

Improving multilayer perceptron classifiers

AUC performance.

An approach in biomedical image analysis for breast cancer CAD

supported by eInfrastructures.

Raúl Ramos Pollán

Faculty of Engineering, University of Porto

Department of Informatics Engineering

October 2011

 i

Supervisors

Doctor Miguel Ángel Guevara López
Senior Researcher

Instituto de Engenharia Mecânica e Gestão
Industrial
Faculty of Engineering
University of Porto

Doctor Eugenio de Costa Oliveira
Full Professor

Departamento de Engenharia Informática
Faculty of Engineering
University of Porto

A thesis submitted to the University of Porto in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Informatics Engineering

Porto, Portugal, October 2011

ii

 iii

Abstract

This thesis addresses the problem of using efficiently Receiver Operating Characteristic

(ROC) analysis in machine learning and, specifically, in multilayer perceptron based

classifiers, both from a theoretical and a practical approach. It proposes a general

formulation to improve the AUC performance (Area Under the ROC Curve) of existing

machine learning methods that is affordable to implement and demonstrates

experimentally its effectiveness with different kinds of multilayer perceptron training

algorithms. As a means to this, a new computationally efficient method was devised to

compute the AUC and two software frameworks were developed to facilitate the

exploitation of distributed eInfrastructures for machine learning in general and ROC

analysis in specific. Finally, these developments were applied to a real world case in the

field of biomedical image analysis and the results obtained are herewith described.

ROC analysis is commonly used to judge the discrimination ability of a binary test

for predictive purposes. A test might be, for instance, of chemical or biomedical nature

but also a machine learning classifier aiming at distinguishing the two different classes

of a binary dataset. It has traditionally been a tool in biomedical decision making and,

during the last decade, ROC analysis has been increasingly used in machine learning,

where it becomes especially useful when applied to biomedical data. ROC curves

represent the trade-off between false-positives and true-positives of a classifier at

different decision threshold levels, and the AUC is taken as a single scalar metric to

compare classifier performance, seeking classifiers having greater AUC. This

complements other commonly used metrics, such as accuracy (the percent of dataset

elements correctly classified), specificity, precision, recall, etc.

Machine Learning (ML) algorithms have been historically devised to minimize some

error rate loss function yielding better classifier accuracy. Although related, literature

reports evidences that error rate minimization does not necessarily yield to AUC

maximization and, in recent years, attempts have tried to use AUC in optimization

problems requiring mostly designing new ML algorithms or heavily transforming

existing ones for such task. The approach presented in this thesis provides a theoretical

formulation to allow a straight forward integration of AUC optimization into existing

ML algorithms, enabling the affordable reuse of the vast amount of techniques

developed in the area to date. Then, it provides experimental evidence of its efficacy by

using multilayer perceptrons with different training algorithms.

iv

However, AUC calculation is a computationally expensive task that requires sorting

the scores assigned by a certain classifier to the elements a dataset. As ML algorithms

are already computationally intensive, calculating the AUC efficiently is key so that our

approach does not render them impractical. Therefore, as part of this thesis and

herewith used, an efficient error-bounded method has been devised to approximate the

AUC with arbitrary precision, rendering its computational complexity linearly

proportional to the number of dataset elements.

In addition, providing sufficient statistical evidence to these claims requires

extensive use of computing resources to train and evaluate different configurations of

datasets and ML methods. eInfrastructures such as computer clusters, Grids and, more

recently, Clouds, provide vast amounts of computing resources, but their utilization is

mostly tied to the access tools and methods offered by the specific infrastructure

provider, middleware, etc. Furthermore, to gather the required evidence for our

purposes, we need the ability to manage in an agile way many different configurations

of third party ML algorithms over a diversity of datasets and training conditions, well

beyond the capabilities of most user tools existing today to interact with

eInfrastructures. To overcome this, two software frameworks were developed in this

thesis. On one side, BiomedTK (the Biomedical Data Analysis Toolkit) allows the

integration of third party ML algorithms, datasets and ROC analysis, enabling the

systematic exploration of the space of their possible configurations. On the other side,

C3 (the Cloud Computing Colonies framework) uses Java industry standards to provide

a homogeneous way for any software (such as BiomedTK) to access computing

resources scattered throughout eInfrastructures of different nature. C3 deploys colonies

of Job Agents onto available eInfrastructures and provides a unified communications

channel to send them data and deploy and run applications, regardless their actual

access method.

At last, the results of this thesis have been successfully applied to obtain well

performing classifiers offering automated second opinion for assisted diagnosis on breast

cancer. In tight collaboration with specialized radiologists, datasets including their

annotations have been analyzed as they were produced, yielding trained classifiers

ready to be clinically validated for assisted diagnosis and integrated within their

graphical workstations, medical workflows and informatics systems.

 v

Resumo

Esta tese aborda o problema do uso eficiente da análise ROC (Receiver Operating

Characteristic) em aprendizagem automática e, especificamente, em classificadores

baseados em perceptrons multicapas, desde uma perspectiva teórica e prática. Uma

formulação geral é proposta para melhorar o desempenho AUC (área sob a curva ROC)

dos métodos de aprendizagem automática existentes, e se demonstra experimentalmente

a sua eficácia com diferentes tipos de algoritmos de treinamento para perceptrons

multicapa. Para isso, foi preciso desenvolver um novo método computacionalmente

eficiente para calcular o AUC e dois ferramentas de software que facilitan a utilização

de e-Infraestruturas distribuídas na aprendizagem automática em geral e na análise

ROC em específico. Finalmente, estas contribuições foram aplicadas num caso real no

campo da análise de imagens biomédicas e os resultados atingidos são aqui descritos.

A análise ROC é comummente usada para julgar a capacidade de discriminação de

um teste binário para finalidades de predição. Um teste pode ser, por exemplo, de

natureza química ou biomédica, mas também pode ser um classificador automático que

tem como objetivo distinguir as classes de um dataset binário. A análise ROC tem sido

tradicionalmente uma ferramenta na toma de decisões biomédicas e, durante a última

década, é cada vez mais usado em aprendizagem automática, onde é especialmente útil

quando é aplicado a dados biomédicos. As curvas ROC representam o balance entre

falsos positivos e verdadeiros positivos de um classificador a diferentes limiares

(thresholds) de decisão, e o AUC é empregado como uma métrica escalar para comparar

o desempenho dos classificadores. Isto complementa outras métricas comummente

usadas, tais como a taxa de erro, a precisão, a especificidade, o recall, etc.

Os algoritmos de aprendizagem automática têm sido historicamente concebidos para

minimizar a taxa de erro dos classificadores. Apesar de estar relacionados, a literatura

evidencia que a minimização da taxa de erro não significa necessariamente uma

maximização do AUC e, nos últimos anos, tem existido tentativas de usar o AUC em

problemas de optimização que requerem principalmente criar novos algoritmos ou

transformar significativamente os já existentes. A abordagem apresentada nesta tese

fornece uma formulação teórica que permite a integração imediata da optimização do

AUC nos algoritmos já existentes, facilitando a reutilização das técnicas desenvolvidas

na área até o momento. Após, ele fornece evidência experimental de sua eficácia usando

perceptrons multicapa com diferentes algoritmos de treino.

vi

No entanto, o cálculo da AUC é uma tarefa computacionalmente custosa que requer

a ordenação dos scores atribuídos por um classificador a um dataset. Dado que os

algoritmos de aprendizagem já são computacionalmente intensivos, um cálculo eficiente

do AUC é fundamental para que a nossa abordagem não os torne

impraticáveis. Portanto, nesta tese se proponde um método para aproximar

eficientemente o AUC com precisão arbitrária, tornando a sua complexidade

computacional linearmente proporcional ao tamanho do dataset.

Além disso, a obtenção de evidência estatística suficiente para apoiar estes

argumentos requer o uso extensivo de recursos de computação para treinar e avaliar

diferentes configurações de datasets e métodos de aprendizagem automático. As e-

Infraestruturas, tais como clusters de computadores, computação em grelha e, mais

recentemente, clouds, fornecem grandes quantidades de recursos computacionais, mas

sua utilização é principalmente ligada à ferramentas propias da e-Infraestrutura

específica, middleware, etc. Neste senso, para reunir a evidência necessária para os

nossos propósitos, é precisa a capacidade de gerir de forma ágil muitas configurações de

algoritmos através de uma diversidade de datasets e condições de treino, bem além das

capacidades das ferramentas existentes hoje para interagir com as e-

Infraestruturas. Para superar isso, dois produtos de software foram desenvolvidos neste

trabalho. De um lado, o BiomedTK (Biomedical Data Analysis Toolkit) facilita a

integração de algoritmos de aprendizagem automático, datasets e análise ROC,

permitindo a exploração sistemática do espaço de suas possíveis configurações. Por

outro lado, o C3 (Cloud Computing Colonies framework) utiliza os standards Java para

fornecer uma forma homogénea de aceder a recursos de computação espalhados sob e-

Infraestruturas diversas. O C3 mantém colónias de agentes (Job Agents) em e-

Infraestruturas disponíveis e fornece um canal de comunicação unificado para enviá-los

dados e executar aplicações, independentemente do seu método de acesso real.

Finalmente, os resultados desta tese têm sido aplicados com sucesso na obtenção de

classificadores automáticos que permitem oferecer uma segunda opinião no diagnostico

assistido do cancro da mama. Em colaboração estreita com radiologistas especializados,

datasets foram analisados ao ser produzidos, gerando classificadores treinados prontos

para ser validados clinicamente no diagnóstico assistido e integrados dentro de suas

estações de trabalho gráficas, fluxos de trabalho médicos e sistemas informáticos.

 vii

Résumé

Cette thèse aborde le problème de l'utilisation efficace de l’analyse ROC (Receiver

Operating Characteristic) dans l'apprentissage automatique et, plus précisément, dans

classificateurs basées sur perceptrons multicouches, dans une approche à la fois

théorique et pratique. On propose une formulation générale pour améliorer la

performance AUC (area sous la courbe ROC) des méthodes d’apprentissage

automatique existants qui est abordable d’implémenter et on démontre

expérimentalement son efficacité avec différents types d’algorithmes d’entraînement

pour perceptrons multicouches. Comme moyen de cela, une nouvelle méthode a été

conçue pour calculer efficacement le AUC et deux logiciels ont été développés que

facilitent l'exploitation des e-Infrastructures distribués pour l'apprentissage

automatique en général et pour l'analyse ROC en particulier. Enfin, ces

développements ont été appliqués à un cas réel dans le domaine de l'analyse d'images

biomédicales et les résultats obtenus sont décrits ici.

L’analyse ROC est couramment utilisée pour juger de la capacité de discrimination

d'un test binaire à des fins prédictives. Un test pourrait être, par exemple, de nature

chimique ou biomédicale, mais aussi un classificateur automatique visant à distinguer

les deux classes d'un dataset binaire. L’analyse ROC a toujours été un outil dans la

prise de décision biomédicale et, pendant la dernière décennie, il a été de plus en plus

utilisé dans l'apprentissage automatique, où il devient particulièrement utile lorsqu'il

est appliqué à des données biomédicales. Les courbes ROC représentent le compromis

entre faux positifs et vrais positifs d'un classificateur à différents niveaux de seuil de

décision (threshold), et l'AUC est prise comme une métrique scalaire unique pour

comparer sa performance, en cherchent des classificateurs qu’ont l’AUC plus élevée. Ça

complément d’autres mesures couramment utilisées, telles que le taux d’erreur, la

précision, la spécificité, le recall, etc

Les algorithmes d’apprentissage automatique ont été historiquement conçus pour

minimiser le taux d'erreur des classificateurs. Bien que liés, la littérature rapport des

évidences comme que la minimisation taux d'erreur ne conduit pas nécessairement à la

maximisation de l’AUC et, ces dernières années, des tentatives ont essayé d’utiliser

l'AUC dans des problèmes d'optimisation nécessitant la plupart d’eux la conception des

nouveaux algorithmes ou la transformation significative de ceux existantes. L'approche

présentée dans cette thèse propose une formulation théorique que permettre une

viii

intégration de l’optimisation AUC dans les algorithmes existants, permettant de cette

façon la réutilisation abordable de la grande quantité de techniques développées dans à

ce jour. Ensuite, il fournit la preuve expérimentale de son efficacité en utilisant

perceptrons multicouches avec des différents algorithmes d’entraînement.

Cependant, le calcul de l’AUC est une tâche coûteuse en ressources

informatiques. Étant donné que les algorithmes d’apprentissage automatique sont déjà

intensifs, le calcul efficace de l’AUC est clé pour que notre approche ne les rendre pas

inutiles. Pour ce la, dans cette thèse, on a conçu une procédure pour approximer l’AUC

avec une précision d’erreur arbitraire et bornée par l’utilisateur, en faisant sa

complexité de calcul linéairement proportionnel au nombre d'éléments du dataset.

D’autre part, la collecte d’évidence statistique suffisent pour supporter ces

arguments nécessite l'utilisation extensive des ressources informatiques pour entraîner

et évaluer plusieurs configurations de datasets et algorithmes. e-Infrastructures tels que

des clusters d'ordinateurs, grilles et, plus récemment, clouds, offrent vastes quantités de

ressources, mais leur utilisation reste principalement liée à des outils et des méthodes

d'accès spécifiques des fournisseurs, middleware, etc. Aussi, pour rassembler l’évidence

précise, on a eu besoin de gérer agilement nombreuses configurations des algorithmes

sur une diversité d'ensembles de données et des conditions d’entraînement, bien au-delà

des capacités de la plupart des outils existant aujourd'hui. Pour surmonter cette

difficulté, deux logiciels ont été développés dans cette thèse. D'un côté, BiomedTK

(Biomedical Data Analysis Toolkit) facilite l'intégration des algorithmes, des datasets et

l'analyse ROC, permettant l'exploration systématique de leurs configurations. De

l'autre côté, C3 (Cloud Computing Colonies Framework) utilise les standards Java pour

fournir une façon homogène d’accéder aux ressources informatiques distribuées sur des

e-Infrastructures. C3 déploie des colonies de Job Agents sur les ressources disponibles et

fournit un canal de communications unifiée pour leur envoyer des données et exécuter

des applications, indépendamment de leur méthode d'accès réel.

Finalement, les résultats de cette thèse ont été appliqués avec succès dans

l’obtention des classificateurs automatiques pour offrir un deuxième avis dans le

diagnostic assisté du cancer du sein. En utilisant les résultats de cette thèse, et en

étroite collaboration avec des radiologues spécialisés, des datasets ont été produites et

analysées obtenant classificateurs prêts à être validés cliniquement pour être utilisés

dans le diagnostic assisté et intégrés dans leurs logiciels, workflows médicaux et

systèmes informatiques.

 ix

Contents

Abstract ... iii

Resumo ... v

Résumé ... vii

Contents .. ix

Acknowledgements .. xiii

List of figures .. xv

List of tables ... xvii

Glossary ... xviii

1 Introduction .. 1

1.1 Background ... 3

1.1.1 Receiver Operating Characteristic (ROC) analysis 3

1.1.1.1 Performance metrics .. 3

1.1.1.2 ROC Curves .. 4

1.1.2 Machine learning .. 7

1.1.2.1 Learning tasks in ML ... 9

1.1.2.2 Supervised Learning .. 10

1.1.2.3 Multilayer perceptrons .. 13

1.1.2.4 Support vector machines .. 15

1.1.3 eInfrastructures ... 16

1.1.4 Breast Cancer CAD ... 18

1.2 Motivation and objectives .. 20

1.3 Thesis statement .. 22

1.4 Summary of contributions ... 22

1.4.1 Theoretical contributions .. 22

1.4.2 Technological contributions ... 23

1.5 Thesis outline... 23

2 State of the Art .. 25

2.1 ROC analysis and machine learning .. 25

2.1.1 Obtaining ROC metrics ... 26

2.1.2 Interpreting ROC curves ... 28

2.1.3 ROC analysis for model evaluation ... 31

2.1.4 ROC analysis for model construction .. 33

2.1.5 ROC analysis for model selection .. 35

x

2.1.6 Summary of references... 36

2.2 eInfrastructures .. 37

2.2.1 Grids ... 38

2.2.2 Clouds ... 42

2.2.3 Using eInfrastructures ... 44

2.3 Machine learning classifiers for breast cancer CAD 44

2.3.1 Mammography classification standards ... 45

2.3.2 Computer Aided Detection/Diagnosis ... 47

2.3.3 Machine learning for breast cancer CAD 48

2.3.4 Mammography data availability and clinical acceptance............... 50

2.3.5 Summary of references... 51

2.4 Conclusion ... 53

3 ROC analysis for Machine Learning based classifiers 55

3.1 Introduction ... 55

3.2 Efficient AUC error bounded approximation ... 56

3.2.1 Definition .. 56

3.2.2 Experimentation and Validation ... 63

3.2.2.1 Goals and metrics ... 63

3.2.2.2 Experimental setup ... 65

3.2.2.3 Results and discussion .. 67

3.3 Generalizing AUC optimization in multilayer perceptron classifiers 70

3.3.1 Theoretical definition .. 70

3.3.2 Experimentation and Validation ... 73

3.3.2.1 Goals and metrics ... 74

3.3.2.2 Experimental setup ... 74

3.3.2.3 Results and discussion .. 76

3.4 Conclusion ... 78

4 Exploiting eInfrastructures for Machine Learning Classifiers 81

4.1 Introduction ... 81

4.2 The Biomedical data analysis ToolKit (BiomedTK) 82

4.2.1 BiomedTK engines and basic elements .. 83

4.2.2 BiomedtTK explorations ... 85

4.2.3 BiomedTK architecture ... 89

4.2.4 Building ensemble classifiers .. 92

4.3 The Cloud Computing Colonies framework (C3) 94

 xi

4.3.1 C3 architecture .. 95

4.3.2 C3 jobs .. 99

4.3.3 C3 job agents and colony maintenance 101

4.3.4 Other issues ... 103

4.4 Experimentation and Validation .. 105

4.4.1 Goals and metrics .. 105

4.4.2 Experimental setup ... 106

4.4.3 Results and discussion ... 108

4.5 Conclusion ... 111

5 Application in Breast Cancer CAD .. 113

5.1 Introduction ... 113

5.2 The Breast Cancer Digital Repository (BCDR) 114

5.3 Dataset construction and processing .. 117

5.4 Experimentation and Validation .. 121

5.4.1 Goals and metrics .. 121

5.4.2 Experimental setup ... 121

5.4.3 Results and discussion ... 123

5.5 Conclusion ... 128

6 Conclusions ... 131

6.1 Development of this thesis ... 131

6.2 Main conclusions .. 133

6.3 Future work ... 138

7 Bibliographic References .. 139

Appendix I. Tables and figures .. 153

Appendix II. Algorithms ... 161

Appendix III. ROC definitions .. 163

xii

 xiii

Acknowledgements

This thesis is the result of an enriching journey that has taken me through landscapes

of beauty, complexity and hard work. Throughout the challenges and difficulties

encountered, the fellow coming out of this path is not anymore the same one that

started walking. It is the true personal experience, devoid of any fears, that shapes

one’s life, and the souls who cared to walk along with generosity and lightness are those

to whom I am most grateful. This journey would simply have not been possible without

the support of many people to whom I will always owe my gratitude.

I would like to thank Professor Miguel Ángel Guevara López for his support and

guidance in this work, but above all, for his friendship through many years, even before

this journey began. Just as today’s present was wisely unexpected as seen from past

times, I am now certain that the future ahead of us will remain so.

To Professor Eugénio Oliveira, for his understanding and advice on key moments of

this journey, for allowing me to discover FEUP and for sharing with me his wise and

pragmatic insights on the academic world.

To INEGI1, CETA-CIEMAT 2 and FMUP-HSJ3 for creating the possibility for this

thesis to exist and for providing the resources, the people, administrative support and

understanding on the many issues without which this thesis could not have been

developed.

To the many people with whom I have worked in the last years with direct or

indirect implication in this thesis work.

To the many anonymous reviewers of my papers, for their constructive comments.

Finally, and most importantly, to all those who make part of the human being

writing these words, family, friends, companionships, professors, colleagues … all those

with whom our paths have come to cross to any extent, more intimate, more

circumstantial, more colorful, more enlightening, more mundane, more enduring ...

I am all those people. I am indebted to them all.

1 Instituto de Engenharia Mecânica e Gestão Industrial – Faculdade de Engenharia da Universidade do Porto.
2 Centro Extremeño de Tecnologías Avanzadas.
3 Hospital de São João – Faculdade de Medicina da Universidade do Porto,

xiv

 xv

List of figures

Figure 1: Distribution of classified dataset elements .. 3

Figure 2: Example of ROC graph. ... 5

Figure 3: Smoothed ROC graph. ... 7

Figure 4: Elements of machine learning ... 11

Figure 5: Test and train data vs. model complexity .. 12

Figure 6: A mutilayer perceptron .. 13

Figure 7: Separating hyperplanes on a Support Vector Machine. 15

Figure 8: Historical distribution of the TOP 500 by hardware and OS. 17

Figure 9: Breast Cancer CAD cycle ... 20

Figure 10: ROC space with example classifiers (left) and ROC curves (right) 29

Figure 11: Example of elements distributions and classifiers in ROC space. 29

Figure 12: ROC isometrics for two class and cost distributions 31

Figure 13: Confidence bands for ROC curves .. 32

Figure 14: Isometric accuracy classifier comparison (left) and convex hull (right) 35

Figure 15: Example Grid federation .. 40

Figure 16: Cloud resource provision through virtualization ... 43

Figure 17: Common kinds of mammography lesions .. 46

Figure 18: Discretization of AUC score space .. 58

Figure 19: Iteratively reducing the AUC approximation error 63

Figure 20: Representative positive and negative distributions of synthetic datasets 66

Figure 21: AUC speedup per differential mean and standard deviation range 68

Figure 22: AUC speedup per dataset size for synthetic and UCI datasets 69

Figure 23: AUC speedup per class skew for synthetic and UCI datasets 69

Figure 24: AUC speedup per intervals for synthetic and UCI datasets 69

Figure 25: Configurations evaluated to compare FFSA vs. FFSAROC. 75

Figure 26: Averaged AUC for MLP algorithms modified for AUC optimization 77

Figure 27: Example BiomedTK exploration file ... 86

Figure 28: BiomedTK component archtecture ... 90

Figure 29: Example codematrix defintion file .. 93

Figure 30: C3 component architecture ... 96

Figure 31: Sample C3 job file and client session ... 100

Figure 32: C3 sample deployment scenario ... 103

Figure 33: C3 job agents deployment for experimentation .. 107

Figure 34: Amazon EC2 Management Console with 10 C3 job agents running 108

Figure 35: Empirical and smoothed ROC curves for a bcw dataset classifier 110

Figure 36: IMED project digital repository and CAD development lifecycle 115

xvi

Figure 37: Data model for the Breast Cancer Digital Repository 116

Figure 38: Double segmentation, feature extraction and BIRADS classification 118

Figure 39: Datasets built from BCDR after classification by specialists 119

Figure 40: ROC Curves for best classifiers on HSJ datasets 128

Figure 41: Sample BiomedTK session ... 158

 xvii

List of tables

Table 1: Threshold classifier metrics ... 4

Table 2: Some ML algorithms for multilayer perceptrons .. 14

Table 3: Comparison of eInfrastructures ... 18

Table 4: Summary of references for ROC analysis in machine learning 36

Table 5: BIRADS categories for standardized diagnostic assessment 45

Table 6: Selected general references for breast cancer CAD methods 51

Table 7: Selected references for microcalcifications classification methods 51

Table 8: Selected references for mammographic masses classification methods 52

Table 9: Discretization of the score space .. 57

Table 10: Elements of example dataset ... 61

Table 11: AUC approximation components for the example dataset 62

Table 12: Values of means and standard deviations for synthetic datasets 65

Table 13: AUC speedup per differential mean and standard deviation range 68

Table 14: Machine learning engines integrated in BiomedTK 83

Table 15: Validation procedures available in BiomedTK ... 88

Table 16: Additional BiomedTK exploration parameters .. 89

Table 17: Summary of configurations and computer resources in explorations 109

Table 18: Class distribution for mammography datasets .. 119

Table 19: Results summary for HSJ.2D datasets (SVMs/Step 1 by test.AUC) 124

Table 20: Top ten results for HSJ.2D datasets (MLPs/Step 2 by test.AUC) 125

Table 21: Best configurations discovered for HSJ.3DSNGL.a.p dataset 126

Table 22: Best configurations discovered for HSJ.3DJOIN.a.p dataset 127

Table 23: Definitions for binary classifiers .. 153

Table 24: UCI datasets used in this theseis .. 154

Table 25: AUC performance of MLP algorithms modified for AUC optimization. 155

Table 26: AUC performace in dataset and element based MLP algorithms 156

Table 27: Some correlations in AUC optimization experiments 156

Table 28: Summary of BiomedTK commands .. 157

Table 29: BiomedTK/C3 experimental exploration summary 159

xviii

Glossary

ANN Artificial Neural Network

API Application Programming Interface

AUC Area Under the Receiver Operating Characteristic Curve

BCDR Breast Cancer Digital Repository

BiomedTK The Biomedical Data Analysis Toolkit

C3 The Cloud Computing Colonies Framework

CADe Computer Aided Detection

CADx Computer Aided Diagnosis

CC Mammogram containing a craniocaudal image view of a breast

CDF Cumulative Density Function

CETA-CIEMAT Centro Extremeño de Tecnologías Avanzadas, Spain

DRI Digital Repositories Infrastructure

FMUP-HSJ Hospital de São João–Faculty of Medicine at University of Porto

FPR False Positive Rate

FROC Free Response ROC Curve

HPC High Performance Computing

HTC High Throughput Computing

IaaS Infrastructure as a Service

INEGI Instituto de Engenharia Mecânica e Gestão Industrial, Portugal

IMED The project named Developing Algorithms for Medical Image Analysis

ML Machine Learning

MLC Machine Learning Classifier

MLO Mammogram containing a mediolateral oblique image view of a breast

MLP Multilayer Perceptron

PaaS Platform as a Service

PDF Probability Density Function

ROC Receiver Operating Characteristic

ROCCH ROC Convex Hull

ROI Region of Interest

SaaS Software as a Service

SOA Service Oriented Architecture

SRM Structural Risk Analysis

STL Statistical Learning Theory

SVM Support Vector Machine

 xix

TPR True Positive Rate

VC Vapnik-Chervonenkis dimension

VM Virtual Machine

xx

Chapter 1 Introduction 1

Chapter 1

1 Introduction

This chapter presents the motivation and objectives of this thesis and states its

theoretical and technological contributions. But first, in order to better understand

their relevance, it briefly describes the conceptual background within which the work

leading to the results herewith presented has been developed.

A binary classification task aims at labeling elements of dataset into two classes

(positive/negative) by assigning a score to each element and then applying a threshold.

ROC analysis (Metz 1978; Fawcett 2006) is a tool for assessing the discrimination

ability of a binary classifier for predictive purposes when applied to a scored dataset at

all meaningful thresholds. It provides, therefore, a more comprehensive understanding

of classifier performance than other metrics (accuracy, precision, etc.) which are taken

at a single threshold level (Fawcett and Provost 1997; Provost, Fawcett et al. 1998).

Used primarily in signal detection theory (Egan 1975) to determine if an electronic

receiver is able to satisfactory distinguish between signal and noise, usage of ROC

analysis has reached different domains in medical decision making such as diagnostic

systems, medical data mining, medical imaging, etc. (Swets 1988; Zweig and Campbell

1993; Hanley 1996; Swets, Dawes et al. 2000; Metz 2008; Iavindrasana, Cohen et al.

2009). In machine learning (ML), it is used since the early works of (Spackman 1989)

mostly to evaluate and compare classifier performance (Bradley 1997; Fawcett 2003).

ML algorithms, such as for training multilayer perceptrons (MLP) or support vector

machines (SVM), are typically designed to minimize some error rate, which measures

2 Chapter 1 Introduction

how far the score assigned by a classifier to each dataset element falls from its ideal

value. Although related, literature reports sound evidence that error rate minimization

does not necessarily yield to AUC optimization (Cortes and Mohri 2004) and, therefore,

problems focused on ROC analysis are only partially addressed by existing ML

algorithms, aimed at reducing error rates. Some examples of ML algorithms that have

been devised for AUC optimization can be found at (Ferri, Flach et al. 2002;

Rakotomamonjy 2004; Brefeld and Scheffer 2005; Calders and Jaroszewicz 2007; Castro

and Braga 2008; Marrocco, Duin et al. 2008; Pahikkala, Airola et al. 2008; Takenouchi

and Eguchi 2009). However, it would be desirable to be able to reuse for AUC

optimization the vast amount of ML techniques developed to date and, rather than

developing new ML algorithms, this thesis aimed at introducing AUC optimization into

existing ones in an affordable manner, providing both the appropriate theoretical

foundation and material tools to do so with a minimal impact in their implementation.

The approach chosen for this aim has been (1) to define a general ROC based error

measure to substitute traditional error rate measures, so that the core logic of existing

ML algorithms remains intact requiring only replacing the error calculation methods;

and (2) applying and validating it with different kinds of MLP training algorithms to

show its effectiveness. This constitutes the central contribution of this thesis.

The term eInfrastructures refers to large amounts of distributed computing resources

that are made available in a homogeneous manner to user communities. These include

computing resources delivering CPU time or storage space, such as those typically

found in data centers. An eInfrastructure is therefore regularly composed by a

federation of data centers aggregating their computing resources to offer a large facility

service. The affordability of computer hardware has led to a proliferation of data

centers of many sizes and, since almost a decade now, both governments and private

institutions are devoting a considerable amount of effort and funding to building trans-

national eInfrastructures. Their generalized usage is to take academia and industry to

new levels of reach in their research and production endeavors. However, their adoption

has been slower than expected due to many factors (complexity of access tools,

interoperability issues, cost of refactoring software, etc.) and there is a wide range of

fields and specific problems that seldom benefit from eInfrastructures as much as they

could. Machine learning is no exception to this and during the development of this

thesis we faced the challenge to exploit eInfrastructures to validate our results. The

technology developed to overcome the difficulties encountered constitutes the core of

the technological contributions of this thesis.

Chapter 1 Introduction 3

From a global perspective, this thesis has been developed to address classification

problems through the extensive usage of ROC analysis with machine learning classifiers

based on MLPs (including the ones optimized for AUC) and SVMs supported on

eInfrastructures. The practical utility of this thesis has been demonstrated in the fields

of image analysis and pattern recognition for breast cancer CAD.

1.1 Background

This section provides the basic insight into the fields in whose intersection this thesis

has been developed: Receiver Operating Characteristic analysis and machine learning,

the usage of eInfrastructures for scientific production and Computer Aided Diagnosis

for breast cancer.

1.1.1 Receiver Operating Characteristic (ROC) analysis

1.1.1.1 Performance metrics

Whenever a binary classifier or test is applied to a dataset a series of measures are

produced to assess its performance and, therefore its efficacy. Figure 1 shows the

fundamental metrics obtained after the elements of dataset have been classified.

Particular values are typically obtained by a classifier that assigns scores to each

dataset element and then sets a threshold level above which elements are classified

(predicted) to be positive and the rest are classified as negative.

Figure 1: Distribution of classified dataset elements

A diversity of measures derived from figure 1 are used in different fields according to

particular interests. Some of these measures are shown in table 1. For instance, the

Information Retrieval community usually deals with Precision and Recall (Manning,

true positive
(TP)

false negative
(FN)

false positive
(FN)

true negative
(TN)

P N

p

n

actual value

cl
as

si
fi
er

p
re

d
ic

ti
on

P
N
p
n

TP
TN
FP
FN

Number of positive elements
Number of negative elements
Number of elements classified as positive
Number of elements classified as negative
Number of positive elements classified as positive
Number of negative elements classified as negative
Number of negative elements classified as positive (Type I error)
Number of positive elements classified as negative (Type II error)

4 Chapter 1 Introduction

Raghavan et al. 2008) whereas the signal processing and biomedical communities deal

mostly with the TPR (True Positive Rate) and FPR (False Positive Rate) (Fawcett

2003) which somehow encompass all the rest.

Table 1: Threshold classifier metrics

����	���	
��	�	�	����� �	��� � 	 ���� � ��

����	���	
��	�	�	����� �	��� � 	 ���� � ��

����
�
�
	� �	��� �	 ���� � �� � 1 � ���
������� �	�� � ��� � �

�����	�	� � 1 � �������
���
	
��	����
�	
��	����	����� �	 ���� � ��

�� �
	
�
	� � ����� � ����	���	
��	�	�	�����
����
�
� � ���
	
��	����
�	
��	����	�����
�	!����� � 21/����
�
� � 1/�����

Metrics in table 1 are known as threshold metrics since they are obtained after a

threshold has been applied to a scored dataset. In addition, other kinds of metrics can

be considered (Caruana and Mizil 2006) such as rank metrics (AUC –as defined in next

section–, average precision, precision/recall break point, etc.) or probability metrics

(squared error, cross entropy, etc.)

1.1.1.2 ROC Curves

In this work, we assume that element scores assigned by any classifier fall within the $0,1' interval. By varying the threshold level used by the binary classifier throughout

such interval, we obtain different values for the above metrics. In specific, we obtain

different TPR and FPR levels which can then be plotted in a ROC graph. If we start

with a maximum threshold (at value 1) all elements are classified as negative therefore

we have neither false positives nor true positives, represented as a point at the (0,0)

coordinate on the graph. At a minimum threshold (value 0) all elements are classified

as positive and TPR and FPR reach their maximum levels, represented as a point at

Chapter 1 Introduction 5

the (1,1) coordinate on the plot. As we gradually increase the threshold, each time a

new dataset element falls below it, it generates a new TPR and FPR and therefore a

new point in the ROC graph. Figure 2 reproduces an example in (Fawcett 2006). The

ROC “curve” on the right is created by thresholding the dataset on the left. The

dataset contains 20 elements and the table shows the score assigned by a classifier to

each one along with its actual class. Each point in the ROC graph shows the threshold

value that produces it and corresponds to a different FPR-TPR value pair. For

instance, a threshold of 0.54 classifies elements 1 to 6 as positive and the rest as

negative, producing a TPR=0.5 (out of the 10 positive elements of the dataset, 5 were

classified as positive) and a FPR=0.1 (out of the 10 negative elements, 1 was classified

as positive).

 Figure 2: Example of ROC graph.

We are therefore in general interested in classifiers yielding ROC graphs bowing to

the top left corner. One of the useful properties of ROC graphs is that they are

insensitive to class skew and unbalanced datasets distributions (having, for instance,

more positive elements than negative).

The Area Under the ROC Curve (abbreviated by AUC, as used in this thesis, or

also Az) is then taken as a single measure to compare different classifiers, seeking

classifiers having greater AUC. A fundamental result is that the AUC is the probability

that a randomly selected positive element is ranked higher than a randomly selected

negative element (Hanley and McNeil 1982) which corresponds to the Wilcoxon

statistic (Wilcoxon 1945) or the Mann-Whitney test (Mann and Whitney 1947) as

given by the following formula:

6 Chapter 1 Introduction

�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9| (1.1)

which measures the empirical AUC of classifier * when used to classify dataset � � �7 ∪ �9 composed of positive instances (�7) and negative instances (�9) having �7 ∩ �9 � ∅. Then, *-.�=� represents the classifier output (score) upon dataset element = and ,$*-.� � / *-.���' denotes the indicator function, yielding the value 1 if *-.� � / *-.��� and 0 otherwise. Basically, for each positive element equation 1.1

counts how many negative elements have a lower score. A random classifier yields an

AUC value of 0.5 (the probability for a randomly selected positive element to be

ranked higher than a randomly selected negative element is the same as the probability

to be ranked lower) which is represented in a ROC graph as the diagonal joining the

0,0 and 1,1 points in the FPR-TPR space, such as the dashed lines shown in figure 3.

From a statistical point of view, the scores of the positive and negative elements of a

dataset can be considered to be drawn from different distributions whose probability

density functions (PDF) are denoted by �> and �?, and their respective cumulative

density functions (CDF) are denoted by �> and �?. Then, since we are assuming that

the scores assigned by a classifier to dataset elements fall within the $0,1' interval, the

AUC can be defined in the continuous domain for known distributions as follows:

�()�*, �� � @�>�=� ∙ �?�=��=A
B

 (1.2)

which is the continuous equivalent to equation 1.1 and can be interpreted in the same

way: for each point in the score space, whose probability of being a positive is given by �>�=�, equation 1.2 accounts for the probability of having a negative element below it,

which corresponds to the CDF of negative elements, �?�=�. Since �>�=� and �?�=� are

rarely known we are bound to use the empirical AUC in equation 1.1 on a limited

amount of available samples (datasets) through statistical and machine learning

methods. This formulation sets the foundation for further treatment of AUC, such as

to obtain smooth curves (see figure 3), confidence intervals, assess their statistical

significance, etc. (Hanley 1996; Jensen, Müller et al. 2000; Faraggi and Reiser 2002;

Sorribas, March et al. 2002; Agarwal, Graepel et al. 2005; Macskassy, Provost et al.

2005; He, Lyness et al. 2009; Hanczar, Hua et al. 2010)

Chapter 1 Introduction 7

ROC graph directly obtained by varying the threshold on

dataset elements (left). Smoothed version for further mathematical treatment (right).

In addition, in medical imaging, a variation of ROC analysis is often also used when

diagnosing lesions appearing on images. Free-Response Receiver Operating

Characteristic analysis (FROC) (Bandos, Rockette et al. 2009) copes with cases where

the same image might have several lesions or markings which might bias the AUC

measure as explained above. A FROC curve plots the lesion localization fraction (LLF)

against the non-lesion localization fraction (NLF). LLF is defined as the number of

lesions detected divided by the number of total lesions, whereas NLF is the number of

false lesions identified (false positives) divided by the total number of images processed.

Observe both from equation 1.1 and figure 2 the need to sort the dataset elements in

order to compute the AUC, which makes it computationally expensive. From this

perspective, an additional contribution of this thesis is on devising an efficient

procedure to approximate the AUC of a score dataset with arbitrary precision, so that

the user is able to select the maximum error incurred by the approximation whilst

keeping the procedure computationally efficient.

1.1.2 Machine learning

Machine learning (ML) is about programming computers to improve some performance

measure using example data or past experience. The definition in (Mitchell 1997) has

become a widely used standpoint:

Figure 3: Smoothed ROC graph.

8 Chapter 1 Introduction

Learning: A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks

in T, as measured by P, improves with experience E

“Data” or “Experience”, in a broad sense, is in practice handled through datasets

composed of data elements, which represent the specific objects presumed to contain

the knowledge target for the learning task. These elements may be vectors with

numeric features, annotated images, sound patterns, etc. Datasets are often split to

form train datasets, used as input for ML algorithms, and test datasets, used to

measure the generalization capability on unseen data. Section 1.1.1.1 above showed

commonly used performance measures.

Many other fields in Artificial Intelligence and other areas overlap or fall under such

broad definition, and a considerable wealth of methods and techniques are shared to

different extents throughout all of them. It is intentionally left undefined what field

contains what other field, since the literature shows differences in terminology across

researchers and communities in this respect. For instance, statistics aims at

understanding the phenomena that have generated the data, often with the goal of

testing different hypotheses about those phenomena. Data mining aims at finding

patterns in the data so that they are understandable by people. Even, psychological

studies of human learning aim at understanding the mechanisms underlying the various

learning behaviors exhibited by humans (concept learning, skill acquisition, strategy

change, etc.). In contrast, ML is primarily concerned with the accuracy and

effectiveness of the resulting computer systems.

The field of pattern recognition has historically produced many of the methods and

applications used and addressed by ML. As defined in (Jain, Duin et al. 2000):

Pattern recognition is the study of how machines can observe the environment,

learn to distinguish patterns of interest from their background, and make sound

and reasonable decisions about the categories of the patterns.

In order to later position appropriately the contributions resulting from this thesis,

the following paragraphs describe briefly the kinds of problems addressed by ML, the

methods and techniques mostly used and, finally, provide basic insight into pattern

recognition processes for breast cancer CAD.

Chapter 1 Introduction 9

1.1.2.1 Learning tasks in ML

Whenever facing an ML problem (learning from data) it is said that the machine is

about to carry out a learning task. Most of the problems addressed by ML can be

catalogued within the following types, according to the nature of the learning task in

hand, the data available and the learning goal. Detailed information and examples can

be reviewed in (Mitchell 1997) and (Alpaydin 2010).

Supervised learning: Each element of a training dataset is given along with the

desired output expected from a classifier. ML algorithms use this a priori knowledge to

guide their learning processes and the output of ML classifiers must fall within the

predefined classes or ranges. Classification is the supervised learning task where the

allowed classifier outputs can only be from within a finite set of discrete class labels. A

Binary classification problem is one where only two classes are allowed. Regression is

the supervised learning task where the classifier is made of a continuous function and,

therefore, its output can be any real number within a range. An example of

classification is the problem of credit score (Hand 1998) where customers must be

assigned to a set of classes (such as low-risk, medium-risk, high-risk) so that a decision

on whether a loan is granted or not can be made based on customer data (income,

savings, age, financial history, etc.). If we are looking for a ML system that can predict

the price of a car based on its attributes (year, engine capacity, brand, mileage, etc.)

then we are facing a regression problem. In addition, cost-sensitive classification

(Elkan 2001) allows to take into account classification problems where different

misclassification errors incur different penalties such as, for instance, the cost of a false-

negative being much higher than the cost of a false-positive. See (Caruana and Mizil

2006) for further information on supervised learning.

Unsupervised learning: The training dataset is given with no class information

and ML algorithms are to discover classes, patterns or relations in the data with no

additional a priori knowledge. In statistics this is called density estimation. (Silverman

1986). Many unsupervised learning methods are based on the idea of clustering, where

the aim is to find clusters or grouping of inputs through some similarity or distance

metric. These include Independent Component Analysis (ICA), K-means, Factor

Analysis, etc. See (Ghahramani 2004) for further information.

Reinforcement learning: When the output of a system is a sequence of actions,

ML aims at optimizing the policy by which those actions are generated. In this sense,

10 Chapter 1 Introduction

ML methods should be able to learn from past good and bad sequences of actions in

order to improve its action generating policy. In many cases, actions produce rewards

or penalties through which actions and sequences of actions are assessed. Game playing

is a good example for applying reinforcement learning, where a move is undertaken if it

is part of a good policy for winning the game. Robot navigation is another good

example.

1.1.2.2 Supervised Learning

Figure 4 below shows the general set up for supervised machine learning, as described

in (Alpaydin 2010) and (Hastie, Tibshirani et al. 2009). Starting off from a dataset

containing the experience to be learned from, an ML Method (such as Artificial Neural

Networks (ANN), Support Vector Machines (SVM), Decision Trees, Bayesian

Networks, etc.) undergoes a three step process to produce an ML Model, containing the

results of the learning process so that it can be used in new prediction tasks.

1. Model Fitting: Encompasses the actual learning process that, starting from

example data and a set of parameters specific to the ML Method used produces

an ML Model. In general, this stage is performed many times for different sets

of parameters producing several ML Models.

2. Model Selection: Estimates the performance of different ML Models in order

to choose the best one.

3. Model Assessment: Having chosen a final model, it estimates its

generalization error on new data.

From a statistical point of view, data can be viewed as random variables C and D

representing the input vectors and target (desired) outputs respectively, related

through an unknown relation ��C� � D. An ML Model is then a function �E�C�
representing a prediction model estimated from training data F obtained from sampling C and D. The model �E�C� is our estimation of the unknown underlying function ��C�.
In classification tasks (such as the ones object of this thesis) an ML Model is referred to

as an ML Classifier (MLC) and so is mostly used throughout the rest of this text.

Chapter 1 Introduction 11

Figure 4: Elements of machine learning

A loss function is defined to assess model performance in the sense of the definition

of learning given in page 8 measuring the error between D � ��C� and �E�C�, denoted by

G HD, �E�C�I. Typical choices for G are:

G HD, �E�C�I � JHD � �E�C�IK �L����	�����MD � �E�C�M N����	�	�����O (1.3)

In fact, one of the contributions of this thesis is on the usage of AUC as a loss

function. Then, two error measures are defined and used at different stages. The

training error (also named empirical risk) is the average loss over the training sample

���PPPPP � 1�QGH�R , �E�=R�I9
RSB (1.4)

The test error, also known as generalization error or true risk, is the prediction

error over an independent test sample of the function �E�C� as estimated over training

data F.

���F � � TG HD, �E�C�I |FU
Where C and D are drawn randomly from their joint distribution (population).

In a data rich situation, the best approach to ensure independence of the three

stages depicted in figure 4 is to split the available data into three parts: a train set for

model fitting, a validation set for model selection and a test set for model assessment.

It is difficult to give a general rule for dataset splitting in this sense, since it is highly

influenced by the signal-to-noise ratio of the data and the dataset size. A typical split

might use 50% of data for model fitting (training), 25% for model selection (validation)

and 25% for model assessment.

ML Model 1

ML Model 2

ML Model n

ML Model i
ML

Model
Fitting

ML
Model

Selection

training error

training error

training error

ML
Model
Assmnt

ML Model i

test error

test set

validation set

train set

parameters
parametersparameters

ML Method

dataset

(1) (2) (3)

…

12 Chapter 1 Introduction

However, more than often there is not enough data for such split and the stages

above need to be approximated either analytically or by efficient sample reuse. In both

cases, the goal is to estimate the generalization error from the available data.

Analytical methods are mostly based on the observation that increased model

complexity tends to overfit training data while failing to generalize on test (unseen)

data as illustrated in figure 5, obtained by (Hastie, Tibshirani et al. 2009).

Figure 5: Test and train data vs. model complexity

Measuring model complexity is not straight forward. Using the number of

parameters required by a model as a metric has been a first choice, but this has shown

to be insufficient in many cases. In fact, rather than an absolute measure, it is thought

that model complexity should somehow match the complexity of the data in hand.

Different measures for model complexity have been devised in this sense, so that later

can be used to estimate the generalization error from training data and improve model

selection. Among them: the Bayesian Information Criterion (BIC) (Schwarz 1978), the

Akaike Information Criterion (AIC) (Akaike 1974), the Minimum Description Length

(MDL) (Rissanen 1983) and the VC (Vapnik-Chervonenkis) dimension (Vapnik 1998).

In addition, when data is scarce sampling methods can also be employed to reuse

available data more efficiently. Among them, cross-validation and bootstrapping are

widely used (Efron and Gong 1983; Kim 2009). In cross-validation, the generalization

error is directly estimated by splitting the data in to V parts repeating the process

above V times, each one using a different part of the split dataset for testing a model

that has been fitted by using the remaining V � 1 parts. Performance measures are then

model complexity

pr
ed

ic
ti

on
er

ro
r

+

+

-
-

test sample

training sample

optimal model complexity

Chapter 1 Introduction 13

averaged and a final estimate is given. Leave one out cross validation (LOOCV) refers

to cross validation when V is equal to the number of elements in the dataset, and it is

known to give an unbiased estimator of the generalization error (Efron 1983) at the

expense of high variance and high computational cost (one fitting process per dataset

element). For cross-validation, a widely used value for V is 10. On the other side,

bootstrapping methods sample the dataset for training and testing with replacement.

