not affect the frame selection, and that the 

timbre input is used only for sample selection, not applying any additional signal processing to the 

chosen sample. 

4.2.2 Dynamics (Sound Intensity) 

Regarding dynamics (sound intensity), the synthesizer will simply use an ordinary gain module. 

Based on the difference between the selected frame energy and the desired energy, a gain 

module would apply a gain factor to the frame as a way to obtain such desired output result. 
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4.2.3 Sample Concatenation 

The original choir-based singing synthesizers [Fonseca, 2003a][EASTWEST, 2001][EASTWEST, 2005] 

did not need to pay much attention to the way the concatenation was done. Applying a simple 

attack and release envelope would be enough to concatenate different samples. But to work with 

solo voice, concatenation needs to take some aspects into consideration, especially to prevent 

phase artifacts and ghost effects.  

Overlapping plays an important role on the concatenation of audio. A too short or even inexistent 

overlap will probably create abrupt transitions, which will result on audible clicks and similar 

artifacts. A too long overlap will increase the chance of ghost effects25, will increase the chance of 

phase misalignments between fragments (phase artifacts), besides decreasing the time resolution 

of events.  

The concatenation of choir fragments will favor longer overlapping times: phase is not an issue, 

since tens of singers naturally create phase misalignments between each other; ghost effects are 

not significant, since the listener cannot identify the exact number of choir singers; and time 

resolution of events is not crucial, since tens of singers do not sing phonemes exactly at the same 

time. But with a solo voice, longer overlapping durations create issues: phase misalignment can be 

easily detected, ghost effects can also be detectable (listening two voices where should be only 

one), and loosing the voice ability to quickly change its characteristics especially during 

consonants. 

In this context, a different approach was implemented for solo voice synthesis, using a short 

overlap between audio fragments (about 11ms, corresponding to 512 samples at a sample rate of 

44.1 kHz). However, even with a relatively small overlap, phase artifacts may occur. To prevent 

them, a phase alignment process was implemented as illustrated in Figure 4.2. During 

concatenation, several offset values are tested for the chosen frame. The offset value that creates 

the highest correlation within the overlapping area is chosen and applied. 

 

Figure 4.2 – Phase alignment, by using the offset that produces the strongest correlation 
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Considering that most phase misalignment issues can be corrected within one period of the 

waveform, the maximum amount of the offset is equal to the number of samples required to 

obtain one period of the pitch. For instance, a frame with a pitch value of 440 Hz would consider a 

maximum offset of 101 samples (assuming a sample rate of 44.1 kHz).  

This phase alignment process is not required on transitions between adjacent frames of the same 

sample, because in this situation frames are already naturally aligned. 

Although correlation can become a heavy processing task, especially considering the number of 

concatenations that need to be done, the decision was made to currently disregard the CPU 

requirements of the chosen methods. Future work can be done to reduce the required processing 

power without affecting the quality of audio. 

4.2.4 Controlling Pitch 

Current high-end sampling libraries always present different recordings (samples) for each note. 

As such, apparently no pitch-shifting method would be required for changing the sample note. 

Nevertheless, since the synthesizer should be able to replicate all pitch related performance, 

including vibrato, portamento, pitch attack, and other pitch related effects, it is necessary to use 

one module to apply pitch changes to the samples. Also, in some situations, a pitch change could 

be required for correcting some internal samples. Even non-vibrato samples26 may have slight 

pitch variations that need to be compensated, or internal vibrato samples that require to be 

flattened or have a different vibrato pattern. 

There are many ways to change the pitch of an audio stream. The simplest way is to change both 

pitch and time, by simply accelerating or slowing down the audio stream. One of the first 

techniques for changing pitch consisted on recording audio on a magnetic tape recorder and 

playing it back with a different speed [Laroche, 1998]. The same can be done in the digital domain, 

by recording audio and playing it back with a different sample rate (or through resampling). The 

main problem with these types of approaches is that, by changing pitch, we are also changing time 

(making it faster or slower) and changing resonator (formants) frequency locations. For instance, 

increasing the pitch of a vocal recording in one octave, will double the speed of what is being said 

and will double the frequency of the formant locations (this is similar to reducing in half the 

physical dimensions of the vocal organs), creating a cartoon-like effect (also know as a “mickey 

mouse effect”). 

To prevent these time and formant changes, other approaches are possible. For instance, using 

source-filter techniques, the vocal tract behavior could be extracted through the signal frequency 

envelope, and reapplied after changing the pitch, keeping the same resonating characteristics 
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[Zolzer, 2002]. Methods like PSOLA27 ([Zolzer, 2002]) allow the system to consider waveform 

frontiers and thus, being able to duplicate or remove cycles, maintaining the same time duration. 

In the current context, the amount of the required pitch change is relatively small (typically within 

one semitone). This means that the impact of speed (time) changes or formant changes is also 

small. Although speech/formant changes still occur, one semitone pitch change will impact 

speech/formants in less than 6%, which in most cases is significantly relevant. Some informal tests 

were performed, by applying such pitch shifts, and the impact on speed variation or formant 

modifications were not considered relevant. As such, the decision was made to use simple 

frequency-time shifting mechanisms. 

As mentioned before, such pitch changes can be done by continuously changing the output 

sample rate, which of course is not practical nor desirable (the output should use a fixed 

standardized sample rate). But the same goal can be obtained with two alternative methods: 

resampling or interpolation.  

In resampling, the sample rate of the signal is increased P times (P is a integer), by simply inserting 

P-1 zero samples between the original samples. Then, a filter is applied to remove the new high 

frequency content (created with the new zero samples). On the final step, the sample rate is 

decreased Q times (Q is an integer), by simply extracting one sample within each Q interval. The 

amount of pitch change is defined by P/Q.  

Interpolation tries to create signal values between the existing samples, using interpolation 

methods. For instance, based on the sample values at time instants 432 and 433, interpolation can 

predict what would be the signal value at time instant 432.7. By obtaining in-between sample 

values, interpolation can be used to change the original time/frequency characteristics of the 

original audio stream.  

It is important to consider the impact of “continuity” during synthesis. Although the overlap-and-

add approach can improve the continuity between frames, it is not sufficient to prevent some 

artifacts. Different frames will probably require different pitch values, and it is important that a 

smooth continuity is obtained, especially when using consecutive frames of the same internal 

sample. Imagining an internal sample of a long vowel that is used during several frames and needs 

its pitch changed to replicate a vibrato. If a pitch change is not required, the synthesizer would 

simply place the sample frames at the output, obtaining a perfectly natural sound, since it was 

totally based on a pre-recorded material without any type of signal processing, and the 

overlapping of frames would not create any artifact because both frames present the exact same 

audio content during the overlap time. But, if some pitch processing is required, it is important to 

keep that same continuity.  
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Returning to the resampling vs. interpolation discussion, although the process of resampling may 

eventually create better results (especially for higher frequencies), it presents a drawback: the 

amount of pitch-shift must be the same within the processed audio stream. For instance, if 

working at a frame level, the pitch shift must be the same within each frame. This means that 

during the overlap, it is not possible to have a perfect continuity between adjacent frames of the 

same sample, if they have been processed with different pitch values. One of the advantages of 

interpolation is that the amount of pitch-shifting can change within the frame. For instance, one 

frame may have its pitch changed from an initial value p1, to a different value p2, to a different 

value p3, within the same frame. By smoothly changing the pitch within the frame, any frame may 

present an initial pitch value (equal to that of the previous frame), a middle pitch value (the 

desired pitch value for the current frame), and a final pitch value (equal to that of the next frame), 

obtaining a perfect continuity, since during overlapping of adjacent frames of the same sample, 

the exact same audio is presented in both frames. Figure 4.3 presents an exaggerated illustration 

on this concept. 

 

Figure 4.3 – Overlapping frames (Hann window) without interpolated pitch smoothing (top) vs. with interpolated 
pitch smoothing (bottom) 

To better illustrate this pitch smoothing behavior, an alternative scenario is presented.  A sample 

with a long vowel (MIDI note 60), non-vibrato, will be used during 20 frames. The desired pitch for 

the initial frames is 60.1, 60.3 and 60.4.  

If using interpolation (with pitch smoothing), the first frame will consider an initial pitch shifting of 

+0.1 (no previous pitch value, so current pitch is considered), a middle pitch shifting of +0.1, and a 

final pitch shifting of +0.3. The second frame would have an initial pitch-shift of +0.1 (regarding the 

pitch value of the previous frame), a middle pitch shifting of +0.3 and a final pitch shifting of +0.4. 