The following two sections describe briefly the multilayer perceptrons (MLPs) and

the support vector machines (SVMs) machine learning methods. A variety of training

algorithms for MLPs are used in this research to validate experimentally its theoretical

contributions. Then, together with SVMs, they are used extensively throughout the

technological contributions herewith presented and their practical application in breast

cancer CAD. Both MLPs and SVMs represent two significantly different approaches to

supervised learning (kernel based and biologically inspired) and there is a wealth of

literature and implementations upon which the work of this thesis can be solidly

founded.

1.1.2.3 Multilayer perceptrons

A multilayer perceptron (MLP) is a feed forward artificial neural network model

consisting of multiple layers of nodes in a directed graph which is fully connected from

one layer to the next one (figure 6). The first layer constitutes the one accepting the

input to the network and the last layer produces the output response. Nodes in

intermediate layers are neurons with a non-linear activation function (such as

tangential or sigmoid).

Figure 6: A mutilayer perceptron

input layer hidden layers output layer

OUTPUTINPUT

14 Chapter 1 Introduction

MLPs are trained with a variety of ML algorithms, being feed forward

backpropagation the most used one by far. As an example, table 2 below shows some of

the algorithms to train MLPs included in the Encog toolkit (Heaton 2010), a well

known implementation for ANNs.

Table 2: Some ML algorithms for multilayer perceptrons

Feed Forward Back
Propagation (FFBP)

Per-element error measures at each output neuron are used

to adjust neuron weights of the various layers of the MLP

backwards from the output layer to the input layer,

through a gradient descent method controlled by two user

definable parameters: the learning rate and the momentum.

Feed Forward Resilient

Propagation (FFRP)

A variation of FFBP where each neuron has its own set of

independent parameters to control the gradient descent

(similar to the FFBP learning rate and momentum) that

the algorithm adjusts automatically throughout the

training process

Feed Forward Simulated

Annealing (FFSA)

The neuron weights of the MLP are taken through several

“cooling” cycles. Starting at an initial top temperature, at

each step in each cooling cycle the MLP weights are

randomized according to the temperature (higher

temperatures produce higher random variability)

generating a new MLP. If the new MLP produces a lower

error on the whole dataset, it is kept to the next cooling

step. Otherwise it is discarded. Then, the temperature is

lowered one step and the process continues. The user

definable parameters it accepts are start-temperature, end-

temperature and number-of-cycles.

Feed Forward Genetic

Algorithms (FFGA)

The vector of MLP neuron weights is interpreted as a

chromosome and a population of MLPs with identical

structure and different weights is evolved through

generations that mate and cross over. MLPs

(chromosomes) yielding lower errors on the whole dataset

are considered as best suited and, therefore, with a higher

probability of survival and mating to the next generation.

The user definable parameters it accepts are population-

size, mutation-percent and percent-to-mate-with.

Chapter 1 Introduction 15

1.1.2.4 Support vector machines

Support Vector Machines (SVMs) can be seen as a learning technique that originated

from the theoretical foundations of statistical learning theory (STL) (Vapnik 1998) and

structural risk minimization (SRM) (Vapnik and Chervonenkis 1974). STL is a

theoretical approach to understanding learning and the ability of learning machines to

generalize, whereas SRM is an inductive principle to assess the choice of a learning

model (machine) seeking those ones whose complexity is appropriate to describe the

training data. In the simplest classification tasks, SVMs use a linear separating

hyperplane to create a classifier with a maximal margin to discriminate between two

classes (figure 7, right). When the classes cannot be linearly separated in the original

input space (figure 7, left) as happens in virtually all practical problems, the SVM

transforms it into a higher dimensional feature space where the classes might be

separated. This is achieved by using a non-linear map (W) such as a polynomial,

sigmoidal, radial basis functions, etc. as shown in figure 7. The resulting linear

hyperplane in the new higher dimensional feature space will be optimal in the sense of

being a maximal margin classifier with respect to training data. This maximality

condition is expected to convey good generalization properties on unseen (test) data.

Additional theoretical instruments are added to this set up to cope with outliers and

noise by allowing error bands when finding the maximal margin hyperplane.

 On the original input space (left) and

on the higher dimensional feature space once the feature mapping (W) has been applied (right). The circled

dataset elements are the support vectors.

φ

+

-

-

-

-
-

-
-
-

+

+

+

+ +

+
+

separating hyperplane

maximal margin

-

-

-

-

-

-

-
-

+

+

+

+
+

+

separating hyperplane

φ()

φ()

φ()

φ()
φ()

φ

φ

φ()

φ()

φ()

φ()

φ()

φ()

φ()

Figure 7: Separating hyperplanes on a Support Vector Machine.

16 Chapter 1 Introduction

Choosing the right mapping (W) or kernel function is therefore a key issue. The VC

(Vapnik-Chervonenkis) dimension (Vapnik 1998) is a property of a set of

approximating functions (such as polynomials, sigmoids or even artificial neural

networks) which can be interpreted as a measure of the complexity of a family of

functions with respect to a set of data points. Then, the ideas behind SRM are used to

choose, from a set candidate models (learning machines), the one whose complexity is

appropriate to describe the training data. With SVMs, this is done by minimizing both

the VC dimension and the training error to tune the parameters of the kernel function

chosen.

SVMs can be seen as part of a larger class of machine learning techniques called

kernel-based methods where this idea of kernel substitution is applied to a wide range

of data analysis methods, such as Fisher discriminant analysis or least squared

approaches. These methods are used for supervised learning, but kernel substitutions

can also be used in unsupervised scenarios such as kernel PCA (Principal Component

Analysis) and kernel CCA (Canonical Correlation Analysis). Refer to (Campbell and

Ying 2011) for detailed information.

1.1.3 eInfrastructures

The possibility offered by today’s computing resources to develop science and

engineering into new realms is well established. According to (NASA, NSF et al. 2008):

“Simulation Based Engineering and Science (SBE&S) today has reached a level

of predictive capability that it now firmly complements the traditional pillars of

theory and experimentation/observation. As a result, computer simulation is

more pervasive today – and having more impact– than at any other time in

human history. Many critical technologies, including those to develop new

energy sources and to shift the cost-benefit factors in healthcare, are on the

horizon that cannot be understood, developed, or utilized without simulation”

This, together with the fact that computing resources are becoming rapidly cheaper

and available, has drawn lots of efforts from all kind of institutions in the process of

integrating distributed and dispersed computing resources to build eInfrastructures

across the world with the aim of enabling science and engineering to use this new tool

as a fundamental part of their development, without which such development would

simply not exist.

Chapter 1 Introduction 17

The charts in figure 8 show the evolution of the supercomputers taking part in the

TOP500 (Top500 2011), which every six months lists the 500 most powerful

supercomputers of the world. Each chart shows, historically, the nature of the

supercomputers in the list according to different criteria.

Figure 8: Historical distribution of the TOP 500 by hardware and OS.

As it can be seen, the supercomputers taking part on the list are increasingly of

similar nature as more than 80% of the TOP 500 supercomputers are devised as cluster

architectures, interconnected with Infiniband or Gigabit Ethernet, with Intel or AMD

64bit processors, run by Linux operating systems. This means that computer centers

are becoming more a commodity, being built out of hardware widely available. It is

straight forward to infer that, outside the TOP 500, this picture lies at the root of the

current proliferation of computer centers of all sizes across the globe.

These two issues: the usage of computing resources as a fundamental part of

scientific and engineering developments and the proliferation of computer centers, is

18 Chapter 1 Introduction

one major reason behind the sustained funding and efforts to build eInfrastructures

happening in different parts of the world.

eInfrastructures are made available through a certain computing model and access

method. According to these, three major kinds of eInfrastructures are available today:

Grids, Clouds and Supercomputers. Each one of them is addressed to different kinds of

problems and users and is based on different underlying technologies, etc. as

summarized in table 3.

Table 3: Comparison of eInfrastructures

 Grids Clouds Supercomputers

Computing

Model

Batch uncomunicating jobs Virtual machines decoupled

from physical infrastructure

Batch intercommunicating

jobs

Access Method Middleware to federate

distributed storage and batch

queue systems

Virtualization Batch queue systems

Technologies gLite, Globus, UNICORE VMWare, E2C, OpenNebula,

Eucalyptus

SGE, PBS, LSF

Target

applications

Sequential algorithms

parallelizable by parameter

sweeps or data partitioning

Whatever can be encapsulated

within a virtual machine.

IaaS, PaaS, SaaS

Parallelizable algorithms

Current users Mostly academia Mostly industry Academia & Industry

1.1.4 Breast Cancer CAD

Machine learning methods produce models that can explain complex relationships in

the data and, therefore, they seem suitable for biomedical data analysis, often

consisting on high dimensional quantitative data provided by the state-of-the-art

medical imaging and high-throughput biology technologies. The general strategy relies

on expert-curated ground truth datasets that provide the categorical associations of all

available data samples, constituting the basis for supervised learning as explained in

previous subsections.

In statistical pattern recognition (Jain, Duin et al. 2000) a pattern is represented by

a set of d features, or attributes and viewed as a d-dimensional feature vector. In a

preprocessing stage, the pattern of interest is segmented out from the background, noise

is removed, the pattern is normalized, etc. Then, a set of features is

Chapter 1 Introduction 19

extracted/computed representing the segmented pattern and a classifier is trained to

partition the feature space. When an appropriate classifier has been found, then it can

be applied to features vectors to provide automatic classification of the pattern. This

process can be undertaken in a supervised or unsupervised manner, depending on the

nature of the problem in hand.

Breast Cancer CAD is a supervised pattern recognition task. With some ambiguity,

the literature uses the CAD term to refer both to Computer Aided Detection (CADe)

and the Computer Aided Diagnosis (CADx). While CADe is concerned with locating

suspicious regions within a certain medical image (such a mammogram), CADx is

concerned with offering a diagnosis to a previously located region. In general, starting

from a digital mammogram, the CAD process is performed through the following

stages, as illustrated in figure 9:

1. Region of Interest (ROI) selection: the specific image region where the

lesion or abnormality is suspected to be (which can be manual,

semiautomatic or automatically selected).

2. Image Preprocessing: the ROI pixels are enhanced so that, in general,

noise is reduced and image details are enhanced.

3. Segmentation: the suspected lesion or abnormality is marked out and

separated from the rest of the ROI by identifying its contour or a pixels

region. Segmentation can be fully automatic (the CAD system determines

the segmented region), manual or semi-automatic, where the user segments

the region assisted by the computer through some interactive technique such

as deformable models (Chenyang and Prince 1998) or intelligent scissors

(livewire) (Liang, McInerney et al. 2006).

4. Features Extraction: quantitative measures (features) of different nature

are extracted out from the segmented region to produce a features vector.

These might include representative measures of the image region statistics

(skewness, kurtosis, perimeter, area, etc.), shape (elongation, roughness,

etc.) and texture (contrast, entropy, etc.)

5. Automatic Classification: this last step is the one that finally offers a

diagnostic to be used as a second opinion, by assigning the vector of

extracted features to a certain class, corresponding to a lesion type and/or a

benignancy/malignancy status.

20 Chapter 1 Introduction

Figure 9: Breast Cancer CAD cycle

1.2 Motivation and objectives

The present PhD work emerges in the context of the IMED Project (for Development

of Algorithms for Medical Image Analysis) being carried out between INEGI (Instituto

de Engenharia Mecânica e Gestão Industrial, at University of Porto, Portugal) and

CETA-CIEMAT (Centro Extremeño de Tecnologías Avanzadas, Ministry of Science

and Innovation, Trujillo, Spain) since 2008 where a mammograms repository is being

built and deployed at FMUP-HSJ (Hospital de São João–Faculty of Medicine at

University of Porto, Portugal) and CAD methods are being developed by exploiting

the data collected in the repositories. The project is founded on preliminary works to

use Grid infrastructures for hosting medical image repositories (Calanducci, Ramos-

Pollan et al. 2008; Barbera, Ramos-Pollan et al. 2009), retrieving and analyzing data

(Ramos-Pollan and Barreiro 2009; Risk, Ramos-Pollan et al. 2009), but soon focused on

medical imaging for breast cancer to deliver software platforms that include graphical

user interfaces (for manipulating and classifying mammograms) and interfaces to Grid

storage and local resources for managing the image repository (Ramos-Pollan, Guevara

López et al. 2009). Through the IMED project, a pilot platform was deployed at FMUP

allowing:

1. ROI

SELECTION

2. IMAGE

ENHANCEMENT

3.

SEGMENTATION

4. FEATURE

EXTRACTION

5.

CLASSIFICATION

GUI based Image processing

algorithms

(pixel/bit based)

semiatomatic 19 features initially ANN Models

based classifiers

1-2

3

5

4

Chapter 1 Introduction 21

1. Feeding the data repository with scanned or digital mammograms and

patient clinical data

2. Having specialized radiologists segmenting regions in mammograms (through

a graphical user interface, see figure 9) and issuing a standardized diagnosis.

3. Building training datasets that include specialists’ assessment, patient

information and features extracted from segmented regions.

Confronted with the necessity to find well performing ML classifiers for the

constructed datasets and offer them to radiologists as second opinion assessment to be

used in their diagnosis and patient management decisions, the project team identified

the need to (1) systematically use ML for AUC optimization as required by the medical

environment within which the project is being developed, specially for multilayer

perceptrons as they are commonly used in medical image analysis and (2) exploit

eInfrastructures to perform massive explorations of ML classifiers configurations in an

agile manner as data was being generated by specialized radiologists. Soon, it became

evident that results in these aims could be beneficial for ML in general and therefore a

thesis project was devised to channel the work to be performed and herewith described.

This led to establishing the following objectives for this thesis:

Objective 1: to provide a general formulation that integrates AUC

optimization in existing ML algorithms in an affordable manner (with minimal

programming effort and impact in source code), and validate it with different

training algorithms on multilayer perceptrons based classifiers.

Objective 2: to enable the usage of eInfrastructures for (1) the exploration of

the search space of possible configurations of ML algorithms with different

datasets and AUC metrics, and (2) the validation of new ML algorithms and

classification methods (in particular, the multilayer perceptron based classifiers

mentioned in Objective 1).

Objective 3: to demonstrate the usefulness of the above results in the area of

breast cancer CADx

With respect to the IMED project, the results of this thesis constitute stage 5 as

described in figure 9, receiving as input the datasets containing the extracted features

and the diagnosis information given by the specialized radiologists through the usage of

the project tools; and providing as output a set of trained ML classifiers to be

22 Chapter 1 Introduction

integrated within the graphical workstations for delivering second opinion assessment to

radiologists.

1.3 Thesis statement

The above objectives and consequent work was therefore carried out to prove the

following hypothesis:

Hypothesis 1: Multilayer perceptrons can be improved through new AUC

based error measures, providing guidance to existing training methods to yield

better AUC classifier performance.

Hypothesis 2: Computing power harnessed by eInfrastructres enables

systematic exploration of search spaces of machine learning classifiers

configurations for given datasets, specifically biomedical datasets.

Hypothesis 3: Computing power harnessed by eInfrastructures enables

thorough validation of new classification methods.

Hypothesis 4: Given the above three hypothesis, it is possible to develop more

precise and robust breast cancer CADx methods.

1.4 Summary of contributions

The following theoretical and technological achievements were obtained as part of this

thesis work.

1.4.1 Theoretical contributions

Contribution 1: A new AUC based error definition (loss function) for machine

learning algorithms.

Contribution 2: An efficient error-bounded AUC approximation method with

arbitrary precision

Contribution 3: A methodology to integrate the AUC based error definition

and the AUC approximation procedure into existing multilayer perceptrons,

applicable to other ML methods.

Chapter 1 Introduction 23

1.4.2 Technological contributions

Contribution 4: A software framework for integrating third party machine

learning classifiers, enabling the exploration of the search space formed by the

possible parameters configurations of the model fitting processes implemented

by the integrated classifiers.

Contribution 5: A software framework developed upon industry standards

allowing (1) launching and maintaining colonies of Job Agents over

heterogeneous computing resources and (2) submitting jobs to the Job Agents

colonies through command line and API interfaces.

Contribution 6: An exploration methodology for the rational usage of the

software frameworks (produced in contributions 4 and 5) over local and

distributed computing resources.

Contribution 7: An application of the above contributions to search for well

performing ML classifiers for breast cancer CADx based on medical data

extracted from mammograms.

1.5 Thesis outline

This thesis is, therefore, structured as follows:

• Chapter 1 is this introduction, which aimed at providing a general

background for ROC analysis, machine learning, eInfrastructures and

breast cancer CAD. It established the context within which this thesis

was motivated, its objectives and summarized its contributions.

• Chapter 2 describes the current state of the art of the three specific

areas in whose intersection this thesis contributes: (1) the usage of ROC

analysis in machine learning, (2) machine learning for breast cancer

CAD and (3) the usage of eInfrastructures for scientific production.

• Chapter 3 details the contributions of this thesis to enable AUC

optimization in machine learning. In specific, it describes the algorithm

developed to efficiently approximate the AUC within user defined error

bounds and the method proposed to generalize AUC optimization in

multilayer perceptrons.

24 Chapter 1 Introduction

• Chapter 4 describes the two software frameworks constructed to enable

an efficient usage of eInfrastructures for machine learning research and

development. The Biomedical data analysis Toolkit (BiomedTK) allows

researchers to manage large number of configurations of ML classifiers

and train them with different ML algorithms integrating ROC analysis.

The Cloud Computing Colonies framework (C3) deploys colonies of Job

Agents into existing eInfrastructures enabling efficient usage of available

computing resources to applications such as BiomedTK.

• Chapter 5 shows a practical application of the contributions above in

the field of breast cancer CAD, using AUC optimization in machine

learning over eInfrastructures to find well performing ML classifiers to

provide radiologists an automated second opinion for their diagnosis and

patient management decisions.

• Chapter 6 finally summarizes the conclusions of this thesis outlining

future lines of work opened by its contributions.

Chapter 2 State of the Art 25

Chapter 2

2 State of the Art

The major theoretical contributions of this thesis are in the area of ROC analysis for

machine learning. From a technological perspective, the contributions of this thesis

enable the effective utilization of eInfrastructures for massive exploration of machine

learning methods and provide a practical application of these in breast cancer CADx.

This section, therefore, outlines current developments in these three areas.

2.1 ROC analysis and machine learning

ROC analysis is used in machine learning since the works of (Spackman 1989) and

(Bradley 1997). ROC curves are believed to be a more powerful tool than accuracy or

other threshold measures to assess classifier performance mostly due to the fact that

they constitute a richer object conveying more comprehensive information (Provost,

Fawcett et al. 1998; Ling, Huang et al. 2003). In particular, accuracy tends to ignore

skewed class distributions (more elements in one class than in another) and different

misclassification costs, as usually arise in real work problems. Take for example a

dataset with 1000 elements of which 900 are positive and 100 are negative. A naïve

classifier labeling all elements as positive will achieve 90% accuracy and yet it is

useless. In addition it seems that maximizing accuracy does not always result in AUC

optimization. The work of (Cortes and Mohri 2004) formalized this intuition:

minimizing the error rate (� 1 � �������) as the vast majority of ML methods do,

does not necessarily yield to AUC optimization. In addition, some results provide

26 Chapter 2 State of the Art

evidence that AUC optimization might even yield to better accuracy (Ling, Huang et

al. 2003). Although these results have still to be interpreted with caution when applied

to specific application domains, they do indicate that a generalized usage of ROC

analysis in ML might be beneficial. Since then, a few ML methods have been redesigned

for AUC optimization, but that is a lengthy and costly task and the majority of

techniques embedded within existing and newly developed ML methods aim at error

rate minimization, while ROC analysis remains mostly limited to using the AUC for

classifier comparison. Results of this thesis enable generalized AUC usage in the model

fitting stage in machine learning.

The following subsections offer a perspective on how ROC analysis is used in

different stages of machine learning, starting with a statistical view on ROC curves.

2.1.1 Obtaining ROC metrics

From a statistical perspective it is commonly assumed that the scores assigned by a

classifier or a diagnostic test to elements of a dataset are instantiations of two random

variables C> and C? for positive and negative elements respectively. Functions �> and �> denote the PDF and CDF of the distribution of C>, and analogously for C?. The

actual distributions �> and �? are unknown and the researcher is faced with the

problem to estimate the ROC curve and/or associated measures (such as AUC) based

on the available observations (classifier output of a dataset). Regular statistical

techniques are applied to obtain such estimates and literature is relatively extensive on

this subject, since many results come from medical areas where ROC analysis is being

used since earlier than in machine learning. Estimating ROC curves is also known in

the literature as curve fitting (Metz 1978; Centor and Schwartz 1985; Metz 2008) and,

as 2D objects, they are somewhat harder to estimate than scalar metrics like accuracy

or even AUC itself. As usual, estimation techniques existing in literature in this sense

can be classified into parametric, semi-parametric and non-parametric methods.

Non-parametric and semi-parametric methods

Non-parametric methods make no assumption about the underlying distributions of C>

or C?. Among them, empirical estimates are widely used for their simplicity and

validity for many real world sized datasets. The method illustrated in figure 2

(Fawcett 2006) provides a straight forward empirical estimate for the ROC curve and

Chapter 2 State of the Art 27

equation 1.1 constitutes a commonly used empirical estimate for the AUC. It is known

to be an unbiased estimator for the AUC and is based on the fact that the AUC is

equivalent to the probability of a randomly selected positive element to be ranked

higher than a randomly selected negative element (Hanley and McNeil 1982) which also

corresponds to the Mann-Whitney test (Mann and Whitney 1947) and the Wilcoxon

statistic (Wilcoxon 1945). Observe that, for AUC purposes, in equation 1.1 (page 6) it

is not the actual scores of each element what matters, but only their relative ranking.

Several authors (Zou, Hall et al. 1997; Lloyd 1998; Zou, Tempany et al. 1998; Lloyd

and Yong 1999; Stine and Heyse 2001) discuss refining the non-parametric approach to

provide a smoothed ROC curve using kernel based methods. In these approaches a

function family (kernel) such as a Gaussian is chosen for �E> and �E? as estimators of

the respective PDFs �> and �? to derive an analytical expression for AUC and the

ROC curve. Observe that in these cases, there is no assumption of the underlying

distributions of positive and negative elements (�> and �?) but there is a certain shape

(kernel) imposed to their estimating functions �E> and �E?. In certain conditions (Lloyd

and Yong 1999), kernel based non parametric estimators have been found to be better

than empirical ones in the sense of yielding asymptotically a lower mean squared error.

Parametric methods

A widely accepted parametric approach (Green and Swets 1966; Hanley 1996) is to

assume that C> and C? are independent normal variables C>~��Y>, Z>K� and C?~��Y?, Z?K�, referred to as binormality, and consequently the points of the ROC

curve and the AUC are obtained by using the sample means and standard deviations of

the positive and negative elements of the dataset in hand. This binormal model can be

estimated by several methods (Hsieh and Turnbull 1996; Metz, Herman et al. 1998; Zou

and Hall 2000) among others. In many cases, the normal assumption is untenable

directly from the dataset data, although ad hoc transformations might make its

application reasonable as suggested in (Goddard and Hinberg 1990; Reiser and Faraggi

1997) but those authors also provide examples where binormality fails.

Several authors proposed other parametric methods, assuming different distributions

or procedures such as, among others, gamma distribution, logistic regression, etc.

(Dorfman, Berbaum et al. 1997; Qin and Zhang 2003; Zou, Warfield et al. 2004)

28 Chapter 2 State of the Art

In any case, parametric or non-parametric, efficient computation of ROC curves or

AUC is essential if they are to be used in computing intensive contexts such as in

machine learning. This issue is also addressed in this thesis as a necessary stage to use

AUC in model fitting as mentioned previously.

2.1.2 Interpreting ROC curves

ROC curves provide a wealth of information about classifier performance and allow

researchers to make decisions and compare classifiers under different scenarios (class

skew, different misclassification costs, etc.), discriminating more conditions than regular

threshold based metrics (such as accuracy). The following paragraphs provide current

insight on the information that ROC plots can convey.

ROC space

The ROC space is defined in a two dimensional unit square with FPR (the false

positive rate) and TPR (the true positive rate) as = and � axes respectively (Metz

1978; Fawcett 2006). A calibrated classifier is one that produces a rank on dataset

elements where a specific threshold has been established to label them as positive or

negative. This is represented as a point in the ROC space such as points A, B, C, C’

and D in figure 10. Points along the horizontal diagonal represent classifiers performing

equivalently to a random guess and we seek classifiers above the diagonal and

approaching the �1,0� point. By inverting the class label assigned by any classifier its

position is mirrored around the random guess line (such as C and C’).

An uncalibrated classifier, giving a rank of dataset elements produces a curve in the

ROC space as explained in Section 1.1.1 containing all possible calibrated classifiers

given that rank as the calibration threshold is moved from 0 to 1. The AUC is then

taken as a single scalar to measure classifier performance without committing to a

specific threshold value. However different classifiers might yield similar AUCs and one

might favor one or other depending on specific problem conditions. As shown in figure

10, right, classifier containing point A seems to be a better choice on low FPRs than

classifier containing point B.

Chapter 2 State of the Art 29

Figure 10: ROC space with example classifiers (left) and ROC curves (right)

Another view on ROC plots can be found on introductory ROC texts such as the

ones mentioned above is the one depicted in figure 11, where points A and B represent

different thresholds set on the distributions of positive and negative elements. The solid

vertical line on the left represents point A and the figure shows how it partitions both

distributions producing a specific point in the ROC space. As the threshold moves from

A to B (shown as a vertical dashed line), the partition of the probability distributions

changes and, therefore, the TPR/FPR point moves along the ROC curve.

Figure 11: Example of elements distributions and classifiers in ROC space.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

always positive at (1,1)

always negative at (0,0)

FPR

T
P
R

perfect discrimination at (1,0)

A

B

C

C’

D

worse than random

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

FPR

T
P

R

A

B

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

FPR

T
P
R

A

B

TN

TP

FN

FP

A B

distribution of
positive elements

distribution of
negative elements

30 Chapter 2 State of the Art

ROC isometrics

Provost et al. (Provost, Fawcett et al. 1998) showed that classifier comparison and

selection based on accuracy has severe shortcomings with regard to class and error cost

distributions. To overcome these problems (Flach 2003) and (Provost and Fawcett

2001) consider class and error cost distributions as a parameter to performance metrics.

Evaluation with these metrics is named skew sensitive evaluation and a parameter

called skew ratio expresses the relative importance of negative versus positive classes in

terms of class and error cost distributions:

� � ���, ��� , �� �� �����
where ���, � and �� , �� denote the cost of false positive and false negative

respectively, and ���� and �� � is the probabilities of a positive and negative instance.

Empirically, they correspond to the proportion of positive and negative elements on the

dataset. Given a certain ����, ���� point on the ROC plot its expected accuracy cost

is defined as: ���� ∙ �1 � ���� ∙ �� , �� � �� � ∙ ��� ∙ ���, �. Then two points ���A, ��A�
and ���K, ��K� have the same performance if their expected accuracy costs are the

same, which results in the following condition

��K � ��A��K � ��A � ���, ��� , �� �� ����� � �
so � is the slope of the line joining both points which is then defined as an isometric

accuracy line. This is, all classifiers corresponding to points on the line have the same

expected accuracy cost when applied to datasets characterized by �. Observe that a

certain class distribution and misclassification cost correspond to a specific � value that

characterizes them, so that each set of class distribution and misclassification costs

defines a family of isometric accuracy lines. For instance, all datasets with the same

number of positive and negative elements and same misclassification cost for both of

them produce isometric accuracy lines with a slope of c=1. Lines closes to the top left

corner on the ROC space correspond to classifiers with higher expected accuracy cost.

Figure 12, left, shows isometric accuracy lines for c=1 and c=1/2 where it can be

observed how, in the case of c=1 accuracy corresponds to the non-discrimination line

(random guess).

Chapter 2 State of the Art 31

Figure 12: ROC isometrics for two class and cost distributions

Isometric accuracy is one of a family of ROC isometrics, where the ROC space can

be navigated or partitioned by lines representing equivalent classifiers regarding a

certain metric with respect to a certain class distribution and misclassification cost (�
value). For illustration purposes figure 12, right, shows the isometric precision lines

which produce a very different geometry of the ROC space. Observe how, for accuracy,

we would seek calibrated classifiers or ROC curves approaching the top left corner,

whereas for precision, we would be more interested on the left border of the ROC

space. All these issues are further discussed in (Fawcett and Provost 1997; Flach 2003;

Vanderlooy, Sprinkhuizen-Kuyper et al. 2006; Vanderlooy, Sprinkhuizen-Kuyper et al.

2009) among others.

2.1.3 ROC analysis for model evaluation

ROC analysis is primarily used in machine learning to evaluate and compare classifier

performance through the AUC and few works in machine learning make a

comprehensive use of ROC analysis in the sense described above. Apart from those

mentioned in previous section, some machine learning tasks applied to biomedical

problems use ROC analysis beyond AUC evaluation specially in medical imaging (Park,

Goo et al. 2004; Metz 2008; Park, Pu et al. 2009), which is one of the motivations

behind the work in this thesis.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

0.8

0.6

0.4

0.2

FPR

T
P
R

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

0.8

0.6

0.4

0.2

FPR
T

P
R

isometric acuracy lines isometric precision lines

c=1 (accuracy and precission values shown)

c=1/2

32 Chapter 2 State of the Art

Results in (Provost, Fawcett et al. 1998; Lachiche and Flach 2003; Ling, Huang et

al. 2003; Cortes and Mohri 2004; Rosset 2004; Vanderlooy and Hullermeier 2008)

suggest the usage of AUC over accuracy for measuring classifier performance mostly

due to the difficulties for accuracy to deal with class skews and misclassification costs.

In later years a few authors questioned the usage of AUC claiming that, in certain

cases, AUC performance might be misleading since it may introduce excessive noise or

greater variance in its results with respect to accuracy (Lobo, Jiménez-Valverde et al.

2008; Hanczar, Hua et al. 2010).

Application of commonly used evaluation techniques such as cross-validation and

bootstrap (as mentioned in Section 1.1.1.2) is a key issue to robustly use any

performance metric. Researchers have paid attention to the generation of confidence

intervals or bands for ROC curves so that it could be expected that, assuming test

examples are all drawn from the same fixed distribution, the model’s ROC curves

would fall within certain bands with probability 1 � [. These bands could be obtained

through different techniques. Vertical averaging (Provost, Fawcett et al. 1998) scans

successive FPR values and averages the TPR values of multiple ROC curves at that

FPR value (figure 13 left). Threshold averaging (Fawcett 2003), on the contrary,

freezes successive threshold levels and averages FPR and TPR values (figure 13 right).

Other approaches to find confidence bands for ROC curves can be found at (Reiser and

Faraggi 1997; Obuchowski 1998; Shapiro 1999; Jensen, Müller et al. 2000; Sorribas,

March et al. 2002; Macskassy, Provost et al. 2005; Vergara, Norambuena et al. 2008).

Figure 13: Confidence bands for ROC curves

These averaging techniques are then also used when applying cross-validation,

bootstrapping or other resampling techniques. In another technique, pooling,

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

FPR

T
P

R

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

FPR

T
P

R

Chapter 2 State of the Art 33

predictions made in each cross-validation round are pooled into one set and one

common AUC or ROC curve is calculated from it. For LOOCV (leave one out cross

validation) this is the only way to obtain them, although (Parker, Gunter et al. 2007)

showed that when considering AUC with small datasets many commonly used cross-

validation schemes suffered from substantial negative bias. To overcome this (Airola,

Pahikkala et al. 2009) and (Cortes, Mohri et al. 2007) proposed LPOCV (leave pair out

cross validation) discarding, at each cross-validation round a different positive-negative

element pair. However, LPOCV is only computationally feasible for small datasets since

requires one model fitting cycle per possible positive-negative pair. For a dataset with a 4 � 0 elements (positive and negative) LOOCV requires 4 � 0 cycles and LPOCV

requires 4 ∙ 0 cycles. Obtaining AUC estimates based on these principles can be

reviewed at (Bradley 1997; Airola, Pahikkala et al. 2009; Airola, Pahikkala et al. 2011).

2.1.4 ROC analysis for model construction

Mainstream classifiers are usually designed to minimize the classification error and may

not necessarily perform optimally when applied to ranking problems as shown by (Ling,

Huang et al. 2003; Cortes and Mohri 2004). Furthermore, (Ling, Huang et al. 2003)

suggests that AUC optimization may also result in better accuracy. This has led to a

certain set of efforts to redesign existing algorithms and develop new ones aimed at

AUC optimization instead of error rate minimization.

The empirical estimate of the AUC, or the Wilcoxon statistic, as defined in equation

1.1 for dataset � � �7 ∪ �9 with respect to the ranking produced by classifier * is

recalled here:

�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9|

Several approaches for AUC optimization apply some gradient descent method. One

of the major problems is that the indicator function ,$	' (usually modeled as the

Heavyside step function) is not differentiable and a continuous approximation is often

adopted such as the sigmoid function or a Chebyshev approximating polynomial.

However there are two problems associated with this approach. On one side, this

formulation is non linear with respect to the learning parameters and this requires an

iterative search to locate the solutions. Consequently, different initializations (such as

the random weights initially assigned to any ANN) may end up in different local

solutions, hence incurring laborious trial and error efforts to select an appropriate

34 Chapter 2 State of the Art

setting. The second problem is that the objective function could be ill-conditioned to

the numerous local plateaus resulting from summing the flat regions of the sigmoid and

step-like approximation and, therefore, a lot of search iterations could be spent in

making little progress at locally flat regions (Yan, Dodier et al. 2003; Herschtal and

Raskutti 2004; Rakotomamonjy 2004; Calders and Jaroszewicz 2007; Castro and Braga

2008; Toh, Kim et al. 2008). Different approaches have been proposed to circumvent

these problems, mostly by using a different approximation technique such as through a

quadratic approximation (Toh, Kim et al. 2008) or kernel based methods (Faraggi and

Reiser 2002; Marzban 2004) which require either the assumption of an underlying

distribution for the data or additional smoothing functions.

Complementing gradient descent methods, other learning techniques have been

redesigned or developed to allow AUC optimization. Among them, SVMs

(Rakotomamonjy 2004; Brefeld and Scheffer 2005; Joachims 2005; Steck 2007;

Pahikkala, Airola et al. 2008), heuristic search and decision trees (Mozer, Dodier et al.

2001; Ferri, Flach et al. 2002; Yan, Dodier et al. 2003; Herschtal and Raskutti 2004),

linear programming (Ataman, Street et al. 2006), regression learning (Waegeman, De

Baets et al. 2008) and others approaches based on feature selection (Wang and Tang

2009), pair wise comparison (Marrocco, Duin et al. 2008) or by similarity with other

problems (Clémençon, Vayatis et al. 2009) with relative success. Finally, in a similar

aim to accuracy boosting algorithms such as AdaBoost (Freund and Schapire 1995),

boosting for AUC has received particular attention recently as a method to combine

underperforming classifiers (Long and Servedio 2007; Robilliard, Marion-Poty et al.

2007; Moin 2009; Komori and Eguchi 2010).

However, the mainstream techniques and accumulated methods for machine learning

have been or are being designed for error rate minimization. This might be partly due

to the fact that AUC (and ROC analysis in general) has not yet completely settled

within the ML community, but also to the fact that redesigning the vast amount of

existing ML methods is an endeavor requiring considerable effort, as pointed out by

(Ling, Huang et al. 2003). It is in this context that the theoretical contributions of this

thesis can be valued, providing a method to integrate AUC optimization into existing

algorithms with reasonable effort.

Chapter 2 State of the Art 35

2.1.5 ROC analysis for model selection

When ROC analysis is used in machine learning, the empirical AUC (see page 26) is

the metric largely used for model evaluation and selection. Some variations over the

AUC have been proposed (Wu and Flach 2005; Wu, Flach et al. 2007; Chatelain,

Adam et al. 2010) exploiting the richness of ROC space as shown in Section 2.1.2. An

increasingly referenced method is the ROC convex hull (ROCCH) (Provost and

Fawcett 2001) based on accuracy isometrics. ROCCH builds on the observation that

two different calibrated classifiers (points in the ROC space) may perform differently

for different class distributions and misclassification costs. Figure 14 left illustrates this.

Classifier A outperforms (better accuracy) classifier B for a dataset with, for instance,

the same number of positive and negative elements and the same misclassification costs

for each (� � 1) as shown by the isometric accuracy line passing by classifier A, but

leaving B below it. However, for datasets characterized by � � 1/2	 (such as, for

instance, the ones having twice as many positive elements as negative ones at the same

misclassification cost), classifier B outperforms A, as shown by the isometric accuracy

line passing by B.

Figure 14: Isometric accuracy classifier comparison (left) and convex hull (right)

Given a set of classifiers (such as in figure 14 right) the slope of the isometric

accuracy line joining them defines what kind of datasets that for which them both

perform equal. Classifiers lying south east of that line perform worse. The ROCCH is

then defined as the minimum set of segments of isometric accuracy lines joining

classifiers so that all classifiers either lie on the convex hull or below it, as shown in

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

FPR

T
P
R

c=1/2

c=1

A

B

0.0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

FPR

T
P
R

A

B

C

D

E

36 Chapter 2 State of the Art

figure 14 right. As proven in (Provost and Fawcett 2001) any classifier below the

convex hull is suboptimal since for any class distribution and misclassification cost (this

is, for any �) there is always another classifier performing better, such as in the case of

classifiers D and E in figure 14. Classifiers on the ROCCH are optimal in the sense that

they are the ones performing the best for certain class distributions. The ROCCH can

also be useful for sensitivity analysis. Imprecise information about class distribution or

misclassification cost results in a range of slopes of isometric accuracy line passing by

each optimal classifier, some of those might change its optimality condition.

2.1.6 Summary of references

Table 4: Summary of references for ROC analysis in machine learning

Introductory (Spackman 1989) (Bradley 1997) (Metz 1978) (Fawcett 2006) (Fawcett 2003)

Non & Semi

parametric estimation

(Mann and Whitney 1947) (Hajian-Tilaki and Hanley 2002) (Hanley and McNeil 1982)

(Zou, Hall et al. 1997) (Lloyd 1998) (Zou, Tempany et al. 1998) (Lloyd and Yong 1999)

(Stine and Heyse 2001) (Metz 2008) (Fawcett 2006)

Parametric estimation (Green and Swets 1966) (Hanley 1996) (Hsieh and Turnbull 1996) (Metz, Herman et al.

1998) (Zou and Hall 2000) (Goddard and Hinberg 1990) (Reiser and Faraggi 1997)

(Faraggi and Reiser 2002) (Dorfman, Berbaum et al. 1997) (Qin and Zhang 2003) (Zou,

Warfield et al. 2004)

ROC space and

isometrics

(Metz 1978) (Fawcett and Provost 1997) (Provost, Fawcett et al. 1998) (Provost and

Fawcett 2001) (Flach 2003) (Fawcett 2006) (Vanderlooy, Sprinkhuizen-Kuyper et al. 2006)

(Vanderlooy, Sprinkhuizen-Kuyper et al. 2009)

Model evaluation and

confidence bands

(Fawcett 2003) (Reiser and Faraggi 1997) (Obuchowski 1998) (Shapiro 1999) (Jensen,

Müller et al. 2000) (Sorribas, March et al. 2002) (Macskassy, Provost et al. 2005) (Parker,

Gunter et al. 2007) (Airola, Pahikkala et al. 2009) (Cortes, Mohri et al. 2007) (Bradley

1997) (Airola, Pahikkala et al. 2011)

AUC vs. accuracy (Provost, Fawcett et al. 1998) (Lachiche and Flach 2003) (Huang and Ling 2005) (Ling,

Huang et al. 2003) (Ling, Huang et al. 2003) (Cortes and Mohri 2004) (Rosset 2004)

(Vanderlooy and Hullermeier 2008) (Lobo, Jiménez-Valverde et al. 2008) (Hanczar, Hua et

al. 2010)

AUC optimization

methods

(Yan, Dodier et al. 2003) (Herschtal and Raskutti 2004) (Rakotomamonjy 2004) (Calders

and Jaroszewicz 2007) (Toh, Kim et al. 2008) (Faraggi and Reiser 2002) (Marzban 2004)

(Brefeld and Scheffer 2005) (Joachims 2005) (Steck 2007) (Pahikkala, Airola et al. 2008)

(Mozer, Dodier et al. 2001) (Ataman, Street et al. 2006) (Ferri, Flach et al. 2002)

(Waegeman, De Baets et al. 2008) (Castro and Braga 2008) (Wang and Tang 2009)

(Marrocco, Duin et al. 2008) (Clémençon, Vayatis et al. 2009) (Long and Servedio 2007)

(Robilliard, Marion-Poty et al. 2007) (Moin 2009) (Komori and Eguchi 2010)

Model selection and

convex hull

(Provost and Fawcett 2001) (Wu and Flach 2005) (Wu, Flach et al. 2007) (Chatelain,

Adam et al. 2010)

Chapter 2 State of the Art 37

2.2 eInfrastructures

According to (FECYT 2004) eScience is understood as the set of scientific activities

developed by using distributed resources (mainly computing power and storage

capacity) accessible through high speed communications networks. Although

supercomputers have been around already for a while, it is not until the end of the

1990s than a growing notion of a unified distributed utility computing infrastructure

started to settle, encouraged by the spreading of increasingly faster communications

networks and finer grained computer simulated research that was attained as

computing resources became more affordable and more powerful. This notion of

eInfrastructure, or Cyberinfrastructure (Atkins, Droegemeier et al. 2003; Newman,

Ellisman et al. 2003; Hey and Fox 2005), was initially embraced by governments and

scientific institutions who fostered their birth and funded their development. Today, as

new technological developments occurred during the last decade, different kinds of

eInfrastructures populate the world, in terms of their technological foundation,

organizational reach, geographical distribution, targeted users, etc.

eInfrastructures can arguably be categorized into three kinds. Supercomputers

evolved from specially designed state-of-the-art mainframe machines from decades ago,

to large computer clusters of highly interconnected homogeneous CPUs.

Supercomputers are mostly suited for HPC (High Performance Computing)

applications, exploiting parallelism inherent within algorithms’ implementations by

using high speed inter CPU communication, such as through MPI (MPI-Forum 2009)

or shared memory. Grids are federations of computer clusters, aggregating large sets of

heterogeneous computing resources and providing appropriate mechanisms to ensure

security and federation. Grids are suited for HTC (High Throughput Computing)

applications, based on sequential algorithms parallelizable by parameter sweeps or data

partitioning. Due to their academic and historic origins, both supercomputers and

Grids are rooted in batch queued execution systems to regulate access to CPU cycles.

Finally, Clouds exploit recent advancements in virtualization technology to decouple

service provisioning from the physical resources. Services or application are

encapsulated within virtual machines which can then be deployed on whatever physical

machines are available. Clouds are not a priori tied to any particular kind of

application or computing model, and it is the actual functionality encapsulated within a

certain population of deployed virtual machines and the specifics of the infrastructure

38 Chapter 2 State of the Art

provider what determines the final capabilities offered to the user. Virtual machines

may contain packaged applications, databases, services or even Grid components.

2.2.1 Grids

The term “Grid” was coined in the mid-1990s to refer to a distributed computing

infrastructure for advanced science and engineering. In (DeRoure, Baker et al. 2003)

and (Foster and Kesselman 2004) three different stages in the evolution of Grid

technologies are sketched. First generation Grids deploy proprietary systems in order

to connect high performance supercomputers between scientific institutions. Second

generation Grids (Foster 2001) focus on middleware technology to overcome the

heterogeneity and scalability challenges of distributed systems, mostly built over

Internet protocols. Third generation Grids (Foster 2005; Hey and Fox 2005) enlarge the

standardization process of Grid technologies and their application domains. They are

designed according to the principles of service oriented architectures (SOA) and make

use of the Web Services technology stack.

Architecture of Grids

Second generation Grids’ resources architecture is organized in the following layers

(Foster 2001). The Fabric Layer includes protocols and interfaces that provide

sharing facilities of logical resources such as CPU cycles, storage capacity, networks and

sensors. The Connectivity Layer defines basic Grid specific network protocols,

including Internet-based communications protocols to exchange messages with resources

provided by the fabric layer. Furthermore, authentication protocols ensure controlled

resource sharing. The Resource Layer consists of protocols for a secure negotiation,

sharing, initiation, monitoring, control, accounting and payment of resources. Protocols

of this layer are only responsible for local resources. The Collective Layer defines

protocols and services for global resource management. It provides functions and

interaction protocols required for collections of distributed resources. The Application

Layer comprises a variety of Grid enabled user applications that benefit from the

resources of the underlying Grid infrastructure.

At its core, a Grid is made of a federation of many Resource Centers (RC) and a set

of central coordinating services hosted by one or more Resource Operation Centers

(known as ROCs in middleware terminology, but denoted as RO Center, in this thesis

Chapter 2 State of the Art 39

to avoid confusion with the acronym for Receiver Operating Characteristic). RO

Centers take care of, for instance, maintaining a central catalogue of files stores

throughout the federation, or to determine which RC is the most appropriate one to

run a computing job required by a user (according to its hardware, free resources,

applications available, etc.) A Grid federation is managed through middleware, a set of

software components through which a federation offers its services. For instance, a RO

Center hosts the middleware services allowing forwarding jobs to the most appropriate

RC, gathering its results, storing them and making them available to users, etc. It also

may guarantee file replicas across different RCs so that they are physically close to job

execution, authenticate users through digital X.509 certificates, coordinate the

execution of jobs requiring resources from several RCs, etc. Figure 15 shows a sample

Grid federation with typical middleware components such as the Computing Element

(CE, regulating Grid access to local computing power), the Storage Element (SE,

regulating access to Grid local storage resources), the User Interface (UI, through which

user interact with all Grid resources, local or remote), the Virtual Organization

Membership Service (VOMS, determining users’ membership to different VOs), the

Workload Management System (WMS, distributing jobs to appropriate CEs), the File

Catalog (LFC, accounting for the SEs where files of the federation are stored and

replicated), etc.

40 Chapter 2 State of the Art

Figure 15: Example Grid federation

Grid resources are made available to users and applications through the notion of

Virtual Organizations (VO) (Foster 2001). A VO represents users of a certain

community, scientists participating in the same experiment, project or disciple. Within

a Grid federation, a certain VO negotiates with RCs the resources the community

behind needs to satisfy its computing and storage requirements, aggregating resources

offered by each RC. Each VO determines and manages, following their own criteria,

which users belong to the VO, and may negotiate resources across many RCs and Grid

federations. This is, each VO has its own organization and rules according to the

culture, procedures, tradition, etc. of the user community it represents. In general, a

user is granted access to Grid resources of a federation according to the VO he belongs

to.