One additional advantage of interpolation is that the frame can start anywhere, including in-

between samples. In this case, the second frame would start exactly at the same point where the 

second half of the previous frame starts (regarding the original sample). During the overlapping 

between the first and second frames, both frames present the exact same signal: they apply the 

same gradual pitch change (from +0.1 to +0.3), and they use the same source material of the 
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original sample. Since the overlap is completely matched, a perfect continuity will occur since no 

artifacts (phase or any other type) will occur.  

Using a resampling approach, the first frame would have a pitch change of +0.1 and the second 

frame will have a pitch change of +0.3, and during overlap minor artifacts could occur, since 

different material is presented in both frames with minor phase changes. 

Within interpolation, several methods can be used, which present very different audio results in 

terms of noise and distortion. As such, several tests were done with MATLAB, choosing different 

interpolation methods for different situations. As expected, the higher the frequency, the higher 

the impact of the interpolation, since less samples exist per period.  

Figure 4.4 represents results of one of these tests that show the output spectrum of a 1 kHz 

sinusoid with a pitch change of +1 semitone. The Figure 4.4 presents the magnitude spectrum of 

the original sinusoid, and the results of four different interpolation methods (nearest neighbor, 

linear, cubic, spline) and resampling (P=1000,Q=1059).  
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a)   b)  

c)    d)  

e)    f)  

Figure 4.4 – Original sinusoid with 1 kHz (a) with a pitch change of +1 semitone using nearest neighbor interpolation 
(b), linear interpolation (c), cubic interpolation (d), spline interpolation (e) and resampling (f). 

Analyzing the figure above, we conclude that spline interpolation (e) presents the best results in 

terms of noise and distortion.  

Table 4.1 shows the dynamic range between the sinusoid amplitude and the frequency artifact 

with the highest amplitude, either for an original sinusoid of 1 kHz and for an original sinusoid of 5 

kHz, considering a pitch change of +1 semitone.  
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Table 4.1 – Dynamic range for 1kHz and 5 kHz sinusoid, considering a pitch change of +1 semitone. 

 Sinusoid  

1 kHz 

Sinusoid  

5 kHz 

Interpolation - Nearest Neighbor 32.12 dB 17,30 dB 

Interpolation – Linear 64,27 dB 35,16 dB 

Interpolation – Cubic 79,19 dB 38,06 dB 

Interpolation – Spline 129,69 dB 70,89 dB 

Resample 88,75 dB 82,88 dB 

 

As can be seen in Figures 4.4 and Table 4.1, spline is the interpolation method with best results, 

presenting at some cases even better results that resampling.  

Considering these results, and the benefits of interpolation, the choice was made to use spline 

interpolation as the pitch change mechanism of the synthesizer. It is important to mention that 

with same adjustments, resampling could offer the same benefits as interpolation. For instance, by 

having a large P value and a variable Q value within the frame, gradual pitch changes could be 

obtained within the frame. Nevertheless, since spline interpolation offers a good performance in 

terms of noise and distortion, such choice was not implemented. 

4.3 Extracting Pitch 

Since singing is usually used within a musical context, the extraction of pitch presents a 

fundamental role in the proposed resynthesis process. Although polyphonic pitch extraction 

methods exist (e.g. [Walmsley, 1999b], [Klapuri, 2008]), they still present high error rates. As such, 

and being the singing voice a monophonic musical instrument, the decision was made to consider 

only monophonic audio streams as inputs of the system. This limitation will highly decrease the 

number of pitch errors, without presenting a significant impact on the possible applications for the 

system. 

Research on pitch extraction has being done for several decades and many methods exist today 

(e.g. [Noll, 1967], [Noll, 1969], [Sun, 2002], [Cheveigné, 2002]). Instead of creating a new method, 

the decision was made to evaluate existing methods and choose one of them, returning the 

research focus back to the resynthesis of the singing voice.  

To choose the best way to extract pitch from the original audio stream, tests were made with 

several monophonic pitch extraction methods. Among these methods there were simple ACF, 

AMDF and SDF methods28; Cepstrum [Noll, 1967]; Harmonic Product Spectrum (HPS) [Noll, 1969] 

method with several variations; the SHRP [Sun, 2002]; unpublished Cepstrum-based method; and 
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the YIN method [Cheveigné, 2002]. Using monophonic singing voice recordings, these methods 

were tested and their results evaluated. Within the tested methods, YIN and SHRP were the ones 

that presented the best results.  

Additional tests were also done, to achieve a better evaluation between both methods (YIN vs. 

SHRP). Table 4.2 presents the error rate using a song file (“Tom’s Diner” – Suzanne Vega) and a 

sound library material (“EW/QL Voices of Passion”). Although the sound library material also 

presents consonants, the duration of the vowels is much longer, which results on a smaller error 

rate. 

Table 4.2 – Test results for pitch extraction error rate, for YIN and SHRP methods (lower is better). 

Method Error Rate 

(“Tom’s Diner”) 

Error Rate 

(VoP sound lib) 

YIN 10.07 % 2.53 % 

SHRP 11.66 % 2.74 % 

 

YIN produced slightly better results. Probably by being a variation of auto-correlation (using 

square differences instead of multiplications), which is known to have good results in the presence 

of noise, allowed YIN to get good results with consonants that may present a noise-like behavior. 

Besides pitch, the YIN method also outputs an aperiodicity parameter that can be used as a 

measure of confidence or as a voicing measure.  

To improve the output results, many pitch extraction systems use a smoothing approach, allowing 

them to recover from small pitch errors on isolated frames. For instance, if an isolated frame 

presents a pitch value that is significantly different from its two neighbors, the probability of being 

an error is very high. Most smoothing approaches are based on median smoothing: the pitch value 

of the frame n is equal to the median value of the available pitches between frame n-k and frame 

n+k. Also, when extracting pitch from a singing voice (or speech), most pitch errors occur during 

unvoiced situations, since the signal is so aperiodic that a pitch cannot be extracted.  

Taking these situations into consideration, and based on experiments, the following pitch 

smoothing method was implemented:  

1. Initially, pitch and aperiodicity values are extracted from the original audio stream, 

considering a hop size of 32 samples (window size of 1024 samples at 44.1 kHz sampling 

frequency). Pitch values where the aperiodicity is too high (>0.4) or pitch values outside the 

predefined singer range are discarded (receiving a NULL value). 

2. Pitch values are gathered in groups of 16. Each one of the groups will output a single 

value for pitch, which means that the original hop size of 32 samples will act as a hop size of 512 
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samples. Within each group, if more than 8 pitch values are valid (not NULL), their median value is 

outputted, else the pitch value of the last group is maintained. 

The median smoothing allows the system to correct some errors (especially on short unvoiced 

regions). Although pitch errors may continue to exist, their impact is minimized by using previous 

pitch values, which maintain the pitch context.  

Figure 4.5 presents the extracted pitch for a singing fragment (“Tom’s Diner” – Suzanne Vega), 

using SHRP (top), YIN (middle) and the proposed smoothing method on YIN (bottom). As can be 

seen, the proposed method presents a more stable behavior, overcoming the usual pitch errors of 

unvoiced passages. 

 

Figure 4.5 – Pitch extraction of “Tom’s Diner” (Suzanne Vega) using SHRP (top), YIN (middle) and the final 
implemented method (bottom). 
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4.4 Replicating dynamic behavior 

To obtain a good resynthesis of the original audio, it is important to replicate the same dynamic 

behavior, i.e., to be able to replicate the sound intensity behavior of the singing performance. 

Some signal processing parameters correlate well with the perception of loudness, energy being 

probably the most used one. 

Some tests were done, trying to extract the dynamic behavior of a singing recording and to 

replicate the same dynamic behavior over different output audio materials (e.g. long vowels, 

sinusoids, noise).  

During these initial tests, the energy of the original audio was extracted, considering several 

window sizes, and the same energy levels were reproduced on the output audio file, considering 

windows with the same size. As inputs, several different types of dynamic behavior were tested, 

including crescendos, diminuendos, staccatos, or ordinary singing performance. 

As expected, the window size has an important role: too large windows do not capture the full 

dynamic behavior, especially in very quick staccato passages; and too short windows begin to 

create artifacts (especially distortion), by making changes at a waveform level. The best trade-off 

was obtained with window sizes around 23 ms (1024 samples at 44.1 kHz sampling frequency). 

Regarding the hop size (overlapping), it does not seem to be too relevant. Tests with overlapping 

values between 99.9% (one sample hop size) and 0% were done, and as long as some overlap 

exists (e.g. 50%), the system presents equivalent good results. 

Tests were also done using Hilbert absolute value, instead of energy, but it presented similar 

results. 

Since the quality of the obtained results was more than satisfactory, tests with additional dynamic 

extraction approaches (for instance, considering attack and release times) were not implemented 

or tested.  