CE

SE

WMS

BDII

VOMS

LFC

UI

Resource Center A (RO Center)

CE

SE
UI

Resource Center B

CE

UI

Resource Center C
CE

SE

UI

Resource Center D

Storage server

Computing server (CPUs)

SE Middleware component

User Interface

High speed network

Resource distribution for 3 VOs

Chapter 2 State of the Art 41

Beyond resources, architecture for third generation Grids is standardized mostly by

OGSA, the Open Grid Services Architecture (Global-Grid-Forum 2005) that provides a

framework to expose Grids’ resources through Web services. For instance, it includes

execution management services, monitoring and discovering services, data transport,

replication services, etc. By offering a Web services exposure (beyond artisanal

command line utilities), OGSA provides the means to build client applications that

consume Grid provided resources.

World federations, standardization and middleware

Today, different transnational Grid federations are being built across the globe,

supported by middleware stacks increasingly integrated and standardized that enable

the architectures just described. In Europe, the European Grid Infrastructure (EGI

2011) integrates the National Grid Infrastructures (NGIs 2011) across the continent to

create a federated pan-European Grid resource, gathering today more than 300 resource

centers and 70’000 CPU cores. Created in February 2010, it culminates the series of EU

funded projects (DataGrid, EGEE I, II and III) starting in 2001 to guarantee the long-

term availability of a generic eInfrastructure for all European research communities and

their international collaborators. In the US, the TeraGrid integrates high-performance

computers, data resources and tools, and high-end experimental facilities around the

country. Currently, TeraGrid resources include more than 2.5 petaflops of computing

capability and more than 50 petabytes of online and archival data storage, with rapid

access and retrieval over high-performance networks. Other Grid federations can be

found in Latin America (IGALC 2011), India (EUIndiaGrid 2011), Japan (NAREGI

2011), etc.

GT4, the Globus Toolkit 4 (Foster 2005), is the reference middleware

implementation of the OGSA model and constitutes the foundation of many

middleware distributions. In Europe, the gLite middleware (gLite 2011), based on GT4,

was produced by the EGEE projects and is deployed on most of EGI sites. Other

middleware distributions were also produced through publicly funded projects such as

UNICORE (UNICORE 2011) or ARCO (NordUGrid 2011) among others, and a

comprehensive effort to produce a unified middleware distribution is being done in the

context of the European Middleware Initiative project (EMI 2011)

However, in spite of having been around for the last 10 years, Grids are still far from

achieving the initial expectations of penetration and dissemination throughout scientific

42 Chapter 2 State of the Art

disciplines and business domains, remaining mostly within the academic area. Among

others, one of the reasons behind this is the difficulty of usage of the middleware,

constituting a steep learning curve and cost barrier for new communities not having the

tradition nor the resources to work with Grids (Kacsuk 2007; Schwiegelshohn, Badia et

al. 2009; InsightCorp 2011). In fact, the lifecycle through which new applications are

adapted to use existing middleware is long and slow and this has caused even the more

privileged scientific communities (such as High Energy Physics) to develop their own

particular tools and methods to reduce usage costs and ease up their users’ lives, such

as, among others, DIRAC (DIRAC 2010) and AliEn (Bagnasco and et al. 2008) used

respectively by the CERN LHCb and ALICE experiments.

2.2.2 Clouds

Since the mid 2000’s, with the increasing maturity of virtualization technology, the

possibility to decouple the physical infrastructure from the computing service provided

became a feasible reality. Services, applications, databases, etc. are then encapsulated

within virtual machines which could now be deployed on a “cloud” of physical resources

(figure 16). When physical machines are added or removed from the cloud, or even

when they fail, cloud middleware relocates the virtual machines transparently and

automatically without disturbing the service. Although many definitions have been

proposed for the notion of a Cloud both in academia and industry, the one provided by

(Mell and Grance 2009) seems to include the key elements commonly used:

“Cloud computing is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction”

This definition then refers to a set of characteristics, service and deployment modes

for Clouds. The characteristics are the following: on-demand self-service (computing

resources are provisioned automatically according to user demand), broad network

access (including usage by different client hardware platforms such as servers, laptops,

PDAs, etc.), resource pooling (resources from providers are pooled to/from different

physical and virtual locations in a transparent manner to end user), rapid elasticity

(capabilities are quickly provisioned, scaled out and scaled in, appearing to be

unlimited to the end user) and measured service (providers optimize their resources

monitoring and leverage them according to demand).

Chapter 2 State of the Art 43

Resources capabilities can then be serviced through different models according to the

end object consumed by the user: Software as a Service (SaaS, the object provisioned

are software applications or components), Platform as a Service (PaaS, provisioning

specific platforms, such as for development, etc.) and Infrastructure as a Service (IaaS,

provisioning specific computing resources, such as virtual machines, storage capability

or network bandwidth). Applications, platforms or, sometimes operating systems,

encapsulated within a virtual machine are often denoted as virtual appliances,

emphasizing the fact that the can be used and disposed off the shelve.

Figure 16: Cloud resource provision through virtualization

Different Cloud platforms are currently available being Amazon EC2 (Amazon 2011)

arguably the pioneer, but also Google App Engine (Google 2011), Microsoft Azure

(Microsoft 2011), IBMs Blue Cloud (IBM 2011), Nimbus (NIMBUS 2011), Open

Nebula (OpenNebula 2011), etc. See (Rimal, Eunmi et al. 2009) for a comprehensive

review. Across the different cloud providers, virtualization is the key technology being

used, decoupling the final service provisioning (whether SaaS, PaaS or IaaS) from the

physical infrastructure and enables achieving many of the previously mensioned

characteristics by managing the load of virtual machines over the physical

infrastructure. This way, the physical resources do not need to be prepared in advance

to host a user demand as long as they can host the virtual machines servicing it.

Cloud Middleware
Physical
Infrastructure

Virtual
Infrastructure

Users
Applications
Communities

Physical machineVirtual machine

44 Chapter 2 State of the Art

2.2.3 Using eInfrastructures

Grids have mostly remained in the academic area, whereas Clouds seem to gain terrain

in industry. However a few issues still remain unsolved in both worlds. One such issue

is interoperability, which refers to the capability of different eInfrastructures to

seamlessly interchange resource provisions to comply with a user demand (such as user

jobs being transferred between different Grid federations or virtual machines between

different Clouds) and remains still unsolved both in Grid and Cloud systems

(Parameswaran and Chaddha 2009). This is mostly an organizational issue since,

technically, interoperability is a standardization issue. Several architectures,

standardization bodies and working task forces have been established to seeking

solutions to this problem such as (CCIF 2011; Cordys 2011; UnifiedCloud 2011) just to

mention a few. However, their success depends mostly on the degree on consensus

achieved between the different stakeholders in the public and private sectors (resource

providers, users, service providers, developers, etc.)

Another issue is cost of usage, in terms of effort required to efficiently exploit

eInfrastructures for a problem in hand. In Grids, this refers to the percentage of jobs

failing due to middleware and non-application specific causes (job reliability), and the

overhead in job execution due to middleware handling of jobs (job latency). Depending

on middleware and data center installations Grids typically show job latencies in the

order of several minutes, see (Tristan, Diane et al. 2007; Glatard, Zhou et al. 2009). It

is also known that job failure rates are significantly high ranging between 5% of 25% of

submitted job failures due to middleware reasons (Hui, Groep et al. 2006), although

this is improving in latest releases. All this requires users and administrators to develop

their own management tools (for resubmitting failed jobs, data integrity checking, job

checkpointing, etc.) to ensure their scientific production gets correctly executed and the

infrastructure can be managed (Ramos-Pollan, Callejon et al. 2007), raising

considerably the cost (effort) of using and maintaining Grids and therefore slowing its

adoption in a wide sense.

2.3 Machine learning classifiers for breast cancer CAD

There are two types of examinations performed using mammography: screening

mammography and diagnostic mammography. Screening allows detecting breast cancer

in an asymptomatic population and diagnostic aims to examine a patient who has

Chapter 2 State of the Art 45

already demonstrated abnormal clinical findings (Ng KH 2003). Double reading of

mammograms (two radiologists read the same mammograms) (Brown, Bryan et al.

1996) has been advocated to reduce the proportion of missed cancers, but the workload

and cost associated are high. With the support of computer-aided detection and/or

diagnosis (CAD) systems only one radiologist is needed to read each mammogram

rather than two.

2.3.1 Mammography classification standards

Mammography is a radiological diagnostic method which relies on an X-ray

examination of breasts and is a process involving the use of low-dose amplitude-X-rays

(usually around 0.7 mSv). The aim of mammography is to detect very small

abnormalities in the breast tissue before they develop into breast cancer, typically

through detection of characteristic masses and/or microcalcifications. Mammography is

a very sensitive diagnostic method that requires very precise equipment and qualified

medical personnel to perform the examination (Kowalik and Konstanty 2010)

The BIRADS Atlas (D'Orsi, Bassett et al. 2003), for Breast Imaging-Reporting and

Data System, developed by the American College of Radiology, is a quality assurance

tool originally designed for use with mammography widely used in the community. In

day-to-day usage, the term BIRADS refers to standardized mammography assessment

categories and lesion descriptions. BIRADS defines nine categories typically assigned by

a radiologist when interpreting a mammogram. These categories are listed in table 5.

Table 5: BIRADS categories for standardized diagnostic assessment

BIRADS-0 Incomplete, additional evaluation required

BIRADS-1 No findings. 0% possibility of cancer

BIRADS-2 Benign findings. 0% possibility of cancer

BIRADS-3 Probably benign findings, further control after months needed. 0% to 3% chance of cancer

BIRADS-4 Doubtfully malign finding

BIRADS-4.a Low suspicious of malignancy. 3 to 49% chance of cancer

BIRADS-4.b Medium suspicious of malignancy. 50% to 89% chance of cancer

BIRADS-4.c Medium-high suspicious of malignancy. 90% to 94% hance of cancer

BIRADS-5 High suspicious of malignancy. >95% chance of cancer

BIRADS-6 Malignancy confirmed

46 Chapter 2 State of the Art

Transversally to this, mostly four kinds of lesions are of interest in the breast cancer

CAD field as shown in examples in figure 17.

Figure 17: Common kinds of mammography lesions

These lesions are defined by the BIRADS Atlas as follows:

Masses: A Mass is a space occupying lesion seen in two different projections. If

a potential mass is seen only in one projection it should be called an

“Asymmetry” until it is three-dimensionally confirmed.

Calcifications: Calcifications that can be identified as benign on

mammography are typically larger coarser and more easily seen than malignant

calcifications. Calcifications associated with malignancy (and many benign ones

as well) are usually very small and require often the use of a magnifying class to

see them.

Architectural Distortion: The normal architecture is distorted with no

definite mass visible. This includes thin lines or spiculations radiating from a

point and focal retraction or distortion of the edge of the parenchyma.

Architectural distortions can also be associated with a mass, asymmetry or

calcifications. In the absence of appropriate history of trauma surgery,

masses calcifications

architectural distorsions assimetries

Chapter 2 State of the Art 47

architecture distortion is suspicious for malignancy or radial scar and biopsy is

appropriate.

Asymmetries: Asymmetric breast tissue is judged relative to the

corresponding area in the contralateral breast and represents a greater volume

of breast tissue over a significant portion of the breast. There is no mass,

distorted architecture or associated suspicious calcifications. Global asymmetric

breast tissue usually represents a normal variation, but may be significant when

it corresponds to a palpable abnormality.

BIRADs further characterizes these lesions by providing more specific criteria

(shape, texture, margins, etc.) and standardizes notation for location, description, etc.

In fact, usually calcifications are easier to detect (either manually or automatically) for

their small determined size and high contrast.

2.3.2 Computer Aided Detection/Diagnosis

Developing CAD schemes has been attracting rapidly growing interest in biomedical

imaging research field in the past two decades, aiming to assist clinicians (radiologists,

pathologists, etc.) more accurately, consistently and efficiently to read and understand

biomedical images. With some ambiguity, the literature uses the CAD term to refer

both to “Computer-Aided Detection” (CADe) and the “Computer Aided Diagnosis”

(CADx). While CADe is concerned with locating suspicious regions within a certain

medical image (such a mammogram), CADx is concerned with offering a diagnosis to a

previously located (identified/segmented) region. The applied work presented in this

thesis is focused on the CADx area.

Breast cancer CAD methods/systems have been applied to detect suspicious lesions

depicted on mammography images. After identifying initial candidates for the targeted

suspicious lesions, most schemes use a pre-trained multi-image-feature based machine

learning classifier to classify these candidates into two groups of positive (malignant)

and negative (benign) tissue detections. In these systems a radiologist uses the output

from computerized analysis of medical images as a “second opinion” in detecting and

classifying lesions with subsequent diagnostic and patient management decisions

(Cheng, Cai et al. 2003; Cheng, Shi et al. 2006; Yoon 2007; Dehghan and Abrishami-

Moghaddam 2008; Giger and Suzuki 2008; López, Novoa et al. 2008; Paquerault, Hardy

et al. 2010).

48 Chapter 2 State of the Art

At present, developed CAD systems have been mainly focused onto the detection of

lesions associated to both microcalcifications and masses, but methods with better

performance are related to microcalcification detection. Clusters of microcalcifications

are an important indicator of breast cancer appearing in 30%–50% of diagnosed cases

(Kopans 2006). Microcalcification detection methods could be divided into the following

categories: image enhancement, stochastic modeling, multiscale decomposition and

machine learning (ML). The basic idea behind image enhancement is to improve the

contrast of microcalcifications, and then apply a threshold to separate them from their

surroundings. Successful approaches include filtering (Nishikawa, Giger et al. 1995),

noise and histogram equalization (McLoughlin, Bones et al. 2004; López, Novoa et al.

2008), and region grouping (Wei, Fei et al. 2002). Its main advantages are its

simplicity, ease implementation and efficiency. Stochastic modeling exploits statistical

differences (skewness, kurtosis, etc) between microcalcifications and their surroundings

(Gurcan, Yardimci et al. 1997). Stochastic modeling based on Markov random fields

(Casaseca-de-la-Higuera, Arribas et al. 2005) demonstrated advantages to characterize

the spatial intensity distribution of an image, but estimating a proper prior distribution

remains a challenging task. Multiscale decomposition makes use of differences in

frequency content among microcalcification spots and their surrounding background

and it is generally used as feature extraction technique. Wavelet transforms

decomposition, with higher regularity, yield improved performance for multiscale

decomposition techniques in detection and segmentation of clustered microcalcifications

(Lemaur, Drouiche et al. 2003). Combined methods such as filter banks associated to a

Bayes classifier (Nakayama, Uchiyama et al. 2006) and wavelet transform associated to

hidden Markov random fields (Regentova, Zhang et al. 2007) demonstrated to be

satisfactory.

2.3.3 Machine learning for breast cancer CAD

Machine learning based detection/diagnosis methods for supporting semi-automated or

automated breast cancer CAD systems have been developed with minor or major

degree of success in the last two decades, seeking to modify the habitually qualitative

diagnostic criteria into a more objective quantitative feature classification task. ML

classifiers based on ANN (Songyang and Ling 2000), evolutionary genetic algorithms

(Jiang, Yao et al. 2007) and support vector machines (SVM) (Singh, Kumar et al.

2006) have been demonstrating high accuracy, specially in detecting microcalcifications.

Other approaches include naïve Bayes classification methods, such as in (Butler, Webb

Chapter 2 State of the Art 49

et al. 2003), distinguishing between the diffraction patterns of normal (20 instances)

and cancerous tissue (22 instances) using as input a dataset of computed features

vectors from X-ray mammography scatter images (above 90% accuracy); a supervised

fuzzy clustering classification technique (Abonyi and Szeifert 2003) validated with the

UCI Wisconsin breast cancer dataset (bcw, see table 24 on page 154) to distinguish

between benign and malignant cancers (95.57% accuracy); a method for rule extraction

from ANN (Setiono 2000) validated on the bcw (98.1% accuracy); an hybrid model

integrating a case-based data clustering method and a fuzzy decision tree (Fan, Chang

et al. 2011) validated on the bcw (98.4% accuracy); a comparative study of different

SVM training methods (Sweilam, Tharwat et al. 2010) that integrated: particle swarm

optimization, quantum particle swarm optimization, quadratic programming, and the

least square SVM method tested on the bcw (93.52% accuracy).

Masses are more difficult to detect than microcalcifications because the features of a

mass may be obscured by or be similar to those of normal breast parenchyma. Masses

are space-occupying lesion seen in more than one projection, usually characterized by

its shape and margin. Regular shape masses have a higher probability of being benign,

whereas irregular shape masses have a higher probability of being malignant. Some

significant reported mass detection ML methods are: SVM-based featureless approach

(Campanini, D Dongiovanni et al. 2004) that used two SVM classifiers. A first SVM

classifier retrieves the masses candidates, and the second SVM classifier reduces the

number of false positives (80% true positive detection was reported); a comparative

study of logistic regression and ANN-based classifiers (Song, Venkatesh et al. 2005)

using as input a dataset of features vectors extracted from ultrasound images of 24

malignant and 30 benign masses (ANN-based classifier with 0.856 ROC Az, 95%

sensitivity and 76.5% specificity); an automated CAD (Bellotti, De Carlo et al. 2006)

including three steps: edge-based segmentation to select the suspicious regions, eight

gray-tone independent texture ROI features and a supervised two-layered trained

feedforward neural network classifier was employed to classify masses in a database of

3369 mammographic images (including 2307 negative and 1062 positive cases),

reporting an area under the ROC curve = 0.783±0.008 for the ROI based classification

and 80% of sensitivity in mass detection. An experimental CAD system (López, Novoa

et al. 2008) including five steps: ROI selection, contrast-limited adaptive histogram

equalization, segmentation, selected features extraction and classification using ANN-

based classifier was used to diagnosis six mammography pathological lesions classes as

benign or malignant tissues, achieving 94.0% of true positives detection rate. A recent

50 Chapter 2 State of the Art

review of existing approaches of automatic detection and segmentation of masses

methods (including a single or multiples mammography views) can be found in (Oliver,

Freixenet et al. 2010), and an overview of digital image processing and pattern analysis

techniques addressing several areas in breast cancer CADe, including: contrast

enhancement, detection and analysis of calcifications, detection and analysis of masses

and tumors, analysis of bilateral asymmetry, and detection of architectural distortion

can be revised in (Rangayyan, Ayres et al. 2007).

Finally, it can be concluded that ML-based methods for detecting breast cancer are

achieving now a successful development degree, and these are beginning to be accepted

and introduced by the medical community. However, a major effort is needed for

developing more precise and robust ML-based methods, as support, to improve the

performance of breast cancer CADx systems focused on diagnosis (classification) of

suspicious breast cancer pathological lesions.

2.3.4 Mammography data availability and clinical acceptance

Although a large number of image features and machine learning classifiers have been

developed and tested using different image databases, selecting the optimal image

features and a machine learning classifier remains a challenged issue in CAD

development and the performance of current commercial CAD systems still needs to be

improved so that they can meet the requirements of clinics and screening centers (Park,

Goo et al. 2004; Pisano, Gatsonis et al. 2005; Ciatto, Houssami et al. 2007; Metz 2008;

Park, Pu et al. 2009; Oliver, Freixenet et al. 2010).

Two main publicly available annotated mammograms databases are used in the vast

majority of the CAD systems in the literature: the Mammographic Image Analysis

Society Digital Mammogram Database (MIAS) (J. Suckling, S. Astley et al. 1994)

consisting on about 300 mammograms classified into seven different classes and the

University of South Florida Digital Database for Screening Mammography (DDSM)

(Heath, Bowyer et al. 2001) containing about 3000 annotated mammograms.

Additionally, the Nijmegen database (Karssemeijer 1993) is also used in some studies

but left often recently.

Most CAD systems presented in literature are evaluated with a few hundred cases

from those databases or custom ones developed usually in collaboration with some

medical institution providing anonimized patient cases. In general, together with the

preprocessing required to handle the images, this makes results difficult to compare.

Chapter 2 State of the Art 51

Apart from this, data is scarce and collecting it is a lengthy and tedious process, as

requires deep involvement of specialists to segment and classify mammograms and

access to potentially private data is mostly unwelcome by health sector technical staff.

2.3.5 Summary of references

Table 6 gathers selected literature sources for different aspects on breast cancer CAD

and computer methods for medical imaging in general. Additionally, tables 7 and 8

show a selection of results reported in the literature using different methods for the

classification of microcalcifications and masses respectively. Note how results are

reported using a variety of metrics using different datasets. For instance, the notion of

specificity sometimes is reported as false positives per image (FPI) and sometimes as a

true negative rate.

Table 6: Selected general references for breast cancer CAD methods

CAD reviews (Eadie, Taylor et al. 2011) (Sadaf, Crystal et al. 2011) (Oliver, Freixenet et al. 2010)

(Sweilam, Tharwat et al. 2010) (Jiang, Trundle et al. 2010) (Boyer, Balleyguier et al.

2009) (The, Schilling et al. 2009) (Rangayyan, Ayres et al. 2007) (Nishikawa 2007) (Wei,

Yang et al. 2005)

Image enhancement

reviews

(Martí, Oliver et al. 2010) (Gurcan, Boucheron et al. 2009) (Krupinski 2008) (Rangayyan

2005).

Clinical acceptance (Onega, Aiello Bowles et al. 2010) (Paquerault, Hardy et al. 2010) (Sanchez Gómez,

Torres Tabanera et al.) (Wang, Jiang et al. 2010) (Sohns, Angic et al.) (Park, Pu et al.

2009) (Metz 2008) (Ciatto, Houssami et al. 2007) (Pisano, Gatsonis et al. 2005) (Park,

Goo et al. 2004)

Table 7: Selected references for microcalcifications classification methods

Reference Classification method and dataset used Results

(Ren, Wang et al. 2011) ANN with DDSM, 648 cases, 633 benign, 115 malign AUC=0.975

(Yu and Huang 2010) ANN with 20 mammograms from MIAS 94% sensitivity @ 1 FPI

(Balakumaran, Vennila et
al. 2010)

Filter banks, 100 patients from DDSM 94% sensitivity @ 0.8 FPI

(Kang, Ro et al. 2009) Foveal based method 93% sensitivity
87.5% specificity

(Papadopoulos, Fotiadis et
al. 2008)

Image enhancement techniques on MIAS and Nijmegen
datasets

AUC=0.932 (MIAS)
AUC=0.915 (Nijmegen)

(Regentova, Zhang et al.
2007)

Wavelet transforms and Markov random fields. 40
mammograms from MIAS, 150 from DDSM

95% sensitivity @ 2.5 FPI
98% sensititivy @ 3.3% FP

(Jiang, Yao et al. 2007) Genetic Algorithms with DDSM , 188 mammograms, 300
ROI MC present, 300 ROI no MC

AUC=0.9684

52 Chapter 2 State of the Art

(Yongyi, Liyang et al. 2007) Content retrieval based. Custom dataset with 104 cases
of which 46 malignant and 58 benign

AUC=0.82

(Singh, Kumar et al. 2006) SVM. Custom dataset with 435 mammograms AUC=0.9803

(Yu, Li et al. 2006) Wavelet filters and Markov random fields. 20
mammograms from MIAS database.

92% sensitivity @ 0.75 FPI

(Wei, Yongyi et al. 2005) Relevance Vector Machine. Custom, dataset with 141
mammograms

90% sensitivity @ 1 FPI

(Soltanian-Zadeh, Rafiee-
Rad et al. 2004)

Feature selection and wavelets. Custom dataset with 103
mammograms

90% sensitivity @ 0.5 FPI

(Butler, Webb et al. 2003) Naïve Bayes. Custom dataset with 20 normal cases and
22 tumorous

>90% accuracy

(El-Naqa, Yongyi et al.
2002)

SVM. Custom dataset with 76 mammograms 94% sensitivity @1 FP

(Songyang and Ling 2000)

ANN with Nijmegen dataset, 40 mammograms 105
clusters of MCs

90% sensitivity @ 0.5 FPI

Table 8: Selected references for mammographic masses classification methods

Reference Classification method and dataset used Results

(Moon, Shen et al. 2011) Logistic regression custom dataset with 147 cases, 76
benign, 71 malignant

AUC=0.9466
84.5% sensitivity
85.5% specificity

(Tzikopoulos, Mavroforakis
et al. 2011)

SVM with 322 mammograms from MIAS dataset 85.7% accuracy

(Shi, Cheng et al. 2010) Fuzzy SVM with 87 ultrasound images, 36 malignant, 51
benign

AUC=0.964
91.67% sensitivity
96.08% specificity

(Wang, Lederman et al.
2010)

ANN trained with genetic algorithms, custom dataset
with 200 mammograms (100 positive, 100 negative)

AUC=0.754
42% sensitivity
90% specificity

(Oliver, Freixenet et al.
2010)

Review (by reimplementing) different methods (region,
contour, model, cluster based) on 261 mammograms
from MIAS and 89 from custom dataset

AUC=0.787 (MIAS)
AUC=0.757 (custom)

(Velikova, Samulski et al.
2009)

Bayesian network on multiview custom dataset with
1063 cases (385 cancerous)

AUC=0.868

(Eltonsy, Tourassi et al.
2007)

Multiple concentric layers contours on 270 mammograms
from DDSM

81% sensitivity @ 2.4 FPI

(Kom, Tiedeu et al. 2007) Local thresholding on custom dataset with 61
mammograms

AUC=0.946
95.91% sensitivity

(Bellotti, De Carlo et al.
2006)

ANN with custom dataset 3360 images (2307 negative,
1062 positive)

AUC=0.783
80% sensitivity

(Song, Venkatesh et al.
2005)

ANN with custom dataset 24 malignant, 30 benign AUC=0.856
95% sensitivity
76.5% specificity

(Campanini, D Dongiovanni
et al. 2004)

Ensembled SVM 80% sensitivity

Chapter 2 State of the Art 53

2.4 Conclusion

The above sections aimed at describing current developments and status in the three

different areas in whose intersection this thesis contributes, namely (1) ROC analysis

usage in machine learning, (2) exploiting eInfrastructures and (3) machine learning

applied to breast cancer computer aided diagnosis. In summary, this thesis aims to

contribute at dealing with the following issues which have not yet been addressed to its

full extent in related work:

1. ROC analysis is not used systematically in machine learning. Mostly, AUC

measures are used for classifier evaluation and primarily when ML is applied

in specific areas such as medical imaging.

2. There is substantial evidence that error rate minimization does not

necessarily yield to AUC optimization but the vast majority of ML methods

are designed for error rate minimization. This makes them suboptimal when

AUC is a more appropriate measure for the problem in hand (such as in

medical imaging). This is partly due to the fact that AUC usage in ML

started relatively recently but also because of the magnitude of the effort to

required to redesign the existing methods. In addition, there is moderate

evidence that AUC might be a more comprehensive metric than error rate

for evaluating classifier performance.

3. eInfrastructures are in general costly to use, in terms of the effort required to

adapt existing software and the available tools to interact with existing

middleware and resource providers, specially in Grids. Furthermore,

interoperability issues limit the practical possibility to exploit

eInfrastructures different from the ones in which an application is initially

deployed, hindering the reach of the invested efforts.

4. In automated breast cancer detection there have been significant results in

the CADe for microcalcifications but moderate progress have occurred in

CADe for masses, architectural distortions and asymmetries. CADx is still

underdeveloped with respect to CADe and more work is needed in this area.

5. Machine learning applied to breast cancer CAD has obtained reasonably

good results but, as shown before, still needs improvement. Systematic

inclusion of ROC analysis in machine learning could contribute to results in

54 Chapter 2 State of the Art

this area which might, in turn, become a rich application ground for ROC

oriented machine learning.

Therefore, the work leading to this thesis was devised to contribute in these issues

and, as such, the goals and contributions described in Sections 1.2 and 1.3. The

following sections describe this work and its results. First, Chapter 3 describes a

method by which existing ML methods can be adapted for AUC optimization with

reasonable effort. It also provides the means for the proposed method to be practical by

developing a computationally efficient AUC calculation algorithm. Then, Chapter 4

describes the software tools developed to enable effective exploitation for machine

learning of computational resources provided by eInfrastructres. These tools enable

both the validation of ML methods (such as what is described in Chapter 3) and its

application in practice. This is precisely what is shown in Chapter 5, which uses the

techniques and tools developed in a real medical environment for breast cancer CADx.

This last issue constitutes the contribution of this thesis to the project within which it

was initially conceived.

Chapter 3 ROC analysis for Machine Learning based classifiers 55

Chapter 3

3 ROC analysis for Machine
Learning based classifiers

3.1 Introduction

Evidence reported by literature (see Section 2.1) shows that AUC optimization is not

necessarily achieved by minimizing the error rate, which is what most machine learning

methods are designed for. Although a few efforts have been devoted into developing

new machine learning algorithms for AUC optimization it would be desirable to be

equipped with a method to adapt existing algorithms with reasonable effort, so that the

existing body of knowledge and techniques can be reused for AUC optimization.

However, AUC calculation is computationally costly and this constitutes a major

drawback since machine learning algorithms using AUC intensively may become too

expensive to compute rendering them impractical. To sort this out firstly, Section 3.2

describes a method to efficiently approximate the AUC of any ranked dataset with

arbitrary user defined precision. Then, Section 3.3 provides a general formulation for an

AUC based loss function aimed at substituting the error measures used in machine

learning (such as the squared error) enabling existing machine learning algorithms for

AUC optimization. Then, it is incorporated and experimentally validated into different

kinds of existing training algorithms for multilayer perceptrons (Ramos-Pollan,

Guevara Lopez et al. 2010).

56 Chapter 3 ROC analysis for Machine Learning based classifiers

3.2 Efficient AUC error bounded approximation

Efficient AUC computation is essential when using AUC based metrics in iterative ML

algorithms, since it may render good theoretical results impractical to use. In the initial

experimental runs of this thesis work, it was observed that commonly used AUC

calculation techniques, such as the Wilcoxon-Mann-Whitney statistic provided by

Weka (Mark Hall, Eibe Frank et al. 2009), slow down 5 to 10 times the ML algorithms

modified for AUC optimization described in Section 3.3. Still, it was also observed that

Weka already provides a fast method with respect to other implementations of the

statistic. To overcome this, and herewith presented, an efficient AUC calculation

method was developed to approximate the actual AUC value to an arbitrary maximum

error established by the user. It is based on discretizing the score space for each dataset

element and, therefore, removing the need to full sorting which is what hinders

computing performance. Additionally, it produces all necessary error metrics and

partial AUC components required by the method described later in Section 3.3.

3.2.1 Definition

Table 23 in page 153 shows the notation used throughout this thesis to denote datasets

and classifiers. The Wilcoxon-Mann-Whitney statistic providing an empirical measure

of the AUC of dataset � � �7 ∪ �9 whose elements have been ranked by classifier * was

given in equation 1.1 and it is recalled here:

�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9|

Now, we define the contribution of element = ∈ � to the AUC in as

�()�=, *� � 	
\]̂
]_		∑ ,$*-.� � / *-.�=�'0∈23 |�7| ∙ |�9| 	
�	= ∈ 	 �7				∑ ,$*-.�=� / *-.���'4∈25 |�7| ∙ |�9| 	
�	= ∈ 	 �9

O (3.1)

Note that in the Wilcoxon-Mann-Whitney statistic the order of the summation does

not matter, therefore:

Q�()�=, *�`∈2 � Q �()��, *�4∈25
�	 Q �()� , *�0∈23

� 2	�()��, *�

Chapter 3 ROC analysis for Machine Learning based classifiers 57

We also define the maximum contribution of element = ∈ � by observing that, if = is

positive, the maximum possible value for �()�=, *� is reached when the score of = is

greater than all negative elements of �, and inversely when = is negative

�()ab`�=� � 	
\]̂
]_		 |�9||�7| ∙ |�9| � 	 1|�7| 				
�	=	 ∈ 	 �7		 |�7||�7| ∙ |�9| � 	 1|�9| 				
�	=	 ∈ 	 �9

O (3.2)

Approximation through discretization

The notation in table 9 is used to define a discretization of the score space into

contiguous, non-overlapping subintervals of equal length. Then, each element of the

dataset is assigned to the subinterval containing the score given to it by a classifier

(denoted by cd̀), and positive and negative elements in subintervals below and above

are counted in the corresponding definition for N���e. cd̀,25 , N���e. cd̀,23 , N���. cd̀,25
and		N���. cd̀,23

Table 9: Discretization of the score space

c � gcA, … , ci, … , caj ci ⊂ $0,1',! ∈ l		 A set of ! subintervals in the $0,1' interval.
 ci denotes a generic interval of the set ∀	ci, cn ∈ c, ci ∩ cn � 	∅	 All intervals are non overlapping ∀	ci, cn ∈ c, |ci| � |cn|	 All intervals have the same length

o cipq∈	p
�	 $0,1' The set of intervals fully covers the $0,1'

interval ci / cn ⇔	∀	
 ∈ ci,	∀	s ∈ cn 			
 / s	 Order relation between any two intervals

cd̀ �	 ci	|	*-.�=� 	∈ 	 ci	 Interval to which = ∈ � belongs according
to the score given by classifier * cid,2 � g	= ∈ �	|	cd̀ � cij	 Set of elements belonging to interval ci

cid,25 			cid,23
Sets of positive and negative elements
belonging to interval ci

cd̀,2 � g=′ ∈ �	|	*-.�=′� ∈ cd̀j Set of elements belonging to the interval to
which = ∈ � belongs

cd̀,25 		cd̀,23
Set of positive/negative elements belonging
to the same interval to which = ∈ � belongs N���e. cd̀,2 �	 o cid,2pqu	pvw	

 Set of elements belonging to intervals below
the interval to which = ∈ � belongs

N���e. cd̀,25 		N���e. cd̀,23

Set of positive/negative elements belonging
to intervals below the interval to which = ∈ � belongs

58 Chapter 3 ROC analysis for Machine Learning based classifiers

N���. cd̀,2 �	 o cid,2pqx	pvw	
 Set of elements belonging to intervals above

the interval to which = ∈ � belongs

N���. cd̀,25 		N���. cd̀,23

Set of positive/negative elements belonging
to intervals above the interval to which = ∈ � belongs

With this, the contribution of element = ∈ � as defined in equation (3.1) is

approximated by

�()b44�=, *� � 	
\]̂
]_		|N���e. cd̀,23||�7| ∙ |�9| 	
�	= ∈ 	 �7		
		|N���. cd̀,25||�7| ∙ |�9| 	
�	= ∈ 	 �9

O (3.3)

This is, for positive elements, by counting the number of negative elements in

subintervals below the one to which the positive element belongs; and for negative

elements, by counting the number of positive elements in subintervals above the one to

which the negative element belongs. Figure 18 below illustrates this discretization

process with positive elements (in blue) and negative elements (in red) binned into the

corresponding intervals. The count of positive and negative elements is also shown for

each interval.

Figure 18: Discretization of AUC score space

Finally, �()��, *�, the actual dataset AUC, is approximated either by looping over

the positive elements:

�()yz{��, *� � 	∑ |N���e. c4d,23|4∈25|�7| ∙ |�9| (3.4)

or by looping over the negative elements:

hsc = 0.0 hsc= 1.0

n: 4

p: 0

n: 3

p: 2

n: 2

p: 0

n: 2

p: 1

n: 1

p: 0

n: 0

p: 0

n: 2

p: 1

n: 1

p: 1

n: 0

p: 4

n: 0

p: 3

n: 2

p: 2

n: 0

p: 6

Chapter 3 ROC analysis for Machine Learning based classifiers 59

�()yz{��, *� � 	∑ |N���. c0d,25|0∈23|�7| ∙ |�9| (3.5)

The function is named �()yz{��, � since it actually constitutes a lower bound of the

actual AUC, as will become evident below. In fact, we observe that the expression

|N���e. c4d,23| renders the same value for all positive elements of each subinterval so we

do not need to loop over all positive elements, but only over all subintervals knowing

that all positive elements of such subinterval will contribute the same value through

this approximation. This way equation 3.4 can be rewritten as:

�()yz{��, *� � 	∑ |cid,25| ∙ |N���e. cid,23|pq∈	p |�7| ∙ |�9| (3.6)

As all subintervals have the same length Mcid,25M and Mcid,23M	can be calculated in one

scan of the dataset � by dividing the score of each element with the chosen subinterval

length, and |N���e. cid,23| can be calculated in one further scan over the set of

subintervals accumulating Mcid,23M. This way, �()yz{��, *� computing time is

proportional to |�| � |c| (the number of elements in the dataset plus the number of

subintervals defined). Since |c| is a fixed constant established a priori, not depending on

dataset size, the time complexity of this method remains as |� �, where � |�|, as

opposed to |� log� �� as required by the sorting operations usually made to calculate

the Wilcoxon-Mann-Whitney statistic in equation 1.1. In fact, experiments in Section

3.2.2 below show that values for |c| between 50 and 100 give produce in general the

greatest speedups.

Computing the approximation error

We choose equation 3.4 to understand the error we are incurring when using it as

approximation for the AUC (an analogous reasoning could be made for equation 3.5).

For any positive element � ∈ �7 the Wilcoxon-Mann-Whitney statistic uses the

expression:

Q ,$*-.� � / *-.���'0∈23
 (3.7)

which counts the number of negative elements whose score is less than the score of �, whereas equation 3.4 uses the expression:

60 Chapter 3 ROC analysis for Machine Learning based classifiers

|N���e. c4d,23| (3.8)

which denotes the number of negative elements in subintervals below the subinterval

to which � belongs, without including the elements of the subinterval itself (this is why

3.4 constitutes a minimum). Therefore, the only negative elements that equation 3.8

leaves out with respect to equation 3.7, are the negative elements belonging to the same

subinterval of �, denoted by c4d. Those elements are accounted for by equation 3.7 only

if their score is less than the score of �. In the worst case (perfect relative score of

positive and negative elements within c4d), all negative elements of c4d have a lower score

than � itself and will be accounted for in equation 3.7 but not in equation 3.8, so the

maximum number of negative elements left out by using 3.8 instead of 3.7 will be

Mc4d,23M which denotes the number of negative elements of the subinterval to which �

belongs. Thus, the maximum error of using equation 3.3 to approximate the

contribution of a positive element � ∈ �7 to the AUC is then:

�()ab`.���z���, *� � 	 |c4d,23||�7| ∙ |�9|
Note that the maximum error is the same for all positive elements within any

subinterval. So the accumulated maximum error of all positive elements within the

same subinterval is:

�()ab`.���z��	ci, *� � 	 |cid,25| ∙ |cid,23||�7| ∙ |�9| (3.9)

where, recalling the definitions made before, |cid,25| and |cid,23| denote respectively

the number of positive and negative elements of subinterval ci. And finally, we add up

the maximum error of all subintervals to obtain the total maximum error incurred

when using this approximation for a given dataset:

�()ab`.���z���, *� � 	∑ |cid,25| ∙ |cid,23|pq∈p|�7| ∙ |�9| (3.10)

Therefore, using equation 3.6, the maximum value for Az is given by:

�()dR�d��, *� � 	�()yz{��, *� � �()ab`.���z���, *�
A naive approximation to the total AUC would be to take the midpoint between �()dR�d��, *� and �()yz{��, *�

Chapter 3 ROC analysis for Machine Learning based classifiers 61

�()b44��, *� � �()yz{��, *� � �()ab`.���z���, *�2

� 	∑ |���,��| ∙ |�����. ���,��|��∈	� |��| ∙ |��| � ,�∑ |���,��| ∙ |���,��|��∈�|��| ∙ |��| ⇒

�()b44��, *� � ∑ |cid,25| ∙ �2|N���e. cid,23| � |cid,23|�pq∈p 2|�7| ∙ |�9|

(3.11)

and it is this expression that we use as approximation to �()��, *�. This

approximation can be calculated in the same interval scan together with |N���e. cid,23|
adding no extra time complexity to the method. A pseudo code to compute this

approximation is shown in algorithm 1, page 161.

Note that, in equations 3.9 and 3.10, subintervals having no negative or no positive

elements produce no error and thus �()b44 is exact for those intervals. This means

that datasets whose positive and negative elements are well distributed in different

intervals tend to get better approximations.

Approximation example

An example illustrates how this approximation works with a synthetically generated

dataset of 30 elements, running the proposed method by using 15 subintervals of equal

length. Table 10 shows the dataset, composed of 17 positive and 13 negative elements

and whose Wilcoxon-Mann-Whitney statistic for its Az value is 0.905.

Table 10: Elements of example dataset

element 1 2 3 4 5 6 7 8 9 10
class P P P P P P P P P P
score 0,071 0,108 0,158 0,222 0,299 0,388 0,484 0,579 0,666 0,737

element 11 12 13 14 15 16 17 18 19 20
class P P P P P P P N N N
score 0,782 0,798 0,782 0,737 0,666 0,579 0,484 0,388 0,299 0,222

element 21 22 23 24 25 26 27 28 29 30
class N N N N N N N N N N
score 0,158 0,108 0,071 0,045 0,027 0,016 0,009 0,005 0,002 0,001

Table 11 shows the components of equation 3.11 for each one of the 15 intervals.

The actual AUC=0.905 lies well within the [0.900, 0.936] range determined by the �()yz{ and �()ab`.���z�. The approximated AUC is therefore 0.919 and the actual

error of this approximation is 0.014. Note that only intervals containing at least one

positive element contribute to the AUC, and only the ones containing both positive and

62 Chapter 3 ROC analysis for Machine Learning based classifiers

negative elements contribute to the error, as expressed in equation 3.9. This shows how

datasets having positive and negative elements mixed up within the same intervals get

higher approximation errors.

Table 11: AUC approximation components for the example dataset

ci
ci

 low limit

ci

high limit
|cid,23| |cid,25| |N���e. cid,23| �()yz{ �()ab`.���z� �()b44

1 0,000 0,067 7 0 0 0,000 0,000 0,000
2 0,067 0,133 2 2 7 0,063 0,018 0,072
3 0,133 0,200 1 1 9 0,041 0,005 0,043
4 0,200 0,267 1 1 10 0,045 0,005 0,048
5 0,267 0,333 1 1 11 0,050 0,005 0,052
6 0,333 0,400 1 1 12 0,054 0,005 0,057
7 0,400 0,467 0 0 13 0,000 0,000 0,000
8 0,467 0,533 0 2 13 0,118 0,000 0,118
9 0,533 0,600 0 2 13 0,118 0,000 0,118
10 0,600 0,667 0 2 13 0,118 0,000 0,118
11 0,667 0,733 0 0 13 0,000 0,000 0,000
12 0,733 0,800 0 5 13 0,294 0,000 0,294
13 0,800 0,867 0 0 13 0,000 0,000 0,000
14 0,867 0,933 0 0 13 0,000 0,000 0,000
15 0,933 1,000 0 0 13 0,000 0,000 0,000
 TOTALS 0,900 0,036 0,919

 Error bounded AUC approximation

The same process we just did by splitting the [0,1] interval and assigning all the

elements of the dataset to its subintervals, can be repeated within selected subintervals

to lower their �()ab`.���z��	ci, *� and then reach a priori established desired error

bounds. To calculate �()b44��, *� with �()ab`.���z���, *� � �, having � a user defined

maximum desired error, we proceed as follows, starting with [0,1] as our first interval:

1. split current interval and distribute its elements into its subintervals

2. calculate �()b44��, *� and �()ab`.���z���, *�
3. while (�()ab`.���z���, *� > �)

choose subinterval ci with greatest �()ab`.���z��	ci, *� and repeat steps 1 and 2

but applied only to elements within ci

4. end while

Figure 19 illustrates this approach, where the interval having the greatest error is

chosen for further granularity in its discretization. Whenever steps 1 and 2 are

Chapter 3 ROC analysis for Machine Learning based classifiers 63

performed to further split a selected subinterval, ci, an extra time complexity |�|cid,2|�
is added to our method where, recall, |cid,2| denotes the number of elements of interval ci. In the worst, and rare, case ci gathers all dataset elements (and all other

subintervals remain empty) adding an extra |� � time complexity, with � |�|, the

dataset size. In our validation below, test runs needed an average of five iterations

(splitting the initial [0,1] interval and other three subintervals) to reach a maximum

guaranteed error � � 0.01, meaning that the time complexity of this method stayed in

practice well below 5|� �, since each iteration deals with a decreasing number of

dataset elements. Appendix II shows the algorithms implementing the full method,

which is denoted in the rest of this text as �()b44.

Figure 19: Iteratively reducing the AUC approximation error

3.2.2 Experimentation and Validation

�()b44 is to be used in situations when AUC needs to be computed intensively such as

for AUC optimization in ML methods as in Section 3.3. Therefore, building evidence

that it actually speeds up AUC computation is essential to use it with confidence

further on. Its major theoretical weakness is that, in order to achieve a user defined

maximum error in the approximation, the number of recursions needed to be performed

is left unbounded, depending on the degree of “mixture” of the scores assigned by a

classifier to negative and positive elements of a dataset. It is therefore necessary to

understand how �()b44 behaves with scored datasets with different degrees of

overlapping of their distributions for positive and negative elements.

3.2.2.1 Goals and metrics

The goal of the experiments carried out is two-fold:

hsc = 0.0 hsc = 1.0

n: 4

p: 0

n: 3

p: 2

n: 2

p: 0

n: 2

p: 1

n: 1

p: 0

n: 0

p: 0

n: 2

p: 1

n: 1

p: 1

n: 0

p: 4

n: 0

p: 3

n: 2

p: 2

n: 0

p: 6

n: 3

p: 1

n: 0

p: 1

64 Chapter 3 ROC analysis for Machine Learning based classifiers

1. Measuring whether �()b44 actually provides a faster AUC computation than

a selected baseline implementation.

2. Gaining some insight on the conditions (scored datasets) under which �()b44 provides greater or lower speedups.

A straight forward implementation of the Wilcoxon-Mann-Whitney statistic for a

scored dataset would require sorting and then counting how many negative elements

fall below each positive element. This approach has been taken by virtually all software

toolkits providing AUC metrics and, in particular, the Weka toolkit (Mark Hall, Eibe

Frank et al. 2009) which is a widely used machine learning toolkit implemented in

Java. Weka uses its own optimized data structures for dataset manipulation (fast

vectors) so it is in general faster than other algorithms using standard Java data

structures (Lists, Collections, etc). This was tested by developing a straight forward

implementation of the Wilcoxon-Mann-Whitney statistic sorting regular Java

collections and comparing its computation time with Weka’s. This resulted in Weka

being always faster in computing AUC and, in the case of large datasets (10000

elements or more), by almost one order or magnitude. In addition, Weka’s source code

is publicly available which allows for deeper understanding and comparison of its

implementation.

Therefore, Weka’s AUC is considered to be the baseline used herewith against which

a Java implementation of �()b44 would be compared. In particular, the following

class/method included in Weka 3.6.4 (released on Dec 2010) is used in this thesis to

compute the AUC:

weka.classifiers.evalaution.ThresholdCurve.getROCArea()

AUC computation times of Weka and �()b44 were measured strictly, this is,

discarding all data preparation and processing stages required before and after making

the call to the actual computation method, and the speedup obtained by �()b44 for a

given dataset � with respect to Weka is defined as the ratio of the measured times:

�������	��� � �
!����V�����
!���()b44����
Thus, a speedup=2 means that �()b44 runs twice as faster as Weka (in half the

time), and a speedup=1/2 means the opposite.

Chapter 3 ROC analysis for Machine Learning based classifiers 65

3.2.2.2 Experimental setup

Two sets of experiments were designed to cover the goals just explained. First using

synthetically generated datasets and, second, with real datasets scored by ML

classifiers. Using synthetic datasets allows control of the generated distributions of the

scores for positive and negative elements and, therefore, experiments can be designed to

cover different degrees of overlapping of the distributions, aiming at gaining insight on

the behavior of the speedups provided by �()b44. Real datasets, which need to be

scored by a certain ML classifier to produce a rank, allow understanding its

applicability in practice. In this sense, experiments were designed to understand

speedups with respect to (1) datasets with different number of elements, class skew and

distributions of positive and negative scores and (2) the number of intervals used when

running �()b44
Synthetic Datasets

Synthetic scored datasets were generated by drawing the score of the positive and

negative elements from two different normal distributions, denoted in their generic form

by �7�Y7 , Z7� and �9�Y9, Z9�. A normal distribution is determined uniquely by its

mean (Y) and standard deviation (Z) and if both are similar for �7 and �9 their

distributions are more mixed up. This might hinder �()b44 performance, since

recursion only happens if positive and negative scores lie within the same intervals.

Therefore, to observe �()b44 behavior under this perspective, scored datasets were

generated from different combinations of �7 and �9 having, each combination,

different means and standard deviations. Table 12 below shows the values used to

generate the synthetic datasets.

Table 12: Values of means and standard deviations for synthetic datasets

Y7 0,0 0,2 0,4 0,6 0,8 1,0 Y9 0,0 0,2 0,4 0,6 0,8 1,0 Z7 0,01 0,05 0,1 0,2 0,3 0,5 Z9 0,01 0,05 0,1 0,2 0,3 0,5

There are 6� different combinations of the values in table 12 and for each

combination datasets were generated of different sizes (with 100, 1000, 10000 and

100000 elements) and different class skews (with 10%, 30%, 50%, 70% and 90% of the

66 Chapter 3 ROC analysis for Machine Learning based classifiers

elements labeled as positive). Note that �()b44 requires scores to lie within the $0,1'
interval so, when sampling, values outside $0,1' were discarded. Due to this, the final

sampled distributions of positive and negative scores are not exactly normal, but

nevertheless, valid for our purposes. Finally, for each dataset AUC computation with �()b44 and Weka was run 10 times to allow for statistical smoothing.

The AUC of each dataset is therefore determined by four parameters (Y7 , Z7 , Y9 , Z9).

To simplify data visualization and analysis, datasets are grouped by the difference of

means (Y7 � Y9) and standard deviations (Z7 � Z9) of their positive and negative

distributions, so that experimental analysis can be focused in the degree of mixture of

positive and negative scores that, as just mentioned, might hinder �()b44 performance.

Figure 20 shows, for each Y7 � Y9 and Z7 � Z9, the PDFs of the positive scores (blue)

and negative scores (red) of a representative generated dataset of that group, together

with the averaged AUC of all datasets generated in that group. It can clearly be seen

how AUC is directly influenced by Y7 � Y9 and, at a lesser degree, by Z7 � Z9.

Figure 20: Representative positive and negative distributions of synthetic datasets

-0.9 -0.6 -0.3 0
μP - μN

0.6 0.9

-0.125

-0.045

-0.0275

0

0.0275

0.045

σP - σN

0.3

0.125

0.034 0.111 0.291 0.500 0.710 0.891 0.967

0.050 0.099 0.260 0.500 0.739 0.901 0.950

0.004 0.015 0.111 0.500 0.890 0.985 0.996

0.035 0.054 0.113 0.500 0.887 0.945 0.965

0.025 0.051 0.175 0.500 0.825 0.949 0.974

0.031 0.074 0.240 0.500 0.760 0.926 0.969

0.034 0.110 0.289 0.500 0.709 0.889 0.966

Chapter 3 ROC analysis for Machine Learning based classifiers 67

UCI datasets

Table 24 in page 154 shows the datasets used in this experimentation which were

retrieved from the UCI Machine Learning repository (Frank and Asuncion 2010).

Several datasets were chosen with a variety of class skews and sizes. Most datasets are

originally binary while others distributed data into more than two classes. In these

cases different classes were merged together as indicated to finally produce a single

binary dataset.

For each selected UCI dataset 50 configurations of multilayer perceptron and

support vector machine classifiers were trained and later used to score the dataset. The

resulting scored datasets were then given to �()b44 and Weka for AUC computation

and times were measured. �()b44 was run five times, each one with a different number

of preset intervals (50, 75, 100, 200 and 500). This process was repeated 10 times and

measured times were averaged. The goal was not to obtain well performing classifiers

and, in fact, we were interested in obtaining a variety of AUC scores for each dataset

since the aim is to understand the speedups obtained by using �()b44. For this reason,

for each classifier configuration values of the parameters (such as learning rate or

number of intermediate neurons for multilayer perceptrons, or kernel type, gamma or

cost for support vector machines) were randomly selected before each of the 50 training

and scoring cycles for each dataset.

3.2.2.3 Results and discussion

For synthetic datasets, table 13 shows the average speedup obtained by �()b44 with

respect to Weka for the different Y7 � Y9 and Z7 � Z9 ranges shown in figure 20. Then,

figure 21 shows the speedup further averaged per Y7 � Y9 (left) and Z7 � Z9 (right).

Each point represents the average of speedups obtained by all datasets with the same Y7 � Y9 and Z7 � Z9 values and vertical bars represent with their length one standard

deviation (for the speedup).

68 Chapter 3 ROC analysis for Machine Learning based classifiers

Table 13: AUC speedup per differential mean and standard deviation range

Figure 21: AUC speedup per differential mean and standard deviation range

It can be clearly seen that greatest speedups are obtained when the means for

positive and negative scores are more separated which, in general, corresponds to less

mixed up distributions (see figure 20). This confirms the intuition that �()b44 works

better in these cases. Nevertheless, the average speedup is always above 3.5. Differences

in standard deviation seem to have a must lesser influence.

Figures 22 and 23 show the speedup obtained with respect to dataset size and class

skew. Whereas for synthetic datasets (left sides) the plot shows the averages and

standard deviation for the speedup obtained for all generated datasets, in the dispersion

plot for the selected UCI datasets the speedup is shown for each dataset represented as

a dot when running �()b44 with 75 intervals.

μP-μN range

σ
P

- σ
N

 r
a
n
g
e

-1.0 -0.75 -0.45 -0.15 0.15 0.45 0.75

-0.75 -0.45 -0.15 0.15 0.45 0.75 1.0

-0.55 -0.35 5.69 5.46 3.68 3.80 4.10 4.95 6.41
-0.35 -0.2 6.01 5.84 4.06 3.58 4.22 4.96 5.61
-0.2 -0.05 6.30 5.54 4.90 3.37 5.02 6.28 7.13

-0.05 0.05 5.54 5.96 5.44 3.11 5.48 5.53 5.96
0.05 0.2 5.91 5.83 4.55 3.65 4.88 6.04 5.93
0.2 0.35 6.27 5.88 4.05 4.27 4.48 6.31 6.24

0.35 0.55 6.46 5.04 4.37 4.14 4.85 5.40 6.38

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

S
p
e
e
d
u
p

μP-μN. Difference of means from positive and negative distributions

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

-0.45 -0.275 -0.125 0 0.125 0.275 0.45

S
p
e
e
d
u
p

σP-σN. Difference of stdevs from positive and negative distributions

Chapter 3 ROC analysis for Machine Learning based classifiers 69

Figure 22: AUC speedup per dataset size for synthetic and UCI datasets

Figure 23: AUC speedup per class skew for synthetic and UCI datasets

Finally, figure 24 shows how the choice of the number of intervals with which �()b44 is run also influences speedup. Observe that the number of intervals is a user

definable parameter when running �()b44 and not a dataset characteristic such as the

dataset size or class skew. Therefore, the right plot shows the averaged speedup for all

UCI dataset for each number of intervals and the standard deviations obtained.

Figure 24: AUC speedup per intervals for synthetic and UCI datasets

1.5

2.5

3.5

4.5

5.5

6.5

7.5

100 1000 10000 100000

sp
ee

d
u
p

number of elements in dataset

synthetic datasets

1.5

2.5

3.5

4.5

5.5

6.5

7.5

100 1000 10000 100000

sp
e
e
d
u
p

number of elements in dataset

selected UCI datasets

1.0

2.0

3.0

4.0

5.0

6.0

7.0

10 30 50 70 90

sp
ee

d
u
p

percentage of positive elements

synthetic datasets

1.0

2.0

3.0

4.0

5.0

6.0

7.0

10% 20% 30% 40% 50% 60% 70% 80% 90%

sp
ee

d
u
p

percentage of positive elements

selected UCI datasets

1.0

2.0

3.0

4.0

5.0

6.0

50 75 100 200 500

sp
ee

d
u
p

mumber of intervals

selected UCI datasets

1.0

2.0

3.0

4.0

5.0

6.0

50 75 100 200 500

S
p
e
e
d
u
p

number of intervals

synthetic datasets

70 Chapter 3 ROC analysis for Machine Learning based classifiers

Results show that speedups obtained by �()b44 are mostly influenced by dataset

size and the number of intervals used to run �()b44. Whereas dataset size is

determined by the nature of the dataset in hand, the number of intervals is a user

definable parameter and, based on this experimentation, values between 75 and 100

seem to be a reasonable choice. Class skew seems not to influence speedup.

In addition, the behavior observed in the selected UCI datasets seems to follow the

one modeled by the synthetic datasets with somewhat lower speedups and greater

variability, which might be due to the great difference in the sampling population in

each case (several thousands of synthetic datasets and 18 selected UCI datasets). In

any case, this is a result that provides the longed for confidence to effectively use �()b44 in the following developments of this thesis. Furthermore, these experiments

were also useful to tune the number of intervals with which �()b44 was to be later

used.

3.3 Generalizing AUC optimization in multilayer
perceptron classifiers

This section provides a general formulation for an AUC error measure to be used as

loss function in machine learning, where typically a squared error measure is used.

Doing so, existing machine learning algorithms can be adapted for AUC optimization

with reasonable effort by interchanging the error calculation routines and leaving their

core logic untouched. Experimental validation was performed on different training

algorithms for multilayer perceptrons showing, in the way, how to sort out their

specific particularities.

3.3.1 Theoretical definition

The general definitions made in table 23 in page 153 and those in Section 3.2 for

measuring �()�=, *� and �()ab`�=� are now used to define the following error

measures for individual dataset elements and for the whole dataset:

�����=, *� � 1 � �()�=, *��()ab`�=�
 ������, *� � 1 � 	�()��, *�

(3.12)

Chapter 3 ROC analysis for Machine Learning based classifiers 71

Recall that �()�=, *� represents the contribution of element = to the AUC of

dataset � with respect to the scores assigned by classifier *, and �()ab`�=�, is the

maximum possible contribution of element =. It would have been tempting to define �����=, *� � 	�()ab`�=� � �()�*, =�, however, �()ab`�=� is usually a very small

value (specially for large datasets), which would make it unpractical for machine

learning training purposes. Therefore, �����=, *� and ������, *� become, respectively,

the loss function (for a single dataset element) and empirical error over the whole

training set to substitute the commonly used ones in machine learning (see equations

1.3 and 1.4 on page 11):

G��, *�=�� � �����=, *� ���PPPPP � ������, *� (3.13)

Observe, first, that this definition preserves the fact that ���PPPPP is the mean of G��, *�=�� as demonstrated in Lemma 1 (page 164) and, second, it is only the loss

function or the global empirical error that needs to be substituted whenever using this

approach in existing machine learning algorithms, leaving their core logic intact.

Equally important, the contribution to the dataset AUC of each element, �()�=, *�,
can provided by the efficient AUC approximation method described in previous section

through �()b44�=, *� as defined in equation 3.3.

AUC optimization in multilayer perceptrons

We now set forth to use this definition with different kinds of training algorithms for

multilayer perceptrons (MLP) and experimentally validate it (Ramos-Pollan, Guevara

Lopez et al. 2010). Without loss of generality, definitions in table 23 include those for

binary MLP based classifiers having two output neurons which, for a given input vector =, produce two values, *7�=� and *9�=�, within the $ ���	, � ¡' interval. The

output neuron producing *7�=� conveys a notion of the positiveness ascribed by * to

input vector = and *9�=� its negativeness. Thus, their ideal values are defined as:

�7�=� � � ¡	�9�=� � ��� 				
�			= ∈ �7

 �7�=� � ���	�9�=� � � ¡					
�			= ∈ �9

(3.14)

and fix a score metric which linearly transforms the output of the two neurons to

the [0,1] interval according to equation 3.14, so that a score of 0.0 corresponds to an

72 Chapter 3 ROC analysis for Machine Learning based classifiers

ideal negative element (*7�=� � ���	 and *9�=� � � ¡) and a score of 1.0

corresponds to an ideal positive element (*7�=� � � ¡	 and *9�=� � ���)

*-.�=� � *7�=� � *9�=�2� ab` � ���	� � 12

It can be easily proven that this definition ensures that *-.�=� stays within the [0,1]

interval. In fact, for AUC purposes this restriction is not strictly needed as what

matters is the relative ordering between positive and negative dataset elements induced

by the score *-. assigned to each one. Commonly, a distance metric measures the error

at the neuron’s output with respect to the ideal output:

∆7�=, *� � �7�=� � *7�=�
∆9�=, *� � �9�=� � *9�=� (3.15)

and a root mean square error defines the loss function and empirical error:

�£¤2�=, *� � ¥∆7�=, *�K � ∆9�=, *�K2

�£¤2��, *� � ∑ �£¤2�=, *�`∈2 |�|

(3.16)

so that ���PPPPP � �£¤2��, *� and G��, *�=�� � �£¤2�=, *� preserving the fact that ���PPPPP is
the mean of G��, *�=��. Then, �£¤2�=, *� is mapped to each output neuron by simply

using the distance metric of equation 3.15 as follows

 �7�=, *� � �7£¤2�=, *� � ∆7�=, *�
 �9�=, *� � �9£¤2�=, *� � ∆9�=, *�

At this point it is relevant to distinguish two kinds of MLP training algorithms: (1)

those using the loss function iteratively at each dataset element = through �7�=, *� and �9�=, *�, the error measures at each output neuron, and (2) those using ���PPPPP � ���, *�,
the global empirical error measure for the whole dataset. We denote the first kind of

algorithms by element error training algorithms and the second kind by dataset error

training algorithms. Notice that dataset error training algorithms only use ���, *�
regardless how it is calculated. In the case above (equation 3.16), it happens that �£¤2
directly uses �£¤2, but this might not be necessarily the case.

Chapter 3 ROC analysis for Machine Learning based classifiers 73

Now, to enable for AUC optimization existing MLP training algorithms using �£¤2
or �£¤2, we use instead ���� and ���� as defined in equation 3.12. Out of the four

MLP training algorithms mentioned in table 2 (page 14) both feedforward

backpropagation (ffbp) and resilient propagation (ffrp) are element error training

algorithms, whereas feedforward simulated annealing (ffsa) and genetic algorithms

(ffga) are dataset error training algorithms, which provides a rich test ground for

validating the proposed substitution.

However, one final twist is required, since �����=, *� still needs to be mapped to

each output neuron of a binary MLP classifier so that the error at each neuron can be

backpropagated in the case of element error training algorithms (ffbp and ffrp). This is

done by defining �7�=, *� � �7����=, *� and �9�=, *� � �9����=, *� in the following way:

�7����=, *� � �����=, *� ∙ ∆7�=, *�|∆7�=, *�| � |∆9�=, *�|

�9����=, *� � �����=, *� ∙ ∆9�=, *�|∆7�=, *�| � |∆9�=, *�|

Therefore, the loss function, G��, *�=�� � �����=, *� is distributed between the

positive and negative neurons according to how far each one is from their ideal value,

maintaining the direction of the distance metric (∆7 and ∆9). This way, dataset

elements having a perfect AUC score, where �()�=, *� � �()ab`�=�, do not produce

any error even if the output values of the output neurons are not the ideal ones. This

argument is at the root of the analysis in (Cortes and Mohri 2004) claiming that error

rate minimization does not necessarily yield to AUC optimization. In the limit case,

where |∆7�=, *�| � |∆9�=, *�| � 0, we establish both �7����=, *� � 0 and �9����=, *� � 0.
With this, the proposed ������, *� error measure is injected for dataset error

training algorithms (ffsa and ffga) replacing �£¤2��, *�, whereas �7����=, *� and �9����=, *� replace �7£¤2�=, *� and �9£¤2�=, *� respectively for element error training

algorithms (ffbp and ffrp). This is achieved by simply substituting the error calculation

routines without altering the rest of the algorithm logic.

3.3.2 Experimentation and Validation

The error calculation routines of each of the four MLP training algorithms mentioned

(ffbp, ffrp, ffsa and ffga, as implemented in the Encog toolkit) were modified to inject

74 Chapter 3 ROC analysis for Machine Learning based classifiers

���� and ���� as just defined. The corresponding modified algorithms are named

ffbproc, ffrproc, ffsaroc and ffgaroc and, since only the error calculation routine is

modified, they accept the exact same training parameters as their unmodified

counterparts. The term original algorithms will be used to refer generically to the

algorithms as originally delivered by Encog (using RMS based error measures), whereas

the term modified algorithms refers to their counterparts modified as described in

previous section to target for AUC optimization. A training configuration is a set of

particular values of the training parameters each MLP training algorithm accepts.

Therefore, the same training configuration can be used by the original and the modified

algorithms facilitating comparisons. For instance, learning rate and momentum are the

training parameters accepted by both ffbp and ffbproc.

3.3.2.1 Goals and metrics

Experimentation seeks to provide evidence that the modified algorithms actually obtain

better AUC measures that their original counterparts. A variety of datasets and

training configurations was devised so that experimentation was rich enough to provide

evidence statistically meaningful. For each dataset, the same configurations were

trained for each algorithm (such as ffbp) and its modified counterpart (ffbproc), and the

AUC obtained by all configurations for each one were averaged. Therefore, each dataset

and training algorithm produced two AUC measures, one representing the average of

all the configurations trained with the original algorithms and another one representing

the average of the same configurations trained with its modified version. Direct

comparison of both measures across all datasets is to give, for each algorithm, a notion

of the difference in AUC obtained by the method proposed above.

3.3.2.2 Experimental setup

The following datasets from the UCI repository described in table 24 in page 154 were

used: bcwd, echocard, glass, haber, heartsl, liver, mmass, park, pgene, pimadiab and

spectf. The criteria to select those datasets was: (1) they are binary datasets, (2) they

provide a diversity of skews in their class distribution, (3) they represent classification

tasks of different nature and (4) they contain less than 1000 elements, which makes

MLP training affordable from a computational point of view. Class skew was

considered important since AUC is known to be insensitive to class distribution and

this might affect optimization obtained.

Chapter 3 ROC analysis for Machine Learning based classifiers 75

For each dataset, a set of MLP configurations was defined for each original

algorithm and its modified version (ffbp/ffbproc, ffrp/ffrproc, ffsa/ffsaroc, ffga/ffgaroc).

The BiomedTK/C3 software frameworks (see Section 4) were used to manage MLP

configurations and send them to a Grid computer cluster for training. MLP

configurations are defined in text files with a specific format. Figure 25 shows the

configuration file used for ffsa/ffsaroc MLPs with the SPECTF dataset, which results

in 24 configurations for ffsa and another 24 configurations forffsaroc.

Figure 25: Configurations evaluated to compare FFSA vs. FFSAROC.

Configurations include MLPs with one or two hidden layers, with 89 or 178 neurons

in the first hidden layer, with the parameter start-temperature set to 30 or 100, etc.

Similar configurations sets were defined for each algorithm and dataset, fixing the

particular parameters of each training algorithm to be the same for all datasets and

varying only the number of input neurons according to the dataset input features while

keeping the same proportions in the number of neurons of the hidden layers with

respect to the input layer as in the example in figure 25. Each MLC configuration was

trained with 10-fold cross-validation. All together, 180 MLC configurations were trained

for each of the 12 datasets, 90 MLC configuration corresponding to the original

algorithms and 90 to their corresponding modified versions. In total, 2160 MLC

explore.neurons.input = 44

explore.neurons.output = 2

explore.neurons.layer.01 = 89:178

explore.neurons.layer.02 = 44:132

explore.activation.function = sigm

explore.trainingsets = spectf

explore.trainengines = encog.ffsa:encog.ffsaroc

explore.validation = cvfolds 10

explore.encog.ffsa.starttemp = 30:100

explore.encog.ffsa.endtemp = 2:10

explore.encog.ffsa.cycles = 50

explore.encog.ffsa.stop.epochs = 300

explore.encog.ffsa.stop.error = 0.0001

explore.encog.ffsaroc.starttemp = 30:100

explore.encog.ffsaroc.endtemp = 2:10

explore.encog.ffsaroc.cycles = 50

explore.encog.ffsaroc.stop.epochs = 300

explore.encog.ffsaroc.stop.error = 0.0001

explore.numberofjobs = 40

76 Chapter 3 ROC analysis for Machine Learning based classifiers

configurations were trained on a Grid cluster with 50 computers which, dedicated, took

about 4 full physical days.

3.3.2.3 Results and discussion

Tables 25 and 26 (pages 155 and 156) summarize experimental results. For each

dataset and training algorithms, results are processed and averaged in following way:

1. Each MLP configuration is trained both with the original algorithm from Encog

and its modified version.

2. AUC results from all configurations trained with the original algorithms are

averaged and its standard deviation is calculated. This is shown in column

‘ORIGINAL’ for each algorithm.

3. AUC results from all configurations trained with the modified algorithms are

averaged and its standard deviation is calculated. This is shown in column

‘MODIFIED’ for each algorithm.

4. The percentage of improvement of the averages (positive or negative) obtained

by the modified version (column ‘MODIFIED’) is calculated with respect to the

original version (column ‘ORIGINAL). This is shown in column ‘IMPROV’

through the following formula:

!���� � 100 ¦§¨©c�c�©bn� � ¨�cªc��Gbn�¨�cªc��Gbn�

5. Table 25 in page 155 summarizes the results per training algorithm and dataset,

whereas table 26 in page 156 aggregates them in total (column ‘OVERALL’,

shown graphically in figure 26) and per category of algorithm (dataset error

based or element error based). Finally, table 27 in page 156 provides some

correlation measures between different obtained variables.

Chapter 3 ROC analysis for Machine Learning based classifiers 77

Figure 26: Averaged AUC for MLP algorithms modified for AUC optimization

As it can be observed, there is a generalized AUC improvement by our proposed

method, having occasional degradations in particular datasets (mostly in pgene, bcwd

and park). The global averaged improvement is 5.86% (table 26 page 156) with a great

variability on each dataset and algorithm. It can also be observed that improvement is

greater in element error training algorithms (fffbp and ffrp) than in dataset error

training algorithms, although this might be due to the fact that these later ones tend to

give better results as shown by the correlation between improve and ORIGINAL AUC

avg in table 27 line 2 (improvement is greater when ORIGINAL AUC is lower).

However, it is important to acknowledge that this last observation might be biased by

the way improv is defined since greater AUC leave less room for improvement.

Other interesting observations are the following:

· Both AUC averages and standard deviations are strongly correlated between

the original algorithms and their modified versions (table 27 lines 4 and 5).

Notice that small standard deviations result from MLC configurations

producing similar AUC scores (all configurations classify the dataset as good

or as bad), whereas larger standard deviations result from some MLC

configurations producing significantly better AUC scores than others. The

strong correlations observed in averages and standard deviations leads to

pgene mmass heartsl liver bcwd pimadiab tictac echocard haber park glass spectf

ORIGINAL 0,7425 0,7818 0,7950 0,6226 0,9005 0,7048 0,7337 0,5668 0,6293 0,8404 0,8761 0,6735

MODIFIED 0,7316 0,8273 0,8541 0,7075 0,9035 0,7418 0,7863 0,6239 0,6747 0,8469 0,8997 0,7127

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,6000

0,7000

0,8000

0,9000

1,0000

A
V

E
R

A
G

E

A

U
C

78 Chapter 3 ROC analysis for Machine Learning based classifiers

think that modified algorithms behave similarly to the original ones in the

sense that they respond in the same way to dataset particularities (difficulty

or easiness to classify).

· Class skew seems to have little influence on improvement (table 27 line 1),

or at least in a non-homogeneous way across the different training

algorithms.

· Except in the case of ffbp, there seems to be a significant correlation (table

27 line 3) between the standard deviation of the ORIGINAL AUC and the

improvement obtained by our method in the positive direction (increasing

standard deviation with increasing improvement). Large standard deviations

may occur in many scenarios, such as when a dataset is hard to separate

and well performing MLP configurations are scarce. The observed

correlation might suggest that our method could be more appropriate in

these situations to increase overall MLP AUC performance.

All these issues might be subject of further research, seeking still stronger statistical

evidence to support the hypothesis outlined.

3.4 Conclusion

This Chapter presented the major theoretical contribution of this thesis (see Section

1.4): a new method to insert AUC based error metrics in existing machine learning

algorithms for AUC optimization and validated it with different kinds of multilayer

perceptrons. In practical terms, the proposed approach only requires the substitution of

the error computing functions of the underlying training algorithms, respecting their

core logic. Experimental evidence demonstrated a consistent improvement in AUC in

multilayer perceptrons through a variety of datasets and training algorithms requiring

little coding effort. In addition, and equally important, an efficient AUC calculation

method has been developed ensuring training remains computationally affordable when

using the proposed AUC based error metrics. Finally, it can be concluded that the

newly developed AUC error metrics show a consistent behavior in both its theoretical

definition and experimental results.

As it could be observed, experiments carried out specially in Section 3.3 required

extensive access to computer power such as that provided by eInfrastructures (see

Sections 1.1.3 and 2.2) to train different sets of parameter configurations throughout a

Chapter 3 ROC analysis for Machine Learning based classifiers 79

variety of datasets and training algorithms. Without such, providing evidence to the

claim that the proposed method actually improves AUC would simply be impossible.

However, as mentioned in Chapter 2, access to eInfrastructures is not straight forward

and a set of software tools had to be developed to undertake the experimental

endeavor. Given the project context within which this thesis was developed (see page

20), rather that developing something ad-hoc for this purpose the goal was to develop a

general purpose tool to exploit eInfrastructures for machine learning, allowing an agile

management of datasets, configurations and algorithms over the computer resources

available. This would allow an efficient classifier and CAD construction cycle as data is

being produced by the project. These tools are referred to as the BiomedTK/C3

software frameworks and they are the subject of next chapter.

80 Chapter 3 ROC analysis for Machine Learning based classifiers

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 81

Chapter 4

4 Exploiting eInfrastructures
for Machine Learning Classifiers

4.1 Introduction

As shown in previous section, seamless access to computing resources is key to validate

new machine learning methods. This is even more the case when machine learning is to

be applied to specific problems, such as for breast cancer CAD as happens in the case

of the project within which this thesis was motivated and described in Chapter 5.

Confronted with the task of finding well performing machine learning classifiers for

specific data, researchers need to evaluate many parameters configurations for different

kinds of classifiers acting on a variety of datasets generated from the original data

(such as the ones produced by using different data preprocessing techniques, etc.). This

results in a classifier development lifecycle through which researchers build knowledge

on what classifier configurations and data preprocessing options suit better their

problem in hand. Access to computing resources is required to materially be able to

train classifiers and process data, but it is the agility with which those computing

resources can be harnessed that determines how efficiently that knowledge can be built

and its reach. This agility refers to the capability of efficiently setting up datasets and

classifier configurations, evaluating them on computing resources, analyze their results,

refine or reprocess datasets and configurations, evaluate and analyze them again and so

on.

82 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Aware of the common difficulties in accessing computing resources available through

existing eInfrastructures (see Section 2.2), two software frameworks were developed to

reduce their utilization effort cost and simplify classifier development lifecycles in the

sense just described, providing the tools to exploit computing resources in a systematic

manner for discovering and evaluating machine learning classifiers for data mining and,

specifically, for biomedical data (Ramos-Pollan, Guevara-López et al. 2011). The

Biomedical Data Analysis Toolkit (BiomedTK) enables the definition, management

and execution of explorations of parameter configurations for third party classifier

implementations for data mining, whereas the Cloud Computing Colonies Framework

(C3) enables the maintenance of colonies of Job Agents over distributed and

heterogeneous e-Infrastructures, providing a fast job submission service and a

transparent application deployment mechanism.

In this sense, a wide interpretation of the notions behind Cloud and Grid computing

is herewith adopted and, through BiomedTK/C3, we show (1) how existing industry

standards, mostly Java based, can be used to leverage resources in an agile, affordable

and efficient manner, both for the end user, and the resource provider (decoupling to a

great extent user application specifics from resource providers and performing, at a

much simpler scale, what virtualization obtains in existing Cloud Computing

implementations) and (2) how Grid resources can be used to provision, in a basic

manner, Cloud characteristics such as On-demand Self-service, Resource Pooling and

Rapid Elasticity (see page 43).

4.2 The Biomedical data analysis ToolKit (BiomedTK)

The Biomedical Data Analysis Toolkit (BiomedTK) is a Java software tool that

exploits third party libraries for data analysis augmenting them with methods and

metrics commonly used in the biomedical field. In addition, it provides the means to

massively search, explore and combine different configurations of machine learning

classifiers provided by the underlying libraries to build robust data analysis tools. It is

possible to manipulate datasets, train Multilayer Perceptrons (MLP), and Support

Vector Machines (SVM) based binary and multiclass classifiers with many different

configurations, search for best ensemble classifiers, generate different types of ROC

curve analysis, etc. BiomedTK uses the Cloud Computing Colonies Framework (C3)

described in Section 4.3 to harness seamlessly the resources scattered throughout

distributed computing infrastructures of different nature. In addition, it is possible to

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 83

manipulate datasets, including export/import to/from data formats of commonly used

applications, allowing users to feed BiomedTK with datasets preprocessed by other

tools to, for instance, filter, or transform the data, normalize it, reduce its

dimensionality, etc. For researchers, it offers a command line interface to access its

functionality (manage datasets, launch classifier explorations, analyze results, etc. see

table 28 in page 157 for a list of BiomedTK commands). For programmers, it offers a

simple API (Application Programming Interface) so that new data analysis engines can

be integrated in a modular manner with reasonable effort (Ramos-Pollan, Guevara-

López et al. 2011).

4.2.1 BiomedTK engines and basic elements

BiomedTK integrates engines from the Encog toolkit (Heaton 2010) implementing

multilayer perceptrons, the libsvm toolkit (Chang and Lin 2001) implementing support

vector machines and the multilayer perceptron Encog engines modified for AUC

optimization as explained in Chapter 3. Table 14 lists the engines currently integrated

in BiomedTK along with the parameters each one accepts. Particular values of those

parameters for a specific engine constitute a classifier configuration for that engine.

For a given data analysis task in hand, classifier design amounts to finding

configurations yielding acceptable performance results and, therefore, the researcher is

often confronted with the need to explore and evaluate several classifier configurations.

For any engine, BiomedTK allows the evaluation of binary classifiers through plotting

ROC curves and computing their AUC (Fawcett 2006; Yoon 2007) offering the bi-

normal distribution method as provided by JLABROC4 (Eng 2011), the Wilcoxon-

Mann-Whitney statistic provided by WEKA (Mark Hall, Eibe Frank et al. 2009) and

the approximation method proposed in Section 3.2.

Table 14: Machine learning engines integrated in BiomedTK

engine description accepted parameters source

ffbp multilayer perceptron trained with

backpropagation

ANN structure, learn rate, momentum encog

ffbproc ffbp modified for AUC optimization ANN structure, learn rate, momentum modified encog
(see Section 3.3)

ffrp multilayer perceptron trained with resilient

propagation

ANN structure (no more params) encog

84 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

The following summarizes the basic elements of BiomedTK:

Dataset (train/test datasets): Contains the data to analyze. A dataset is made

of a set of elements (or instances), each one containing a set of numerical features used

as input values for classifiers and, optionally, an ideal class to which it belongs for

supervised training (expected classifier output). Depending on validation strategies,

elements of a dataset are usually split into two subsets, one for training and one for

testing. The training subset is used in training classifiers built to distinguish

automatically the classes to which each element belongs. The test subset is used to

measure the generalization capabilities of classifiers when applied to unseen data.

Binary Dataset: A dataset whose elements belong to only two classes. As opposed

to a Multiclass Dataset, whose elements may belong to several (more than two)

classes. As part of its functionality, BiomedTK provides the tools to create multiple

binary training sets for a given multi-class training set, each one to build a classifier

specific for each class.

Engine: Engines encapsulate third party classifiers (such as MLPs from Encog or

SVMs from libsvm). Each engine accepts a different set of parameters for training

(MLP structure specification, learning parameters, etc.)

Engine or Classifier configuration: An engine configuration specifies the

parameters with which a particular engine is used to train given a dataset. For

instance, a configuration of a MLP might specify an Artificial Neural Network (ANN)

ffrproc ffrp modified for AUC optimization ANN structure (no more params) modified encog

(see Section 3.3)

ffsa multilayer percptron trained with simulated

annealing

ANN structure, start temp, end temp,

cycles

encog

ffsaroc ffsa modified for AUC optimization ANN structure, start temp, end temp,

cycles

modified encog

(see Section 3.3)

ffga feed forward ANN trained with genetic

algorithms

ANN structure, population size, mating

size, survival rate

encog

ffgaroc ffga modified for ROC optimization ANN structure, population size, mating

size, survival rate

modified encog

(see Section 3.3)

csvc cost based Support Vector Machine kernel, cost, degree, gamma, coef0,

weight, shrink, estimates

libsvm

nusvc « Support Vector Machine kernel, nu, degree, gamma, coef0, shrink,

estimates

libsvm

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 85

with 3 layers having 10 neurons each, using the sigmoid activation function, with 0.1 as

learning rate and 0.5 as momentum over 10000 iterations.

Exploration: An exploration over a dataset defines a set of classifier configurations

to train in batch mode in order to find the one(s) that best classify the dataset, or to

later use them to build ensemble classifiers.

Jobs: Each exploration is split into a number of user defined jobs. Each job will

train a subset of the engine configurations defined in a given exploration. Jobs can be

then executed in sequentially over the same computer or in parallel over a distributed

computing infrastructure.

BiomedTK interfaces seamlessly with distributed computing resources made

available through C3 (see Section 4.3) providing commands to launch and manage

explorations to C3 job agents, enabling researchers to harness computing power in an

agile manner and allowing them to gradually gain understanding on what engine

configurations better classify their data. This constitutes the basis of the exploration

method described below.

4.2.2 BiomedtTK explorations

The classifier exploration method supported by BiomedTK and herewith described,

is aimed at addressing two issues: 1) the need to manage, in a simple and unified way,

many classifier configurations integrating third party engine implementations of

different nature (implementing different machine learning models such as ANNs, SVMs,

etc. on different programming languages such as C, Java, etc.) and 2) the need to

efficiently exploit distributed resources required to evaluate such a diversity of classifier

configurations. In this sense, efficiency denotes both an economy in the researcher’s

effort to setup and run experiments and a rational usage of available computing

resources. BiomedTK supports this method through a series of configuration artifacts

and tools that together with C3 constitute the material means through which

researchers can efficiently use eInfrastructures to perform complex explorations of

classifier configurations.

Explorations of classifier configurations are the key element of this method. Through

them, researchers can gradually build understanding on the search space of possible

classifiers (engine configurations) for a given dataset. With BiomedTK explorations are

defined in text files with a specific format. Figure 27 shows an example exploration file

86 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

producing configurations to train classifiers for two datasets derived from the original

BREAST-TISSUE dataset from the UCI repository with the engine using ffrp, ffsaroc,

ffga and nusvc (see Table 14, page 83).

Figure 27: Example BiomedTK exploration file

For MLP based engines, this exploration will generate configurations with ANNs

having three hidden layers with 18 or 36 neurons in the first hidden layer, 9 or 18 in

the second one, different neuron activation functions, etc. It also contains classifier

specific parameter sweeps. For instance this exploration generates ffsaroc configurations

with the starttemp parameter set to 10 and 15, the endtemp parameter set to 2 and 4,

nusvc configurations with radial basis and polynomial kernel functions, etc. This

exploration generates, for each dataset, 32 ANN based configurations for the ffrp engine

(it is an engine with no parameters, 32 is the number of combinations of MLPs

generated with the specified layers, neurons and activation functions per layer), 64

configurations for the ffga engine, 128 for ffsaroc and 24 for nusvm (a SVM engine and,

therefore, not using ANN structure specifications). In total this exploration generates

496 engine configurations (248 for each dataset) split into 50 jobs as specified in the

same exploration file. This way, 49 jobs will train 10 engine configurations, and one job

that will train 6 configurations.

Exploration jobs are sent to computing resources for training the classifier

configurations they contain. Explorations can be made as large or small as desired,

depending their feasibility on the capacity of the available computing resources.

Training times for different classifier engines vary greatly depending on dataset size,

explore.neurons.input = 9

explore.neurons.output = 2

explore.neurons.layer.01 = 18:36

explore.neurons.layer.02 = 9:18

explore.neurons.layer.03 = 5:9

explore.activation.input = tanh

explore.activation.output = tanh:sigm

explore.activation.layer.01 = tanh:sigm

explore.activation.layer.02 = tanh

explore.activation.layer.03 = tanh

explore.nblayers.fixed = yes

exploreexploreexploreexplore....datasetsdatasetsdatasetsdatasets ==== BREASTBREASTBREASTBREAST----TISSUETISSUETISSUETISSUE....CARCARCARCAR

BREASTBREASTBREASTBREAST----TISSUETISSUETISSUETISSUE....NORMNORMNORMNORM

explore.stop.error = 0.1

explore.stop.epochs = 2000

exploreexploreexploreexplore....enginesenginesenginesengines ==== ffrpffrpffrpffrp::::ffgaffgaffgaffga::::

ffsarocffsarocffsarocffsaroc::::nusvcnusvcnusvcnusvc

explore.validation = testpct 40

exploreexploreexploreexplore....numberofjobsnumberofjobsnumberofjobsnumberofjobs ==== 50505050

explore.encog.ffga.matepercent = 0.5

explore.encog.ffga.percentmate = 0.2

explore.encog.ffga.population = 100:200

explore.encog.ffsaroc.starttemp = 10:15

explore.encog.ffsaroc.endtemp = 2:4

explore.encog.ffsaroc.cycles = 100

explore.libsvm.nusvc.kernel = rbf:pol

explore.libsvm.nusvc.nu = 0.4:0.35

explore.libsvm.nusvc.degree = 2:3:4

explore.libsvm.nusvc.gamma = 0.03:0.035

explore.libsvm.nusvc.coef0 = 0.0

explore.libsvm.nusvc.shrink = yes

explore.libsvm.nusvc.probestimates = yes

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 87

parameters, MLP complexities, etc. When confronted to a new dataset for which one

wants to explore classifier configurations, the following method is proposed:

1. Start with small explorations launched locally (on the desktop computer) to

get a sense on the computing times needed by each different classifier and

their initial performance.

2. Perform increasingly larger explorations, first locally and then over a larger

computing infrastructure, to understand what classifier parameters might

work better with each classifier.

3. Devise very large explorations (either by number of configurations and/or by

computing time each configuration takes) and send them to a large

computing infrastructure.

For this method to be effective, an agile and fast interaction between the researcher

and the computing infrastructure becomes essential, so that, if computing resources are

available, multiple explorations can be tested in reasonable time. It is fundamentally

this agile interaction that allows researchers to efficiently build exploration strategies

and gain understanding on what classifiers suit better a certain problem in hand.

For performing explorations BiomedTK offers the researcher two options: (1) launch

the jobs sequentially over his local machine (desktop), or (2) submit them to C3 Job

Agents running on available computing resources. Results (accuracy and AUC

measures for test and train data) of each trained engine configuration are stored in a

database that can be later inspected through standard SQL sentences. A command line

tool exposes BiomedTK functionality to researchers. There are commands to import

and manipulate datasets, to create a job set from an exploration file, to launch locally

and exploration, to launch and monitor explorations to an eInfrastructure made

available through C3, to inspect and test exploration results, to build ensemble

classifiers, etc. See table 28 in page 157 for a list of BiomedTK commands. In practice,

when faced with the task of exploring MLC configurations for a given dataset,

BiomedTK enables researchers to cycle through the following steps

1. make initial exploration issuing BiomedTK commands jobset + launch (local

launch)

2. inspect database for results

3. refine and enlarge initial exploration by issuing commands jobset +

c3.prepare + c3.submit

88 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

4. inspect database for results

5. repeat from step 1 or step 3

Figure 41 in page 158 shows a typical BiomedTK session, importing a dataset and

launching an exploration locally. BiomedTK and the method it supports are focused on

providing the means to exploit eInfrastructures for exploring classifier configurations,

regardless the sources and previous manipulations of data. For this purpose, BiomedTK

provides basic functionality for data normalization and tools for importing and

exporting data to commonly used formats (CSV, WEKA arff, etc.), so that researchers

can use their usual tools for data preprocessing before feeding datasets to BiomedTK.

Validation

When performing explorations BiomedTK implements several validation strategies for

the researcher to use. Validation is a key issue to understand the applicability and

significance of classification results and was addressed in Chapters 1 and 2. Table 15

lists the validation procedures available in BiomedTK through the value of the

explore.validation field in any exploration configuration file (see example in figure

27).

Table 15: Validation procedures available in BiomedTK

field value description

asints Uses the test/train split as specified in the dataset stored in the database,
where each dataset element is tagged as either test or train. This tag can be
set manually by the researcher by using standard SQL tools on the
database, or also through the BiomedTK command split.dataset,
researchers can establish a certain test/train split percentage for the dataset.
In this case, the split is stratified (the class composition percentage is
preserved in the generated train and test datasets)

cvfolds N Uses cross validation with N folds each fold using one Nth of the dataset
elements for testing and the rest for training. This split is also stratified

one2all Uses leave one out cross validation (LOOCV). It is equivalent to using
cvfolds with N equal to the number of elements in the dataset minus one.

testpct N Before training each classifier configuration a stratified split is made with
N% of the elements for testing. This implies that each classifier configuration
is trained with a different set of elements (although always representing the
same stratified percentage of the dataset). This enables bootstrapping
validation through repeating this process several times and then averaging
(see repeats exploration parameter in table 16)

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 89

Other exploration options

Additionally, a few other parameters are accepted by BiomedTK within exploration

files to fine tune its behavior as shown in Table 16.

Table 16: Additional BiomedTK exploration parameters

name description

probeperiod number of training iterations between which BiomedTK reports training
progress on stdout

store.trainelements specifies if the list of dataset elements used for training are stored in
BiomedTK DB together with the classification results of each trained classifier
configuration

store.engine whether to store the trained classifier (fitter model) of each configuration.
Storing it allows to apply it to other datasets later on.

store.scores whether to store in the DB the scores assigned by a classifier to dataset
elements.

store.cvfolds whether to store in the DB the classification results of each cross validation
fold or only the final averaged cross validation result

plot.testroc whether to plot a ROC curve for test element for each trained
classifier configuration. ROC curves are stored as PNG files in the
current directory

repeats number of times each classifier configuration is trained. Used in
conjunction with testpct validation enables bootstrapping validation

min.errortrend as training progresses for any classifier engine, BiomedTK measures
how much the training error has been reduced in the last 15% of the
training process. If the error trend falls below the value specified in
this parameter then BiomedTK stops training. This usually enables
to detect stalled training processes.

skip.trained before training a classifier configuration BiomedTK checks whether a
result already exists in the DB for this configuration. If this is the
case and this parameter is set to “yes” then BiomedTK does not train
this configuration. This allows completing unfinished explorations.

4.2.3 BiomedTK architecture

BiomedTK is a software framework developed as a stand-alone Java application which

fully supports the cycle explained in previous section. Figure 28 shows the architecture

of BiomedTK.

90 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Figure 28: BiomedTK component archtecture

The BiomedTK Engine orchestrates all functionality invoking the Exploration

Generator to process explorations and the JobSet Generator to effectively execute the

explorations. Itself, the JobSet Generator handles jobs to a Local Job Launcher or to a

C3 Job Launcher according to the user command. Jobs are sent to C3 by the C3 Job

Launcher using the C3 Client Lib which is delivered by C3 simply as a jar file that is

included within the BiomedTK distribution. For completeness and clarity, figure 28

includes a simplified representation of the C3 architecture which is further explained in

Section 4.3. Datasets and exploration results are stored in a common database. Jobs,

whether launched locally or over C3, feed the BiomedTK database with results. Any

JDBC compliant database can be used and, for convenience, BiomedTK embeds the H2

database engine (H2 2011) which uses the local filesystem for storage, so there is no

need to install another third party database if it is not desired. Initially, BiomedTK

was initially conceived to send jobs directly to a gLite infrastructure and, hence,

included a gLite Job Launcher and a set of command line functionalities to manage

Computing resources
(gLite, cloud, etc.)

biomedtk

BIOMEDTK ENGINE

EXPLORATION
GENERATOR

JOBSET
GENERATOR

LOCAL JOB

LAUNCHER

C3 JOB

LAUNCHER

C3 CLIENT LIB
C3 CLIENT API

ENCOG

ENGINES

BIOMEDTK

ENGINE API

DB DATASETS
and

EXPLORATION
RESULTS LIBSVM

ENGINES

OTHER 3rd

PARTY

ENGINES

DATASET HANDLING

EXPLORATION
DEFINITION

DATASET
cvs, weka,

…

C3 component

BIOMEDTK component

third party classifier engine

C3 JOB

AGENT

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 91

jobs submitted to gLite. But the impact of accumulated job latencies in the classifier

exploration cycle made us develop the C3 framework as mentioned before. Note how,

through the C3 Job Launcher, BiomedTK jobs arrive directly at the Job Agent already

living on a computing resource (such as gLite working node) without interacting with

any middleware.