 

4.5 Replicating phonemes 

To be able to replicate the phonetic behavior, the system can use different approaches. Initially 

both “phoneme extraction” and “phonetic typewriter” approaches were tested, but better results 

were obtained using “phonetic similarity” approaches. 

4.5.1 Phoneme extraction 

Like the extraction of energy or pitch, the initial experiments on the phonetic domain followed the 

same approach, trying to detect, for each frame, what phoneme was been said or sung. 

Since there is not available any data set with singing material and phonetic labeled information, 

the initial work was done with the TIMIT dataset [Garofolo, 1993], well known for its use in speech 
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research, which includes hundreds of speech phrases with labeled information regarding its 

phonetics.  

Several phoneme classifiers were implemented, using different machine learning approaches. 

Since the extraction of phonemes cannot be done independently at a frame level (the information 

of previous frames is vital to the correct identification of some phonemes), special attention was 

given to the memory and feedback features of the used machine learning methods. 

During these initial experiments, audio streams were converted to MFCC coefficients (C1 .. C12 

coefficients + C0) with first and second order derivates, a common step in several speech 

recognizer systems [Becchetti, 1999].  Regarding the used frameworks for each machine learning 

method, Matlab was used for Neural Networks (although Neural Networks with GA/PSO learning 

were implemented directly in C++), SVMligh was used for SVM [Joachims, 2002], and HTK was used 

for HMM [Cambridge, 2000]. 

Neural Networks 

The first tests used neural networks (NN). Several models were used [Haykin, 1999], including 

simple MLP, RBF, recurrent models (Jordan, Eldman), with and without neural-network ensembles. 

Also, besides “traditional” NN learning methods, evolutive learning methods were used to evolve 

the weights of the neural network. Tests were done with Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO). 

To have a memory feature within the Neural Network without the use of feedback (recurrence), a 

special architecture of neural networks was also developed. Within an MLP model, the “classic” 

perceptron unit is replaced with a perceptron pair with a D latch (Figure 4.6). The D latch will 

maintain its previous value, unless the Clock (CLK) input is activated, which outputs the D input. 

Instead of feedback, which tends to present a more short-term memory capabilities, the use of a 

latch would allow a better long-term memory. With the new architecture, classic back-propagation 

learning methods are no longer valid, but learning could be handled by evolutive approaches (GA 

or PSO). Nevertheless, the performance of this system was low (40% less correct phonemes) when 

compared to other “standard” NN architectures, so this idea was abandoned.  

  

Figure 4.6 – A conventional perceptron and its replacement by a perceptron pair with a D latch. 
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Support Vector Machines 

Support Vector Machines were also used, with different Kernels. Since SVM only considers binary 

class problems, some adjustments were needed to support multiple classes (multiple phonemes), 

as mentioned in section 2.5.2.  

By using previous outputs as inputs of the system (feedback), a memory feature could be added. 

During training, considering the correct output of the previous frame as input, traditional SVM 

learning could be used. The outputs of the previous frames could be directly connected as inputs, 

or a binary processing could be added (transforming output values in the range [0 1] into a single 

bit (0,1)). 

Hidden Markov Models 

The commonly used Hidden Markov Models (HMM) were also tested, since HMM is probably the 

most common method for speech recognition. Although a tri-phone system presented a slightly 

better result (considering blocks of three phones), mono-phone was considered due to its better 

independency of the used language (tri-phone systems only consider the three phone situations 

encountered on the training set). 

Singing material 

After exploring many different approaches on the speech domain, using TIMIT, the focus was 

changed to explore the phoneme feature extraction on singing material. Although the methods 

allow relative good behavior extracting phonemes in speech materials (especially HMMs), their 

performance is reduced significantly when dealing with singing voice. For instance, HMMs, that 

presented a success rate of near 60% on speech material (TIMIT), dropped its performance to 

values near 15% on singing material. Either by training the HMM system with speech or training 

the system with singing, both presented a low success rate (>15%) on phoneme extraction on 

singing material. 

4.5.2 Phonetic Typewriter 

Due to the low success rate of phoneme extraction on singing material, other approaches were 

explored. One of such approaches was the concept of phonetic typewriter, proposed in [Kohonem, 

1988], with a system that is able to represent, by activating points on a 2D mesh, what is being 

said. Depending on the phonemes, different points of the mesh are activated, being based on Self 

Organized Maps (SOM), an unsupervised neural network. Contrary to supervised learning, where 

the right “answer” is provided during training, in unsupervised neural networks the system simply 

analyzes the training examples and “distributes” them over its “output” surface. Similar inputs will 

“fire” similar outputs. This means that although the system does not know which phoneme is 

present at the input, it is able to automatically group similar phonemes together. 

During the test phase, each frame (MFCC information) will fire one of the SOM outputs, that is 

identified by its space coordinates. Then, the system would look into the internal sound library for 
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the frame that, presented to the SOM, fired the output with the least distance from the original 

frame. The idea is to choose, from the sound library, the frame that is phonetically more similar to 

the original one. The chosen frame is then used on the output audio stream.  

The best results were obtained with 2D triangle mesh and 1024 outputs, receiving MFCC 

coefficients (C0..C12) and first and second order derivatives as inputs. Tests were also done with 

other parameters, but similar or lower results were obtained. 

4.5.3 Phonetic Similarity 

Another possible approach to replicate the phonetic content of a singing recording is based on 

“phonetic similarity”, using signal-processing parameters known to correlate well with phonetic 

information (e.g. MFCC, LPC, PLP). By analyzing the original audio stream with these signal-

processing methods, the system can look on the internal sound library for fragments with similar 

content, using a distance or error measure. 

As such, an Euclidean distance system was created, summing the square of the differences 

between the obtained coefficients. For each original audio frame, the system searches for the 

frame (from the internal sound library) that presents the least distance to the original one.  

Many signal processing parameters were tested, including: 

- MFCC, with 12 coefficients (C1 … C12), considering or not the C0 coefficients, and considering or 

not the first and second derivatives; 

- LPC coefficients; 

- LPC frequency response, using LPC coefficients and converting them to their frequency 

response, with linear or a logarithmic scale; 

- LPC Itakura-Saito distance, using LPC coefficients; 

- PLP and RASTA-PLP; 

- Spectrum; 

- Filter banks. 

By listening to the output audio streams, the ones that presented the best intelligibility were: 

- MFCC, with C1...C12 (no C0, neither derivatives); 

- LPC frequency response, with log amplitude scale; 

- LPC Itakura-Saito distance.  

4.5.4 Comparative resynthesis tests 

To evaluate these possible approaches on a resynthesis scenario, tests were implemented. Using 

the work done on the synthesis module and on the extraction of pitch and dynamics, the phonetic 

approaches were tested side-by-side, trying to achieve a resynthesis system, allowing the 

evaluation of the final audio result. 

Three banks of tests were implemented: 
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- Phoneme extraction approach 

- Phonetic typewriter approach 

- Phonetic similarity approach  

Since there is not a method for numerically evaluate the audio quality of the results, either in 

terms of intelligibility or presence of artifacts, the audio results were evaluated by listening tests 

done by the author. 

Phoneme extraction approach 

Using some of the methods mentioned in section 4.5.1, the system would try to extract which 

phonemes were presented at the input audio stream. During synthesis, frame blocks with the 

same phoneme are replaced with audio fragments, from the internal sound library, with the 

identical phoneme. 

The best results were obtained with HMM, either trained with TIMIT data set or with randomly 

created syllables from the internal sound library. But the obtained audio results were still very 

disappointing, especially in terms of intelligibility. 

Phonetic typewriter approach 

Using the implemented system of a “phonetic typewriter” (section 4.5.2), the resynthesis tests 

were evaluated. The obtained audio results were slightly better that the ones with HMM, although 

with more artifacts (HMM had transitions only between identified phonemes, where SOM may 

create much more transitions, since it works at a frame level). Nevertheless, the intelligibility was 

still very low (better, but low). 

Phonetic similarity 

Based on the concept mentioned on section 4.5.3, the resynthesis tests used an Euclidean distance 

within a MFCC domain. Each original frame was analyzed with MFCC (C1...C12, no C0, neither 

derivatives), and replaced with the internal sound library frame with the lower Euclidean distance. 

Although the obtained results presented more artifacts than previous approaches, the obtained 

intelligibility improved immensely, allowing the listener to perceive much more phonemes than in 

the case of previous approaches.  

Based on the obtained results with all the approaches, the decision was made to use a phonetic 

similarity approach (base on signal processing parameters), in detriment of phonetic classifiers or 

unsupervised learning. 

4.5.5 Measuring phonetic similarity 

Using a phonetic similarity approach, the system must analyze the original audio frames, and 

select from the internal sound library, the frames that present the strongest similarity with the 

original ones. As such, the way phonetic similarity is measured will have a fundamental role and 
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impact on the system performance. Nevertheless, it is equally important that each audio fragment 

concatenates well with the previous one, or abrupt transitions and artifacts will appear. Both 

concerns are addressed with the concepts of “target cost” and “concatenation cost”. 

Many concatenative synthesis systems, either for speech or music, use the idea of target cost and 

concatenation cost [Hunt, 1996]. To choose which audio fragment should be selected and placed 

on the output, these concatenative systems consider a target cost, responsible to ensure that the 

chosen fragment is similar to the desired sound (target), and a concatenation cost, responsible for 

ensuring that the chosen fragment does not present abrupt transitions regarding the previous 

fragment. Accordingly, the unit selection module searches for the best unit sequence (sequence of 

audio fragments), that presents the lowest overall cost (equation 4.1). 

                                          (4.1) 

 

The same principles were implemented in the proposed system. Based on the original audio, the 

system will search from the best sequence of audio fragments (from the internal sound library) 

that presents the lowest overall cost, considering both target cost and concatenation cost. Target 

cost measures the distance between the original audio frame and the selected audio frame that 

will replace it. Concatenation cost measures the distance between a selected audio frame and the 

next selected audio frame. If two selected frames were adjacent frames on the internal sound file, 

a concatenation cost of zero is considered. 

Target Cost 

The initial tests mentioned in section 4.5.3 already presented some information regarding which 

signal based parameters would correlate well with phonetic information on singing material. 

Based on the three best signal parameters (MFCC, LPC frequency response, and LPC Itaruka-Saito 

distance), additional tests were performed. 

By combining the three parameters on an Euclidean distance, better results were obtained. Better 

than using a single parameter or even a pair of parameters, the best results were found with the 

combination of all the three domains. 

Since each domain has different value ranges, it was important to normalize their values to make 

sure that neither one of them masks the others. As such, normalization is obtained by dividing 

each domain by a norm value, which equals the mean error value within each domain.  

Later, a fourth domain was added to the main equation: aperiodicity (voicing). Although 

aperiodicity by itself cannot be used as a phonetic distance measure, its addition to the Euclidean 

distance complements the final result, allowing the system to prevent voiced frames to replace 

unvoiced frames, and vice-versa. 

As such, the final equation for Target Cost is presented at equation 4.2, considering an Euclidean 

distance within four domains: MFCC domain (equation 4.3); LPC Frequency response domain 

(equation 4.4), LPC Itaruka-Saito distance (equation 4.5), and the Aperiodicity domain (equation 
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4.6).  The division by 2 in equation 4.2 acts as a normalization (sqrt(1+1+1+1)=2). MFCC domain 

considers 12 coefficients (c1…c12), disregarding c0; LPC Frequency response considers the 

frequency response of 12 LPC coefficients (resampling at 10 kHz) with 128 bins and a logarithmic 

amplitude scale; LPC Itaruka-Saito distance considers the same 12 LPC coefficients (resampling at 

10 kHz), but using a symmetrical version of the distance29; Aperiodicity is based on the YIN 

aperiodicity30. 

 

 

 
(4.2) 

 

 

(4.3) 

 

 

 (4.4) 

 

 
(4.5) 

 

 
(4.6) 

 

Concatenation Cost 

Initially, the system considered the same formula (equation 4.2) for obtaining target cost and 

concatenation cost: Instead of comparing an original frame and an internal frame (target cost), the 

same formula was used to compare two internal frames (concatenative cost). 

But the goal of concatenation cost is essentially to prevent abrupt transitions between frames, 

looking for smooth passages. Although a phonetic measure like equation 4.2 could be used for 

that purpose, a better method has been investigated. 

Thus, additional tests were performed, trying to find signal parameters that could be better fitted 

for that purpose. One of the most interesting tests consisted in taking singing audio recordings, 

and see which signal parameter changed the less between adjacent frames when compared to 

random selected frames. Of all the tested parameters, the LPC frequency response was, by far, the 

method with the best results, showing that it might present a good candidate for a concatenative 

measure. The concatenation cost formula of the system changed from equation 4.2 to equation 

                                                           
29

 Original LPC Itakura-Saito distance is not symentrical: Dist(a,b) ≠ Dist(b,a) *Itakura, 1970+. 

30
 As mentioned in section 4.3, the YIN method [Cheveigné, 2002] also outputs an aperiodicity value. 
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4.4, and a slight improvement on the audio results were obtained. Other scenarios were also 

tested but without significant improvement. 

As such, the final concatenation cost was based only on the LPC frequency response, as in 

Equation 4.4. 

4.5.6 Searching for the best unit sequence 

The main goal of the unit selection module is to select the sequence of internal units that will be 

used during synthesis. With the definition of a phonetic similarity distance (cost), the best unit 

sequence can be obtained as a result of a searching approach. 

Although this search could be simple when considering only the target cost, the addition of the 

concatenation cost highly increases the complexity of the search process.  

When considering only the target cost, search is a straightforward process: for each frame of the 

original audio (i), look for the internal audio frame (j) that presents the lowest cost (equation 4.7). 

 
(4.7) 

On an original audio stream with n frames and an internal sound library with m valid frames, an 

exhaustive search would be done with n.m comparisons. But, when concatenation cost is also 

taken into consideration, the search process becomes much more complex, since now all the 

sequence must be taken into consideration, which represents mn possible sequences that need to 

be evaluated. 

As such, two different approaches were used: Heuristics and Viterbi. 

Heuristics 

The initial approach used on the system was based on heuristics, i.e., a specific set of steps was 

chosen to find the best sequence. After many variations, the set of heuristics that presented the 

best results were: 

 Step 1 – Do a “target cost only” search: for each original frame, choose the frame from the 

internal library that leads to the lowest target cost. 

 Step 2 – Apply both “target cost” and “concatenation cost” to the initial candidate solution 

from step 1. 

 Step 3 – For each unit of the current candidate solution, try to replace it with every other 

frame from the internal sound library. If a better overall cost (target and concatenation) is 

obtained, then the candidate solution is changed to reflect that situation. 

 Step 4 – For each adjacent two units of the current candidate solution, try to replace them 

both with every other consecutive frame sequence from the internal sound library. If a better 
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overall cost (target and concatenation) is obtained, then the candidate solution is changed to 

reflect that situation. 

 Step 5 – Step 3 and 4 are repeated until no more changes on the candidate solution are 

obtained. 

These heuristics allows the system to find an interesting solution for the problem. In most cases 

the system will not be able to find the optimal solution, due to being stuck at local minima, but it 

presents much better sound results than “target-cost-only” searches. Since the heuristics tend to 

merge frames together (step 4), using consecutive frames of the internal sound library, and once 

these frames are merged, the heuristics never split them apart, the output result presents an 

interesting smooth behavior. 

Segmentation 

In the context of the above heuristics, a segmentation approach was also tested. Instead of 

searching for all possible frame sequences, looking for the sequence with the lowest overall cost, a 

simplification could eventually be made. If the system was able to analyze the original audio 

stream and detect the boundaries of each phoneme, the resynthesis could eventually consider 

that within each phoneme, only one audio fragment would be required. This approach could bring 

several benefits: a simpler search process (only one audio fragment per phoneme, instead of one 

audio fragment per frame); and fewer transitions between units, creating less artifacts and a 

smoother concatenation.  

In this type of scenario, with phoneme segmentation, it is important to analyze the impact of false 

positives and false negatives. A phoneme transition that is not detected (false negative) may 

present some problems, since the same audio fragment must be used for two phonemes, and 

considering the amount of possible phoneme pairs with the timing requirements, it may be 

difficult to find an internal fragment with such characteristics. Regarding false positives, a 

phoneme transition that is wrongly detected, is no relevant in terms of its impact, as the system is 

still able to ignore such transition and use a single fragment to cover many transitions. By adding a 

segmentation phase, we are simply reducing the search space. Instead of allowing new fragments 

to appear at each frame, we are reducing the number of locations were fragments may start. 

Taking this into consideration - that is better to detect false transitions than undetecting real 

transitions - the decision was made to create a simple phoneme detection approach by looking at 

local peaks on the differences between adjacent frame information. By calculating the difference 

between the LPC frequency responses of the original adjacent frames (equation 4.4), a measure is 

created that represents the changes in what is being said. With that measure, local peaks will 

represent the locations where the phonetic changes are more accentuated. And although many 

false positives will exist, they would not create a problem. Besides LPC frequency response, other 

domains were tested but did not present significant perceived improvements on the final results. 
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State-of-the-art phoneme segmentation methods were not tested, since even manual 

segmentation did not present a significant role on the quality of the system31. 