Finally, BiomedTK defines a Classifier API through which new classifier engines are

integrated. Java classifier engines must deliver their implementation as a jar file

containing the interface classes implementing the BiomedTK Classifier API and their

own implementation classes (the actual engine). The following shows an excerpt of the

BiomedTK Classifier API main interface that each classifier engine must implement:

public interface TrainedClassifier {

 public void initialize (ClassifierParameters p, Dataset d);

 public String getEncodedEngine();

 public void setEncodedEngine(String encodedEngine);

 public ClassifierParameters getParameters();

 public Double getTrainError();

 public void train(TrainListener l);

 public void ClassifierParameters[]

 generateParameterSweep(ExploreProperties p);

 public void classify (List<DatasetElement> e);

}

It is a simple Java interface requiring mainly implementations of methods to train

and classify datasets, to generate parameters sweeps from an exploration definition and

create and restore a trained engine to/from a String based representation, which

allows BiomedTK to store and reconstruct any third party trained engine. BiomedTK

also supports native implementations of classifier engines. In this case, a classifier must

deliver a jar file containing the interface classes, and a set of precompiled binaries for

different hardware platforms. This way, whenever invoking a third party classifier

BiomedTK searches for the platform specific binary and it will be able to use engines

for as many hardware platform as precompiled binaries are provided. This is the case of

the already integrated libsvm C library, for which binaries for MacOS, Windows XP/7,

and different Ubuntu and Scientific Linux kernels were generated. This allows users, for

instance, to start using BiomedTK to classify a given dataset on their local MacOS

machine and then send larger explorations to a C3 Job Agent Colony living on top of a

92 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Scientific Linux based gLite Grid infrastructure in a completely transparent manner. In

total, BiomedTK is approximately made of 18000 lines of code and 160 Java classes.

4.2.4 Building ensemble classifiers

Ensemble methods in machine learning (Dietterich 2000) combine existing classifiers as

an attempt to improve the performance of single classifiers either by compensating with

each other in cases where a single classifier outperforms other, or by combining

redundancy classification offered by several single classifiers.

For their simplicity and generality we are interested in Error Correcting Output

Codes, a technique developed in the context of digital signal processing theory

(Hocquenghen 1959; Bose and Ray-Chaudhuri 1960) providing redundancy in

communications to compensate for noise and applied in machine learning since

(Dietterich and Bakiri 1991). In short, for a given multiclass classification problem with classes, an Error Correcting Output Code (ECOC) is defined by a matrix of

size	! ¦ describing, for each of the possible final classes, how the ! available

binary classifiers are combined. This matrix is referred to as the codematrix, and figure

4 shows an example where 7 binary classifiers are used to produce a 6 class ensemble

classifier. Each class is assigned a codeword that represents the participation of each

binary classifier in that class. When an input vector is fed into each one of the 7

classifiers, a binary codeword is produced combining the output of all the binary

classifiers. Then, a distance measure between codewords is defined and the class with

the closest codeword to the one produced by the binary classifiers is selected to be the

one assigned to the initial input vector. ECOCs are being used frequently in machine

learning (Passerini, Pontil et al. 2004; Escalera, Tax et al. 2008; Huiqun, Stathopoulos

et al. 2009) and also in biomedical contexts (Escalera, Pujol et al. 2008).

BiomedTK supports the ECOC based method for building ensemble classifiers. This

includes (1) the definition of code matrices for a certain multiclass dataset, (2) the

generation of binary datasets for each column in the code matrix and (3) assembling

previously trained binary classifiers for each column into ensemble classifiers. Figure 29

represents an actual codematrix definition file as accepted by BiomedTK, where

BREAST-TISSUE is a six-class dataset (from the UCI repository, dataset with

electrical impedance measurements of freshly excised tissue samples from the breast)

and the codematrix specifies seven binary classifiers (columns). The first six columns

would be used to train classifiers distinguishing each class from the rest. The norm

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 93

column will be used to train classifiers distinguishing elements tagged as car (for

carcinoma), fad (fibro-adenoma) or mas (mastopathy) from the rest (representing

normal tissue tagged as glandular, connective or adipose).

Figure 29: Example codematrix defintion file

The following summarizes the method supported by BiomedTK for building

ensemble MLC:

1. Start with a multiclass dataset with classes and a code matrix specification

with rows and ! columns, such as the one in figure 4. Then, create for

each column in the code matrix a new binary dataset according to the

column specification (for column �, each element is labeled as “c” or “non-C”

according to whether its ideal class in the original dataset is marked as 1 or 0

in column �). This generates ! binary datasets.

2. Explore classifier configurations for each newly created binary dataset. In

fact, figure 2 shows an exploration file to search binary classifier

configurations for the car and norm derived binary datasets as created in the

previous step starting from the code matrix shown in figure 29. This

generates, for each column, a set of trained classifiers. BiomedTK supports

this step through the exploration method explained in section 2.1.

3. Choose, one classifier for each column and ensemble them through the ECOC

method. This is done through the ensembles command, which takes classifiers

for each column, ensembles them and measures the performance on the

ensemble classifier.

Observe that, for each column in a code matrix, one might have generated several

binary classifiers in step 2 above; hence, the researcher needs to decide which specific

classifier to use. BiomedTK supports this by interpreting the ensemble.classifiers.select

line in the codematrix in which, for each column, the researcher specifies what criteria

to follow to select binary classifiers. With bestPct, the binary classifier for that column

ensemble.trainingset = BREAST-TISSUE

ensemble.classifiers.validation = cvfolds 10

ensemble.classifiers.select = bestPct any bestAUC 4035 bestPct bestPct any

ensemble.classifiers.names = car fad gla mas con adi norm

ensemble.codematrix.car = 1 0 0 0 0 0 0

ensemble.codematrix.fad = 0 1 0 0 0 0 0

ensemble.codematrix.gla = 0 0 1 0 0 0 1

ensemble.codematrix.mas = 0 0 0 1 0 0 0

ensemble.codematrix.con = 0 0 0 0 1 0 1

ensemble.codematrix.adi = 0 0 0 0 0 1 1

94 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

with best classification rate for test data is used. With bestAUC the one with best AUC

measure for test data is chosen. A number (such as in the mas column) refers to the ID

of a specific binary classifier present in the database that the researcher wants to use.

With any, we instruct BiomedTK to try all binary classifiers available for that column.

4.3 The Cloud Computing Colonies framework (C3)

The Cloud Computing Colonies Framework (C3) is a Java light weight, open

standards based set of utilities providing a fast job submission mechanism to

distributed computing resources and a transparent, non-intrusive application

deployment facility. It decouples user interaction from particularities of access methods

of computing resources of different nature (different middleware, technologies, etc.). It

is based on a Job Agents architecture such as in the DIRAC (DIRAC 2010) or AliEn

(Bagnasco and et al. 2008) frameworks of different CERN experiments where, once job

agents are deployed to the actual computing resources, all communications (job

submission, status, results transfer, etc.) happen between the job agent and the C3

system, using specific resource provisioning mechanisms (such as gLite in case of

certain Grid infrastructures) merely as a means to deploy Job Agents into the

computing resources (worker node, host machine, etc.)

Once deployed, a C3 Job Agent receives incoming jobs directly from the C3 system,

looks up in an application repository the application specified in the job description,

executes it locally, sends regularly job status information to the C3 system (including

process stdout and stderr as they are produced by the application) and, finally, sends

the results back to the C3 system for publishing. Users and other applications interact

with a C3 system to send jobs and retrieve their status, stdout, stderr and final results.

A command line utility is offered to users exposing this functionality, and a simple

client API, distributed as a jar file, is available for applications to programmatically

manage this interaction. This is the case of BiomedTK as described in previous section.

C3 introduces the notion of a Job Agent colony, representing a set of job agents

deployed on a specific computing infrastructure, such as on the worker nodes of a

specific gLite (gLite 2011) computing element within the EGI federation (EGI 2011). A

colony maintainer is a C3 module that tries to ensure a certain job agent population

over a specific computing infrastructure. C3 includes colony maintainers for computing

resources available through gLite middleware, Amazon EC2 and regular SSH access.

New colony types to harness computing resources available through other technologies

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 95

and models can be easily integrated by developing new colony maintainers to deploy

job agents colonies into their computing resources. Colony maintainers must follow the

C3 colony API and encapsulate all specifics of accessing a particular computing

resource. All job agents, regardless the colony to which they belong or the colony

maintainer that ensures their existence, are readily available in a homogeneous manner

to all users of the C3 system that manages them.

4.3.1 C3 architecture

C3 is mainly based on the Java Message Service (JMS 2011) an industry standard

general purpose message delivery mechanism for distributed applications. As in other

standards, JMS establishes the concepts and implementations that any JMS provider

must offer, and clients following JMS are not tied to a specific provider. A JMS

Provider is therefore, a software package implementing the JMS specification and a

JMS Client is any application or process producing and/or receiving messages through

a certain JMS Provider. Messages can be interchanged through Queues or Topics,

which are managed by the JMS Provider. Messages sent to a Queue are guaranteed to

arrive exactly to one JMS Client, and will be stored in a staging area until some JMS

Client asks to receive a message from the Queue. If several clients decide so, the JMS

provider will leverage the queue of messages among the existing JMS Clients as they

become available, delivering each message once to only one client. Topics follow a

publish/subscribe model where messages sent to a topic are delivered to all clients

registered to that topic and, if no client is subscribed when it is published, the message

usually goes ashtray.

JMS Clients may choose to receive only certain messages from queues or topics

according to custom message properties or other criteria. JMS Providers implement all

logic necessary to guarantee message delivery, persistence, security, etc. as required by

the JMS specification. C3 is therefore engineered as a set of JMS Clients interchanging

messages through Queues and Topics configured in a JMS Provider. C3 currently uses

the Open Message Queue (MQ 2011), an open source implementation of JMS. Figure

30 shows the C3 architecture, organized around a set of Queues and Topics.

96 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Figure 30: C3 component architecture

Three C3 components act as JMS Clients: the C3 Client, which submits jobs and

receives jobs notifications (status, stdout, stderr), the C3 Job Agent, which receives jobs

to be executed in the computing resource where they live and commands (such as

‘shutdown’, or ‘cancel job’) and the C3 Server Engine, which is the core of the C3

system. The C3 Server Engine regulates traffic of jobs, status messages and commands

among the different actors. It is a Java process that must be kept running along with

the JMS provider (Open Message Queue in our case). These components interact

through the following queues and topics:

C3 Job Requests Queue: Clients use this queue to send three kinds of messages:

jobs submission, job status query and job cancelation. Only C3 clients send messages to

this queue. The only consumer for this queue is the C3 Server Engine.

C3 Job Agent Job Delivery Queue: When the C3 Server Engine receives a job

submission message through the previous queue, checks its content, updates the jobs

database, publishes its input sandbox in the web server and dispatches it to the C3 Job

Agent Job Delivery Queue. All job agents are potential consumers for all messages to

this Queue and they register to receive new jobs (encapsulated within a JMS message)

only when they are finished running a previous job. A job agent may only execute one

job at a time and if several job agents are free, the JMS Provider will distribute evenly

C3

JMS PROVIDER

C3 JOB REQUESTS

QUEUE

C3 JOB AGENT JOB DELIVERY

QUEUE

APPLICATION

Web Server (HTTP/HTTPS)

C3 COLONY
MAINTAINER

SSH
COLONY

MAINTAINER

Third party open source component

Application

C3 JOB AGENT EVENTS QUEUE

C3 JOB AGENT COMMANDS

QUEUE

AGENTS/JOBS DB

COMMAND

LINE

C3 CLIENT
C3 client API

SSH Job Agent colony

C3 component

gLite colony
(EGEE, EELA,..)

WN

JOB

AGENT

WN

WN

WN

WN

WN

WN

Java Web Start application repository

Input Sandbox repository for C3 jobs

Output Sandbox repository for C3 jobs

C3 colony API

C3 SERVER
ENGINE

C3 NOTIFICATIONS TOPIC

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 97

job submission messages across them. The JMS specification guarantees that each job

submission message is either held in the queue if no job agents are available, or

delivered to exactly one job agent. This logic is implemented by the JMS Provider. C3

components just limit their activity to receive and send messages to queues.

C3 Job Agent Commands Queue: This queue is used by the C3 Server Engine

to deliver commands to specific job agents. Although all active job agents are

consumers to this queue, messages are addressed to a single job agent using standard

message filtering as defined in JMS. This way, the C3 Server Engine can instruct a

specific job agent to cancel the job it’s running after receiving a job cancellation request

sent by a C3 client to the C3 Job Requests Queue. It works analogously for job status

requests, or agent shutdown commands.

C3 Job Agent Events Queue: This queue is used by job agents to send regularly

information about their status (start up, shutdown, job processing progress, etc.) to the

C3 Server Engine who, in turn, usually updates the database with the received

information. The database is later used to know what agent is processing what job, how

many agents are available, etc.

C3 Notifications Topic: This is a topic, so JMS simply delivers messages to the

active clients that have subscribed to this topic if there is any, otherwise the message

goes ashtray. Typically, a C3 client subscribes to this topic to receive regular messages

about job or agent status. These messages include job status and stdout and stderr

chunks as they are produced by the job process running, information about the

machine in which the job agent is running, etc. This allows any C3 client to easily

monitor job status and progress.

In addition, C3 uses an input and output sandbox model similarly to Grid

middleware, where users have the possibility to determine a set of files to travel with

the job submission (input sandbox) and a set of files which persist after job execution

(output sandbox). C3 provides a simple implementation of this model, where files in

the input and output sandboxes are published through a web server by the C3 Server

Engine when jobs are submitted and finished. Afterwards, users can employ standard

HTTP/HTTPS tools to access them (browsers, command line fetching, etc.)

C3 makes intensive use of Java Web Start (JWS 2011) as a transparent application

deployment mechanism avoiding custom application installation on computing

resources and not requiring users to include their applications as part of their input

sandbox. With JWS, an application and its dependant libraries are made available at a

98 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

certain web server where an application description file contains information on

application versioning, libraries and dependencies. Application descriptions are given in

JNLP files (for Java Network Launching Protocol). When using JWS, an application is

launched by providing a URL to its application descriptor and the underlying JWS

implementation reads it, fetches its library files, checks versions, etc. and finally

launches it. C3 Job Agents use JWS to launch applications and C3 clients, when

submitting jobs, specify what application to launch by simply providing the URL to the

application descriptor. Applications can then be published into an application

repository through any web server, including the one already bundled with C3. Two

JWS features are of key benefit for C3. First, JWS is included as part of any regular

Java installation (JDK, the Java Development Kit, or JRE, the Java Runtime

Environment) and a JWS client library is part of the C3 Job Agent package, so it

imposes no additional installation requirements on computing resources hosting job

agents. Second, it provides versioning and caching of applications so that they are only

fetched from the repository if they do not exist in the local job agent cache (managed

by JWS) or if a new version has been published.

As in the case of BiomedTK, C3 works with any JDBC database and also with any

Web server as long as there is a shared file system through which input and output

sandboxes can be published. For convenience, the H2 database server (H2 2011) and

the Jetty web server (Jetty 2011) have been embedded within C3 so that they can be

started together with the C3 Server Engine process, avoiding, if desired, the need to

install additional database or web server software.

As mentioned, C3 client functionality is exposed through an API so that other

applications can programmatically interact with the C3 system. C3 also provides a

command line tool (which just uses C3 Client API, as BiomedTK or any other

application may do) for users to directly submit jobs and query the status of the jobs

and job agents. The C3 Client API is delivered as a set of utility classes through a

regular jar file with a very small footprint (128KB) which together with the required

JMS client libraries makes a total footprint of about 900KB. The following shows the

main utility class that any C3 client application can use:

public class JobActionsJobActionsJobActionsJobActions {

 public static Long submitJobsubmitJobsubmitJobsubmitJob (C3JobProperties props);

 public static String cancelJob cancelJob cancelJob cancelJob (Long jobid);

 public static JobBean getJobInfo getJobInfo getJobInfo getJobInfo (Long jobid);

 static String getLastStdouterr getLastStdouterr getLastStdouterr getLastStdouterr (Long jobid);

}

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 99

It contains straight forward methods for job submission and management. Note the

getLastStdouterr method allowing client applications to retrieve the last reported

stdout/stderr chunk from the jobs. It is actually the job agents the ones in charge of

capturing stdout/stderr and other job status conditions and sends them to the C3 Job

Agent Events Queue and the C3 Notifications Topic.

4.3.2 C3 jobs

From a client application perspective (such as BiomedTK), a C3 job is a simple object

containing the following properties (C3JobProperties class of the C3 Client API):

public class C3JobPropertiesC3JobPropertiesC3JobPropertiesC3JobProperties extends BasicC3Properties {

 public String jnlpurljnlpurljnlpurljnlpurl;

 public String[] inputfilesinputfilesinputfilesinputfiles;

 public String[] outputfilesoutputfilesoutputfilesoutputfiles;

 public String commandcommandcommandcommand;

 public String[] argumentsargumentsargumentsarguments;

}

which basically amounts to defining two lists of files that make the input and output

sandboxes and then either (1) a command and a set of arguments or (2) the address of

an application in a Java Web Start repository (the jnlp property). When a job arrives

to a job agent, it first checks if the jnlp property is set and uses the standard Java

runtime utilities to fetch and launch locally the application through Java Web Start.

Otherwise it executes whatever command and arguments are present in the job

description. Applications using the C3 Client API, create C3JobProperty instances to

submit jobs.

From a user perspective, the C3 Command Line interface (invoked through the c3c

command line shell), being itself just another C3 client, retrieves the job properties

from a job definition file so that users can later submit the job and query their status.

Figure 31 shows a sample job file and user session, with the commands issued by the

user to submit the job and query its status. Note how the information on what job

agent the job was run is kept and shown. Of course, this data is also available

programmatically to applications invoking the C3 Client API. In this example, the job

was executed in job agent number 21, belonging to a gLite colony of the EELA-CETA

100 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Grid federation, and the jnlpurl property of the job file was used to specify the address

of the application to fetch and run by JWS when the job arrives to a job agent.

Figure 31: Sample C3 job file and client session

C3 Jobs go through a state workflow which typically takes a job from submitted

(timestamp of the user localhost when submitted), to scheduled (when it enters the C3

Job Agent Job Delivery Queue), to running (when the JMS job message is delivered by

the JMS provider to a job agent and the job is started), to finished (when its output

sandbox is finally published in the web server). Alternatively, jobs may fall into

canceled (if the user requested its cancellation), aborted (if the job agent running it

stopped or was instructed to shutdown before it finished) or failed (if the job process

finished with a non-zero exit code). The sample application in figure 31 waits for 30

seconds and then outputs a “hello” message (see Last Stdout Chunk section in the job

info output). Note the little latency between submit and running (1 second), that

includes (1) zipping the input sandbox (just a few kilobytes in this example), (2)

sending a JMS Message to the C3 Job Requests Queue, (3) having the C3 Server

rlx@rlx-desktop:~/c3/as-client$ c3c submit sample.job

[INFO] [2010.08.05 19:00.04] submitting job from file sample.job

[INFO] [2010.08.05 19:00.05] job submitted successfully. jobid =14

rlx@rlx-desktop:~/c3/as-client$ c3c info 14

--------------- JOB INFORMATION ----------------------------------

job id 14

job status FINISHED

submit date 2010.08.05 19:00.04

scheduled date 2010.08.05 19:00.04

running date 2010.08.05 19:00.05

finished date 2010.08.05 19:00.37

exit code 0

--------------- AGENT INFORMATION --------------------------------

agent id 21

agent name c1b345

agent hostname ba-01-14.ceta-ciemat.es

agent ip address 192.168.30.21

agent colony EELA-CETA

agent colony type glite

agent os name Linux

agent os arch Linux

agent os version 2.6.9-67.EL.cernsmp

agent java version 1.6.0_16

agent max wait 50000

----------------------- LAST STDOUT CHUNK --------------------------------

[14.out.00001] ba-01-14 hello from a sample job

c3job.jnlpurl: http://ui-eela.ceta-ciemat.es/apps/HelloWorld.jnlp

c3job.inputfiles: dummy-input-1.txt:dummy-input-2.txt
c3job.outputfiles: dummy-output.txt
c3job.command: java
c3job.arguments: “hello from a sample job”

file sample.job

User session

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 101

Engine receiving the message, verifying its contents, publishing its input sandbox in the

web server, updating the C3 database and relying it to the C3 Job Agent Job Delivery

Queue, (4) relying on the JMS Provider delivers the job message to some job agent and

(5) having the job agent effectively forking and running a new process. Note as well the

little latency to process its output in a similar fashion (32 seconds between running and

finished states, which includes the 30 seconds of application effective running).

4.3.3 C3 job agents and colony maintenance

The mission of colony maintainer modules is to ensure that populations of job agents

are available on specific computing resources. Usually, colony maintainers stay running

monitoring the population of job agents available, redeploying agents if they die to

ensure, if resources are available, the population reaches a certain number of job

agents. C3 includes three colony maintainers, one to deploy job agent populations to

gLite infrastructure, encapsulated within virtual machines for Amazon EC2 and,

finally, another one to deploy job agents to remote machines through remote SSH

commands execution. The gLite C3 Colony Maintainer uses the standard gLite job

submission mechanisms (through issuing glite-wms-job-submit and glite-wms-job-status

commands and using JDL files generated on the fly) to deploy C3 job agents on gLite

worker nodes. A job agent is encapsulated within a JDL file, including the C3 libraries

within the input sandbox and then submitted to gLite. The gLite Colony Maintainer is

started on a gLite user interface and uses the credentials (proxy) of the user launching

the maintainer process.

The SSH Colony Maintainer issues ssh commands to remote machines sharing some

file system to deploy the job agents. In both cases, the only pre-requisite on the final

resources (gLite worker nodes or remote SSH available machines) is that the Java

Runtime Environment v1.5 or above is installed on the remote machines.

In the case of Amazon EC2 it was only required to encapsulate the C3 job agents

within a standard Linux virtual machine on their Cloud. This was straight forward,

starting off from a basic virtual machine template (in which java is already installed)

requiring simply the installation of the C3 toolkit and setting it up so that it is the C3

job agent is launched when the machine starts, and that the machine shuts down when

the C3 agents finishes or dies (so that the instance is removed and billing by Amazon

stopped). No specific colony maintainer was required since the AWS Management

102 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Console (see Figure 34 on page 108) provides all functionality to launch, manage and

monitor virtual machines.

If a certain eInfrastructure does not provide mechanisms guaranteeing the survival

of the colony, C3 includes a utility for colony monitoring and simple management

through which it can easily integrate new colony maintainers which must implement

the C3 Colony API. The following shows the main interface of this API:

public interface C3Colony {

 public void initinitinitinit (C3ColonyProperties colonyProperties);

 public void addAgentsaddAgentsaddAgentsaddAgents (int numberOfAgents);

 public void removeAgentremoveAgentremoveAgentremoveAgent (C3ColonyAgent agent);

 public List<C3ColonyAgent> getColonyAgentsgetColonyAgentsgetColonyAgentsgetColonyAgents();

}

which requires new colony maintainers to implement straight forward methods to

add, remove and find out what agents are available. For instance, in the case of the

gLite Colony Maintainer, its implementation of the addAgents method that creates the

JDL file on the fly, includes the C3 libraries and submits the actual gLite job.

C3 job agents auto shutdown if they have not received jobs for a certain amount of

time configurable by the administration that launches the colony. This is so to avoid

C3 take over resources that may not be used if there are no users submitting C3 jobs.

When a colony maintainer is instructed to ensure a colony population of, say, 20 job

agents, it will constantly monitor the population and, as job agents die, it will redeploy

them. Job agents may die for many reasons, among them, because they auto shutdown

due to lack of activity. This gives a chance for other users or applications to access the

same computing resource. Anyhow, if a job agent is kept constantly busy (because of

long jobs, or because of many jobs) it will not auto shutdown.

Figure 32 shows a sample deployment scenario of using C3 over a single gLite

federation where (1) the C3 Server Engine runs together with the Open Message Queue

JMS provider in the same server machine, (2) a C3 gLite Colony Maintainer runs

within a gLite User Interface, which is required so that it can effectively submit and

check the gLite jobs containing the job agents and (3) the user sends jobs to C3 from

his desktop.

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 103

Figure 32: C3 sample deployment scenario

Note that gLite jobs (containing C3 job agents) are sent under a certain user

credentials and all C3 jobs will be run on the worker nodes under those user

credentials. Also, the C3 Server Engine and JMS providers do not need to be on the

same private network as the worker nodes, as long as the right connectivity between

them is provided (as explained below). Even the C3 Server Engine and the JMS

providers may be in different physical machines, since the C3 Server Engine is simply

one additional JMS Client. This property allows many deployment and scalability

options.

4.3.4 Other issues

Communication: C3 components (C3 Server Engine, C3 Clients and C3 Job Agents)

are JMS Clients so they need connectivity to the JMS Provider ports for sending and

receiving messages. In JMS, it is always the JMS Client who initiates any connection to

any JMS Provider, therefore all C3 components require outgoing connectivity to reach

the JMS Provider, but not incoming connectivity. This is quite convenient as in most

occasions, job agents are deployed in computing resources not visible from the internet

(with local IP addresses) but with outgoing connectivity (through NAT or other

mechanism). The Open Message Queue JMS Provider currently used by C3 listens for

USER DESKTOP

C3 SERVER HOST

WN

WN

gLite USER
INTERFACE

C3 gLITE
COLONY

MAINTAINER C3 SERVER

ENGINE

C3 CLIENT

cmd line or

application

Open Message Queue

JMS PROVIDER

WMS

CE

CE

WN WN

WN WN

WN WN

WN WN

C3 component

gLite component

C3 job agents

104 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

JMS clients on port 7676 by default and this is configurable. In case ports cannot be

reached by clients, it also offers a servlet based HTTP bridge that can be deployed into

any web container and thus made available through port 80 which is regularly allowed

for outgoing connections. This HTTP bridge is included and configured within the

Jetty web server embedded in C3 and therefore ready to use. The HTTP bridge

however introduces latencies in message delivery that could reach a few seconds.

Scalability: High utilization systems may generate many messages (for job

submission, job status events, commands, etc.). Two main bottlenecks may arise within

a C3 System when too many messages are produced: (1) the JMS Provider, Open

Message Queue in our case, cannot timely deliver the messages and (2) the C3 Server

Engine cannot timely process the messages as explained in Section 4.3.1. The first case

must be solved at the JMS Provider level, and most JMS Providers today, including

Open Message Queue, are inherently scalable, offering some mechanism through which

new hardware and processes can be added to share the message processing and delivery

load. For the second case, it must be observed that the C3 Server Engine is a stateless

service, processing independently each message from others. New instances of the C3

Server Engine can be added with no reconfiguration required, consuming messages from

the same queues and standard JMS Provider message delivery mechanisms will

distribute the message processing load among the available C3 Server Engine instances

present, which might also be distributed into different machines. This includes the

possibility to hot-start new instances as the load increases, not because a C3 design

quality, but profiting from the application model devised in the JMS specification.

Security: C3 adheres to the JAAS (JAAS 2011) security standard (Java

Authentication and Authorization Service) and while, in a first stage, C3 provides a

simplistic security model, more elaborate authentication and authorization mechanisms

can be plugged in following JAAS. This would allow to control, for instance, that jobs

are only sent to colonies to which the user has permission, to delegate job acceptance to

each colony maintainer, or retain a centralized authorization control, etc.

Other job delivery mechanisms: Currently the C3 Server Engine, takes all job

submission requests and sends them to any agent available through the C3 Job Agent

Job Delivery queue. As needs arise, more complicated delivery mechanisms can easily

be incorporated within the C3 Server Engine logic by using JMS filtering facilities, just

like C3 uses them now to send commands (such a job cancel command) to a specific

job agent. For instance, one might want to specify, as part of the C3 job properties,

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 105

certain criteria to limit the range of job agents that might accept a specific job, such as

memory or operating system requirements.

4.4 Experimentation and Validation

A set of experiments was setup in order to show the contribution of BiomedTK/C3 and

the exploration method it supports to researchers’ efficiency and experimental reach

(Ramos-Pollan, Guevara-López et al. 2011). The aim was to demonstrate how (1)

complex experiments consisting of several datasets, engines and classifier configuration

can be managed with relative simplicity and (2) the computing resources required to

execute the proposed experiments (about 16000 CPU hours) could be utilized in an

efficient manner. In these experiments, BiomedTK/C3 is to be used to find classifiers

for selected datasets from the UCI machine learning repository (Frank and Asuncion

2010) by exploiting distributed computing resources, and aiming at reaching, in

reasonable time, accuracy levels comparable to the ones reported in different literature

sources for the given datasets. By being able to obtain efficiently these results,

researchers are then positioned to pursue research in a timely manner using the

methods herewith described.

4.4.1 Goals and metrics

The main design objective of the experiments described below was to set up a complex

exploration task involving different datasets, engines and classifier configurations

through several exploration cycles, as described in page 87, requiring a large number of

computing resources. Showing the utility of BiomedTK/C3 amounts to (1)

demonstrating the agility with which computing resources can be used to perform the

experiments and (2) reporting acceptable classification results on the selected datasets

with the classifier configurations evaluated by BiomedTK/C3.

A notion on the degree of the agility achieved is conveyed by describing in next

section the experimentation process through the number of configurations managed, the

number of local and C3 exploration cycles performed and the CPU hours consumed. In

particular, in order to gain understanding on what classifier configurations to evaluate,

it is important to observe how for each dataset different exploration cycles had to be

performed both locally and over the computer resources made available by C3.

106 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Then, classification results obtained for each dataset were compared with those

reported on different literature sources that included the following references: (Wilson

and Martinez 1997; Estrela da Silva, Marques de Sá et al. 2000; Vlachos, Domeniconi et

al. 2002; Li and Wong 2003; Sebban, Nock et al. 2003; Soares 2003; Domeniconi and

Yan 2004; Esmeir and Markovitch 2004; Fung, Dundar et al. 2004; Jiang and Zhou

2004; Kotsiantis, Zaharakis et al. 2006; Elter, Schulz-Wendtland et al. 2007; Lorena, de

Carvalho et al. 2008; Urbanowicz and Moore 2009) The aim was not to make an

exhaustive literature review, but to sample referenced works and reach comparable

results in reasonable time.

4.4.2 Experimental setup

The UCI datasets shown in table 24 on page 154 were selected for experimentation. For

each dataset, increasingly larger explorations were devised including all engines

supported by BiomedTK (see table 14 on page 83) according to the following

exploration cycle:

1. Reformat original UCI data file, import and normalize it

2. Create exploration file and perform a few local classifier explorations.

3. Analyze results and refine exploration file for large explorations

4. Launch large explorations to C3.

5. Analyze and gather results.

Datasets were imported from a CSV formatted file, after some reformatting from the

datasets delivered by the UCI repository, and basic data normalization that was

performed by BiomedTK before the explorations. This normalization consisted in

mapping each input feature to the [0,1] interval so that for each element of a dataset

the value �R of feature
 was normalized to �R′ � n¬¤b`¬?¤R0¬ where §
 R and	§=R are the

minimum and maximum values of feature
 in all elements of the dataset

Explorations for each dataset included many classifier configurations (see table 17

below and table 14 on page 83), each configuration using different classifier parameters,

(ANN layers, neurons per layer, SVM kernel type, etc.) Each exploration was tuned for

each dataset to account for their different characteristics. For instance, the input layer

of any ANN for a multilayer perceptron must have as many neurons as dataset

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 107

features, datasets harder to classify might require more exploration cycles, larger

datasets require more training time so explorations cannot be as large, etc.

In addition, experimental conditions change between authors in validation methods

used, how results are summarized, etc. so comparisons must be carefully interpreted.

To be as coherent as possible with the different setups, 10-fold cross validation was

used. Furthermore, in some works it is not clear what specific classifier configuration or

validation method was used, which somehow also constitutes a challenge in the

exploration endeavor undertaken.

A total of 200 C3 job agents were deployed on different computing resources as

shown in figure 33. Although most job agents were deployed on a gLite Grid

infrastructure a small C3 Amazon EC2 colony and C3 remote SSH colony were setup

to demonstrate how, regardless where they were physically deployed, all jobs agents

become available to BiomedTK/C3 in a homogeneous manner and jobs, executing

classifier explorations as they were handled to free job agents indistinctly.

Figure 33: C3 job agents deployment for experimentation

C3 job agents were distributed in the following way: 180 C3 job agents on a gLite

Grid site and managed by the the C3 gLite Colony Maintainer; 10 C3 job agents were

deployed on office computers through the SSH C3 Colony Maintainer and 10 job

EXPLORATION
DEFINITION

EXPLORATION
DEFINITIONEXPLORATION

DEFINITION

C3 component BIOMEDTK component

C3 remote SSH colony

C3 SERVER HOST

C3 SERVER

ENGINE

C3
BIOMEDTK

DB

C3 CLIENT API

BIOMEDTK

EXPLORATION
DEFINITION

DATASET

inspect BiomedTK results

and C3 job agent status

define exploration files

launch explorations

C3 gLite colony maintainer

C3 gLite colony

C3 Amazon EC2 colony

108 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

agents were also deployed for 10 hours on the Amazon EC2 service (as shown on the

screenshot of the Amazon EC2 management console in figure 34).

Figure 34: Amazon EC2 Management Console with 10 C3 job agents running

Datasets were explored in the order described in the results tables (table 17 and

table 29) and, as large explorations for a given dataset were sent to C3, work started

on the following dataset (importing it, performing local explorations, enlarging them

and sending them also to C3.). This produced a great overlap on what specific datasets

and classifier configurations were being evaluated on the C3 Job Agents at any given

moment, as it is desirable to use efficiently the computing resources.

4.4.3 Results and discussion

A total of 16519 CPU hours were consumed to train 8842 different classifier

configurations over 15 datasets. For each dataset, experiments were set up by creating

a single exploration configuration file containing classifier configurations for all engines.

Then, this file was refined at each the exploration cycle adding and removing

configuration parameters. Table 17 shows, for each dataset, the number of

configurations trained, the number of local and C3 explorations, the total CPU hours

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 109

consumed by the C3 explorations, and the actual physical time taken by them over the

available job agents. The whole experiment took less than a week to be carried out,

including all configuration and data analysis tasks.

Table 17: Summary of configurations and computer resources in explorations

 bcw bcwd btcat echocard haber heartsl hepat liver
configs 280 228 856 872 942 568 376 736

local explorations 2 2 1 3 3 1 3 3

C3 explorations 1 2 1 2 1 1 1 2

C3 CPU hours 695.38 1215.67 714.87 423.65 198.89 1072.72 644.16 321.06

C3 run time (hrs) 5.07 13.46 6.34 3.44 2.16 12.14 7.07 4.04

 mmass park pgene pimadiab spam spectf tictac TOTAL

configs 464 736 612 676 176 616 704 8842

local explorations 3 3 2 3 1 4 2 36

C3 explorations 1 2 2 2 1 1 1 21

C3 CPU hours 1167.61 1679.26 1778.35 1644.43 2396.98 1115.97 1450.55 16519

C3 run time (hrs) 10.44 21.00 26.68 15.46 46.91 17.28 11.30 202

Table 29 on page 159 shows further detail per dataset and engine: (1) how many

configurations were trained, (2) how many CPU hours took to train them, (3) the best

percentage of elements correctly classified on the test part of the dataset (accuracy),

and (4) the best AUC obtained on the test part of the dataset. Finally, the bottom

lines in table 29 show the best results obtained overall in our exploration (accuracy and

AUC) and those found in our literature review (accuracy in all datasets, except the

mmass dataset, where reference (Elter, Schulz-Wendtland et al. 2007) gave their results

in AUC). Figure 35 shows the two ROC curves generated by BiomedTK for one

classifier configuration over the bcw dataset. The curve on the left corresponds to the

Wilcoxon-Mann-Whitney statistic and the curve on the right is its smoothed version

using the bi-normal distribution method from JLABROC (Hanley 1996).

110 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Figure 35: Empirical and smoothed ROC curves for a bcw dataset classifier

Note how for some datasets larger explorations were made than for others, as more

exploration refinement cycles were required until satisfactory results were found. A key

factor was acquiring a notion on the requirements of computing time for each classifier

and dataset so that explorations can be adjusted to the available computing resources.

Observe in this sense how datasets with larger number of elements or input features

take longer time to train with ANN engines and, were not for the possibility to harness

distributed computing resources, exploring even a few classifier configurations for them

would simply be impossible. Without an appropriate supporting tool, following the

method herewith proposed requiring such large explorations, would imply providing the

logistics to manage different output formats for the different underlying engines,

organize configuration files for each resource provider (such as for gLite jobs), etc. In

addition, in the case of gLite resources, it would require monitoring the execution of the

gLite jobs, keeping accounting of failed ones and resubmitting them, gather different

outputs for each job and consolidate them in a single file or database, etc. It is the

reduction of the effort cost of taking care of all these logistics that makes it possible to

efficiently harness computing resources for machine learning in a systematic way.

In practical terms, for each dataset a single exploration configuration file was

defined and maintained which is the key to be able to manage large amount of CPU

hours for such a diverse exploration with reasonable effort. In addition, the whole

process is easily reproducible rendering classifier exploration requiring large computing

resources a systematic task. This allows researchers to focus on their core research,

Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers 111

devising exploration strategies, evaluating dataset preprocessing algorithms, new

classification methods, etc. instead of sorting out the logistics of access methods to

computing resources, preparing datasets differently for each third party engine, etc.

This is what enabled the thorough validation of the AUC optimization method

described in Section 3.3.

4.5 Conclusion

This Chapter described the major technological contributions of this thesis (see Section

1.4) based on two software frameworks, BiomedTK/C3, and their associated classifier

exploration methods that enable systematic and agile exploitation of available

distributed computing resources of different nature for massively exploring and

evaluating configurations of machine learning classifiers. Experimentation showed their

utility with commonly used datasets and experimental conditions, reaching in

reasonable time classifier performance comparable to that reported in a variety of

literature sources. Their development was motivated by the IMED project within which

this thesis originated, and its need to efficiently use available computing resources to

find well performing classifiers for breast cancer CAD in a timely manner as datasets

are being produced by specialized radiologists annotating and classifying mammograms.

These classifiers would become targets upon which CAD systems can be built.

However, as shown by experimentation, their reach lies far beyond this application

domain and, together with the method to enable AUC optimization in existing machine

learning classifiers described in Chapter 3, they can be used in biomedical data analysis

tasks but also in other domains where machine learning classifiers can be applied.

Therefore, at this stage the material means are ready to start field work applying

the artifacts obtained so far into the IMED project and this is described in next

Chapter. Besides the specific contribution to the project, next Chapter should also be

viewed as an example on how the results of this thesis can be applied on a real world

problem.

112 Chapter 4 Exploiting eInfrastructures for Machine Learning Classifiers

Chapter 5 Application in Breast Cancer CAD 113

Chapter 5

5 Application in Breast Cancer
CAD

5.1 Introduction

The IMED project constitutes the context within which this thesis has been developed

contributing to achieve part of the project objectives as described in Section 1.2. The

first Portuguese breast cancer database has been built in the course of the project, with

anonymous cases from medical historical archives supplied by FMUP-HSJ (Hospital de

São João–Faculty of Medicine at University of Porto, Portugal) complying with current

privacy regulations as they are also used to teach regular and postgraduate medical

students. The database is referred to as the “Breast Cancer Digital Repository” (BCDR)

in this thesis. BCDR is supported and hosted on the Digital Repositories Infrastructure

(DRI) platform developed by the Center of Extremadura for Advanced Technologies

(CETA-CIEMAT) in Spain.

As part of the project work plan, specialized radiologists segmented and diagnosed

images from the BCDR as explained in Section 1.1.4 using software tools and graphical

workstations developed by the project. The datasets resulting from this process

constitute the input for this thesis, with the goal of applying the developments

described in previous chapters to obtain well performing classifiers that can be

integrated back in the medical graphical workstations for assisted diagnosis.

114 Chapter 5 Application in Breast Cancer CAD

From the IMED project perspective, the machine learning classifiers described in

this section and discovered through the artifacts produced by this thesis constitute its

contribution (output) to the project (Ramos-Pollan, Guevara-López et al. 2011). This

includes the multilayer perceptrons modified for AUC optimization described in

Chapter 3. From this thesis perspective, the IMED project provides a real world case to

demonstrate the applicability of its results (Ramos-Pollan, Rubio del Solar et al. 2009;

Ramos-Pollan, Franco et al. 2010; Ramos-Pollan, Franco et al. 2010; Ramos-Pollan,

Rubio del Solar et al. 2010).

5.2 The Breast Cancer Digital Repository (BCDR)

Usage of DRI to create and host the BCDR repository can be revisited in the references

just mentioned. DRI simplifies hosting of digital repositories (such as for medical

imaging) over distributed storage resources across different locations (hospitals,

university, computer centers, etc.). Its architecture offers a simple network API

(Application Programming Interface) facilitating development of client applications,

like specialized graphical image processing interfaces such as the one shown in figure 9

(page 20), but also batch interfaces to proprietary picture archiving and communication

systems (PACs), custom information sources, etc. (figure 36). Repositories are

described in regular XML files, allowing agile implementation of evolving data models,

such as it often happens in medical environments. In addition, reconfiguration and

redistribution of repository content over different physical storage services (local

storage, Grid, web based, databases, etc.) can be done transparently to the final user.

With this, the project was able to start at FMUP-HSJ with an embedded configuration,

where all components are bundled within the same physical machine into a medical

doctor´s desktop. This allowed specialized radiologist segmenting and classifying

mammograms straight away and, thus, enabled the generation of datasets for training

machine learning classifiers for CAD shown in this section reasonably early in the

project. Meanwhile, its evolution towards real distributed configurations is

transparently ensured allowing us to evaluate how to best integrate it within medical

doctors’ workflows and institutional computing environments with the least possible

impact, complying with required privacy and technical regulations.

Chapter 5 Application in Breast Cancer CAD 115

Figure 36: IMED project digital repository and CAD development lifecycle

The BCDR data model (Ramos-Pollan, Franco et al. 2010), hosted at DRI

infrastructure set up by the project, is a subset of the DICOM medical file format

(NEMA 2008) customized by radiologists at the FMUP-HSJ for storing and managing

specific case information related to digital mammography images (see data model in

figure 37). At the time of writing BCDR includes samples of all BIRADS (D'Orsi,

Bassett et al. 2003) classes and it is composed of over one thousand cases, each one

with the associated proven biopsy that constitutes the golden standard. This work

complemented recent results in managing DICOM objects within Grid environments,

such as the TRENCADIS middleware (Blanquer Espert, Hernández García et al. 2009)

and others (Bellotti, Cerello et al. 2007; Glatard, Zhou et al. 2009; Maheshwari, Missier

et al. 2009), by applying the DICOM standard at FMUP-HSJ. BCDR is fully

integrated with lifecycle to develop machine learning classifiers (figure 36), where (1)

mammography images of the BCDR are preprocessed through a graphical workstation,

(2) specialized radiologists mark and classify biopsied cases which are then stored in the

BCDR, (3) data features are extracted from the stored annotations, (4) MLC

configurations are explored and selected and (5) selected MLC are integrated back into

the workstation providing automated second opinion diagnosis to doctors. Step 4

constitutes the contribution of this thesis to the project and this is what is shown in

this section.

HSJDS1

Breast Cancer
Digital Repository
Local

Graphical Workstation

HSJDS1
HSJ.2D

DATASETS

Machine Learning Classifier
EXPLORATIONS

best classifier for CAD

PACS

N
E

T
W

O
R

K
 A

P
I

(1)

(2)

(3)

(4)

(5)

Breast Cancer
Digital Repository
Distributed

Digital
Repositories
Infrastructure

Contribution of this thesis to the IMED project

116 Chapter 5 Application in Breast Cancer CAD

Figure 37: Data model for the Breast Cancer Digital Repository

The BCDR data model (figure 37) supports each patient undergoing one or more

studies, each study composed of one or more images (such as digitized film screen

mammography images) and one or more lesions. Each image may have one or more

segmentations (for different lesions) and each lesion can be associated to several

segmentations, typically in mediolateral oblique (MLO) and/or craniocaudal (CC)

images of the same breast. Moreover, each lesion can be also linked to many

classifications (by different specialists, automatic classifiers, etc.). For each segmented

region 18 features are automatically computed and stored forming a features vector,

which is representative of the image region statistics, shape and texture. Then, the

features vector can be assigned to a certain class by an expert radiologist or a machine

learning classifier. The BCDR model supports the possibility to assign to the same

features vector several classifications by different clinicians and MLC under different

class families. In the IMED project only the BIRADS class family (D'Orsi, Bassett et

al. 2003) was considered. BCDR also allows the storage of a variety of sets of

experiments of classification runs, performed both by human experts and automatic

classifiers, so that later they become available for statistical analysis.

A specialized graphical workstation supports specialists segmenting and diagnosing

images as explained in Section 1.1.4. Segmentation is semi-automatic, where the user

segments the region assisted by the computer through an interactive technique based

on deformable models such as snakes, active shape model, etc. (Cootes, Taylor et al.

1995; Chenyang and Prince 1998) and/or intelligent scissors (Liang, McInerney et al.

2006) also known as livewire.

The datasets containing the extracted features constitute the input for this thesis

and well performing discovered are then to be integrated back within specialized user

interfaces to be used for second opinion in assisted diagnosis.

Segmentation

One Many

Image

Patient Study

Lesion

Classification

Chapter 5 Application in Breast Cancer CAD 117

5.3 Dataset construction and processing

From BCDR, two specialized radiologists at FMUP-HSJ used a graphical workstation

to evaluate and BIRADS classify 286 cases (Ramos-Pollan, Guevara-López et al. 2011).

Only cases having both CC and MLO mammography images of left and right breasts

were selected, including associated critical information such as lesion type

(microcalcification, calcification, mass or asymmetries), biopsies results, etc. Several

image processing operations were applied and validated on all selected images to

improve ROIs details. The goal was to find fast and simple image preprocessing

operations for denoising and enhancing possible pathological lesions or normal tissue

image regions. This validation included suitable combinations of pre-processing filters,

mathematic morphology, thresholding and edge detection among others techniques.

However, the most common defect of mammography images was the poor contrast

resulting from a reduced, and perhaps nonlinear, image amplitude range. Then, it was

found that in a first preprocessing step, ROI details can be in general improved by

adjusting image intensities (a conventional contrast enhancement technique based on

amplitude rescaling of each pixel). To enhance images contrast gray scale intensity

values of input CC and MLO mammography images were mapped to new values such

that 1% of data is saturated at low and high intensities to produce a new image in

which the contrast is increased.