Viterbi 

The amount of all possible sequences is huge: mn (where m represents the amount of valid 

internal frames available and n represents the number of frames of the original audio). For 

instance, a sound library with 100 seconds of audio material for each available pitch (about 8.600 

audio frames), if used to replicate a 10 second original audio recording (about 860 audio frames), 

will create 8.600860 possible combinations. From a practical point-of-view, it is simply not possible 

to test each possible sequence individually. But it is possible to highly reduce the complexity of the 

search process.  

The total cost of the best sequence (target cost + concatenation cost), is simply the best-

accumulated cost at position n, being n the last position of the sequence. And, to obtain the best 

accumulation cost at any frame i, it is only required to know the best accumulated cost at frame i-

1 for each possible value at i-1.  

Figure 4.7 represents how the accumulation cost at frame i is obtained. The frame i can be 

replaced with any of m possible frames. The left side of the Figure represents all possible m 

possibilities at position i-1, with their accumulated cost and the sequence that originated such 

cost. To calculate the accumulated cost of using frame 1 at position i, considering a frame 2 at 

position i-1, the system just takes the accumulated cost of frame 2 at position i-1, adds the target 

cost between frame 1 and original frame i, and also adds the concatenation cost regarding frame 2 

and frame 1.  

 

Figure 4.7 – Obtaining the accumulated cost at position i 

By starting at original frame 1 and ending at original frame n, the final solution can be obtained by 

looking at the lowest accumulated cost at frame n and the sequence that originated such cost.  

                                                           
31

 Actually, the segmentation feature was later removed, and is not a part of the final system. 
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With this Viterbi approach, which is commonly used in similar problems (e.g. HMM training 

[Rabiner, 1989]), it is possible to find the optimal solution, without the need to individually test 

each possible solution. 

It is important to mention once again that this simplification only works due to some assumptions. 

If the final costs included more complex methods than simple accumulations over time, or rules 

that did not comply with the Viterbi concept, such application could not be possible. For instance, 

a rule saying that a frame of the internal sound library could not be used more than 4 times over a 

period of 6 seconds, would create a problem, since the best accumulated cost at position i would 

not depend only at the best accumulated costs at position i-1, but eventually may depend on 

other past situations.  

Pruning 

Although the Viterbi approach highly reduces the search complexity, it still requires too much 

computational power and memory, due to the amount of possible frames (m) that need to be 

tested for each original frame. 

To reduce the amount of possible frames for each situation, a pruning approach was 

implemented, forcing the system to only consider a subset of the available internal frames. The 

decision was made to use a value of 10% pruning, which means that only the 10% of the available 

internal frames are used during the search, instead of all available frames. As such, for position i, 

only the internal frames that present a target cost within the lowest 10% target costs for that 

position are used. For each position, the system analyze all target costs (between that original 

frame and any available internal frame) and extracts the value that makes the frontier between 

the best 10% rank, i.e., a kind of median calculation, but considering the 10% position instead of a 

50% position. The obtained value is then used as a condition to decide if an internal frame should 

be used during the search on that frame position. 

To obtain that 10% value, instead of sorting all target values and picking up the top 10%, a 

different method [Devillard, 1998] was used that requires must less operations, since a full sort is 

not required. 

Tests were also done with other pruning values besides 10%, but lowering too much the pruning 

value would affect the quality of the results. 

4.6 Putting all together 

By combining the work done at each stage of the resynthesis process, a prototype of the system 

was implemented. Figure 4.8 presents the main stages of the system: Feature extraction, Unit 

selection, and Synthesis. Feature extraction is responsible for the extraction of the relevant 

information from the original audio stream; Unit Selection uses that information for selecting 

which frames from the internal sound library will be used during synthesis; and finally, Synthesis 

applies minor transformation to the selected audio frames and concatenates them to create the 

output result. 
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As mentioned before, the decision was made to consider an off-line system (not working in real-

time), to prevent real-time requirements from affecting the quality of the results (future work can 

be done to achieve real-time support). 

The system uses frame sizes of 1024 samples (which is equivalent to 23ms at 44.1 kHz sampling 

frequency) with hop sizes of 512 samples (50% overlap). 

The Feature extraction and Synthesis modules were implemented in Matlab, and the Unit 

selection was implemented in C++, due to its CPU and memory requirements. 

 

Figure 4.8 – Block diagrama of the Resynthesis system 

Feature extraction 

The Feature Extraction stage is responsible for the extraction of the relevant information from the 

original audio stream. The extraction of pitch and dynamic information (energy) was implemented 

as mentioned in the previous sections on the subject (section 4.3 and 4.4). 

Regarding phonetic information, the system extracts MFCC coefficients and LPC coefficients (after 

a 10 kHz resampling). The LPC coefficients are then converted to their frequency response, using a 

logarithmic amplitude scale and 128 bins. Since LPC coefficients will also be used within an Itakura-

Saito distance function, some initial preparation of the data is done to optimize the system. 

Aperiodicity information comes from the pitch extraction process (by using the YIN method).  

The same type of information, which was previously extracted from the internal sound library, is 

also loaded on the system. 
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Unit Selection 

The Unit Selection stage uses the extracted information for selecting which frames, from the 

internal sound library, will be used during synthesis. Since synthesis only applies a slight pitch 

transformation, for each original frame only internal frames with a similar pitch values can be 

considered. As such, a Sample Pitch Selection module will use the original frame pitch and voicing 

information, to filter out internal frames that do not present pitch values within the accepted 

tolerance (e.g. ± 0.5 semitones). During unvoiced passages, where pitch does not exist, any frame 

can be used. 

A Viterbi-based process (with pruning) will then search for the frame sequence that presents the 

lowest overall cost.  

Synthesis 

The Synthesis stage applies minor transformation to the selected audio frames (interpolation and 

gain) and concatenates them to create the output result, as mentioned in section 4.2. 

Internal Sound Library 

The internal sound library consists of audio files with monophonic singing material. By working at a 

frame level, the system does not require any kind of segmentation or annotation, since unit 

frontiers does not need to be identified.  As such, the system does not have any special 

requirement regarding the sound library – the audio files do not need any kind of annotation or 

any especial recording session procedure. Nevertheless, recording material with non-vibrato and 

sustained pitch singing could present slightly better results, since pitch changes could more easily 

force transitions to occur due to out-of-range pitch tolerance.  

Increasing the size of the internal audio material, allows a better coverage of possible 

phoneme/pitch pairs, although it also increases the search space and the required computational 

power during unit selection. 

The system uses two different sound libraries with singing samples. The first library corresponds to 

choir samples, from “EW/QL Symphonic Choirs” *EASTWEST, 2005+, with 5 different ranges 

(Basses, Tenors, Altos, Sopranos, Boys), each file with a single phoneme/note, up to 1 seconds of 

duration. The library contains 8 vowels (uh, ee, oo, ih, eh, oh, eu, ah), 14 pitched consonants (b, d, 

g, j, l, m, n, r, rr, th, v, w, y, z) and 11 non-pitched consonants (ch, f, h, k, p, q, s, sh, t, th, x)32. 

The second sound library uses a completely different approach. It includes female solo recordings, 

from “EW/QL Voices of Passion” *EASTWEST, 2007+, where each file consists on a word/note (46 

words available), with durations up to 9 seconds. The used words were: Bene, Breathe, Close, 

Dark, Death, Domine, Dream, Drown, Im, Fall, Fire, Fly, Gaia, Grass, Hasan, Hate, How, In, Len, 

                                                           
32

 Each phoneme is not represented with the IPA notation, but using the notation from the original product 

manual [EASTWEST, 2005]. 
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Love, Luxet, Ly, Mei, Ness, Of, Ooze, Pray, Priest, Row, Ruins, Run, San, Sing, So, Soft, This, True, 

Uram, Ventius, Ver, Vosh, Fortuna, From, Gravis, Is, Rain, The. 

While the concatenation of choir samples tends to mask artifacts, solo voice samples are much 

more sensitive to the presence of such artifacts. Taking that into consideration, and also the fact 

that singing word recordings would better represent future applications of the system (instead of 

independent phoneme recordings), most work was done with the female solo sound library.  

 

4.7 Improving the audio quality 

Since concatenative approaches use pre-recorded material, they usually present a high sound 

quality within each unit. Most problems arise on the transition between units, changing from an 

audio fragment to the next, since a lack of continuity may appear. Unfortunately, these transitions 

problems cannot be solved simply by using cross-fading techniques. 

To improve the quality of the resynthesis system, several features were added, especially 

regarding the transition between units. 