Special effort was made by specialists trying to locate possible ROIs for the same

lesion in both CC and MLO associated mammography images for each case (see figure

38). This double-segmentation was successfully performed in 126 cases producing each

one two features vectors (one for each CC and MLO image), whereas in the remaining

160 cases only one ROI was segmented, either in the CC or in the MLO image,

producing one single features vector. This was attributable to various reasons, including

technical issues, difficulties in ROI identification in both CC and MLO images or casual

contingencies. For each segmentation (in MLO and/or CC images) the extracted

features vector contained 18 features including statistics (skewness, kurtosis, perimeter,

area, standard deviation, minimum, maximum, mode and mean), shape (elongation,

roughness, form, circularity) and texture (correlation, angular second moment,

contrast, inverse difference moment, entropy). See (Haralick, Dinstein et al. 1973;

Rodenacker 2001; López, Novoa et al. 2008)

118 Chapter 5 Application in Breast Cancer CAD

Figure 38: Double segmentation, feature extraction and BIRADS classification

From this raw data three primary datasets were constructed, as shown in figure 39.

Dataset HSJ.2D holds all 412 features vectors with 18 features extracted from the 286

cases, where the 126 double-segmentation cases produced 252 vectors and the 160

single-segmentation cases produced one vector each. Dataset HSJ.3DSNGL (for single)

contains only the 252 vectors produced by the double-segmentation cases. Finally, for

each features vector pair from double-segmentation cases, a single vector was formed

joining the 18 features segmented from the MLO image and the 18 features segmented

from the CC image. This resulted in the HSJ.3DJOIN dataset, containing 126 vectors

with 36 features each. With this, the aim was understanding if relating MLO and CC

segmentations on same lesion could be exploited to gain classification accuracy. In

addition, as shown in figure 39, five datasets were further derived from HSJ.2D in order

to understand if including all 18 features or only a selected group of features (shape,

texture, statistic or a heuristic selection) would prominently contribute to MLC

accuracy over the others. This was not done for the HSJ.3DSNGL and HSJ.3DJOIN

since experimentation on HSJDS.2D derived datasets showed that it was best to keep

all features. Thus, the five datasets derived from HSJ.2D together with HSJ.3DSNGL

and HSJ.3DJOIN, makes a total of seven base datasets.

Chapter 5 Application in Breast Cancer CAD 119

Figure 39: Datasets built from BCDR after classification by specialists

Table 18 shows the distribution of BIRADS classes for each original dataset. Since

some BIRADS classes were rather scarce and the primary medical interest was to

distinguish benign cancers from malignant ones, BIRADS classes 1, 2 and 3 were all

tagged as benign, while BIRADS classes 4, 5 and 6 were tagged as malign, making

therefore all datasets binary.

Table 18: Class distribution for mammography datasets

class HSJ.2D HSJ.3DSNGL HSJ.3DJOIN

BIRADS 1 8 4 2

BIRADS 2 172 146 73

BIRADS 3 75 32 16

BENIGN 255 182 91

BIRADS 4 55 20 10

BIRADS 5 26 16 8

BIRADS 6 76 34 17

MALIGN 157 70 35

TOTAL 412 252 126

HSJ.2D (412 vectors)

BCDR extract

286 patient

cases

126 cases with ROI

segmented both

in MLO and CC

160 cases with ROI

segmented only in

MLO or CC

160 vectors

x 18 features

252 vectors

x 18 features

126 vectors

x 36 features
(18 MLO + 18 CC)

HSJ.3DJOIN
(126 vectors)

HSJ.3DSNGL
(252 vectors)

HSJ.2D.t.r

HSJ.2D.t.e

HSJ.2D.t.p

HSJ.2D.t

HSJ.2D.f.r

HSJ.2D.f.e

HSJ.2D.f.p

HSJ.2D.f

HSJ.2D.a.r

HSJ.2D.a.e

HSJ.2D.a.p

HSJ.2D.a

HSJ.2D.e.r

HSJ.2D.e.e

HSJ.2D.e.p

HSJ.2D.e

HSJ.2D.c9.r

HSJ.2D.c9.e

HSJ.2D.c9.p

HSJ.2D.c9

HSJ.3DSNGL.a.r

HSJ.3DSNGL.a.e

HSJ.3DSNGL.a.p

HSJ.3DSNGL.a

HSJ.3DJOIN.a.r

HSJ.3DJOIN.a.e

HSJ.3DJOIN.a.p

HSJ.3DJOIN.a

Naming convention is

DATASETNAME.F.N, where

NAME is HSJDS, HSJDS1 or HSJDS2

F is the subset of features selected

N is the normalization applied

FEATURES CODES

a all features

t the 5 texture features

f the 4 shape features

e the 9 statistic features

c9 the 9 selected features

NORMALIZATION CODES

r to range [0,1]

e euclidean

p principal comp. analysis

21 WORKING

DATASETS

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

SVM

7 BASE DATASETS

MLP

MLP

MLP

SVM

MLP

SVM

MLP

S
T

E
P

 1

S
T
E

P
 2

S
T
E

P
 3

S
T
E

P
 4

120 Chapter 5 Application in Breast Cancer CAD

Dataset normalization is required before feeding data to any MLC, since different

features of the same vector usually take values over ranges of different sizes and nature.

This affects MLC performance and in this study each of the seven datasets just

described was normalized using three different techniques, seeking to understand how

to better preprocess them, producing a total of 21 datasets to explore as shown in

figure 39. The three normalization procedures used were Euclidian, range to [0,1]

and principal component analysis.

Euclidean normalization was calculated by � � �/||�|| where � � ��A, �K, … , �0�
represents the original features vector and � � ��A , �K , … , �0 � the normalized resulting

vector. ||�|| is the vector norm defined as ||�|| � 	√� ∙ � � ¯�AK �⋯� �0K
Range normalization [0,1] processes individually each vector’s feature �R to

guarantee they all fall within the [0,1] interval and it was calculated as �R � n¬¤b`¬?¤R0¬
where �R and �R are the original and normalized feature values respectively and §
 R
and	§=R are the minimum and maximum values of feature
 in all elements of the

dataset.

Principal Component Analysis (PCA) was done using the Weka toolkit (Mark

Hall, Eibe Frank et al. 2009), reducing the dimensionality of each dataset to account

for 99% of its variability.

In summary, first from HSJ.2D, HSJ.3DSNGL and HSJ.3DJOIN seven base datasets

were built: HSJ.2D.a (412 features vector, all 18 features), HSJ.2D.t (412 features

vectors, with only the 5 texture features), HSJ.2D.f (412 features vectors, with only the

4 shape features), HSJ.2D.e (412 features vectors, with only the 9 statistic features),

HSJ.2D.c9 (412 features vectors, with only 9 heuristically selected statistic, shape and

texture features), HSJ.3DSNGL.a (252 features vector, all 18 features) and

HSJ.3DJOIN.a (126 features vector, all 36 features, 18 from each original vector).

Second, we created 21 working datasets that were produced after normalizing each

dataset with range [0,1], euclidian and PCA normalization procedures. All working

datasets were finally named as described in figure 39.

Chapter 5 Application in Breast Cancer CAD 121

5.4 Experimentation and Validation

5.4.1 Goals and metrics

Experimentation is aimed at massively exploring classifier configurations to obtain well

performing classifiers for the datasets just described. This includes also gaining

understanding on what data preprocessing operations are more convenient

(normalization and feature selection) and what datasets yield better classification

results. Besides the specific classifiers obtained, knowledge gained in this endeavor will

also be key to design further experiments and data collection processes within the

IMED project.

Due to the medical domain within which this data analysis process takes place, AUC

is the major metric through which classifier performance is to be measured, compared

and, most importantly, communicated to medical staff to share the degree of success of

discovered classifiers before they can be used in the CAD construction and validation

process.

Together with AUC, strong statistical validation of obtained results is essential since

data is typically scarce in these domains and, specially, at the beginning of the project.

Special emphasis was put into using strong validation methods profiting from the

capabilities offered by BiomedTK/C3 to exploit computing resources. Therefore leave-

one-out validation was used whenever possible and bootstrapping in all cases leaving

the door open for stronger statistical in further classifier discovery tasks as more data

becomes available from the IMED project.

5.4.2 Experimental setup

BiomedTK/C3 was used to explore SVM and MLP based classifiers search spaces for

the datasets described above (Ramos-Pollan, Guevara-López et al. 2011). The goal was

to find well performing MLC configurations for each dataset and understanding what

feature set and normalization procedure would produce best classification. Following

the method described in Section 4.2, both for SVMs and MLPs the strategy was first to

make general explorations with a wide range of parameters and then performing more

fine grained explorations around the MLC configurations yielding better classification

performance. Validation was done through the bootstrapping method tagging for

testing 40% of each dataset before training each classifier configuration and repeating

122 Chapter 5 Application in Breast Cancer CAD

the process 5 times to allow statistical smoothing. This is referred to as testpct40 in the

reported results (preserving BiomedTK notation). In addition, since SVMs are

computationally more affordable to train, leave-one-out validation was also used for all

SVM configurations (denoted as one2all in experiments) where a dataset of size n is

trained n times, each one with n-1 elements used for training, the one left out for

testing and averaging the results. For MLPs, all available engines in BiomedTK were

used, which includes the original Encog ones (ffbp, ffrp, ffsa and ffga) and their

counterparts modified for AUC optimization (ffbproc, ffrproc, ffsaroc, ffgaroc) as

explained in Section 3.3. This way, the behavior of AUC optimized MLPs resulting

from this thesis could also be observed in this application case.

Well performing classifiers resulting from exploring the 21 working datasets would

become the targets to be integrated into CAD systems, with the corresponding image

and data preprocessing. In total, for each dataset, 1200 SVM configurations and

another 240 MLP configurations were set up in the following way:

• 600 SVM configurations with one2all validation (480 configurations for a

general exploration and the rest for finer ones). Observe that with one2all

validation each configuration is trained once per element of the target

dataset.

• 600 SVM configurations with testpct40 validation (the same 600

configurations as with one2all validation, trained 5 times each one with

testpct40).

• 240 MLP configurations with testpct40 validation. This is, 30 configurations

for each of the 8 MLP engines, trained 5 times each one with testpct40 (20

configurations for a general exploration and 10 configurations for the finer

ones).

Not all configurations were trained for each one of the 21 datasets, since as

experimentation begun, it was rapidly observed that certain datasets would

systematically yield worse classification results, so they were left out of the rest of the

experiments for a more rationale usage of the computing resources. At the end, datasets

were explored in the following sequence:

Step 1. HSJ.2D with SVM. The 15 normalized datasets derived from HSJ.2D.a,

HSJ.2D.t, HSJ.2D.f, HSJ.2D.e and HSJ.2D.c9 with SVMs, including all (412) features

vectors.

Chapter 5 Application in Breast Cancer CAD 123

Step 2. HSJ.2D.a with MLP. In the step above it was observed that selecting all

available features (working datasets derived from HSJ2D.a) consistently produced

better classification results so, since MLPs are much more computationally expensive to

train, explorations were restricted only to three datasets: HSJ.2D.a.p, HSJ.2D.a.r and

HSJ2D.a.e. In Step 1 it was also observed that Euclidean normalization tends to yield

the worse results within the same dataset. However, as this seems to be secondary to

feature selection, it was decided that Step 2 would still include datasets with the three

normalization procedures.

Step 3. HSJ.3DSNGL.a.p with SVM and MLP. At this step exploration of the

datasets containing only CC and MLO related segmentations started with the dataset

including only 256 selected features vectors and all (18) features with PCA

normalization. In addition to what was concluded by Step 1 above (it is best to use all

available features), Step 2 confirmed that Euclidean normalization performs

consistently worse and that both PCA and range normalization gave similar results.

Therefore, only dataset HSJ.3DSINGLE.a.p was explored.

Step 4. HSJ.3DJOIN.a.p with SVM and MLP. Dataset including only 126

selected features vectors and 36 features with all joint features and PCA

normalization. Only dataset HSJ.3DJOIN.a.p was explored for the same reasons as

above.

In total, 17 out of the 21 generated datasets were explored with SVMs (training

1200x17=20400 configurations) and five with MLPs (training 240x5=1250

configurations). Marks in figure 39 show which dataset was trained with SVMs and

which one with both SVMs and MLPs. This took around 200 days of CPU time,

requiring over four physical days on the public gLite Grid computer cluster at CETA-

CIEMAT with 50 CPU cores with BiomedTK/C3. After training and validation, each

MLC configuration produced two measures for classifier performance, on the test part

of the dataset: test.PCT, the percentage of elements correctly classified (accuracy)

and test.AUC, the area under the ROC curve.

5.4.3 Results and discussion

Tables 19 summarizes the results for the explorations performed with SVMs on the 15

working datasets derived from HSJ.2D for Step 1 as described above. Table 20

summarizes the best 10 results obtained with MLP engines on HSJ.2D.a derived

124 Chapter 5 Application in Breast Cancer CAD

datasets for Step 2. Tables 21 and 22 show the specific configurations of the best

classifiers obtained for the HSJ.3DSNGL and HSJ.3DJOIN for Steps 3 and 4

respectively. ROC curves for best test.AUC marked in gray in all tables are plotted in

figure 40. It is important to remark that, although for simplicity results from one2all

and testpct40 validation methods are shown together (specially in tables 21 and 22)

their comparative interpretation must be undertaken with care. In one2all a dataset of

size n is trained n times, each one labeling n-1 elements for training and one for testing.

Each time, the accuracy of the test part of the dataset (only one element) is either 0%

or 100%, but then it is averaged over all elements of the dataset once the n training

processes are completed. With this, test.PCT and test.AUC measure classifier

performance on the whole dataset (since each element is used for testing once). In

particular, test.PCT represents more a proper probability rather than an averaged

classifier score. On the other hand, with testpct40 classifier performance (test.PCT and

test.AUC) refers only to the 40% selected as test instances. Moreover, it is more subject

to outliers, since random selection of the test elements may eventually favor those

easier to classify.

Table 19: Results summary for HSJ.2D datasets (SVMs/Step 1 by test.AUC)

test.PCT test.AUC
dataset configs max avg stdev max avg stdev

one2all validation

HSJDS.2D.a.p 600 0,689 0,667 0,010 0,683 0,656 0,011
HSJDS.2D.a.r 600 0,687 0,662 0,013 0,677 0,654 0,010
HSJDS.2D.c9.p 600 0,675 0,634 0,017 0,661 0,589 0,036
HSJDS.2D.f.e 600 0,655 0,635 0,010 0,649 0,518 0,067
HSJDS.2D.c9.r 600 0,667 0,634 0,014 0,647 0,602 0,028
HSJDS.2D.a.e 600 0,653 0,621 0,018 0,632 0,506 0,063
HSJDS.2D.c9.e 600 0,648 0,599 0,022 0,632 0,498 0,084
HSJDS.2D.e.e 600 0,648 0,614 0,014 0,625 0,440 0,096
HSJDS.2D.e.r 600 0,658 0,632 0,013 0,623 0,583 0,018
HSJDS.2D.e.p 600 0,655 0,631 0,011 0,623 0,582 0,026
HSJDS.2D.t.r 600 0,629 0,609 0,008 0,594 0,407 0,081
HSJDS.2D.f.p 600 0,653 0,620 0,017 0,587 0,506 0,040
HSJDS.2D.f.r 600 0,653 0,630 0,009 0,578 0,504 0,049
HSJDS.2D.t.p 600 0,646 0,610 0,020 0,538 0,403 0,059
HSJDS.2D.t.e 600 0,631 0,614 0,008 0,530 0,431 0,052

testpct 40 validation

HSJDS.2D.a.r 600 0,750 0,654 0,031 0,778 0,660 0,053
HSJDS.2D.a.p 600 0,733 0,655 0,030 0,770 0,664 0,055
HSJDS.2D.c9.r 600 0,744 0,637 0,070 0,755 0,601 0,065
HSJDS.2D.c9.p 600 0,738 0,638 0,045 0,743 0,605 0,056
HSJDS.2D.a.e 600 0,709 0,613 0,021 0,733 0,511 0,104
HSJDS.2D.c9.e 600 0,671 0,611 0,027 0,724 0,519 0,108
HSJDS.2D.t.r 600 0,655 0,607 0,020 0,723 0,504 0,092
HSJDS.2D.e.p 600 0,709 0,633 0,041 0,721 0,596 0,062
HSJDS.2D.f.p 600 0,695 0,624 0,035 0,720 0,568 0,081
HSJDS.2D.f.r 600 0,689 0,625 0,036 0,712 0,570 0,088

Chapter 5 Application in Breast Cancer CAD 125

HSJDS.2D.e.r 600 0,709 0,635 0,048 0,707 0,599 0,056
HSJDS.2D.t.p 600 0,659 0,608 0,031 0,704 0,504 0,088
HSJDS.2D.e.e 600 0,677 0,613 0,028 0,702 0,519 0,074
HSJDS.2D.f.e 600 0,691 0,626 0,039 0,700 0,555 0,080
HSJDS.2D.t.e 600 0,667 0,611 0,034 0,666 0,489 0,109

Classification Performance of HSJ.2D datasets. Table 19 summarizes the

performance of obtained SVM classifiers for the HSJ.2D datasets (Step 1) per classifier

engine and validation type. Each line summarizes the number of MLC configurations

trained for each working dataset derived from HSJ.2D, separating results from

explorations performed with one2all or testpct40 validation. For ach dataset, it shows

the number of SVM configurations trained, along with the maximum, the average and

the standard deviation for test.AUC and test.PCT obtained with those SVM

configurations. The maximum value refers to a specific configuration, and the best

test.AUC and test.PCT were in some cases obtained by the different configurations.

SVM-based classifiers using the one2all validation method yielded a maximum

test.AUC of 0,683 and 0,778 with testpc40. Table 20 shows similar information for

MLPs. In this case (Step 2), only the three datasets derived from HSJ.2D.a were

explored with each one of the eight MLP available engines (ffbp, ffbproc, ffrp, ffrproc,

ffsa, ffsaroc). This makes 24 combinations and table 20 shows the top ten combinations

producing best maximum test.AUC. The best test.AUC was 0.788. These results are

marked in gray in both tables and their ROC curves are plotted in figure 40 (left). This

allows us to consider that: (1) range [0,1] and PCA normalization are more suitable for

HSJ.2D than Euclidean normalization (2) there is a non negligible difference between

SVM results using one2all and testpct40 validation, recalling the remarks made above;

and (3) similar classification performance results were obtained in SVM and MLP

based classifiers (with testpct40).

Table 20: Top ten results for HSJ.2D datasets (MLPs/Step 2 by test.AUC)

 test.PCT test.AUC
dataset engine configs max avg stdev max avg stdev

HSJDS.2D.a.p ffsaroc 30 0,709 0,656 0,025 0,788 0,704 0,044
HSJDS.2D.a.r ffsa 30 0,733 0,659 0,046 0,771 0,700 0,043
HSJDS.2D.a.p ffbproc 30 0,721 0,640 0,054 0,758 0,679 0,032
HSJDS.2D.a.r ffsaroc 30 0,726 0,650 0,038 0,752 0,683 0,044
HSJDS.2D.a.p ffrproc 30 0,712 0,639 0,041 0,750 0,668 0,043
HSJDS.2D.a.p ffgaroc 30 0,703 0,619 0,037 0.746 0,667 0,059
HSJDS.2D.a.p ffbp 30 0,709 0,635 0,039 0,744 0,662 0,045
HSJDS.2D.a.p ffga 30 0,709 0,618 0,052 0,737 0,622 0,060
HSJDS.2D.a.r ffbproc 30 0,673 0,631 0,021 0,735 0,669 0,038
HSJDS.2D.a.r ffsaroc 30 0,695 0,637 0,036 0,733 0,675 0,039

126 Chapter 5 Application in Breast Cancer CAD

Classification Performance of HSJ.3DSNGL.a.p and HSJ.3DJOIN.a.p

datasets. As explained, Steps 3 and 4 explored only the HSJ.3DSINGLE.p.a and

HSJ.3DJOIN.p.a datasets, normalized by PCA and using both SVM and MLP based

classifiers. In order to show concrete classifier configurations discovered, tables 21 and

22 detail the best classifiers respectively obtained for the HSJ.3DSINGLE.p.a and

HSJ.3DJOIN.p.a datasets with SVM and MLP configurations, including the classifier

parameters used. A significant increase of test.PCT and test.AUC values in classifiers

for both datasets can be observed with respect to all HSJ.2D datasets. The highest

test.AUC values (0,996 in HSJ.3DJOIN.a.p and 0,992 in HSJ.3DSINGLE.a.p) were

produced by MLP-based classifiers (with testpct40 validation). However, SVM-based

classifiers also produced high test.AUC values (0,984 in HSJ.3DJOIN.a.p and 0,953 in

HSJ.3DSINGLE.a.p). Figure 40 (center and right plots) shows the ROC curves

corresponding to these test.AUC values.

Table 21: Best configurations discovered for HSJ.3DSNGL.a.p dataset

In general, starting this exploration endeavor with SVMs (Step 1) was beneficial

because it allows a first filter on datasets with affordable computer power, allowing a

more rational effort when exploring MLPs which, in the case of HSJ.3DSNGL and

HSJ.3DJOIN datasets ended up yielding slightly better performance. Additionally, it

can be seen that the AUC optimization proposed in Chapter 3 for MLPs (ffbproc,

ffsaroc, etc.) improves the obtained AUC when performance is far from optimal (tables

19 and 20), consistently with results obtained by experiments in Section 3.3.

engine config params config values validation test.PCT test.AUC

SVM CONFIGURATIONS

svm kernel degree gamma shrink
coef0 cost weight probestimates

pol 2 0.0048 true
1.0 64.0 0.5 true

one2all 0,917 0,953

svm kernel degree gamma shrink
coef0 cost weight probestimates

pol 2 0.0010 true
0.6 512.0 1.0 true

one2all 0,933 0,950

svm kernel degree gamma shrink
coef0 cost weight probestimates

sigm 2 0.0010 true
0.6 512.0 1.0 true

testpct 40 0,901 0,949

svm

kernel degree gamma shrink
coef0 cost weight probestimates

pol 2 0.0010 true
0.1 1.0 0.1 true

testpct 40 0,885 0,946

MLP CONFIGURATIONS

ffbp layers and neurons
learnrate momentum epochs

[18:27:14:7:2]
0.1 0.2 500

testpct 40 0,950 0,992

ffsaroc layers and neurons
starttempendtemp cycles epochs

[18:27:14:7:2]
100.0 2.0 100 200

testpct 40 0,920 0,966

ffbproc layers and neurons
learnrate momentum epochs

[18:27:14:7:2]
0.1 0.2 500

testpct 40 0,931 0,956

ffsa layers and neurons
starttempendtemp cycles epochs

[18:27:14:7:2]
100.0 2.0 100 200

testpct 40 0,911 0,951

Chapter 5 Application in Breast Cancer CAD 127

Table 22: Best configurations discovered for HSJ.3DJOIN.a.p dataset

Validation method. Results in (Efron 1983) indicate that one2all (leave-one-out)

validation gives a nearly unbiased estimator for classifier accuracy, but often with high

variability, specially in small datasets. Our experiments showed little variability on all

classifiers (both on accuracy and AUC), which encourages us to place stronger

confidence in our results, at the expense of additional computing power required to

train classifiers. Interestingly enough, results of testpct40 and one2all validation differ

very little in the HSJ.3DSINGLE.a.p and HSJ.3DJOIN.a.p datasets, which might

suggest that testpct40 could be used for these datasets instead of one2all, reducing

significantly computing time. The fact that this is not exactly the case in HSJ.2D

datasets, but still one2all and testpct40 results are quite close, suggests that using a

different percentage in testpct might lead to similar results, reducing as well the

computing requirements of explorations for those datasets. This might be the subject

for further analysis, specially for biomedical datasets, since more data is being

generated as the project at the FMUP-HSJ continues, and statistically consistent

results at reduced computing costs will be key to allow us place increasingly stronger

confidence on the automatic diagnoses made by the systems developed by the project.

engine config params config values validation test.PCT test.AUC

SVM CONFIGURATIONS

svm kernel degree gamma shrink
coef0 cost weight probestimates

pol 2 0.0048 true
1.0 64.0 0.5 true

one2all 0,937 0,984

svm kernel degree gamma shrink
coef0 cost weight probestimates

pol 2 0.0010 true
0.1 1.0 0.1 true

testpct 40 0,937 0,982

svm kernel degree gamma shrink
coef0 cost weight probestimates

sigm 2 0.0010 true
0.1 1.0 0.1 true

one2all 0,921 0,981

svm

kernel degree gamma shrink
coef0 cost weight probestimates

rbf 2 0.01 true 0.6
1.0 1.0 true

testpct 40 0,913 0,981

MLP CONFIGURATIONS

ffbp layers and neurons
learnrate momentum epochs

[36:54:27:14:2]
0.1 0.2 500

testpct 40 0,941 0,996

ffsa layers and neurons
starttempendtemp cycles epochs

[36:54:27:14:2]
100.0 2.0 100 200

testpct 40 0,940 0,983

ffbproc layers and neurons
learnrate momentum epochs

[36:54:27:14:2]
0.1 0.2 500

testpct 40 0,902 0,964

ffsaroc layers and neurons
starttempendtemp cycles epochs

[36:54:27:14:2]
100.0 2.0 100 200

testpct 40 0,902 0,960

128 Chapter 5 Application in Breast Cancer CAD

Figure 40: ROC Curves for best classifiers on HSJ datasets

The results just described (Ramos-Pollan, Guevara-López et al. 2011) can be

compared with those reported in Section 2.3 - Machine learning classifiers for breast

cancer CAD. However, interpretation of this comparison must be undertaken with care,

accounting for the different datasets and experimental conditions with which the

different results are obtained across the literature sources. Comparison of these results

with the ones obtained with the FMUP-HSJ datasets is not straight forward although

the final classification goal is analogous, due to the different nature of the datasets. In

addition, results reported in Section 2.3 can also be compared with those obtained for

the bcw UCI dataset in Chapter 4 to validate the BiomedTK/C3 software frameworks

and reported in table 29 on page 159

5.5 Conclusion

The aim of this Chapter was to show the developments of this thesis applied in practice

to a real world problem. With this, three major contributions are provided by this work

to the IMED project within which this thesis came into existence:

1. The specific classifier configurations discovered through the exploration

process enabled by the BiomedTK/C3 software frameworks. Additionally,

these configurations include the ones resulting from modifying multilayer

perceptrons for AUC optimization as described in Chapter 3. These

configurations are to be included within the graphical workstations used by

medical doctors to build CAD systems for assisted diagnosis or automated

second opinion.

2. The knowledge gained on what dataset preprocessing operations

(normalization and feature selection in this case) seem to be more

0.0

0.0 0.5 1.0

0.5

1.0

FP RATE
T

P
 R

A
T

E

Az=0.778
testpct40 SVM
HSJDS.2D.a.r

HSJ.2D 412 vectors 18 features

Az=0.683
one2all SVM

HSJDS2D.a.p

Az=0.788
testpct40 FFSAROC

HSJDS.2D.a.p

0.0

0.0 0.5 1.0

0.5

1.0

FP RATE

T
P

 R
A

T
E

Az=0.984
one2all SVM

Az=0.996
testpct40 FFBP

HSJ.3DJOIN.a.p

126 vectors 36 features

0.0

0.0 0.5 1.0

0.5

1.0

T
P

 R
A

T
E

Az=0.953
one2all SVM

HSJ.3DSNGL.a.p

252 vectors 18 features

Az=0.992
testpct40 FFBP

FP RATE

Chapter 5 Application in Breast Cancer CAD 129

appropriate for the problem in hand. In fact, it is the capability to harness

computing power to train constructed datasets in an agile manner that

allowed gaining this knowledge and enabled tuning further exploration

strategies as knowledge was being built.

3. The data analysis process itself using BiomedTK/C3 constitutes now a fine

tuned workflow ready to continue discovering new classifier configurations as

new datasets are made available through the IMED project, produced by

further segmentations and annotations by specialized radiologists.

Besides this, through the application domain addressed in this Chapter (discovering

machine learning classifiers for breast cancer CAD), the aim was also to show the

diversity and complexity of situations that can be handled with the contributions of

this thesis, leading to a better knowledge of the application domain. In particular, the

results herewith described, open questions for further research within the IMED project

such as:

• Is there an appropriate split percentage when using testpct validation

(bootstrap) on HSJ datasets so that its results are comparable to those of

one2all (leave one out) but at a reduced computational cost?

• Is the increased performance found when using HSJ.3D datasets statistically

significant?

• If so, since the performance improvement is so noticeable, is it worthwhile to

focus the IMED project objectives into building a CAD system enforcing

double segmentation to ensure better CAD performance when the user (a

medical doctor) resorts to it for second opinion?

Regardless how the IMED project finally settles these (and other) issues, it is due to

the results obtained with this thesis that they were raised and their resolution can

contribute to the success of the project. So beyond the specific classifier configurations

and dataset preprocessing criteria obtained, these issues illustrate how the experimental

reach of the application domain is augmented by the artifacts produced by this work

(BiomedTK/C3 and enabling AUC optimization).

130 Chapter 5 Application in Breast Cancer CAD

Chapter 6 Conclusions 131

Chapter 6

6 Conclusions

6.1 Development of this thesis

The different developments and findings resulting from this thesis were motivated by

the need to find better machine learning classifiers for the CAD methods and systems

that were being developed within the IMED project. Retrospectively, working towards

this driving aim, most contributions resulted by from the need to overcome specific

difficulties as they arose and the opportunity to extend their reach beyond the scope of

the project. The following points summarize briefly the historical development of the

contributions described in this document:

1. The need to find better machine learning classifiers for CAD methods was

defined within the IMED project. See Section 1.2 (Calanducci, Ramos-Pollan

et al. 2008; Ramos-Pollan, Guevara López et al. 2009).

2. AUC was acknowledged to be a commonly used metric in medical

environments and, thus, its usage appropriate for the IMED project.

Additionally, literature review showed evidence that error rate minimization

(as typically targeted by machine learning methods) does not necessarily

yield to AUC optimization, which lead to think that an opportunity to

enable a more systematic use of AUC within machine learning in general

could exist.

132 Chapter 6 Conclusions

3. An AUC optimization method affordable to use in existing machine learning

methods was defined. See Section 3.3 (Ramos-Pollan, Guevara Lopez et al.

2010)

4. The multilayer perceptron training algorithms delivered through the Encog

toolkit were modified for AUC optimization using the method previously

defined (Section 3.3). This included the feedforward backpropagation,

resilient propagation, simulated annealing and genetic algorithms (Ramos-

Pollan, Guevara Lopez et al. 2010).

5. Confronted with the large amounts of computing power available at the

research institutions where the IMED project evolves and this thesis was

developed, it was determined to exploit them to (1) validate the AUC

optimization method just defined and (2) massively explore the search space

of classifiers configurations to discover well performing configurations

suitable for CAD. Therefore, a software framework (BiomedTK) was

developed to manage explorations of classifier configurations over Grid

eInfrastructures serviced by the gLite middleware (Section 4.2).

6. It was observed that performance of the modified multilayer perceptron

training algorithms degraded largely when using the new AUC optimization

method. This was due to the fact that they are heavily iterative algorithms

and AUC calculating occurred constantly during the iterative processes. In

some cases this degradation rendered the algorithms impractical to use.

7. A method was defined to provide a fast computation of the AUC, by making

an error bounded approximation, having the error to be as small as desired

by the researcher. After definition, the method was implemented and

validated experimentally (Section 3.2).

8. The modified training algorithms were updated to use the fast AUC method

just developed. With this, the AUC optimization method as applied to

multilayer perceptrons was experimentally validated (Section 3.3).

9. Grid resources were started to be used through BiomedTK during this

experimental validation, but it was soon observed a large dependency on the

underlying gLite middleware. Seeking to isolate BiomedTK from gLite

changes and instabilities, the possibility to generalize access to

eInfrastructures was identified to be feasible and affordable (in development

Chapter 6 Conclusions 133

effort) by using Java industry standards to implement a job agents/colony

model.

10. A software framework was then developed to enable this decoupling,

providing a simple and fast mechanism to exploit computing resources

available throughout eInfrastructures of different nature for users and

applications in general (like BiomedTK). This software framework was

named C3 (for Cloud Computing Colonies) and it was developed initially to

use gLite Grid, Amazon EC2 Cloud and SSH available distributed computing

resources (Section 4.3). BiomedTK was updated to use C3 rather than gLite

directly. Together, BiomedTK and C3 were thoroughly tested. See Section

4.4 (Ramos-Pollan, Guevara-López et al. 2011).

11. Finalized experimental validation for AUC optimization, now over

BiomedTK/C3 (Section 3.3.2)

12. Application in breast cancer CAD was now overtaken as data started being

available from specialized radiologists annotating and classifying

mammograms in the IMED project. In a first stage this initial raw data had

to be processed to construct the datasets so that machine learning classifiers

could be evaluated upon them. See Section 5.3 (Ramos-Pollan, Rubio del

Solar et al. 2009; Ramos-Pollan, Franco et al. 2010; Ramos-Pollan, Franco et

al. 2010; Ramos-Pollan, Rubio del Solar et al. 2010)

13. Massive machine learning classifier exploration was undertaken on the

datasets resulting from the step above over BiomedTK/C3. Discovered

classifier configurations are finally handed over to the IMED project and

become targets upon which CAD systems are being built and validated.

Section 5.4 (Ramos-Pollan, Guevara-López et al. 2011).

6.2 Main conclusions

Through the different Chapters of this document it has been shown how the initial

objectives set forth have been accomplished by developing the contributions announced

in Section 1.3. These contributions are now reviewed in the light of the results exposed

so far:

Contribution 1: A new AUC based error definition (loss function) for machine

learning algorithms. The definition is based on determining the contribution of the

134 Chapter 6 Conclusions

score of each dataset element to the Wilcoxon-Mann-Whitney statistic and measuring

how far it is from the maximum possible contribution. Section 3.3 (Ramos-Pollan,

Guevara Lopez et al. 2010). This measure can now be used in a variety of situations

where per-element ROC analysis is required, such as for AUC optimization in machine

learning (see Contribution 3 below)

Contribution 2: An efficient error-bounded AUC approximation method with

arbitrary precision. The method is based on discretizing the space for element scores

into fixed length intervals, counting the positive and negative elements that correspond

to each interval and then, approximating the contribution of each dataset element by

adding up the number of elements in intervals below the one it belongs to.

Additionally, the method produces per-element AUC error measures as defined in

Contribution 1 above so that they can be readily used by machine learning algorithms

for AUC optimization. Experiments described in Section 3.2 compare the time required

by the proposed method with the AUC computation algorithm provided by Weka,

based on sorting dataset elements using fast Java data structures. Measured speedups

(number of times the proposed method runs faster) vary with datasets. Synthetically

generated datasets based on drawing positive and negative elements from different

normal distributions yielded speedups between 3.5 and 6.5. Experiments with a

diversity of binary UCI datasets yielded speed ups between 2 and 7.

Contribution 3: A methodology to integrate the AUC based error definition and the

AUC approximation procedure into existing multilayer perceptrons, applicable to other

ML methods. The previous AUC based error definition was used to define a new loss

function that can substitute the ones used by machine learning classifiers and, thus,

enabling them for AUC optimization. It was also shown that this new loss function

retains the property that the error of the whole dataset is the arithmetic mean of the

error of all dataset elements. In the case of multilayer perceptrons, a further step was

required to map the loss function to particular values of output neurons (Section 3.3).

Experimentation included multilayer perceptrons with different kinds of training

algorithms using both per-element error and global dataset error over a variety of UCI

datasets (Ramos-Pollan, Guevara Lopez et al. 2010). An average global improvement in

AUC of 5.86% was achieved when the loss function is substituted when training

multilayer perceptrons with backpropagation, resilient propagation, simulated

annealing and genetic algorithms.

Chapter 6 Conclusions 135

Contribution 4: A software framework for integrating third party machine learning

classifiers, enabling the exploration of the search space formed by the possible

parameters configurations of the model fitting processes implemented by the integrated

classifiers. The software framework developed (BiomedTK) is described in Section 4.2.

It allows managing complex explorations consisting of many classifier configurations

from third-party machine learning toolkits over different datasets through a reduced set

of configuration artifacts (exploration configuration files). This, together with the C3

framework resulting from Contribution 5 below, enabled the exploitation of distributed

computing resources for massively evaluating machine learning classifiers for selected

UCI datasets, reaching in reasonable time results comparable to those reported in

different literature sources (Ramos-Pollan, Guevara-López et al. 2011).

Contribution 5: A software framework developed upon industry standards allowing

(1) launching and maintaining colonies of Job Agents over computing resources and

(2) submitting jobs to the Job Agents colonies through command line and API

interfaces. The software framework developed (named C3, for Cloud Computing

Colonies) is described in Section 4.3 and it can be used seamlessly by applications

through its API interface to exploit computing resources available through gLite Grid

middleware, Amazon EC2 Clouds and SSH access. It shields applications and users

from specific details of accessing a particular eInfrastructure offering a unified interface

regardless the final service or hardware where the colonies of C3 Job Agents are

maintained by C3. Any application can use the C3 API to interface with C3 Job

Agents anywhere they are deployed, and BiomedTK constituted the first application

through which C3 has been thoroughly tested.

Contribution 6: An exploration methodology for the rational usage of the software

frameworks (produced in contributions 4 and 5) over local and distributed computing

resources. This methodology is described in Chapter 4 and is based on iteratively

gaining understanding on what classifier configurations work better with a certain

dataset in hand. The method benefits from the agility provided by BiomedTK/C3 to

easily define classifier explorations and use efficiently computing resources to evaluate

them (Ramos-Pollan, Guevara-López et al. 2011). This way, researchers can gradually

build exploration strategies by evaluating many third party classifiers indistinctly on

local or remote computing resources as appropriate in their knowledge acquisition

endeavor.

136 Chapter 6 Conclusions

Contribution 7: An application of the above contributions to search for well

performing ML classifiers for breast cancer CADx based on medical data extracted

from mammograms. This constitutes the final contribution of this thesis to the IMED

project within which it was conceived. Chapter 5 details the whole process by which

datasets produced by the project were processed and fed into a massive classifier

exploration process over distributed computing resources (using BiomedTK/C3) that

yielded well performing classifiers with AUC greater than 0.9 in certain cases (Ramos-

Pollan, Guevara-López et al. 2011). In addition, this process shed light on other issues

which may become relevant for the IMED project such as the kind of dataset

preprocessing operations that might be more convenient (feature selection,

normalization) and for what medical workflows CAD systems might be better suit

(such as for double MLO and CC segmentation of mammograms).

In the same way, development of these contributions provided the evidence to

sustain the hypothesis sought for as stated in Section 1.3. This can be reviewed in

detail in the Experimentation and Validation sections of each chapter and it is

summarized here:

Hypothesis 1: Multilayer perceptrons can be improved through new AUC based error

measures, providing guidance to existing training methods to yield better AUC classifier

performance. Experimental results in Section 3.3.2 show how the AUC of multilayer

perceptrons trained with different algorithms for a variety of datasets is consistently

improved by injecting the AUC based error metrics defined in Section 3.3.1 into the

existing loss function used by the algorithms. Details can be found in tables 25, 26 and

27 in Appendix I.

Hypothesis 2: Computing power harnessed by eInfrastructres enables systematic

exploration of search spaces of machine learning classifiers configurations for given

datasets, specifically biomedical datasets. The software frameworks developed within

this thesis (BiomedTK/C3) constitute the basis to sustain this hypothesis.

Experimentation carried out through Chapter 3, 4 and 5 shows how distributed

computing resources can be effectively used for large explorations of configurations of

machine learning classifiers for different purposes. These computing resources are

provided by eInfrastructures of different nature (Grid, Cloud) which can be accessed in

a seamless and unified manner through BiomedTK/C3. In Chapter 3 the goal was to

validate and measure the performance of modified training algorithms for AUC

optimization. In Chapter 4, classifier configurations for commonly used datasets were

Chapter 6 Conclusions 137

explored with the aim to reach, in reasonable time, results comparable to those

reported in existing literature sources. In Chapter 5, computing resources were used to

discover well performing classifiers to be used in breast cancer CAD systems. In all

cases, thousands of classifier configurations were evaluated with a few configuration

artifacts across a large variety of datasets consuming a wealth of CPU hours.

Hypothesis 3: Computing power harnessed by eInfrastructures enables thorough

validation of new classification methods. The AUC optimization method proposed in

this thesis was validated through the experimentation described in Section 3.3.

Experiments were designed to include several datasets, multilayer perceptron engines

and configurations to gather enough statistical evidence of the obtained results. This

required access to a substantial amount of computing power to evaluate all devised

combinations of classifier configurations and datasets. Without such computing power

confidence on the proposed method would remain partial. This was provided by

different eInfrastructures (mostly Grid) which, managed through the software

frameworks developed in this thesis (BiomedTK/C3), offered the material means to

implement a comprehensive methodology for classifier evaluation.

Hypothesis 4: Given the above three hypothesis, it is possible to develop more precise

and robust breast cancer CADx methods. The machine learning classifier explorations

performed in Chapter 5 illustrate how the different results of this thesis can contribute

to find well performing classifiers for datasets derived from breast cancer data.

Furthermore, results reported here raise additional questions which contribute to focus

the construction of CADx method regarding their suitability for certain medical

workflows and the data preprocessing operations that are more appropriate. However,

it is not only the specific classifier configurations discovered in the context of this thesis

which supports this hypothesis (whose performance is already promising at AUC >

0.9), but also the data analysis workflow that was enabled by the different

contributions of this thesis. Through this workflow, classifiers for breast cancer data

can be evaluated and discovered in a continuous and systematic manner as new

annotated data is being generated in the medical environments where CADx systems

are being developed.

In summary, the contributions of this thesis suggest that (1) it is possible to reuse

existing machine learning algorithms for AUC optimization, as demonstrated in the

case of multilayer perceptrons and (2) performing massive explorations of machine

learning configurations over distributed infrastructure of different nature (Grid, Cloud)

138 Chapter 6 Conclusions

is feasible with little configuration and management effort. In both cases, efficiency is

understood in the sense of economy in the effort required to undertake a research

endeavor by possessing the appropriate tools, but also by devising the adequate

methods to use them. Their reach is thus expanded by both the conceptual advances

and the material means through which they can be taken into practice. In

retrospective, it is the tools developed and shown in Chapter 4 that enabled the

validation of the theoretical constructs developed in Chapters 3 and their practical

application in Chapter 5.

From the IMED project perspective, the results obtained in this thesis contribute to

its evolution to new phases enabling the final stages to construct CAD methods, but

also helping in building confidence on the data acquisition and analysis processes put

into place by the different professionals participating in the project (medical doctors,

computer engineers, etc.)

6.3 Future work

Future work will be focused on two issues. First, the classifier discovery workflow

herewith described will continue analyzing datasets as they are being generated from

radiologists annotating mammograms, producing more classifier configurations suitable

for CAD, shedding light on the existing research questions and, probably, raising new

ones. Second, a process will start to clinically validate the CAD methods constructed

with the classifiers obtained and their associated dataset preprocessing operations.

Besides having a clinical assessment of specific classifier and CAD methods the aim is

to establish a continuous validation workflow that can run as new data and classifiers

are generated.

In addition, two further issues will be addressed. On one side, other widely used

machine learning engines will be incorporated to BiomedTK, enlarging the capabilities

of its explorations. The ones available through the Weka toolkit are the first priority.

Then, the AUC optimization method described in Chapter 3 will be injected in

additional machine learning algorithms as considered appropriate either for purely

research reasons or project driven such as, for instance, considering that a certain

family of classifiers raises the interest of the IMED project.

Chapter 7 Bibliographic References 139

Chapter 7

7 Bibliographic References

Abonyi, J. and F. Szeifert (2003). "Supervised fuzzy clustering for the identification of fuzzy
classifiers." Pattern Recognition Letters 24(14): 2195-2207.

Agarwal, S., T. Graepel, et al. (2005). "Generalization bounds for the area under the ROC
curve." Journal of Machine Learning Research 6: 393-425.

Airola, A., T. Pahikkala, et al. (2009). A comparison of AUC estimators in small-sample studies.
Proceedings of the 3rd International workshop on Machine Learning in Systems Biology
(MLSB 09), Ljubljana, Slovenia.

Airola, A., T. Pahikkala, et al. (2011). "An experimental comparison of cross-validation
techniques for estimating the area under the ROC curve." Computational Statistics &
Data Analysis 55(4): 1828-1844.

Akaike, H. (1974). "A new look at the statistical model identification." IEEE Transactions on
Automatic Control 19(6): 716-723.

Alpaydin, E. (2010). Introduction to machine learning, The MIT Press.

Amazon. (2011). "Amazon Elastic Computing Cloud (Amazon EC2)." Retrieved August 2011,
from http://aws.amazon.com/ec2/.

Ataman, K., N. Street, et al. (2006). Learning to rank by maximizing auc with linear
programming. Proceedings of the IEEE International Joint Conference on Neural
Networks.

Atkins, D. E., K. K. Droegemeier, et al. (2003). Revolutionizing Science and Engineering
Through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon
Advisory Panel on Cyberinfrastructure, National Science Foundation

Bagnasco, S. and et al. (2008). "AliEn: ALICE environment on the GRID." Journal of Physics:
Conference Series 119(6): 062012.

Balakumaran, T., I. L. A. Vennila, et al. (2010). "Microcalcification detection in digital
mammograms using novel filter bank." Procedia Computer Science 2: 272-282.

Bandos, A. I., H. E. Rockette, et al. (2009). "Area under the Free-Response ROC Curve
(FROC) and a Related Summary Index." Biometrics 65(1): 247-256.

Barbera, R., R. Ramos-Pollan, et al. (2009). gLibrary/DRI: A Grid-Based Platform to Host
Muliple Repositories for Digital Content. Handbook of Research on Computational Grid
Technologies for Life Sciences, Biomedicine, and Healthcare. M. Cannataro, IGI Global.
2: 664-686.

Bellotti, R., P. Cerello, et al. (2007). "Distributed medical images analysis on a Grid
infrastructure." Future Generation Computer Systems 23(3): 475-484.

140 Chapter 7 Bibliographic References

Bellotti, R., F. De Carlo, et al. (2006). "A completely automated CAD system for mass
detection in a large mammographic database." Medical physics 33(8): 3066-3075.

Blanquer Espert, I., V. Hernández García, et al. (2009). "Content-based organisation of virtual
repositories of DICOM objects." Future Generation Computer Systems 25(6): 627-637.

Bose, R. and Ray-Chaudhuri (1960). "On a class of error-correcting binary group codes."
Information Control 3: 68-79.

Boyer, B., C. Balleyguier, et al. (2009). "CAD in questions/answers: Review of the literature."
European Journal of Radiology 69(1): 24-33.

Bradley, A. P. (1997). "The use of the area under the roc curve in the evaluation of machine
learning algorithms." Pattern Recognition 30(7): 1145-1159.

Brefeld, U. and T. Scheffer (2005). AUC Maximizing Support Vector Learning. In Proc. ICML
workshop on ROC Analysis in Machine Learning.

Brown, J., S. Bryan, et al. (1996). "Mammography screening: an incremental cost effectiveness
analysis of double versus single reading of mammograms." BMJ (Clinical research ed.)
312(7034): 809-812.

Butler, S. M., G. I. Webb, et al. (2003). A Case Study in Feature Invention for Breast Cancer
Diagnosis Using X-Ray Scatter Images. AI 2003: Advances in Artificial Intelligence. T.
D. Gedeon and L. C. C. Fung, Springer Berlin / Heidelberg. 2903: 677-685.

Calanducci, A., R. Ramos-Pollan, et al. (2008). Enabling Digital Repositories on the Grid.
Advanced Engineering Computing and Applications in Sciences, 2008. ADVCOMP '08.
The Second International Conference on.

Calders, T. and S. Jaroszewicz (2007). "Efficient AUC optimization for classification."
Knowledge Discovery in Databases: PKDD 2007, Proceedings 4702: 42-53.

Campanini, R., D Dongiovanni, et al. (2004). "A novel featureless approach to mass detection in
digital mammograms based on support vector machines." Physics in Medicine and
Biology 49(6): 961.

Campbell, C. and Y. Ying (2011). Learning with Support Vector Machines, Morgan & Claypool.

Caruana, R. and A. Mizil (2006). An empirical comparison of supervised learning algorithms.
ICML '06: Proceedings of the 23rd international conference on Machine learning,
Pittsburgh, Pennsylvania, ACM.

Casaseca-de-la-Higuera, P., J. I. Arribas, et al. (2005). A Comparative Study on
Microcalcification Detection Methods with Posterior Probability Estimation based on
Gaussian Mixture Models. Engineering in Medicine and Biology Society, 2005. IEEE-
EMBS 2005. 27th Annual International Conference of the.

Castro, C. L. and A. P. Braga (2008). Optimization of the Area under the ROC Curve. Neural
Networks, 2008. SBRN '08. 10th Brazilian Symposium on.

CCIF. (2011). "The Cloud Computing Interoperability Forum." Retrieved August 2011, from
http://www.cloudforum.org/.

Centor, R. M. and J. S. Schwartz (1985). "An evaluation of methods for estimating the area
under the Receiver Operating Characteristic (ROC) curve." Medical Decision Making 5:
149-156.

Ciatto, S., N. Houssami, et al. (2007). "Computer-Aided Screening Mammography." N Engl J
Med 357(1): 83-85.

Clémençon, S., N. Vayatis, et al. (2009). AUC optimization and the two-sample problem. Neural
Information Processing Systems Conference, Vancouver, Canada.

Cootes, T. F., C. J. Taylor, et al. (1995). "Active shape models\—their training and
application." Comput. Vis. Image Underst. 61(1): 38-59.

Chapter 7 Bibliographic References 141

Cordys. (2011). "CORDYS - Enterprise Cloud Orchestration." Retrieved August 2011, from
http://www.cordys.com/.

Cortes, C. and M. Mohri (2004). "AUC optimization vs. error rate minimization." Advances in
Neural Information Processing Systems 16 16(1621): 313-320.

Cortes, C., M. Mohri, et al. (2007). An alternative ranking problem for search engines.
Proceedings of the 6th international conference on Experimental algorithms. Rome,
Italy, Springer-Verlag: 1-22.

Chang, C.-C. and C.-J. Lin. (2001). "LIBSVM: a library for support vector machines." from
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chatelain, C., S. Adam, et al. (2010). "A multi-model selection framework for unknown and/or
evolutive misclassification cost problems." Pattern Recogn. 43(3): 815-823.

Cheng, H. D., X. Cai, et al. (2003). "Computer-aided detection and classification of
microcalcifications in mammograms: a survey." Pattern Recognition 36(12): 2967-2991.

Cheng, H. D., X. J. Shi, et al. (2006). "Approaches for automated detection and classification of
masses in mammograms." Pattern Recognition 39(4): 646-668.

Chenyang, X. and J. L. Prince (1998). "Snakes, shapes, and gradient vector flow." Image
Processing, IEEE Transactions on 7(3): 359-369.

D'Orsi, C. J., L. W. Bassett, et al. (2003). Breast Imaging Reporting and Data System: ACR
BI-RADS-Mammography, American College of Radiology.

Dehghan, F. and H. Abrishami-Moghaddam (2008). Comparison of SVM and neural network
classifiers in automatic detection of clustered microcalcifications in digitized
mammograms. Machine Learning and Cybernetics, 2008 International Conference on,
Kunming, China.

DeRoure, D., M. A. Baker, et al. (2003). The evolution of the grid. Grid Computing: Making
the Global Infrastructure a Reality, John Wiley & Sons: 65-100.

Dietterich, T. and G. Bakiri (1991). Error-correcting output codes: A general method for
improving multiclass inductive learning programs. Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91), Anaheim, CA, AAAI Press.

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Proceedings of the First
International Workshop on Multiple Classifier Systems, Springer-Verlag: 1-15.

DIRAC. (2010). "The DIRAC project." from http://lhcbweb.pic.es/DIRAC/.

Domeniconi, C. and B. Yan (2004). Nearest Neighbor Ensemble. Proceedings of the Pattern
Recognition, 17th International Conference on (ICPR'04) Volume 1 - Volume 01, IEEE
Computer Society.

Dorfman, D. D., K. S. Berbaum, et al. (1997). "Proper receiver operating characteristic analysis.
The bigamma model." Academic Radiology 4: 138-149.

Eadie, L. H., P. Taylor, et al. (2011). "A systematic review of computer-assisted diagnosis in
diagnostic cancer imaging." European Journal of Radiology In Press, Corrected
Proof.

Efron, B. (1983). "Estimating the Error Rate of a Prediction Rule: Improvement on Cross-
Validation." Journal of the American Statistical Association 78(382): 316-331.

Efron, B. and G. Gong (1983). "A Leisurely Look at the Bootstrap, the Jackknife, and Cross-
Validation." The American Statistician 37(1): 36-48.

Egan, J. P. (1975). Signal detection theory and ROC-analysis Academic Press.

EGI. (2011). "The European Grid Infrastructure." Retrieved August 2011, from
http://www.egi.eu.

142 Chapter 7 Bibliographic References

El-Naqa, I., Y. Yongyi, et al. (2002). "A support vector machine approach for detection of
microcalcifications." Medical Imaging, IEEE Transactions on 21(12): 1552-1563.

Elkan, C. (2001). The Foundations of Cost-Sensitive Learning. IJCAI.

Elter, M., R. Schulz-Wendtland, et al. (2007). "The prediction of breast cancer biopsy outcomes
using two CAD approaches that both emphasize an intelligible decision process." Med.
Phys. Nov;34(11): 4164-4172.

Eltonsy, N. H., G. D. Tourassi, et al. (2007). "A Concentric Morphology Model for the
Detection of Masses in Mammography." Medical Imaging, IEEE Transactions on 26(6):
880-889.

EMI. (2011). "The European Middleware Initiative." Retrieved August 2011, from
http://www.eu-emi.eu.

Eng, J. (2011). "ROC analysis: web-based calculator for ROC curves." Retrieved August 2011,
from http://www.jrocfit.org.

Escalera, S., O. Pujol, et al. (2008). Coronary damage classification of patients with the Chagas
disease with Error-Correcting Output Codes. Intelligent Systems, 2008. IS '08. 4th
International IEEE Conference.

Escalera, S., D. M. J. Tax, et al. (2008). "Subclass Problem-Dependent Design for Error-
Correcting Output Codes." Pattern Analysis and Machine Intelligence, IEEE
Transactions on 30(6): 1041-1054.

Esmeir, S. and S. Markovitch (2004). Lookahead-based algorithms for anytime induction of
decision trees. Proceedings of the twenty-first international conference on Machine
learning, Banff, Alberta, Canada, ACM.

Estrela da Silva, J., J. Marques de Sá, et al. (2000). "Classification of breast tissue by electrical
impedance spectroscopy." Medical and Biological Engineering and Computing 38(1): 26-
30.

EUIndiaGrid. (2011). "EU India Grid." Retrieved August 2011, from
http://www.euindiagrid.eu/.

Fan, C.-Y., P.-C. Chang, et al. (2011). "A hybrid model combining case-based reasoning and
fuzzy decision tree for medical data classification." Applied Soft Computing 11(1): 632-
644.

Faraggi, D. and B. Reiser (2002). "Estimation of the area under the ROC curve." Statistics in
Medicine 21(20): 3093-3106.

Fawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Researchers. HP Labs
Tech Report.

Fawcett, T. (2006). "An introduction to ROC analysis." Pattern Recognition Letters 27(8): 861-
874.

Fawcett, T. and F. Provost (1997). Analysis and visualization of classifier performance:
Comparison under imprecise class and cost distributions. Third international conference
on knowledge discovery and data mining (KDD-97), Menlo Park, CA.

FECYT (2004). Libro blanco de la eCiencia en España, Fundación Española para la Ciencia y la
Tecnología.

Ferri, C., P. A. Flach, et al. (2002). Learning Decision Trees Using the Area Under the ROC
Curve. Proceedings of the Nineteenth International Conference on Machine Learning,
Morgan Kaufmann Publishers Inc.: 139-146.

Flach, P. A. (2003). The Geometry of ROC Space: Understanding Machine Learning Metrics.
Proceedings of the Twentieth International Conference on Machine Learning (ICML-
2003), Washington DC.

Chapter 7 Bibliographic References 143

Foster, I. (2005). Globus Toolkit version 4: Software for service-oriented systems. Proceedings of
the IFIP International Conference on Network and Parallel Computing, LNCS 3779,
Springer.

Foster, I. and C. Kesselman (2004). The Grid 2, Second Edition: Blueprint for a New
Computing Infrastructure, Elsevier.

Foster, I. T. (2001). The Anatomy of the Grid: Enabling Scalable Virtual Organizations.
Proceedings of the 7th International Euro-Par Conference Manchester on Parallel
Processing, Springer-Verlag: 1-4.

Frank, A. and A. Asuncion (2010). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA, University of California, School of
Information and Computer Science.

Freund, Y. and R. E. Schapire (1995). A decision-theoretic generalization of on-line learning and
an application to boosting. Proceedings of the Second European Conference on
Computational Learning Theory, Springer-Verlag: 23-37.

Fung, G., M. Dundar, et al. (2004). A fast iterative algorithm for fisher discriminant using
heterogeneous kernels. Proceedings of the twenty-first international conference on
Machine learning, Banff, Alberta, Canada, ACM.

Ghahramani, Z. (2004). Unsupervised learning. Advanced Lectures on Machine Learning.

Giger, M. L. and K. Suzuki (2008). Computer-Aided Diagnosis. Biomedical Information
Technology. F. David Dagan. Burlington, Academic Press: 359-374.

Glatard, T., X. Zhou, et al. (2009). A comparison between ARC and gLite for medical image
processing on Grids MICCAI workshop on HealthGrid, London.

gLite. (2011). "The gLite middleware." Retrieved August 2011, from http://glite.web.cern.ch.

Global-Grid-Forum (2005). Open Grid Services Architecture: Glossary of Terms. GFD-I.044.
OGF Document Series, Global Grid Forum

Goddard, M. J. and I. Hinberg (1990). "Receiver operator characteristic (ROC) curves and non-
normal data: an empirical study." Statistics in Medicine 9: 325-227.

Google. (2011). "Google App Engine." Retrieved August 2011, from
http://code.google.com/appengine/.

Green, D. and J. Swets (1966). Signal Detection Theory and Psychophysics, John Wiley & Sons,
New York.

Gurcan, M. N., L. E. Boucheron, et al. (2009). "Histopathological Image Analysis: A Review."
Biomedical Engineering, IEEE Reviews in 2: 147-171.

Gurcan, M. N., Y. Yardimci, et al. (1997). "Detection of microcalcifications in mammograms
using higher order statistics." Signal Processing Letters, IEEE 4(8): 213-216.

H2. (2011). "The H2 Database Engine." Retrieved August 2011, from
http://www.h2database.com.

Hajian-Tilaki, K. O. and J. A. Hanley (2002). "Comparison of Three Methods for Estimating
the Standard Error of the Area under the Curve in ROC Analysis of Quantitative
Data." Academic Radiology 9(11): 1278-1285.

Hanczar, B., J. P. Hua, et al. (2010). "Small-sample precision of ROC-related estimates."
Bioinformatics 26(6): 822-830.

Hand, D. J. (1998). Consumer credit and statistics. Statistics in Finance. D. J. Hand and S. D.
Jacka, Edward Arnold: 69-82.

Hanley, J. A. (1996). "The use of the 'Binormal' model for parametric ROC analysis of
quantitative diagnostic tests." Statistics in Medicine 15(14): 1575-1585.

144 Chapter 7 Bibliographic References

Hanley, J. A. and B. J. McNeil (1982). "The meaning and use of the area under a receiver
operating characteristic (ROC) curve." Radiology 143(1): 29-36.

Haralick, R., Dinstein, et al. (1973). "Textural features for image classification." IEEE
Transactions on Systems, Man, and Cybernetics SMC-3: 610-621.

Hastie, T., R. Tibshirani, et al. (2009). The Elements of Statistical Learning, Springer.

He, H., J. M. Lyness, et al. (2009). "Direct estimation of the area under the receiver operating
characteristic curve in the presence of verification bias." Statistics in Medicine 28(3):
361-376.

Heath, M., K. Bowyer, et al. (2001). The Digital Database for Screening Mammography. Fifth
International Workshop on Digital Mammography, Medical Physics Publishing.

Heaton, J. (2010). Programming Neural Networks with Encog 2 in Java, Heaton Research, Inc.

Herschtal, A. and B. Raskutti (2004). Optimising area under the ROC curve using gradient
descent. Proceedings of the twenty-first international conference on Machine learning.
Banff, Alberta, Canada, ACM: 49.

Hey, T. and G. Fox (2005). "Special Issue: Grids and Web Services for e-Science: Editorials."
Concurr. Comput. : Pract. Exper. 17(2-4): 317-322.

Hocquenghen, A. (1959). "Codes correcteurs d'erreurs." Chiffres 2: 147-156.

Hsieh, F. and B. W. Turnbull (1996). "Nonparametric and semiparametric estimation of the
receiver operating characteristic curve." Annals of Statistics 24: 25-40.

Huang, J. and C. X. Ling (2005). "Using AUC and Accuracy in Evaluating Learning
Algorithms." IEEE Trans. on Knowl. and Data Eng. 17(3): 299-310.

Hui, L., D. Groep, et al. (2006). Job Failure Analysis and Its Implications in a Large-Scale
Production Grid. e-Science and Grid Computing, 2006. e-Science '06. Second IEEE
International Conference on.

Huiqun, D., G. Stathopoulos, et al. (2009). Error-Correcting Output Coding for the
Convolutional Neural Network for Optical Character Recognition. Document Analysis
and Recognition, 2009. ICDAR '09. 10th International Conference on.

Iavindrasana, J., G. Cohen, et al. (2009). "Clinical data mining: a review." Yearb Med Inform:
121-133.

IBM. (2011). "IBM Cloud Computing." Retrieved August 2011, from
http://www.ibm.com/cloud.

IGALC. (2011). "Iniciativa Grid de América Latina - Caribe." Retrieved August 2011, from
www.igalc.org.

InsightCorp. (2011). "Grid Computing: A Vertical Market Perspective 2006-2011." Press
Release Retrieved August 2011, from http://www.insight-corp.com/reports/grid06.asp.

J. Suckling, S. Astley, et al. (1994). "The Mammographic Image Analysis Society Digital
Mammogram Database". , Exerpta Medica. International Congress Series 1069: 375-
378.

JAAS. (2011). "The Java Authentication and Authorization Service." from
http://java.sun.com/products/jaas/.

Jain, A. K., R. P. W. Duin, et al. (2000). "Statistical pattern recognition: a review." Pattern
Analysis and Machine Intelligence, IEEE Transactions on 22(1): 4-37.

Jensen, K., H. H. Müller, et al. (2000). "Regional confidence bands for ROC curves." Statistics
in Medicine 19(4): 493-509.

Jetty. (2011). "The JETTY web container." from XXXX ADD URL XXXX.

Jiang, J., P. Trundle, et al. (2010). "Medical image analysis with artificial neural networks."
Computerized Medical Imaging and Graphics 34(8): 617-631.

Chapter 7 Bibliographic References 145

Jiang, J., B. Yao, et al. (2007). "A genetic algorithm design for microcalcification detection and
classification in digital mammograms." Computerized medical imaging and graphics :
the official journal of the Computerized Medical Imaging Society 31(1): 49-61.

Jiang, Y. and Z.-H. Zhou (2004). "Editing training data for knn classifiers with neural network
ensemble." Lecture Notes in Computer Science 3173: 356-361.

JMS. (2011). "The Java Message Service (JMS)." Retrieved August 2011, from
http://java.sun.com/products/jms/.

Joachims, T. (2005). A Support Vector Method for Multivariate Performance Measures.
Proceedings of the International Conference on Machine Learning (ICML).

JWS. (2011). "Java Web Start (JWS)." Retrieved August 2011, from
http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp.

Kacsuk, P. (2007). Extending the Services and Sites of Production Grids by the Support of
Advanced Portals Proceedings of High Performance Computing for Computational
Science - VECPAR 2006, Rio de Janeiro, Brazil, Springer Berlin.

Kang, H., J. Ro, et al. (2009). "Detection of Microcalcifications in Digital Mammograms Using
Foveal Method." J Korean Soc Med Inform Mar 15(1): 165-172.

Karssemeijer, N. (1993). Adaptive noise equalization and image analysis in mammography.
Information Processing in Medical Imaging. H. Barrett and A. Gmitro, Springer Berlin
/ Heidelberg. 687: 472-486.

Kim, J.-H. (2009). "Estimating classification error rate: Repeated cross-validation, repeated
hold-out and bootstrap." Computational Statistics & Data Analysis.

Kom, G., A. Tiedeu, et al. (2007). "Automated detection of masses in mammograms by local
adaptive thresholding." Computers in Biology and Medicine 37(1): 37-48.

Komori, O. and S. Eguchi (2010). "A boosting method for maximizing the partial area under
the ROC curve." Bmc Bioinformatics 11(1): 314.

Kopans, D. B. (2006). Breast Imaging, Lippincott Williams & Wilkins

Kotsiantis, S., I. Zaharakis, et al. (2006). "Machine learning: a review of classification and
combining techniques." Artificial Intelligence Review 26(3): 159-190.

Kowalik, A. and E. Konstanty (2010). "Basic tests in mammography as a tool in quality
improvement." Reports of Practical Oncology & Radiotherapy 15(5): 145-152.

Krupinski, E. A. (2008). Proceedings of the 9th international workshop on Digital
Mammography, Tucson, AZ, USA, Springer-Verlag.

Lachiche, N. and P. Flach (2003). Improving accuracy and cost of two-class and multi-class
probabilistic classifiers using ROC curves. Proceedings of the 20th International
Conference on Machine Learning (ICML'03).

Lemaur, G., K. Drouiche, et al. (2003). "Highly regular wavelets for the detection of clustered
microcalcifications in mammograms." Medical Imaging, IEEE Transactions on 22(3):
393-401.

Li, J. and L. Wong (2003). Using Rules to Analyse Bio-medical Data: A Comparison between
C4.5 and PCL. Advances in Web-Age Information Management, Springer Berlin /
Heidelberg. 2762: 254-265.

Liang, J., T. McInerney, et al. (2006). "United Snakes." Medical Image Analysis 10(2): 215-233.

Ling, C., J. Huang, et al. (2003). AUC: A Better Measure than Accuracy in Comparing
Learning Algorithms. Advances in Artificial Intelligence. Y. Xiang and B. Chaib-draa,
Springer Berlin / Heidelberg. 2671: 991-991.

Ling, C., J. Huang, et al. (2003). AUC: a Statistically Consistent and more Discriminating
Measure than Accuracy. IJCAI.

146 Chapter 7 Bibliographic References

Lobo, J., A. Jiménez-Valverde, et al. (2008). "AUC: a misleading measure of the performance of
predictive distribution models." Global Ecology and Biogeography 17(2): 145-151.

Long, P. and R. Servedio (2007). Boosting the Area Under the ROC Curve. Proceedings of the
20th Conference on Neural Information Processing Systems (NIPS).

López, Y., A. Novoa, et al. (2008). Computer Aided Diagnosis System to Detect Breast Cancer
Pathological Lesions. Progress in Pattern Recognition, Image Analysis and Applications,
Springer Berlin / Heidelberg. Volume 5197/2008: 453-460.

López, Y., A. Novoa, et al. (2008). Breast Cancer Diagnosis Based on a Suitable Combination of
Deformable Models and Artificial Neural Networks Techniques. Progress in Pattern
Recognition, Image Analysis and Applications, Springer Berlin / Heidelberg. Volume
4756/2008: 803-811.

Lorena, A. C., A. de Carvalho, et al. (2008). "A review on the combination of binary classifiers
in multiclass problems." Artificial Intelligence Review 30(1-4): 19-37.

Lloyd, C. J. (1998). "Using smoothed receiver operating characteristic curves to summarize and
compare diagnostic systems." Journal of the American Statistical Association 93: 1356-
1364.

Lloyd, L. J. and Z. Yong (1999). "Kernel estimators of the ROC curves are better than
empirical." Statistics & Probability Letters 44: 221-228.

Macskassy, S. A., F. Provost, et al. (2005). ROC confidence bands: an empirical evaluation.
Proceedings of the 22nd international conference on Machine learning. Bonn, Germany,
ACM: 537-544.

Maheshwari, K., P. Missier, et al. (2009). Medical Image Processing Workflow Support on the
EGEE Grid with Taverna. Intl Symposium on Computer Based Medical Systems
(CBMS'09), Alburquerque, New Mexico, USA.

Mann, H. and D. Whitney (1947). "On a test of whether one of two random variables is
stochastically larger than the other." Annals of Mathematical Statistics 18: 50-60.

Manning, C. D., P. Raghavan, et al. (2008). Introduction to Information Retrieval,, Cambridge
University Press.

Mark Hall, Eibe Frank, et al. (2009). "The WEKA Data Mining Software: An Update."
SIGKDD Explorations 11(1).

Marrocco, C., R. P. W. Duin, et al. (2008). "Maximizing the area under the ROC curve by
pairwise feature combination." Pattern Recognition 41(6): 1961-1974.

Martí, J., A. Oliver, et al. (2010). Proceedings of the 10th International Workshop in Digital
Mammography, Girona, Spain, Springer-Verlag.

Marzban, C. (2004). "The ROC Curve and the Area under It as Performance Measures."
Weather and Forecasting 19(6): 1106-1114.

McLoughlin, K. J., P. J. Bones, et al. (2004). "Noise equalization for detection of
microcalcification clusters in direct digital mammogram images." Medical Imaging,
IEEE Transactions on 23(3): 313-320.

Mell, P. and T. Grance (2009). The NIST definition of Cloud Computing v15, National
Institute for Standards and Technology.

Metz, C. (1978). "Basic Principles of ROC Analysis." Seminars in Nuclear Medicine 8: 283-298.

Metz, C. (2008). "ROC analysis in medical imaging: a tutorial review of the literature."
Radiological Physics and Technology 1(1): 2-12.

Metz, C. E., B. A. Herman, et al. (1998). "Maximum likelihood estimation of receiver operating
characteristic (ROC) curves from continuously-distributed data." Statistics in Medicine
17: 1033-1053.

Chapter 7 Bibliographic References 147

Microsoft. (2011). "Microsoft Azure." Retrieved August 2011, from
http://www.microsoft.com/windowsazure/.

Mitchell, T. (1997). Machine Learning, McGraw Hill.

Moin, M. S. (2009). Exploring AUC Boosting Approach in Multimodal Biometrics Score Level
Fusion.

Moon, W. K., Y.-W. Shen, et al. (2011). "Computer-Aided Diagnosis for the Classification of
Breast Masses in Automated Whole Breast Ultrasound Images." Ultrasound in Medicine
& Biology 37(4): 539-548.

Mozer, M. C., R. Dodier, et al. (2001). Prodding the ROC curve: constrained optimization of
classifier performance. Proceedings of NIPS'2001.

MPI-Forum (2009). MPI: A Message-Passing Interface Standard, Version 2.2, High Performance
Computing Center Stuttgart (HLRS).

MQ. (2011). "The Open Message Queue." Retrieved August 2011, from
https://mq.dev.java.net/.

Nakayama, R., Y. Uchiyama, et al. (2006). "Computer-aided diagnosis scheme using a filter
bank for detection of microcalcification clusters in mammograms." Biomedical
Engineering, IEEE Transactions on 53(2): 273-283.

NAREGI. (2011). "Japan National Research Grid Initiative." Retrieved August 2011, from
http://www.naregi.org.

NASA, NSF, et al. (2008). "WTEC Panel Report, International Assessment of Research and
Development in Simulation-Based Engineering and Science." Proceedings of the World
Techonology Evaluation Center Workshop, http://www.wtec.org/sbes/.

NEMA. (2008). "The DICOM Standard."

Newman, H. B., M. H. Ellisman, et al. (2003). "Data-intensive e-science frontier research."
Commun. ACM 46(11): 68-77.

Ng KH, M. M. (2003). " Advances in mammography have improved early detection of breast
cancer. ." J Hong Kong Coll Radiol 6(3): 126-131.

NGIs. (2011). "European National Grid Initiatives." Retrieved August 2011, from
http://knowledge.eu-egi.eu/knowledge/index.php/Main_Page.

NIMBUS. (2011). "The NIMBUS Project." Retrieved August 2011, from
http://www.nimbusproject.org/.

Nishikawa, R., M. Giger, et al. (1995). "Computer-aided detection of clustered
microcalcifications on digital mammograms." Medical and Biological Engineering and
Computing 33(2): 174-178.

Nishikawa, R. M. (2007). "Current status and future directions of computer-aided diagnosis in
mammography." Computerized Medical Imaging and Graphics 31(4-5): 224-235.

NordUGrid. (2011). "NordUGrid." Retrieved August 2011, from http://www.nordugrid.org.

Obuchowski, N. (1998). "Confidence Intervals for the Receiver Operating Characteristic Area in
Studies with Small Samples." Academic Radiology 5: 561-571.

Oliver, A., J. Freixenet, et al. (2010). "A review of automatic mass detection and segmentation
in mammographic images." Medical Image Analysis 14(2): 87-110.

Onega, T., E. J. Aiello Bowles, et al. (2010). "Radiologists' Perceptions of Computer Aided
Detection Versus Double Reading for Mammography Interpretation." Academic
Radiology 17(10): 1217-1226.

OpenNebula. (2011). "Open Nebula." Retrieved August 2011, from
http://www.opennebula.org/.

148 Chapter 7 Bibliographic References

Pahikkala, T., A. Airola, et al. (2008). Efficient AUC Maximization with Regularized Least-
Squares. Proceeding of the 2008 conference on Tenth Scandinavian Conference on
Artificial Intelligence: SCAI 2008, IOS Press: 12-19.

Papadopoulos, A., D. I. Fotiadis, et al. (2008). "Improvement of microcalcification cluster
detection in mammography utilizing image enhancement techniques." Computers in
Biology and Medicine 38(10): 1045-1055.

Paquerault, S., P. T. Hardy, et al. (2010). "Investigation of Optimal Use of Computer-Aided
Detection Systems: The Role of the "Machine" in Decision Making Process." Academic
Radiology 17(9): 1112-1121.

Parameswaran, A. V. and A. Chaddha (2009). "Cloud Interoperability and Standardization."
SETLabs Briefings 7(7): 19-26.

Park, S. C., J. Pu, et al. (2009). "Improving Performance of Computer-aided Detection Scheme
by Combining Results From Two Machine Learning Classifiers." Academic Radiology
16(3): 266-274.

Park, S. H., J. M. Goo, et al. (2004). "Receiver Operating Characteristic (ROC) Curve:
Practical Review for Radiologists." Korean Journal of Radiology 5(1): 11-18.

Parker, B., S. Gunter, et al. (2007). "Stratification bias in low signal microarray studies." Bmc
Bioinformatics 8(1): 326.

Passerini, A., M. Pontil, et al. (2004). "New results on error correcting output codes of kernel
machines." Neural Networks, IEEE Transactions on 15(1): 45-54.

Pisano, E. D., C. Gatsonis, et al. (2005). "Diagnostic Performance of Digital versus Film
Mammography for Breast-Cancer Screening." N Engl J Med 353(17): 1773-1783.

Provost, F. and T. Fawcett (2001). "Robust Classification for Imprecise Environments."
Machine Learning 42(3): 203-231.

Provost, F. J., T. Fawcett, et al. (1998). The Case against Accuracy Estimation for Comparing
Induction Algorithms. Proceedings of the Fifteenth International Conference on
Machine Learning, Morgan Kaufmann Publishers Inc.: 445-453.

Qin, J. and B. Zhang (2003). "Using logistic regression procedures for estimating receiver
operating characteristic curves." Biometrika 90: 585-596.

Rakotomamonjy, A. (2004). Optimizing area under roc curve with SVMs. Proceedings of the
First Workshop on ROC Analysis and Artificial Intelligence.

Ramos-Pollan, R. and A. Barreiro (2009). Enabling the Grid for experiments in distributed
information retrieval. Proceedings of the first EELA-2 Conference, Bogotá, Colombia,
CIEMAT pubs, pp 21-30.

Ramos-Pollan, R., J. P. G. Callejon, et al. (2007). Management of a grid infrastructure in
GLITE with Virtualization. Santiago Compostella, Cesga-Centro Supercomputacion
Galicia.

Ramos-Pollan, R., J. M. Franco, et al. (2010). Grid Computing for Breast Cancer CAD. A Pilot
Experience in a Medical Environment. Ibergrid: 4th Iberian Grid Infrastructure
Conference Proceedings. A. Proenca, A. Pina, J. G. Tobio and L. Ribeiro, Netbiblo:
307-318.

Ramos-Pollan, R., J. M. Franco, et al. (2010). "Grid infrastructures for developing
mammography CAD systems." Conf Proc IEEE Eng Med Biol Soc 1: 3467-3470.

Ramos-Pollan, R., M. Guevara-López, et al. (2011). "A Software Framework for Building
Biomedical Machine Learning Classifiers through Grid Computing Resources." Journal
of Medical Systems: 1-13.

Ramos-Pollan, R., M. Guevara-López, et al. (2011). "Discovering Mammography-based Machine
Learning Classifiers for Breast Cancer Diagnosis." Journal of Medical Systems: 1-11.

Chapter 7 Bibliographic References 149

Ramos-Pollan, R., M. A. Guevara Lopez, et al. (2010). Introducing ROC curves as error
measure functions. A new approach to train ANN-based biomedical data classifiers. 15th
Iberoamerican Congress on Pattern Recognition, Sao Paolo, Brasil, Springer.

Ramos-Pollan, R., M. A. Guevara López, et al. (2009). Building Medical Image Repositories and
CAD Systems on Grid Infrastructures: A Mammograms Case. 15th edition of the
Portuguese Conference on Pattern Recognition., University of Aveiro. Aveiro, Portugal.

Ramos-Pollan, R., M. Rubio del Solar, et al. (2010). Exploiting eInfrastructures for medical
image storage and analysis: A Grid application framework for mammography CAD. The
Seventh IASTED International Conference on Biomedical Engineering, February 17-19,
Innsbruck, Austria. Biomedical Engineering (Vol. 1 and Vol. 2) ISBN: I: 978-0-88986-
825-0/II: 978-0-88986-827-4.

Ramos-Pollan, R., M. Rubio del Solar, et al. (2009). Grid-based architecture to host multiple
repositories: A mammography image analysis use case. 3rd Iberian Grid Infrastructure
Conference Proceedings, Valencia, Spain.

Rangayyan, R. M. (2005). Biomedical Image Analysis. Boca Ratón, FL, USA, CRC Press.

Rangayyan, R. M., F. J. Ayres, et al. (2007). "A review of computer-aided diagnosis of breast
cancer: Toward the detection of subtle signs." Journal of the Franklin Institute 344(3-
4): 312-348.

Regentova, E., L. Zhang, et al. (2007). "Microcalcification detection based on wavelet domain
hidden Markov tree model: Study for inclusion to computer aided diagnostic prompting
system." Medical physics 34(6): 2206-2219.

Reiser, B. and D. Faraggi (1997). "Confidence intervals for the generalized ROC criterion."
Biometrics 53: 644-652.

Ren, J., D. Wang, et al. (2011). "Effective recognition of MCCs in mammograms using an
improved neural classifier." Engineering Applications of Artificial Intelligence 24(4):
638-645.

Rimal, B. P., C. Eunmi, et al. (2009). A Taxonomy and Survey of Cloud Computing Systems.
INC, IMS and IDC, 2009. NCM '09. Fifth International Joint Conference on.

Risk, M., R. Ramos-Pollan, et al. (2009). CardioGrid: a framework for the analysis of
cardiological signals in Grid computing. Network Operations and Management
Symposium, 2009. LANOMS 2009. Latin American.

Rissanen, J. (1983). "A Universal Prior for Integers and Estimation by Minimum Description
Length." Annals of Statistics 11(2): 416-431.

Robilliard, D., V. Marion-Poty, et al. (2007). An empirical boosting scheme for ROC-based
genetic programming classifiers. Proceedings of the 10th European conference on
Genetic programming. Valencia, Spain, Springer-Verlag: 12-22.

Rodenacker, K. (2001). "A Feature Set For Cytometry On Digitized Microscopic Images." Cell.
Pathol 25: 1-36.

Rosset, S. (2004). Model selection via the AUC. Proceedings of the twenty-first international
conference on Machine learning. Banff, Alberta, Canada, ACM: 89.

Sadaf, A., P. Crystal, et al. (2011). "Performance of computer-aided detection applied to full-
field digital mammography in detection of breast cancers." European Journal of
Radiology 77(3): 457-461.

Sanchez Gómez, S., M. Torres Tabanera, et al. (2010). "Impact of a CAD system in a screen-
film mammography screening program: A prospective study." European Journal of
Radiology In Press, Corrected Proof.

Schwarz, G. (1978). "Estimating the Dimension of a Model." The Annals of Statistics 6(2): 461-
464.

150 Chapter 7 Bibliographic References

Schwiegelshohn, U., R. Badia, et al. (2009). Perspectives on Grid Computing. Dagstuhl Seminar
Proceedings, Leibniz.

Sebban, M., R. Nock, et al. (2003). "Stopping criterion for boosting based data reduction
techniques: from binary to multiclass problem." J. Mach. Learn. Res. 3: 863-885.

Setiono, R. (2000). "Generating concise and accurate classification rules for breast cancer
diagnosis." Artificial Intelligence in Medicine 18(3): 205-219.

Shapiro, J. H. (1999). "Bounds on the area under the ROC curve." J. Opt. Soc. Am. A 16(1):
53-57.

Shi, X., H. D. Cheng, et al. (2010). "Detection and classification of masses in breast ultrasound
images." Digital Signal Processing 20(3): 824-836.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, London:
Chapman and Hall.

Singh, S., V. Kumar, et al. (2006). SVM Based System for classification of Microcalcifications in
Digital Mammograms. Engineering in Medicine and Biology Society, 2006. EMBS '06.
28th Annual International Conference of the IEEE.

Soares, C. (2003). Is the UCI Repository Useful for Data Mining? Progress in Artificial
Intelligence, Springer Berlin / Heidelberg. 2902: 209-223.

Sohns, C., B. C. Angic, et al. (2010). "CAD in full-field digital mammography--influence of
reader experience and application of CAD on interpretation of time." Clinical Imaging
34(6): 418-424.

Soltanian-Zadeh, H., F. Rafiee-Rad, et al. (2004). "Comparison of multiwavelet, wavelet,
Haralick, and shape features for microcalcification classification in mammograms."
Pattern Recognition 37(10): 1973-1986.

Song, J. H., S. S. Venkatesh, et al. (2005). "Comparative analysis of logistic regression and
artificial neural network for computer-aided diagnosis of breast masses." Academic
Radiology 12(4): 487-495.

Songyang, Y. and G. Ling (2000). "A CAD system for the automatic detection of clustered
microcalcifications in digitized mammogram films." Medical Imaging, IEEE
Transactions on 19(2): 115-126.

Sorribas, A., J. March, et al. (2002). "A new parametric method based on S-distributions for
computing receiver operating characteristic curves for continuous diagnostic tests."
Statistics in Medicine 21(9): 1213-1235.

Spackman, K. A. (1989). Signal detection theory: valuable tools for evaluating inductive
learning. Proceedings of the sixth international workshop on Machine learning. Ithaca,
New York, United States, Morgan Kaufmann Publishers Inc.: 160-163.

Steck, H. (2007). Hinge Rank Loss and the Area Under the ROC Curve. Machine Learning:
ECML 2007. J. Kok, J. Koronacki, R. Mantaraset al, Springer Berlin / Heidelberg.
4701: 347-358.

Stine, R. A. and J. F. Heyse (2001). "Non parametric estimates of overlap." Statistics in
Medicine 20(215-236).

Sweilam, N. H., A. A. Tharwat, et al. (2010). "Support vector machine for diagnosis cancer
disease: A comparative study." Egyptian Informatics Journal 11(2): 81-92.

Swets, J. (1988). "Measuring the accuracy of diagnostic systems." Science 240(4857): 1285-1293.

Swets, J. A., R. M. Dawes, et al. (2000). "Better decisions through science." Scientific American
283(4): 82-87.

Takenouchi, T. and S. Eguchi (2009). "Extension of Roc Curve." 2009 IEEE International
Workshop on Machine Learning for Signal Processing: 434-439.

Chapter 7 Bibliographic References 151

The, J. S., K. J. Schilling, et al. (2009). "Detection of breast cancer with full-field digital
mammography and computer-aided detection." American Journal of Roentgenology
192(2): 337-340.

Toh, K. A., J. Kim, et al. (2008). "Maximizing area under ROC curve for biometric scores
fusion." Pattern Recognition 41(11): 3373-3392.

Top500. (2011). "The TOP 500 list of Supercomputing Sites." Retrieved August 2011, from
http://www.top500.org.

Tristan, G., L. Diane, et al. (2007). Impact of the execution context on Grid job performances.
International Workshop on Context-Awareness and Mobility in Computing
(WCAMG’07), Rio de Janeiro, Brazil, IEEE.

Tzikopoulos, S. D., M. E. Mavroforakis, et al. (2011). "A fully automated scheme for
mammographic segmentation and classification based on breast density and
asymmetry." Computer Methods and Programs in Biomedicine 102(1): 47-63.

UNICORE. (2011). "The UNICORE Middleware." Retrieved August 2011, from
http://www.unicore.eu.

UnifiedCloud. (2011). "The Unified Cloud Interface." Retrieved August 2011, from
http://code.google.com/p/unifiedcloud/wiki/UCI_Requirements.

Urbanowicz, R. J. and J. H. Moore (2009). "Learning classifier systems: a complete
introduction, review, and roadmap." J. Artif. Evol. App. 2009: 1-25.

Vanderlooy, S. and E. Hullermeier (2008). "A critical analysis of variants of the AUC." Mach.
Learn. 72(3): 247-262.

Vanderlooy, S., I. Sprinkhuizen-Kuyper, et al. (2006). An analysis of reliable classifiers through
ROC isometrics. Proceedings of the ICML 2006 Workshop on ROC Analysis (ROCML
2006), Pittsburg, USA.

Vanderlooy, S., I. G. Sprinkhuizen-Kuyper, et al. (2009). "The ROC isometrics approach to
construct reliable classifiers." Intell. Data Anal. 13(1): 3-37.

Vapnik, V. (1998). Statistical Learning Theory, Wiley.

Vapnik, V. and A. Chervonenkis (1974). Theory of pattern recognition: Statistical problems of
learning, Moscow, Nauka.

Velikova, M., M. Samulski, et al. (2009). "Improved mammographic CAD performance using
multi-view information: a Bayesian network framework." Phys Med Biol 54(5): 1131-
1147.

Vergara, I. A., T. Norambuena, et al. (2008). "StAR: a simple tool for the statistical comparison
of ROC curves." Bmc Bioinformatics 9: -.

Vlachos, M., C. Domeniconi, et al. (2002). Non-linear dimensionality reduction techniques for
classification and visualization. Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, Edmonton, Alberta, Canada,
ACM.

Waegeman, W., B. De Baets, et al. (2008). "ROC analysis in ordinal regression learning."
Pattern Recognition Letters 29(1): 1-9.

Wang, R. and K. Tang (2009). Feature Selection for Maximizing the Area Under the ROC
Curve. Proceedings IEEE International Conference on Data Mining Workshops.

Wang, X., D. Lederman, et al. (2010). "Computerized Detection of Breast Tissue Asymmetry
Depicted on Bilateral Mammograms: A Preliminary Study of Breast Risk
Stratification." Academic Radiology 17(10): 1234-1241.

Wang, Y., S. Jiang, et al. (2010). "CAD Algorithms for Solid Breast Masses Discrimination:
Evaluation of the Accuracy and Interobserver Variability." Ultrasound in Medicine &
Biology 36(8): 1273-1281.

152 Chapter 7 Bibliographic References

Wei, L., Y. Yang, et al. (2005). "A study on several Machine-learning methods for classification
of Malignant and benign clustered microcalcifications." Medical Imaging, IEEE
Transactions on 24(3): 371-380.

Wei, L., Y. Yongyi, et al. (2005). Relevance vector machine learning for detection of
microcalcifications in mammograms. Image Processing, 2005. ICIP 2005. IEEE
International Conference on.

Wei, Q., M. Fei, et al. (2002). "An improved method of region grouping for microcalcification
detection in digital mammograms." Computerized medical imaging and graphics : the
official journal of the Computerized Medical Imaging Society 26(6): 361-368.

Wilcoxon, F. (1945). "Individual comparisons by ranking methods." Biometrics 1: 80-83.

Wilson, D. R. and T. R. Martinez (1997). Improved Center Point Selection for Probabilistic
Neural Networks. Proceedings of the International Conference on Artificial Neural
Networks and Genetic Algorithms, (ICANNGA’97).

Wu, S. and P. Flach (2005). A scored AUC metric for classifier evaluation and selection.
Proceedings of the ICML 2005 Workshop on ROC Analysis in Machine Learning, Bonn,
Germany.

Wu, S., P. Flach, et al. (2007). An Improved Model Selection Heuristic for AUC. Proceedings of
the 18th European Conference on Machine Learning.

Yan, L., R. Dodier, et al. (2003). Optimizing Classifier Performance Via the Wilcoxon-Mann-
Whitney Statistics. Proceedins of the

Yongyi, Y., W. Liyang, et al. (2007). Microcalcification Classification Assisted by Content-
Based Image Retrieval for Breast Cancer Diagnosis. Image Processing, 2007. ICIP 2007.
IEEE International Conference on, San Antonio, TX.

Yoon, H. J. (2007). "Evaluating computer-aided detection algoriths." Medical Physics 34: 2024-
2038.

Yu, S.-N. and Y.-K. Huang (2010). "Detection of microcalcifications in digital mammograms
using combined model-based and statistical textural features." Expert Systems with
Applications 37(7): 5461-5469.

Yu, S.-N., K.-Y. Li, et al. (2006). "Detection of microcalcifications in digital mammograms using
wavelet filter and Markov random field model." Computerized Medical Imaging and
Graphics 30(3): 163-173.

Zou, K. H. and W. J. Hall (2000). "Two transformation models for estimating a ROC curve
derived from continuous data." Journal of Applied Statistics 27: 621-631.

Zou, K. H., W. L. Hall, et al. (1997). "Smooth non-parametric receiver-operating characteristic
(ROC) curves for continuous diagnostic tests." Statistics in Medicine 16: 2143-2156.

Zou, K. H., C. M. Tempany, et al. (1998). "Original smooth receiver operating characteristic
curves exstimation from continuous data: statistical methods for analyzing the
predictive value of spiral CT of ureteral stones." Academic Radiology 5: 680-687.

Zou, K. H., S. K. Warfield, et al. (2004). "Statistical validation of image segmentation quality
based on a spatial overlap index." Academic Radiology 11: 178-189.

Zweig, M. and G. Campbell (1993). "Receiver-operating characteristic (ROC) plots: a
fundamental evaluation tool in clinical medicine " Clinical Chemistry 39: 561-577.

Appendix I. Tables and figures 153

Appendix I. Tables and figures

Table 23: Definitions for binary classifiers

±	 ⊂ ²4 Domain of elements consisting of input vectors (with � features) ³ � g�,�j The two classes into which input vectors are classified �=, ��, = ∈ ±, � ∈ ³ Element with its associated class (for supervised training) �© � g�=A, �A�, … , �=0 , �0�j Dataset (for supervised training) �7 � g=	|	�=, �� ∈ �©j Positive elements of dataset �9 � g=	|	�=, �� ∈ �©j Negative elements of dataset � � �7 ∪ �9 Elements of a dataset ��=� � � Class associated to element = through dataset � |�| � Size of dataset ´ � g	�:± → ³		j Set of functions representing binary classifiers * ∈ ´ A binary classifier *�=� ∈ ³ Output of binary classifier * when applied to element =

*-.�=� ∈ ²
Score assigned by binary classifier * to element = it is typically used by * to
determine *�=� by applying some threshold, and obtain ROC curves ���, *� A global error measure of classifier * when applied to training set � ��=, *� An individual error measure of classifier * when applied to element x �()��, *� Area under the ROC curve (AUC) of dataset � when classified with classifier *

| � $ aR0, ab`' ⊂ ²
Range of output values for the two output neurons of a multilayer perceptron
based binary classifier (binary MLP) *7�=�, *9�=� ∈ |
Output of the positive and negative neurons of the binary MLP * upon
element = �7�=�, �9�=� ∈ | Ideal value for positive and negative neurons for =

�7�=, *�, �9�=, *� Error measures for the output of the positive and negative neurons of binary
MLP * upon element =

154 Appendix I. Tables and figures

Table 24: UCI datasets used in this theseis

name description

elements

features
%

positive

bcw Cell based metricsi for breast cancer 699 9 35%

bcwd Diagnostic breast cancer Wisconsin database 569 30 63%
btcat Carcinoma in breast tissue 106 9 34%

echocard Data for classifying if patients will survive for at least one
year after a heart attack

131 8 33%

glass From USA Forensic Science Service; 6 types of glass;
defined in terms of their oxide content (i.e. Na, Fe, K, etc.)
(merged into two classes)

214 9 76%

haber Survival of patients who had undergone surgery for breast
cancer

306 3 26%

heartsl Patient indicators for presence of heart disease 270 13 44%

liver BUPA Medical Research Ltd. database on liver desease 345 6 58%

magic MAGIC Gamma Telescope Data Set 19020 11 65%

mmass Benign/malignant mammographic masses based on
BIRADS attributes and the patient's age

961 5 54%

park Oxford Parkinson's Disease Detection Dataset 195 22 75%

pgene E. Coli promoter gene sequences (DNA) with partial
domain theory

106 57 50%

pimadiab Patient indicators for presence of diabetes 768 8 35%

spam Classifying email as spam or not spam 4601 57 39%

spectf Data on cardiac Single Proton Emission Computed
Tomography (SPECT) images

267 44 21%

statlog.land Statlog (Landsat Satellite) Data Set (first three classes
against the rest)

6435 36 56%

statlog.shuttle Statlog (Shuttle) Data Set (first class against the rest) 58000 9 80%

tictac Binary classification task on possible configurations of tic-
tac-toe game

958 9 65%

yeast Yeast Protein Localization Sites (first class against the
rest)

1484 8 31%

waveform Waveform Database Generator (first two classes merged) 5000 21 34%

Appendix I. Tables and figures 155

Table 25: AUC performance of MLP algorithms modified for AUC optimization.