4.7.1 Reducing the number of transitions due to pitch changes 

Transitions may be originated due to phonetic or pitch changes. When pitch changes (e.g. a new 

note), the system will most likely consider a different unit (unless an audio fragment with a very 

similar phonetic and melodic behavior also exists on the internal sound library). But this forced 

transition may even occur with other pitch situations. Figure. 4.9 presents the pitch information 

extracted from a vibrato passage. As can be seen, the vibrato crosses many times the frontier 

between the E4 and the D#4 notes. 

 

 
Figure 4.9 – Example of a vibrato passage that crosses the frontier between note E4 and note 
D#4. 

Imposing a pitch tolerance of ± 0.5 semitones will force many transitions to occur on a passage 

like the one illustrated in Figure 4.9. Forcing different units each time the note frontier is crossed 

creates unnecessary transitions and less natural sounding audio. In contrast, increasing too much 

the pitch tolerance, although highly decreasing the number of transitions due to pitch changes, 

will increase the artifacts created by the pitch shifting itself. As such, a pitch tolerance of ±1.5 

semitones presents a good trade-off: the number of transitions due to pitch changes may 

decrease significantly (less than 75% in some songs), especially during vibrato passages; and such 

pitch change will continue to present a very small amount of time/formants shifts during synthesis 

(±1.5 semitones creates a time/frequency change less than 9%).  

But by increasing the pitch tolerance, the amount of internal frames that can be used in each 
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original frame also increases, forcing the unit selection process to require more time, memory and 

CPU, due to the increase of the search-space. 

4.7.2 Reducing the number of transitions due to phonetic changes 

In order to reduce the number of transitions due to phonetic changes, some methods can be 

used. For example, changing the weights assigned to target cost and concatenation cost, more 

emphasis can be placed on one of them. In this case, by increasing the weight of concatenation 

cost, the system will create much smoother results. But increasing too much the weight of 

concatenation cost will generate other problems, affecting the intelligibility of the results, with 

some phonemes (mostly consonants) being discarded in favor of better smooth transitions. 

Keeping that in mind, the concatenation cost had its weight slightly increased allowing smoother 

results without affecting the output intelligibility. On the proposed system, a value of 1.5 (as in 

equation 4.8) presents a good trade-off (values of 1; 1.25; 1.5; 1.75; 2; 3; were tested, looking for 

the best balance between intelligibility and audio artifacts) 

 

                                              (4.8) 

 

Also, most unit selection systems, consider a concatenation cost of zero when joining adjacent 

frames33. On the proposed method, instead of a concatenation cost of zero, a negative cost is 

used, acting as an additional bonus for using adjacent frames. Of course, decreasing too much this 

negative cost will affect intelligibility. As such, a concatenation cost of -0,5 for adjacent frames has 

shown to present a good trade-off ensuring less transitions (and their artifacts) without affecting 

significantly the intelligibility of the output results. 

4.7.3 Discarding low energy frames from the internal library 

During the tests, it was noticed that some artifacts were created when using internal frames 

with a very small amount of energy, typically from “silence” periods or late reverberation 

reflections. These low energy frames, if chosen to replace original frames, besides not 

representing “true” vocal material, end-up being highly amplified, raising the noise level and 

decreasing the sound quality of the output results. As such, any frame from the sound library 

whose energy is more than 40dB below the highest frame energy on its audio file, is disregarded. 

4.7.4 Preventing Frame Repetitions 

Since the proposed method works at a frame level, a special phenomenon is likely to occur: in 

many cases, the same frame from the internal sound library would be used consecutively (for 

instance, 5 “times in a row”), which is not desired, because it will create phase issues and it does 

not provide the desired vocal continuity and naturalness. But the explanation for the phenomenon 

is quite simple - using the same frame repeatedly, originates a concatenative cost of zero, since 

there are not any differences between consecutive frames (it is the same frame over again). This 

problem does not exist on traditional concatenative systems, because they usually consider larger 

audio segments instead of frames, with differences between their first and last frame.  

                                                           
33

 If a concatenative system uses adjacent frames, then a perfect concatenation is naturally obtained since 

they are consecutive frames of the same recording. 
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To prevent this situation, an additional rule was imposed: the same internal frame cannot be 

used more than one time within a 10 frame interval.  

4.7.5 Considering the effects of time shifts 

During unit selection, for each original frame the system searches for the best internal frame 

that can replace it. But in reality, this one-to-one relation between original and internal frames 

may suffer from time shifts. The phase alignment process (within synthesis) may slightly shift the 

internal frame to achieve a better transition.  For example, the unit selection may choose internal 

frame 466, but the synthesis module could end-up using the frame 466.2 (starting slightly after the 

beginning of frame 466 but before the beginning of frame 467). Also, the interpolation process 

that applies pitch changes (also within synthesis) creates slight time shifts, due to the compression 

or expansion of internal frames. For instance, if 15 original frames are replaced by 15 adjacent 

internal frames that require their pitch slightly increased, the synthesis module may eventually 

end-up using 16 internal frames (since to increase pitch much more samples are needed during 

the interpolation process). The accumulation of all these time shifts is likely to create a situation 

where the conditions taken into consideration by the unit-selection module may not be the actual 

conditions that occur during synthesis, since target costs and concatenations costs may not be the 

correct ones. 

It is important to prevent this problem, but it is not practical for the unit selection process to 

calculate the exact information, which would require adding phase alignment processing to all 

frame combinations and calculating or accessing in-between frame information. Although the 

exact information cannot be accessed, an approximation can be made. Considering the original 

frame pitch, the system could easily calculate what is the Maximum Phase Offset (MPO) that could 

be required during the latter phase alignment process. Also, with the pitch values of the original 

frames and the pitch values of the internal frame candidates, it is possible to calculate the amount 

of Accumulated Time Shift (ATS) that would occur during the interpolation process. 

With these time shifts estimations and a conservative approach (considering that the worst 

scenario is the one that occurs), the unit selection module quickly estimates realistic values for 

target cost and concatenation cost.  

In this perspective, the Target Cost – TC(i,j) – will consider the Accumulated Time Shift (ATS) 

from previous frames and the worst scenario between no phase offset and Maximum Phase Offset 

(MPO) (equation 4.8)34, where TC’ represents the previously defined target cost (equation 4.2).  

Concatenation Cost – CC(i,j) – will also consider ATS and the worst scenario between the four 

combinations of phase offsets (equation 4.9)35, where CC’ represents the previously defined 

concatenation cost (equation 4.4).  

 

 

(4.9) 

 

                                                           
34

 TC (i,j) – Target Cost between original frame i and internal frame j.  

35
 CC (i,j) – Concatenation Cost between internal frames i and j. 
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(4.10) 

Since data in-between frames are not available, such values are obtained by linear interpolation, 

as shown in equation 4.10 and equation 4.11. 

 

 
(4.11) 

  

 

(4.12) 

 

With this feature, the number of artifacts decreased, since unit selection is able to reflect the 

time shifts that might exist during synthesis, and take them into consideration with more realistic 

target and concatenation costs. 

 

4.8 Resynthesis Evaluation 

The evaluation of the results is always an important task in any research activity, and the same 

applies to this research work. The results were evaluated using listening tests with several users, 

allowing us to obtain a more representative and less biased assessment. 

4.8.1 Listening Test Planning 

Listening tests are a quite common tool in audio research, since many sound related behaviors can 

only be evaluated by humans. Although sound and psychoacoustic research continue to increase 

every day, there is still a long road before “audio quality” could be totally evaluated by non-human 

methods. As such, the decision was made of using listening tests to evaluate the resynthesis 

obtained results.  

Test material 

To test the proposed method, some audio fragments with solo female singing recordings (“a 

capella”) were used. Although there is not much audio material available, it was possible to gather 

audio fragments from some well-known female singers. Attention was made to choose voices with 

different voice styles from each other. The following material was used: 

 Amazing Grace - LeAnn Rimes (duration of 16 seconds)  

 Bohemian Rhapsody - Lauryn Hill (duration of 11 seconds)  
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 Frozen - Madonna (duration of 15 seconds)  

 I Will Survive - Diana Ross (duration of 10 seconds)  

 Tom's Diner - Susanne Vega (duration of 4 seconds)  

 Whenever - Shakira (duration of 6 seconds)  

Female voices were chosen due to the fact that the internal sound library also used female solo 

voices [EASTWEST, 2007]. Although the system also includes a choir sound library, most of the 

research was focused on the female solo sound library, since choir can more easily mask artifacts 

than a solo voice.  For each song, the first vocal line was used, with the exception of Sharika’s 

“Whenever” (the audio recording did not present a monophonic solo passage on the first line, so a 

different line was taken). 

Each original audio fragment was used as the system input, and a resynthesized version was 

created.  

Testing environment 

Listening tests can be done remotely or implying physical presence in a special listening facility. In 

the latter case, all users share the same room (or similar ones) and are physically present during 

the tests. On remote listening tests, users are able to do the tests in their own listening space, and 

their physical presence is not a requirement. 

Although presential listening tests offers some advantages over remote tests, in many situations it 

may be difficult or even impossible to gather a significant number of persons, with the required 

background, to do the listening tests. In our case, since it would be very complicated to gather 

several tens of users, preferably with audio or music backgrounds, to do the tests, and since in this 

case the listening environment does not have a significant influence on the results, the listening 

tests were conducted through a web page, allowing users from around the world to participate.  

On the listening tests web page, users had access to the audio materials (original and 

resynthesized fragments), questions and response forms. All audio files (in .wav file format) were 

compressed on a .zip file (9.1 MB) that should be downloaded by each listener. The total amount 

of audio material was 124 second long, considering all original and resynthesized audio streams. 

Listeners were invited to participate through audio and music-related mailing lists. 

Questions  

For each audio fragment, listeners were asked to answer the questions presented in Figure 4.10 
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1. Please specify the percentage of time that the resynthesized stream is 

similar to the original one, in terms of dynamic behavior (dynamics), 

melodic line (pitch) and phonetic content (phonetics).  

 Dynamics: ___ (%) 

 Pitch: ___ (%) 

 Phonetics: ___ (%) 

2. Does the resynthesized audio stream present audio artifacts?  

Please specify, for each type of artifacts, the impact on hearing 

discomfort, writing any value between 0 and 100, considering 0 

(inaudible), 25 (audible), 50 (slight annoying), 75 (annoying), 100 (very 

annoying).  

Impact of dynamics Artifacts (abrupt changes of levels, etc.): ___ 

Impact of pitch artifacts (wrong pitch notes, errors on melody 

line, abrupt changes in pitch, etc.):  ___ 

Impact of wrong phonetics: ___ 

3. Does the resynthesized audio stream present noise? Please specify, 

the amount and impact on hearing discomfort.  (AMOUNT: between 0 

and 100, considering 0 [never], 25 [rarely], 50 [sometimes], 75 [often], 

100 [all the time]; IMPACT: between 0 and 100, considering 0 

[inaudible], 25 [audible], 50 [slight annoying], 75 [annoying], 100 [very 

annoying]).  

Amount: ___   Impact: ___ 

4. Disregarding audio artifacts and timbre differences, how do you 

personally evaluate/score the resynthesized audio in terms of replicating 

the singer's unique performance (the way the singer sings the song)?  

      0 (worst case) - 100 (best case) ____ 

 

Figure 4.10 – Questions from the listening tests. 

4.8.2 Listening Tests Results 

The tests were available online for two months and had 35 participations, from heterogeneous 

backgrounds (researchers, audio professionals, amateur musicians). 
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Table 4.3 and Figure 4.11 present the results for the first question, regarding the percentage of 

time that the resynthesized audio is similar to the original audio, in terms of dynamics, pitch and 

phonetics. 

Table 4.3 – Percentage of time that the synthesized audio is similar to the original audio, in terms of dynamics, pitch 
and phonetics (higher is better). 

Song Dynamics Pitch Phonetics 

Amazing Grace 58.4 % 59.9 % 37.5 % 

Bohemian Rhapsody 59.3 % 55.5 % 32.7 % 

Frozen 72.6 % 75.6 % 62.8 % 

I Will Survive 61.1 % 62.1 % 50.4 % 

Tom’s Diner 71.2 % 72.3 % 54.2 % 

Whenever 53.0 % 56.2 % 40.5 % 

Global 62.6 % 63.6 % 46.4 % 

 

 
Figure 4.11 – Mean and standard deviation for the percentage of time that the synthesized audio is similar to the 
original audio, in terms of dynamics, pitch and phonetics (higher is better). 

Some song fragments present better results than others. “Frozen” and “Tom’s Diner” presented 

the best results, while “Bohemian Rhapsody” had the worst results. From the three domains, Pitch 

and Dynamics had consistently better results from the replication point of view than Phonetics, 

which is not a surprise due to the complexity of this last domain. The standard deviation (Figure 

4.11) is quite high in all the three domains, which means that different listeners gave significant 

different answers. 

 

Table 4.4 and Figure 4.12 present the results for the second question, regarding the impact on the 

hearing discomfort of several types of artifacts: dynamic artifacts, pitch artifacts, and phonetic 

artifacts. 
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Table 4.4 – Artifacts: Impact on hearing discomfort - dynamic artifacts, pitch artifacts, and phonetic artifacts (lower is 
better). 

Song Dynamic Pitch Phonetics 

Amazing grace 49.4 % 51.1 % 57.2 % 

Bohemian Rhapsody 38.7 % 40.7 % 55.4 % 

Frozen 35.2 % 35.7 % 46.9 % 

I will survive 39.9 % 46.9 % 54.1 % 

Tom’s Diner 44.0 % 49.1 % 53.0 % 

Whenever 56.1 % 50.6 % 64.8 % 

Global 43.9 % 45.7 % 55.2 % 

 

 
Figure 4.12 – Mean and standard deviation of the perceptual impact of artifacts: Impact on hearing discomfort - 
dynamic artifacts, pitch artifacts, and phonetic artifacts (lower is better). 

Most fragments presented slightly annoying artifacts. Phonetic artifacts were the ones with 

stronger impact. Dynamic artifacts and pitch artifacts had slight smaller impact. “Frozen” 

presented the least amount of artifacts and “Whenever” presented the most artifact impact. The 

standard deviation continues to present high values. 

Table 4.5 and Figure 4.13 present the results for the third question, regarding the amount of noise 

and its impact on the final audio stream. 
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Table 4.5 – Noise: Amount and impact on hearing discomfort (lower is better). 

Song Amount of Noise Impact of Noise 

Amazing grace 50.1 57.0 

Bohemian Rhapsody 48.8 55.8 

Frozen 38.7 45.1 

I will survive 40.2 50.8 

Tom’s Diner 39.0 48.7 

Whenever 53.9 60.8 

Global 45.1 53.0 

 

 
Figure 4.13 – Mean and standard deviation of the amount on noise and its impact on hearing discomfort (lower is 
better). 

Listeners considered that “sometimes” the noise is present, creating a “slight annoying” impact on 

the hearing discomfort. Like the previous question, “Frozen” had the best results and “Whenever” 

presented the worst result. 

Table 4.6 and Figure 4.14 present the results regarding capturing the singer’s unique performance. 

Table 4.6 – Capturing the singer's unique performance (higher is better) 

Song Singer’s performance 

Amazing grace 48.4 % 

Bohemian Rhapsody 36.7 % 

Frozen 67.0 % 

I will survive 52.0 % 

Tom’s Diner 58.0 % 

Whenever 43.0 % 

Average 50.8 % 
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Figure 4.14 – Capturing the singer’s performance (higher is better) 

Although the system looses the timbre of the singers36, users still gave a mid-range classification to 

the ability of capturing the singer’s unique performance. “Frozen” and “Tom’s Diner” presented 

the best results, and “Bohemian Rhapsody” presented the worst.  

 

4.9 Discussion 

Globally, from a proof-of-concept point-of-view the results were positive, although much work still 

needs to be done before a real world application is deployed on professional scenarios.  

Being the most complex domain, it was no surprise that within the three domains (dynamics, 

pitch, phonetics), phonetics is consistently the one delivering the worst results. 

Doing individual song evaluations, it is clear that some songs present better results than others. 

“Frozen” and “Tom’s Diner” presented the best results, while “Whenever” and “Bohemian 

Rhapsody” presented the worst results. Probably factors like more nasal timbres, very quick 

phonetic sequences (that create too much transitions between units), or even too slow phonetic 

sequences (where transitions between units are more easily detected), are responsible for the 

lower scores of some songs. 

Dynamics 

The system seems to be able to capture the sound intensity behavior (dynamics) of the original 

signal, replicating well fast and slow passages, and most of the overall dynamics over the audio 

stream. 

Nevertheless, the dynamic replication creates one special type of artifact when original voiced 

frames are replaced with unvoiced frames. Voiced and unvoiced frames tend to have different 

energy levels. With a more stable and harmonic content, voiced frames present higher energy 

levels. If an unvoiced internal frame is chosen to replace an original voiced frame, a high amount 

                                                           
36

 The goal of the system is to replace the original audio with different audio material, which has different 

timbre characteristics. 
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of gain is applied to maintain the same energy level, increasing the amplitude of very short 

transients and the background noise level. Although several attempts were made to handle this 

problem, including the addition of a voicing dimension on the phonetic target cost as mentioned in 

section 4.5.3, some artifacts still remain. 