F
F

B
P

F
F

R
P

F
F

S
A

F
F

G
A

O
R

IG
IN

A
L

M
O

D
IF

IE
D

O
R

IG
IN

A
L

M
O

D
IF

IE
D

O
R

IG
IN

A
L

M
O

D
IF

IE
D

O
R

IG
IN

A
L

M
O

D
IF

IE
D

av
g

st
dd

ev
av

g
st

dd
ev

im
pr

ov
av

g
st

dd
ev

av
g

st
dd

ev
im

pr
ov

av
g

st
dd

ev
av

g
st

dd
ev

im
pr

ov
av

g
st

dd
ev

av
g

st
dd

ev
im

pr
ov

pg
en

e
0,

69
28

0,
16

3
0,

70
09

0,
18

1
0,

81
%

0,
87

94
0,

03
4

0,
82

93
0,

08
6

-5
,7

0%
0,

78
91

0,
08

4
0,

75
95

0,
10

3
-3

,7
6%

0,
60

85
0,

11
8

0,
63

66
0,

11
9

4,
61

%

m
m

as
s

0,
56

79
0,

23
5

0,
65

41
0,

21
6

15
,1

7%
0,

84
89

0,
03

4
0,

91
08

0,
02

3
7,

30
%

0,
88

73
0,

04
3

0,
88

50
0,

03
3

-0
,2

6%
0,

82
30

0,
03

9
0,

85
92

0,
03

4
4,

39
%

he
ar

ts
l

0,
62

83
0,

23
3

0,
71

61
0,

18
0

13
,9

8%
0,

85
33

0,
04

5
0,

91
11

0,
01

6
6,

77
%

0,
87

97
0,

07
8

0,
89

32
0,

05
4

1,
53

%
0,

81
88

0,
10

0
0,

89
60

0,
04

0
9,

44
%

liv
er

0,
53

71
0,

13
1

0,
65

26
0,

13
7

21
,5

0%
0,

67
29

0,
08

2
0,

71
55

0,
09

8
6,

32
%

0,
72

52
0,

07
7

0,
77

67
0,

09
6

7,
10

%
0,

55
53

0,
11

0
0,

68
53

0,
07

1
23

,4
2%

bc
w
d

0,
67

34
0,

22
5

0,
66

29
0,

26
1

-1
,5

6%
0,

99
04

0,
00

6
0,

98
94

0,
00

4
-0

,1
0%

0,
98

87
0,

00
5

0,
99

28
0,

00
8

0,
41

%
0,

94
94

0,
03

6
0,

96
89

0,
01

9
2,

05
%

pi
m

ad
ia

b
0,

52
51

0,
13

1
0,

53
43

0,
15

1
1,

76
%

0,
74

49
0,

05
7

0,
79

61
0,

05
8

6,
87

%
0,

83
03

0,
03

4
0,

83
11

0,
05

0
0,

10
%

0,
71

90
0,

08
4

0,
80

56
0,

05
1

12
,0

4%

tic
ta

c
0,

63
09

0,
14

0
0,

69
88

0,
14

7
10

,7
6%

0,
86

39
0,

02
9

0,
88

97
0,

03
0

2,
99

%
0,

81
05

0,
04

7
0,

84
00

0,
07

1
3,

64
%

0,
62

95
0,

09
2

0,
71

68
0,

08
8

13
,8

6%

ec
ho

ca
rd

0,
49

80
0,

15
2

0,
58

20
0,

13
5

16
,8

6%
0,

51
61

0,
08

1
0,

62
99

0,
16

1
22

,0
5%

0,
60

91
0,

13
4

0,
64

97
0,

17
8

6,
66

%
0,

64
39

0,
13

7
0,

63
41

0,
16

8
-1

,5
2%

ha
be

r
0,

57
23

0,
12

1
0,

55
07

0,
13

9
-3

,7
6%

0,
58

81
0,

03
8

0,
72

00
0,

15
2

22
,4

2%
0,

69
70

0,
10

5
0,

72
68

0,
10

4
4,

28
%

0,
65

99
0,

12
3

0,
70

13
0,

10
4

6,
28

%

pa
rk

0,
67

74
0,

22
0

0,
71

15
0,

23
3

5,
03

%
0,

92
44

0,
03

8
0,

89
79

0,
04

9
-2

,8
7%

0,
93

73
0,

08
4

0,
91

75
0,

06
5

-2
,1

2%
0,

82
25

0,
11

5
0,

86
08

0,
09

7
4,

66
%

gl
as

s
0,

66
55

0,
31

8
0,

72
35

0,
25

8
8,

72
%

0,
92

59
0,

05
1

0,
95

35
0,

07
3

2,
98

%
0,

95
10

0,
06

1
0,

95
45

0,
09

8
0,

37
%

0,
96

20
0,

04
3

0,
96

73
0,

04
3

0,
55

%

sp
ec

tf
0,

45
42

0,
12

0
0,

49
22

0,
12

9
8,

37
%

0,
77

83
0,

06
4

0,
82

95
0,

08
6

6,
58

%
0,

79
87

0,
09

3
0,

80
39

0,
09

8
0,

65
%

0,
66

28
0,

15
2

0,
72

51
0,

10
8

9,
40

%

av
er

ag
es

0,
59

36
0,

18
2

0,
64

00
0,

18
0

8,
14

%
0,

79
89

0,
04

7
0,

83
94

0,
07

0
6,

30
%

0,
82

53
0,

07
0

0,
83

59
0,

08
0

1,
55

%
0,

73
79

0,
09

6
0,

78
81

0,
07

8
7,

43
%

156 Appendix I. Tables and figures

Table 26: AUC performace in dataset and element based MLP algorithms

OVERALL AUC

ELEMENT BASED AUC
(ffbp and ffrp)

DATASET BASED AUC
(ffsa and ffga)

ORIGINAL MODIFIED improv ORIGINAL MODIFIED improv ORIGINAL MODIFIED improv

pgene 0,7425 0,7316 -1,01% 0,7861 0,7651 -2,44% 0,6988 0,6980 0,43%

mmass 0,7818 0,8273 6,65% 0,7084 0,7825 11,23% 0,8552 0,8721 2,07%

heartsl 0,7950 0,8541 7,93% 0,7408 0,8136 10,37% 0,8492 0,8946 5,48%

liver 0,6226 0,7075 14,59% 0,6050 0,6840 13,91% 0,6402 0,7310 15,26%

bcwd 0,9005 0,9035 0,20% 0,8319 0,8261 -0,83% 0,9691 0,9809 1,23%

pimadiab 0,7048 0,7418 5,19% 0,6350 0,6652 4,32% 0,7747 0,8184 6,07%

tictac 0,7337 0,7863 7,81% 0,7474 0,7943 6,87% 0,7200 0,7784 8,75%

echocard 0,5668 0,6239 11,01% 0,5070 0,6059 19,45% 0,6265 0,6419 2,57%

haber 0,6293 0,6747 7,30% 0,5802 0,6354 9,33% 0,6784 0,7141 5,28%

park 0,8404 0,8469 1,18% 0,8009 0,8047 1,08% 0,8799 0,8891 1,27%

glass 0,8761 0,8997 3,15% 0,7957 0,8385 5,85% 0,9565 0,9609 0,46%

spectf 0,6735 0,7127 6,25% 0,6163 0,6609 7,47% 0,7308 0,7645 5,02%

averages 0,7389 0,7758 5,86% 0,6962 0,7397 7,22% 0,7816 0,8120 4,49%

Table 27: Some correlations in AUC optimization experiments

 ffbp ffrp ffsa ffga all

(1) improvement vs. class skew -0,2578 0,2591 0,1038 -0,2089

-0,0267

(2) improvement vs. ORIGINAL AUC avg -0,3652 -0,8724 -0,6649 -0,5537

-0,7170

(3) improvement vs. ORIGINAL AUC stddev 0,0635 0,4545 0,3624 0,2087

0,1783

(4) ORIGINAL AUC stddev vs. MODIFIED AUC stddev 0,8834 0,6312 0,8843 0,8286

0,6823

(5) ORIGINAL AUC avg vs. MODIFIED AUC avg 0,8488 0,9564 0,9816 0,9568

0,9715

Appendix I. Tables and figures 157

Table 28: Summary of BiomedTK commands

command description

dataset manipulation commands

dataset generates biomedtk dataset set from a CSV file, or creates a simmulated one

bindatasets generates a positive/negative dataset for each class of an existing dataset

arff.export exports a dataset into a WEKA ARFF file

arff.import imports a dataset from a WEKA ARFF file

libsvm.export exports a dataset into a LIBSVM file

split.dataset splits a dataset into test/train data

cmatrix.datasets generates binary datasets from a multiclass dataset following a decomposition specified in
a code matrix

dataset.metrics shows dataset metrics

norm.dataset normalizes a dataset

 classifier evaluation and exploration commands

jobset generates a jobset to perform an exploration

launch executes sequentially the jobs of a jobset in this machine

ensembles creates ensemble classifiers from binary classifiers

 classifier reusage commands

apply applies to a dataset a classifier obtained from a previous training process

summary summarizes results stored in the DB for a particular dataset

verify verifies results stored in DB by reconstructing engines and applying them to datasets

 C3 commands

c3.prepare prepares an exploration for c3

c3.submit submits a prepared exploration to c3

c3.launch prepares and submits an exploration to c3

c3.status retrieves the status of an exploration submitted to c3

 utility commands

db start H2 db server

show.classifiers shows available classifiers and parameters accepted by each classifier

158 Appendix I. Tables and figures

Figure 41: Sample BiomedTK session

r
l
x
@
r
l
x
-
d
e
s
k
t
o
p
$
 b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k
d
a
t
a
s
e
t

d
a
t
a
s
e
t

d
a
t
a
s
e
t

d
a
t
a
s
e
t
t
r
a
i
n
i
n
g
s
e
t
.
p
r
o
p
e
r
t
i
e
s

t
r
a
i
n
i
n
g
s
e
t
.
p
r
o
p
e
r
t
i
e
s

t
r
a
i
n
i
n
g
s
e
t
.
p
r
o
p
e
r
t
i
e
s

t
r
a
i
n
i
n
g
s
e
t
.
p
r
o
p
e
r
t
i
e
s

U
s
i
n
g
J
A
V
A
_
H
O
M
E
 a
t
 /
o
p
t
/
j
d
k
1
.
6
.
0
_
1
6

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

B
i
o
m
e
d
i
c
a
l
A
n
a
l
y
s
i
s
T
o
o
l
k
i
t
.
 R
e
l
e
a
s
e
1
.
2
 (
o
c
t
2
0
1
0
)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
4
]
 r
l
x
-
d
e
s
k
t
o
p
 c
o
n
n
e
c
t
e
d
t
o
j
d
b
c
:
h
2
:
t
c
p
:
/
/
l
o
c
a
l
h
o
s
t
/
p
r
o
d

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
4
]
 r
l
x
-
d
e
s
k
t
o
p
 p
a
r
s
i
n
g

p
a
r
s
i
n
g

p
a
r
s
i
n
g

p
a
r
s
i
n
g
c
s
v

c
s
v

c
s
v

c
s
v
f
i
l
e

f
i
l
e

f
i
l
e

f
i
l
e
.
/
b
r
e
a
s
t

.
/
b
r
e
a
s
t

.
/
b
r
e
a
s
t

.
/
b
r
e
a
s
t
-- --
t
i
s
s
u
e
.
c
s
v

t
i
s
s
u
e
.
c
s
v

t
i
s
s
u
e
.
c
s
v

t
i
s
s
u
e
.
c
s
v

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
5
]
 r
l
x
-
d
e
s
k
t
o
p
 n
o
r
m
a
l
i
z
e
d
t
r
a
i
n
i
n
g
 s
e
t
 w
i
t
h
a
u
t
o
 e
u
c
l
i
d
d
i
s
t
a
n
c
e
.

D
E
B
U
G
 [
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
5
]
 r
l
x
-
d
e
s
k
t
o
p
 s
p
l
i
t
t
i
n
g
t
r
a
i
n
i
n
g
 s
e
t
 w
i
t
h
5
0
 p
e
r
c
e
n
t
o
f
 t
e
s
t
 i
t
e
m
s

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
5
]
 r
l
x
-
d
e
s
k
t
o
p
 s
p
l
i
t
[
1
:
N
E
G
:
B
A
D
]

[
5
4
 e
l
e
m
s
:
:
 2
7
 T
E
S
T
,
 2
7
 T
R
A
I
N
 :
:

0

P
O
S
,
 5
4

N
E
G
]

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
5
]
 r
l
x
-
d
e
s
k
t
o
p
 s
p
l
i
t
[
0
:
P
O
S
:
N
O
R
M
]

[
5
2
 e
l
e
m
s
:
:
 2
6
 T
E
S
T
,
 2
6
 T
R
A
I
N
 :
:

5
2
 P
O
S
,
 0

N
E
G
]

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
5
]
 r
l
x
-
d
e
s
k
t
o
p
 T
O
T
A
L

[
1
0
6
 e
l
e
m
s
:
:
 5
3
 T
E
S
T
,
 5
3
5
 T
R
A
I
N
 :
:

5
2
 P
O
S
,
 5
4
 N
E
G
]

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
3
5
]
 r
l
x
-
d
e
s
k
t
o
p
 l
o
a
d
e
d
t
s
B
R
E
A
S
T
-
T
I
S
S
U
E
.
N
O
R
M
 [
f
e
a
t
u
r
e
s
9
:
:
c
l
a
s
s
e
s
2
]

r
l
x
@
r
l
x
-
d
e
s
k
t
o
p
$
 b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k
j
o
b
s
e
t

j
o
b
s
e
t

j
o
b
s
e
t

j
o
b
s
e
t
e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
5
5
]
 r
l
x
-
d
e
s
k
t
o
p
 c
o
n
n
e
c
t
e
d
t
o
j
d
b
c
:
h
2
:
t
c
p
:
/
/
l
o
c
a
l
h
o
s
t
/
p
r
o
d

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
3
5
:
5
6
]
 r
l
x
-
d
e
s
k
t
o
p
 n
u
m
b
e
r

n
u
m
b
e
r

n
u
m
b
e
r

n
u
m
b
e
r
o
f

o
f

o
f

o
f
 g
e
n
e
r
a
t
e
d

g
e
n
e
r
a
t
e
d

g
e
n
e
r
a
t
e
d

g
e
n
e
r
a
t
e
d
c
o
m
b
i
n
a
t
i
o
n
s

c
o
m
b
i
n
a
t
i
o
n
s

c
o
m
b
i
n
a
t
i
o
n
s

c
o
m
b
i
n
a
t
i
o
n
s
3
0

3
0

3
0
3
0

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
5
8
:
1
0
]
 r
l
x
-
d
e
s
k
t
o
p
 g
e
n
e
r
a
t
i
n
g

g
e
n
e
r
a
t
i
n
g

g
e
n
e
r
a
t
i
n
g

g
e
n
e
r
a
t
i
n
g
j
o
b

j
o
b

j
o
b

j
o
b
s
e
t

s
e
t

s
e
t

s
e
t
 f
o
r

f
o
r

f
o
r

f
o
r
5

5

5

5
 j
o
b
s

j
o
b
s

j
o
b
s

j
o
b
s
a
n
d
 6

a
n
d
 6

a
n
d
 6

a
n
d
 6
 c
o
m
b
i
n
a
t
i
o
n
s

c
o
m
b
i
n
a
t
i
o
n
s

c
o
m
b
i
n
a
t
i
o
n
s

c
o
m
b
i
n
a
t
i
o
n
s
p
e
r

p
e
r

p
e
r

p
e
r
 j
o
b

j
o
b

j
o
b

j
o
b

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
5
8
:
1
0
]
 r
l
x
-
d
e
s
k
t
o
p
 s
t
o
r
e
d
j
o
b
0
0
0
0
1
 d
e
f
i
n
i
t
i
o
n
t
o
f
i
l
e
m
e
d
t
k
-
j
o
b
-
0
0
0
0
1
.
p
r
o
p
e
r
t
i
e
s

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
5
8
:
1
0
]
 r
l
x
-
d
e
s
k
t
o
p
 s
t
o
r
e
d
j
o
b
0
0
0
0
2
 d
e
f
i
n
i
t
i
o
n
t
o
f
i
l
e
m
e
d
t
k
-
j
o
b
-
0
0
0
0
2
.
p
r
o
p
e
r
t
i
e
s

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
5
8
:
1
0
]
 r
l
x
-
d
e
s
k
t
o
p
 s
t
o
r
e
d
j
o
b
0
0
0
0
3
 d
e
f
i
n
i
t
i
o
n
t
o
f
i
l
e
m
e
d
t
k
-
j
o
b
-
0
0
0
0
3
.
p
r
o
p
e
r
t
i
e
s

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
5
8
:
1
0
]
 r
l
x
-
d
e
s
k
t
o
p
 s
t
o
r
e
d
j
o
b
0
0
0
0
4
 d
e
f
i
n
i
t
i
o
n
t
o
f
i
l
e
m
e
d
t
k
-
j
o
b
-
0
0
0
0
4
.
p
r
o
p
e
r
t
i
e
s

I
N
F
O

[
1
9
.
1
1
.
1
0
 1
3
:
5
8
:
1
0
]
 r
l
x
-
d
e
s
k
t
o
p
 s
t
o
r
e
d
j
o
b
0
0
0
0
5
 d
e
f
i
n
i
t
i
o
n
t
o
f
i
l
e
m
e
d
t
k
-
j
o
b
-
0
0
0
0
5
.
p
r
o
p
e
r
t
i
e
s

r
l
x
@
r
l
x
-
d
e
s
k
t
o
p
$
 b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k

b
i
o
m
e
d
t
k
l
a
u
n
c
h

l
a
u
n
c
h

l
a
u
n
c
h

l
a
u
n
c
h
e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

e
x
p
l
o
r
e
.
p
r
o
p
e
r
t
i
e
s

[
1
9
.
1
1
.
1
0
 1
3
:
3
6
:
2
3
]
 r
l
x
-
d
e
s
k
t
o
p
 c
o
n
n
e
c
t
e
d
t
o
j
d
b
c
:
h
2
:
t
c
p
:
/
/
l
o
c
a
l
h
o
s
t
/
p
r
o
d

[
1
9
.
1
1
.
1
0
 1
3
:
3
6
:
2
7
]
 r
l
x
-
d
e
s
k
t
o
p
 l
a
u
n
c
h
i
n
g
j
o
b
f
o
r
6
9
3
5
3
2
c
c
e
3
9
b
b
5
e
a
9
0
7
4
c
3
8
c
5
7
8
4
2
f
a
0
6
d
3
e
5
f
3
f
/
m
e
d
t
k
-
j
o
b
-
0
0
0
0
1
.
p
r
o
p
e
r
t
i
e
s

[
1
9
.
1
1
.
1
0
 1
3
:
3
6
:
2
7
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
d
e
t
a
i
l
s
:
 [
j
o
b
i
d
=
1
 j
o
b
s
=
1
 c
o
m
b
s
=
3
0
 i
o
n
e
u
r
o
n
s
=
[
6
0
,
2
]
 e
r
r
=
0
.
0
 i
t
s
=
5
0
0
 [
S
O
N
A
R
]

[
1
9
.
1
1
.
1
0
 1
3
:
3
6
:
2
8
]
 s
t
a
r
t
i
n
g

s
t
a
r
t
i
n
g

s
t
a
r
t
i
n
g

s
t
a
r
t
i
n
g
e
n
c
o
g
.
f
f
s
a
r
o
c

e
n
c
o
g
.
f
f
s
a
r
o
c

e
n
c
o
g
.
f
f
s
a
r
o
c

e
n
c
o
g
.
f
f
s
a
r
o
c
[
a
n
n
2
,
 6
0
.
t
a
n
h

[
a
n
n
2
,
 6
0
.
t
a
n
h

[
a
n
n
2
,
 6
0
.
t
a
n
h

[
a
n
n
2
,
 6
0
.
t
a
n
h
-- --
1
2
1
.
t
a
n
h

1
2
1
.
t
a
n
h

1
2
1
.
t
a
n
h

1
2
1
.
t
a
n
h
-- --
0
2
.
t
a
n
h
]

0
2
.
t
a
n
h
]

0
2
.
t
a
n
h
]

0
2
.
t
a
n
h
]

[[[[
i
t

i
t

i
t

i
t
=
1
0
0
0
,

=
1
0
0
0
,

=
1
0
0
0
,

=
1
0
0
0
,
 e
r
r

e
r
r

e
r
r

e
r
r
=
0
.
0
0
1
]
 [

=
0
.
0
0
1
]
 [

=
0
.
0
0
1
]
 [

=
0
.
0
0
1
]
 [
c
y

c
y

c
y

c
y
=
5
0

=
5
0

=
5
0

=
5
0
 s
t

s
t

s
t
s
t
=
1
5
.
0
0
0
,
 e
t
=
2
.
0
0
0
]

=
1
5
.
0
0
0
,
 e
t
=
2
.
0
0
0
]

=
1
5
.
0
0
0
,
 e
t
=
2
.
0
0
0
]

=
1
5
.
0
0
0
,
 e
t
=
2
.
0
0
0
]

[
1
9
.
1
1
.
1
0
 1
3
:
3
6
:
3
0
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
0
0
0
,
 e
r
r

0
.
1
2
8
,
 c
h
e
c
k
s
u
m

0
.
0
4
7
]
 e
r
r
t
r
n
d
0
.
0
0
0

[
1
9
.
1
1
.
1
0
 1
3
:
3
7
:
2
1
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
1
0
0
,
 e
r
r

0
.
0
2
6
,
 c
h
e
c
k
s
u
m

0
.
1
3
9
]
 e
r
r
t
r
n
d
0
.
1
0
1

[
1
9
.
1
1
.
1
0
 1
3
:
3
8
:
0
7
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
2
0
0
,
 e
r
r

0
.
0
2
1
,
 c
h
e
c
k
s
u
m

0
.
1
7
2
]
 e
r
r
t
r
n
d
0
.
0
0
6

[
1
9
.
1
1
.
1
0
 1
3
:
3
8
:
4
5
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
3
0
0
,
 e
r
r

0
.
0
2
0
,
 c
h
e
c
k
s
u
m

0
.
1
8
2
]
 e
r
r
t
r
n
d
0
.
0
0
1

[
1
9
.
1
1
.
1
0
 1
3
:
3
9
:
2
3
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
4
0
0
,
 e
r
r

0
.
0
1
8
,
 c
h
e
c
k
s
u
m

0
.
2
3
4
]
 e
r
r
t
r
n
d
0
.
0
0
1

[
1
9
.
1
1
.
1
0
 1
3
:
4
0
:
0
1
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
5
0
0
,
 e
r
r

0
.
0
1
3
,
 c
h
e
c
k
s
u
m

0
.
4
4
6
]
 e
r
r
t
r
n
d
0
.
0
0
5

[
1
9
.
1
1
.
1
0
 1
3
:
4
0
:
3
9
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
6
0
0
,
 e
r
r

0
.
0
0
7
,
 c
h
e
c
k
s
u
m

0
.
6
5
9
]
 e
r
r
t
r
n
d
0
.
0
0
5

[
1
9
.
1
1
.
1
0
 1
3
:
4
1
:
1
7
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
7
0
0
,
 e
r
r

0
.
0
0
7
,
 c
h
e
c
k
s
u
m

0
.
7
1
2
]
 e
r
r
t
r
n
d
0
.
0
0
0

[
1
9
.
1
1
.
1
0
 1
3
:
4
1
:
5
5
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
8
0
0
,
 e
r
r

0
.
0
0
5
,
 c
h
e
c
k
s
u
m

0
.
6
9
8
]
 e
r
r
t
r
n
d
0
.
0
0
1

[
1
9
.
1
1
.
1
0
 1
3
:
4
2
:
3
4
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
0
9
0
0
,
 e
r
r

0
.
0
0
5
,
 c
h
e
c
k
s
u
m

0
.
6
9
8
]
 e
r
r
t
r
n
d
0
.
0
0
0

[
1
9
.
1
1
.
1
0
 1
3
:
4
3
:
1
2
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 e
n
c
o
g
.
f
f
s
a
r
o
c
[
 i
t
0
0
0
0
1
0
0
0
,
 e
r
r

0
.
0
0
5
,
 c
h
e
c
k
s
u
m

0
.
6
9
8
]

[
1
9
.
1
1
.
1
0
 1
3
:
4
3
:
1
2
]
 r
l
x
-
d
e
s
k
t
o
p
 j
o
b
-
1
 1
/
3
0
 ((((
t
r
n

t
r
n

t
r
n

t
r
n
=
0
.
9
8
1
@
0
.
5
0
2

=
0
.
9
8
1
@
0
.
5
0
2

=
0
.
9
8
1
@
0
.
5
0
2

=
0
.
9
8
1
@
0
.
5
0
2
 A
z

A
z

A
z

A
z
=
0
.
9
9
4
)
 (

=
0
.
9
9
4
)
 (

=
0
.
9
9
4
)
 (

=
0
.
9
9
4
)
 (
t
s
t

t
s
t

t
s
t

t
s
t
=
0
.
7
5
9
@
0
.
5
0
1

=
0
.
7
5
9
@
0
.
5
0
1

=
0
.
7
5
9
@
0
.
5
0
1

=
0
.
7
5
9
@
0
.
5
0
1
 A
z

A
z

A
z
A
z
=
0
.
7
8
2
)

=
0
.
7
8
2
)

=
0
.
7
8
2
)

=
0
.
7
8
2
)

c
o

m
m

a
n
d

to
im

p
o

rt
d

a
ta

s
e
t

c
s
v
 f

ile
 b

e
in

g
im

p
o

rt
e
d

d
a
ta

s
e
t
s
u
m

m
a
ry

c
o

m
m

a
n
d

to
p

re
p

a
re

 e
x
p

lo
ra

ti
o

n

#
 o

f
c
o

m
b

in
a
ti
o

n
s

g
e
n
e
ra

te
d

d
is

tr
ib

u
te

d
in

to
jo

b
s

c
o

m
m

a
n
d

to
s
ta

rt
tr

a
in

in
g

c
o

m
b

in
a
ti
o

n
s

lo
c
a
lly

fi
rs

t
c
o

m
b

in
a
ti
o

n
to

tr
a
in

tr
a
in

in
g

 p
ro

g
re

s
s

fi
rs

t
c
o

m
b

in
a
ti
o

n
re

s
u
lt

Appendix I. Tables and figures 159

Table 29: BiomedTK/C3 experimental exploration summary

e
n
g
in

e
b
c
w

b
c
w

d
b
tc

a
t

e
c
h
o
c
a
rd

h
a
b
e
r

h
e
a
rt

sl
h
e
p
a
t

li
v
e
r

m
m

a
ss

p
a
rk

p
g
e
n
e

p
im

a
d
ia

b
sp

a
m

sp
e
c
tf

ti
c
ta

c

ff
bp

co
nf

ig
s

32
20

72
96

12
8

48
16

48
96

48
18

60
16

12
36

C
P
U

 h
ou

rs
77

.8
2

10
2.

04
95

.9
6

64
.4

2
36

.9
2

12
3.

30
50

.8
0

46
.1

3
18

0.
65

21
3.

00
16

4.
17

19
2.

80
30

5.
38

64
.2

2
14

9.
01

be
st

ac
cu

ra
cy

86
.5

9%
95

.0
0%

74
.4

0%
68

.3
0%

69
.8

2%
89

.5
2%

88
.6

3%
71

.3
3%

83
.7

3%
93

.4
7%

89
.0

9%
70

.5
0%

78
.7

6%
57

.9
5%

81
.1

0%
be

st
A

U
C

0.
86

0
0.

94
3

0.
72

9
0.

68
0

0.
71

7
0.

90
8

0.
88

4
0.

69
5

0.
84

9
0.

94
2

0.
88

9
0.

68
2

0.
77

9
0.

59
8

0.
79

9
ff
bp

ro
c

co
nf

ig
s

32
20

72
96

12
8

48
16

48
96

48
18

60
16

12
36

C
P
U

 h
ou

rs
11

8.
55

17
1.

54
12

8.
33

11
8.

53
57

.1
3

21
1.

50
83

.9
7

65
.7

4
29

3.
50

36
3.

29
33

3.
84

31
3.

40
43

3.
12

10
4.

67
24

1.
50

be
st

 p
ct

90
.1

7%
95

.0
6%

80
.4

0%
77

.3
3%

73
.9

3%
91

.4
1%

89
.1

1%
80

.8
5%

91
.7

4%
98

.2
8%

93
.3

8%
74

.2
4%

82
.9

0%
67

.1
8%

88
.0

6%
be

st
A

U
C

0.
88

9
0.

95
8

0.
81

9
0.

74
4

0.
71

8
0.

93
2

0.
87

3
0.

81
7

0.
91

3
0.

99
1

0.
91

8
0.

71
5

0.
82

3
0.

64
6

0.
87

5
ff
rp

co
nf

ig
s

4
4

4
4

4
4

4
4

4
4

4
2

2
4

4
C

P
U

 h
ou

rs
8.

81
17

.7
8

4.
86

2.
81

1.
13

9.
47

9.
85

3.
48

5.
95

15
.0

9
36

.4
9

4.
94

30
.6

4
19

.1
3

18
.4

5
be

st
ac

cu
ra

cy
81

.4
1%

95
.0

9%
80

.0
7%

63
.8

0%
62

.7
2%

93
.0

8%
92

.3
3%

75
.7

1%
88

.4
3%

98
.2

9%
94

.3
6%

79
.9

0%
83

.6
3%

90
.8

0%
88

.6
4%

be
st

A
U

C
0.

80
4

0.
96

6
0.

78
6

0.
61

4
0.

63
4

0.
90

7
0.

93
9

0.
77

2
0.

89
0

0.
97

0
0.

92
1

0.
81

3
0.

80
9

0.
88

5
0.

89
9

ff
rp

ro
c

co
nf

ig
s

4
4

4
4

4
4

4
4

4
4

4
2

2
4

4
C

P
U

 h
ou

rs
13

.7
0

31
.1

0
7.

04
4.

57
1.

84
12

.7
8

15
.2

5
4.

64
11

.6
0

23
.5

7
65

.8
0

7.
93

57
.7

4
34

.4
5

24
.6

0
be

st
ac

cu
ra

cy
88

.1
0%

96
.4

7%
82

.2
9%

81
.0

6%
92

.3
4%

93
.1

2%
93

.5
9%

80
.0

2%
94

.9
6%

98
.1

9%
96

.1
4%

81
.7

3%
85

.8
6%

93
.7

4%
94

.0
9%

be
st

A
U

C
0.

89
2

0.
93

8
0.

80
4

0.
82

2
0.

90
2

0.
93

1
0.

94
3

0.
81

3
0.

93
8

0.
95

7
0.

93
2

0.
81

8
0.

85
6

0.
93

3
0.

92
6

ff
sa

co
nf

ig
s

32
18

60
48

54
36

16
36

48
36

16
48

16
24

32
C

P
U

 h
ou

rs
11

6.
76

15
0.

39
12

4.
15

51
.6

9
25

.5
0

13
1.

22
68

.9
7

45
.2

6
14

1.
41

24
7.

85
29

6.
47

24
9.

00
43

0.
88

24
3.

26
24

6.
76

be
st

ac
cu

ra
cy

97
.1

4%
92

.7
0%

90
.5

6%
75

.9
3%

82
.1

7%
90

.0
3%

94
.6

9%
80

.7
8%

95
.2

3%
97

.3
2%

88
.5

0%
83

.1
2%

80
.4

2%
90

.3
0%

84
.9

1%
be

st
A

U
C

0.
93

3
0.

90
1

0.
82

2
0.

77
0

0.
82

2
0.

90
1

0.
93

7
0.

81
8

0.
93

9
0.

96
7

0.
89

0
0.

80
9

0.
79

3
0.

91
0

0.
86

7
ff
sa

ro
c

co
nf

ig
s

32
18

60
48

54
36

32
36

48
36

16
48

16
24

32
C

P
U

 h
ou

rs
13

1.
53

14
7.

65
14

8.
70

71
.7

6
35

.2
5

16
6.

53
19

7.
77

55
.3

8
19

5.
51

32
8.

29
28

9.
83

32
8.

65
59

9.
21

25
9.

80
25

9.
39

be
st

ac
cu

ra
cy

92
.7

5%
95

.0
4%

90
.5

6%
85

.9
0%

84
.6

5%
96

.3
0%

95
.3

3%
81

.6
2%

90
.8

3%
98

.0
3%

87
.7

4%
82

.4
1%

90
.8

1%
90

.8
3%

94
.8

5%
be

st
A

U
C

0.
92

3
0.

96
9

0.
90

1
0.

86
3

0.
85

2
0.

95
8

0.
95

5
0.

82
2

0.
92

5
0.

99
6

0.
88

3
0.

81
5

0.
90

2
0.

92
2

0.
92

5
ff
ga

co
nf

ig
s

24
24

36
32

29
36

16
24

36
24

12
36

6
12

24
C

P
U

 h
ou

rs
10

4.
84

27
0.

42
90

.2
0

52
.0

4
15

.9
4

19
7.

31
10

3.
45

46
.9

1
14

8.
84

23
3.

33
27

0.
20

26
1.

35
24

9.
07

17
9.

40
22

6.
25

be
st

ac
cu

ra
cy

82
.2

6%
92

.4
1%

77
.9

4%
80

.5
5%

82
.0

1%
96

.3
0%

87
.6

3%
67

.0
5%

88
.5

0%
94

.4
0%

73
.3

7%
81

.2
3%

68
.6

9%
85

.6
7%

72
.5

7%
be

st
A

U
C

0.
86

5
0.

93
6

0.
77

0
0.

80
8

0.
80

7
0.

99
4

0.
87

7
0.

68
7

0.
87

0
0.

96
0

0.
75

1
0.

80
1

0.
69

8
0.

84
5

0.
74

ff
ga

ro
c

co
nf

ig
s

24
24

36
32

29
36

16
24

36
24

12
36

6
12

24
C

P
U

 h
ou

rs
12

1.
58

32
3.

06
11

4.
30

55
.0

1
21

.0
1

21
8.

34
11

3.
09

48
.8

5
18

7.
89

25
2.

11
32

0.
13

27
8.

42
28

1.
44

20
7.

38
27

1.
21

be
st

ac
cu

ra
cy

86
.7

7%
96

.8
9%

80
.2

1%
82

.5
7%

81
.7

4%
92

.9
1%

87
.1

9%
76

.0
4%

92
.9

8%
96

.5
2%

80
.2

7%
83

.3
5%

78
.6

8%
86

.8
6%

80
.4

9%
be

st
A

U
C

0.
85

4
0.

95
5

0.
78

6
0.

83
5

0.
82

6
0.

94
4

0.
87

5
0.

77
0

0.
90

0
0.

97
7

0.
78

0
0.

80
8

0.
76

6
0.

85
4

0.
82

2
c-

sv
c

co
nf

ig
s

48
48

25
6

25
6

25
6

16
0

12
8

25
6

48
25

6
25

6
19

2
48

25
6

25
6

C
P
U

 h
ou

rs
0.

92
0.

86
0.

67
0.

83
1.

98
1.

23
0.

53
2.

11
1.

17
1.

54
0.

68
3.

59
5.

01
1.

70
7.

37
be

st
ac

cu
ra

cy
97

.1
4%

97
.6

5%
90

.3
3%

86
.6

0%
93

.7
5%

94
.7

1%
95

.2
5%

80
.2

6%
92

.3
4%

97
.6

7%
93

.1
6%

82
.2

5%
91

.9
3%

93
.3

8%
95

.7
1%

be
st

A
U

C
0.

93
0

0.
97

7
0.

81
5

0.
86

4
0.

94
0

0.
93

1
0.

95
1

0.
80

4
0.

93
9

0.
95

3
0.

95
2

0.
81

0
0.

91
9

0.
93

5
0.

93
1

nu
-s

vc
co

nf
ig

s
48

48
25

6
25

6
25

6
16

0
12

8
25

6
48

25
6

25
6

19
2

48
25

6
25

6
C

P
U

 h
ou

rs
0.

86
0.

83
0.

64
2.

00
2.

18
1.

02
0.

49
2.

57
1.

11
1.

18
0.

73
4.

35
4.

49
1.

95
6.

02
be

st
ac

cu
ra

cy
96

.9
1%

96
.6

4%
89

.4
0%

84
.7

0%
93

.7
5%

95
.4

7%
96

.4
4%

81
.0

1%
95

.8
3%

96
.9

4%
95

.6
2%

81
.1

4%
88

.5
5%

93
.2

0%
96

.2
4%

be
st

A
U

C
0.

92
4

0.
96

2
0.

81
2

0.
85

7
0.

93
1

0.
94

4
0.

95
7

0.
81

4
0.

96
5

0.
96

2
0.

94
6

0.
80

9
0.

89
4

0.
94

7
0.

94
7

to
ta

l
co

nf
ig

s
28

0
22

8
85

6
87

2
94

2
56

8
37

6
73

6
46

4
73

6
61

2
67

6
17

6
61

6
70

4
to

ta
l

C
P
U

 h
ou

rs
69

5.
38

12
15

.6
7

71
4.

87
42

3.
65

19
8.

89
10

72
.7

2
64

4.
16

32
1.

06
11

67
.6

1
16

79
.2

6
17

78
.3

5
16

44
.4

3
23

96
.9

8
11

15
.9

7
14

50
.5

5
b
e
st

A
U

C
ov

er
al

l
0.

93
3

0.
97

7
0.

90
1

0.
86

4
0.

94
0

0.
99

4
0.

95
7

0.
82

2
0.

96
5

0.
99

6
0.

95
2

0.
81

8
0.

91
9

0.
94

7
0.

94
7

b
e
st

a
c
c
u
ra

c
y

ov
er

al
l

97
.1

4%
97

.6
5%

90
.5

6%
86

.6
0%

93
.7

5%
96

.3
0%

96
.4

4%
81

.6
2%

95
.8

3%
98

.2
9%

96
.1

4%
83

.3
5%

91
.9

3%
93

.7
4%

96
.2

4%
b
e
st

 a
c
c
u
ra

c
y

in
 li

te
ra

tu
re

98
.9

4%
83

.8
3%

86
%

90
.9

%
80

.4
8%

89
.5

%
93

.5
1%

72
.5

%
0.

89
0*

95
.8

%
91

.5
%

81
.8

3%
93

.8
8%

82
.8

%
90

.9
%

*
on

ly
A

U
C

 r
ep

or
te

d
in

 s
ou

rc
e

160 Appendix I. Tables and figures

Appendix II. Algorithms 161

Appendix II. Algorithms

Algorithm 1: Approximate AUC for given interval

Datastruct:
 intervalType {
 subintervals[] intervalType
 nPositive number of positive elements within this interval (defaults to 0)
 nNegative number of negative elements within this interval (defaults to 0)
 nBelow number of negative elements in intervals below this one (defaults to 0)
 maxScore maximum score of elements within this interval (defaults to 0)
 minScore minimum score of elements within this interval (defaults to 1)
 approxAz the approximated Az calculation for this interval (defaults to 0)
 maxError the maxError calculation for this interval (defaults to 1)
 data[] elements of the dataset belonging to this interval
 }
Inputs: interval an intervalType with a list of dataset elements in its data[] field.
 intervalBegin lower limit of the interval
 intervalEnd upper limit of the interval
 numberOfSubIntervals number of subintervals into which split the data

Outputs: the following fields of input parameter interval filled in: approxAz, maxError, subintervals (list of
subintervals each one with all fields filled in except the subintervals field)
Algorithm:

1: subintervals ← new array of intervals of size numberOfSubIntervals
2: subintervalSize ← R0¸��nby¹0º?R0¸��nby»��R00ia¼��½¾2i¼R0¸��nby-

3: numberOfPositiveElements ← 0
4: numberOfNegativeElements ← 0
5: for for for for i=1 totototo data.length

6: subintervalNumber ← integerPart integerPart integerPart integerPart H
 	����¿�À
 � ºb¸b$R'-i¼R0¸��nby2RÁ�I + 1
7: if if if if data[i] is a positive example thenthenthenthen

8: subintervals[subintervalNumber].nPositive++
9: numberOfPositiveElements++

10: elseelseelseelse

11: subintervals[subintervalNumber].nNegative++

12: numberOfNegativeElements++
13: end if end if end if end if

14: if if if if interval.data[i] > subintervals[subintervalNumber].maxScore thenthenthenthen

15: subintervals[subintervalNumber].maxScore ← interval.data[i]
16: end if end if end if end if

17: if if if if data[i] < subintervals[subintervalNumber].minScore thenthenthenthen

18: subintervals[subintervalNumber].minScore ← interval.data[i]
19: end if end if end if end if

20: addaddaddadd interval.data[i] to to to to subintervals[subintervalNumber].data
21: end forend forend forend for

22: interval.approxAz ← 0
23: interval.maxError ← 0
24: for for for for i=1 totototo numberOfSubintervals
25: ifififif i>1 thenthenthenthen

26: subintervals[i].nBelow ← subintervals[i-1].nNegative + subintervals[i-1].nBelow
 + interval.nBelow

27: end ifend ifend ifend if

27: subintervals[i].maxError ← -i¼R0¸��nby-$R'.07z-R¸Rn�	¦	-i¼R0¸��nby-$R'.09��b¸Rn�0ia¼��½¾7z-R¸Rn�¹y�a�0¸-	`	0ia¼��½¾9��b¸Rn�¹y�a�¸0-
28: subintervals[i].approxAz ← -i¼R0¸��nby-$R'.07z-R¸Rn�	¦	�-i¼R0¸��nby-$R'.09��b¸Rn�>K¦-i¼R0¸��nby-$R'.0»�yz{�K	¦0ia¼��½¾7z-R¸Rn�¹y�a�0¸-	¦0ia¼��½¾9��b¸Rn�¹y�a�0¸-

29: interval.approxAz ← interval.approxAz + subintervals[i].approxAz
30: interval.maxError ← interval.maxError + subintervals[i].maxError
31: end forend forend forend for

32: interval.subintervals ← subintervals

162 Appendix II. Algorithms

Algorithm 2: Approximate ROC Az for a dataset with a maximum error bound

Inputs: elements set of elements to calculate ROC Az for
 numberOfSubintervals number of subintervals for subdividing each interval
 errorBound maximum error allowed

Outputs: approxAz the approximated area under the ROC curve

maxError the maximum error of the approximation

Algorithm:

1: initialInterval ← create newcreate newcreate newcreate new intervalType

2: initialInterval.data ← elements
3: maxError ← 1.0
4: approxAz ← 0.0
5: whilewhilewhilewhile maxError > errorBound dodododo

6: nextInterval ← select interval with greatestselect interval with greatestselect interval with greatestselect interval with greatest maxError

7: call Algorithm 1 with inputcall Algorithm 1 with inputcall Algorithm 1 with inputcall Algorithm 1 with input

8: interval ← nextInterval
9: intervalBegin ← nextInterval.minScore
10: intervalEnd ← nextInterval.maxScore
11: numberOfSubintervals

12: end callend callend callend call

13: update update update update maxError with with with with nextInterval.maxError

14: update update update update approxAz with with with with nextInterval.approxAz

15: end whileend whileend whileend while

Appendix III. ROC definitions 163

Appendix III. ROC definitions

The Wilcoxon-Mann-Whitney statistic for empirical AUC for dataset � and scores

assigned by classifier *

�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9|

Where ,$G' denotes the indicator function, yielding 1 if G is true and 0 otherwise. From

here, the following definitions were developed in this thesis:

Definition 1. Contribution of dataset element = to �()��, *�

�()�=, *� � 	
\]̂
]_∑ ,$*-.� � / *-.�=�'0∈23 |�7| ∙ |�9| 	
�	= ∈ 	 �7
∑ ,$*-.�=� / *-.���'4∈25 |�7| ∙ |�9| 	
�	= ∈ 	 �9

O

Definition 2. Maximum contribution of dataset element = to �()��, *�

�()ab`�=, *� � 	
\]̂
]_ |�9||�7| ∙ |�9| � 	 1|�7| 				
�	=	 ∈ 	 �7|�7||�7| ∙ |�9| � 	 1|�9| 				
�	=	 ∈ 	 �9

O

Definition 3: AUC error incurred by classifier * when scoring dataset �, with respect

to the ideal AUC=1.0 ������, *� � 1 � 	�()��, *�

Definition 4: AUC error incurred by the score assigned to element = by classifier *

�����=, *� � 1 � �()�=, *��()ab`�=, *�

164 Appendix III. ROC definitions

Lemma 1: ������, *� is the mean of �����=, *� over the dataset elements.

The proof of this lemma simply develops the summation of �����=, *� over all

detaset elements by adding up the positive and negative elements separately as follows:

Q�����=, *�`∈2 � Q ������, *�4∈25
� Q ����� , *�0∈23

�	 Q Â1 � �()��, *��()ab`���Ã4∈25
� Q Â1 � �()� , *��()ab`� �Ã0∈23

� |�7| � Q �|�7| ∙ �()��, *��4∈25
� |�9| � Q �|�9| ∙ �()� , *��0∈23

� |�7| � Q Â|�7| ∙ ∑ ,$*-.� � / *-.���'0∈23 |�7| ∙ |�9| Ã4∈25
� |�9| � Q Â|�9| ∙ ∑ ,$*-.� � / *-.���'4∈25 |�7| ∙ |�9| Ã0∈23

� |�7| � |�7| ∙ ∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9| � |�9| � |�9| ∙ ∑ ∑ ,$*-.� � / *-.���'4∈250∈23 |�7| ∙ |�9|

� |�7| � |�7| ∙ �()��, *� � |�9| � |�9| ∙ �()��, *�
� |�7| ∙ �1 � �()��, *�� � |�9| ∙ �1 � �()��, *��

� �|�7| � |�9|� ∙ �1 � �()��, *�� � |�| ∙ �1 � �()��, *�� � 	 |�| ∙ ������, *�
⇒	������, *� � ∑ �ÄÅÆ�`,d�v∈Ç |2|

∎