Pitch 

The system behaves well regarding the extraction of the musical notes. There are not situations 

with octave errors; dissonant notes (where an original music note is replicated with a dissonant 

one, like a major second or a diminished fifth); or similar gross errors.  

Most pitch related errors exist at a finer level, especially with pitch continuity between units. Due 

to the time-frequency resolution trade-off, the exact time-pitch information of the frame is not 

100% correct, creating abrupt tune transitions. Although these pitch transitions are mostly within 

a semitone range, the artifacts are easily detected. 

Phonetics 

Most words are recognizable, but the system still presents limitations regarding the replication of 

phonetic content. Some consonants appear too “smoothed”, losing their fast transients, probably 

due to the weight of concatenation cost, responsible for decreasing the abrupt transitions 

between units. Other phonemes suffer from the presence of audible artifacts (e.g. abrupt 

transitions) that impact the phoneme perception. The worst scenario appears when a single 

phoneme is obtained with the concatenation of several different units within a short time period, 

loosing the phoneme identity from the perception point-of-view. 

Music Performance 

Although the system “replaces” the original audio stream with a new stream (loosing the original 

timbre), and even with the presence of some artifacts, the system is still able to capture the 

musical performance of the singer and to preserve a significant part of it on the output. In some 

songs, like Madonna’s “Frozen”, it is possible to identify the singer personal style on the output, 

even if the original audio is no longer there. 

 

4.10 Summary 

This chapter presented the work done during the development of a resynthesis approach for the 

singing voice.  

Initially, the work was focused on the synthesis module, allowing it to better support a resynthesis 

environment.  

Later, the replication of each domain (dynamics, pitch and phonetics) received attention, 

especially phonetics, which changed from a phoneme extraction approach to a phonetic similarity 
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approach. By testing different approaches within each problem domain, and combining music and 

speech techniques, in both analysis and synthesis fields, a prototype was created. 

Some additional algorithmic decisions were taken to improve the audio quality and decrease the 

number and impact of the created artifacts. 

Finally, an evaluation of the obtained audio results of the proposed resynthesis approach is 

presented using listening tests, including: how the listening tests were prepared, focusing on the 

audio material and questions; the results of the listening tests and their discussion, trying to better 

understand the major limitations of the proposed system. The results obtained showed that the 

system is able to replicate most of the information, although still presenting several audio 

artifacts. 

The method and results presented in this chapter have been the object of several conference 

papers [Fonseca, 2010a], [Fonseca, 2010b], [Fonseca, 2011a], [Fonseca, 2011b]. 
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5. Conclusions 

 

Although the concept of resynthesis is simple, its implementation is very difficult, probably 

requiring several additional years of research work before achieving the required level of 

performance for professional applications. Nevertheless, it presents a high potential for many 

applications, from high-level semantic audio effects, to better control of virtual instruments. 

In this dissertation, a singing voice resynthesis approach was proposed and implemented, allowing 

the user to control a singing synthesizer with his/her own voice. Although many artifacts are still 

present, preventing its use on real world scenarios, this PhD work has contributed to show that by 

merging analysis and synthesis methods from both speech and music research fields, new 

applications may be created on complex areas like the singing voice. 

Originally, the goal was to use machine-learning mechanisms (or other intelligent approaches) to 

better achieve a resynthesis process. However, during the research, it became clear that lower 

level approaches presented better results, and most high-level approaches were abandoned. 

The two major obstacles found during this research work were: probably the inexistence of a 

complete singing dataset, and the lack of a numeric metric for evaluating the system’s results. 

Regarding the singing dataset, the existence of a significant repository of singing material with 

pitch/phonetic annotations37 would contribute for a better research work, probably allowing 

better results from machine learning approaches. Unfortunately, the required work and means for 

creating such dataset is beyond this PhD work. As such, a smaller and un-annotated dataset was 

used [EASTWEST, 2007]. 

A significant amount of work was done adjusting the parameters of the system, to achieve better 

results. By testing different target and concatenative costs, search methods, or synthesis 

approaches, and adjusting their internal parameters, many of these decisions were based on the 

personal listening evaluation of the author. Even with a trained ear, it is very difficult to identify 

and evaluate small differences between audio results, and to keep an unbiased opinion. On the 

other hand, it was also impractical to do frequent listening tests, with ear-trained people, for 

                                                           
37

 e.g. similar to TIMIT dataset [Garofolo, 1993], but with singing recordings 
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evaluating such decisions. Many attempts were done, trying to find38 metrics capable of 

numerically evaluate the quality of the audio results (mainly in intelligibility and audio quality), but 

without success. The existence of such metrics would highly improve the research productivity on 

the subject. 

As previously mentioned in section 1.5 (“Main Contributions”), this dissertation work resulted in 

nine conference papers (seven international conferences and two national conferences), a journal 

paper submission, an implemented prototype, and citations in books, PhD thesis, journal papers 

and conference papers39.  

5.1 Perspectives for Future Work 

With the present system, there are many perspectives for future work, which could be grouped in 

four different areas: audio quality improvements; performance and real-time support; additional 

features; and non-singing voice applications. 

5.1.1 Improving Audio Quality 

On a system like the one addressed in this dissertation, errors are accumulated through the 

system, which means that all modules must perform very well. As such, every module should 

receive additional research attention, especially the phonetic related ones, which according to the 

listening tests, present more issues. 

Regarding audio quality improvement, it is fundamental to decrease the artifacts created by the 

system, for allowing its use on professional applications. As previously mentioned, most of these 

artifacts appear due to abrupt transitions between audio fragments. One possible way to decrease 

these abrupt transitions may involve using PSOLA concepts. Instead of using fixed length frames, 

the system could use segments with a two period length, known to concatenate well in pitch-shift 

applications. To achieve that, the architecture of the system would require several changes in 

almost all modules, from feature extraction modules to synthesis. 

To prevent artifacts with origin on the dynamics module, due to voiced/unvoiced mismatch, a 

better solution must be found to prevent the use of unvoiced frames to replace voiced ones, and 

vice-versa. Eventually, a set of rules might be enough. 

Target and concatenation costs continue to require some additional attention, since they are 

responsible for the way frames are selected. 

                                                           
38

 either in existing research work or by creating new approaches 

39
 Full list available at Annex A 
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5.1.2 Performance and Real-time Support 

The actual system still requires a significant amount of computational power and memory. 

Although speed and memory requirements were not a concern during the PhD work, they should 

be taken into consideration in future work, especially to support real-time processing. 

In reality, real-time support is not only a mater of speed processing. The current system considers 

an offline unit selection: searching for the full sequence of frames with target and concatenation 

costs. The future real-time support will require a different unit selection approach (eventually 

considering concatenation cost only between the current frame and the previous one). By loosing 

the overall sequence knowledge, it will be more difficult to choose the units for each situation, 

which might raise the number of existing artifacts. 

Other performance bottleneck occurs on the interpolation and phase alignment during synthesis, 

where a more scalable approach should be found.  

5.1.3 Additional features 

Some additional features could bring significant improvements to the system.  

Changing genre was not exhaustively tested during this work. Situations where the user is of a 

different genre from the internal sound library did not receive much attention during tests. 

Eventually, it may require some minor changes on the way the target cost is obtained (for 

instance, reducing the weight of LPC frequency response, or applying a frequency shift before 

using their values). A deeper attention is required to support such scenarios. 

By adding editing capabilities, the user would be able to correct singing errors (e.g. out-of-tune 

problems) or achieve a more creative performance by adding some vocal effects (e.g. stable 

vibrato). 

5.1.4 Non-singing voice applications 

Although the research work was done on the singing voice, the same system could be used on 

non-singing material, either musical instruments or speech.  

In speech, the system could be used to change the voice of the user on speaking scenarios.  

On the musical area, the system could be used to replace (monophonic) music audio material with 

samples of other music instruments (as mentioned on the “applications” section of the first 

chapter). For instance, replacing one instrument recording with samples from some sound library.  

With the present system, it is only a matter of using a non-singing sound library (speech dataset or 

a musical instruments sample library) and testing it with different audio files.  

Probably some changes could be required regarding target costs, which may reveal to be more 

suitable for either speech or for music instrument resynthesis. 
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5.1.5 Future work summary 

From all the ideas for future work, the PSOLA architecture will definitely be the first one to be 

implemented in a near future. Although it requires changes in all modules of the system, it may 

eventually present a solution for several issues: less artifacts due to better transitions, more 

scalable synthesizer (no interpolation and offset phase alignment), better support for a future 

real-time feature, and no time shifting issues. 
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