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Abstract 

This thesis addresses the problem of using efficiently Receiver Operating Characteristic 

(ROC) analysis in machine learning and, specifically, in multilayer perceptron based 

classifiers, both from a theoretical and a practical approach. It proposes a general 

formulation to improve the AUC performance (Area Under the ROC Curve) of existing 

machine learning methods that is affordable to implement and demonstrates 

experimentally its effectiveness with different kinds of multilayer perceptron training 

algorithms. As a means to this, a new computationally efficient method was devised to 

compute the AUC and two software frameworks were developed to facilitate the 

exploitation of distributed eInfrastructures for machine learning in general and ROC 

analysis in specific. Finally, these developments were applied to a real world case in the 

field of biomedical image analysis and the results obtained are herewith described. 

ROC analysis is commonly used to judge the discrimination ability of a binary test 

for predictive purposes. A test might be, for instance, of chemical or biomedical nature 

but also a machine learning classifier aiming at distinguishing the two different classes 

of a binary dataset. It has traditionally been a tool in biomedical decision making and, 

during the last decade, ROC analysis has been increasingly used in machine learning, 

where it becomes especially useful when applied to biomedical data. ROC curves 

represent the trade-off between false-positives and true-positives of a classifier at 

different decision threshold levels, and the AUC is taken as a single scalar metric to 

compare classifier performance, seeking classifiers having greater AUC. This 

complements other commonly used metrics, such as accuracy (the percent of dataset 

elements correctly classified), specificity, precision, recall, etc.  

Machine Learning (ML) algorithms have been historically devised to minimize some 

error rate loss function yielding better classifier accuracy. Although related, literature 

reports evidences that error rate minimization does not necessarily yield to AUC 

maximization and, in recent years, attempts have tried to use AUC in optimization 

problems requiring mostly designing new ML algorithms or heavily transforming 

existing ones for such task. The approach presented in this thesis provides a theoretical 

formulation to allow a straight forward integration of AUC optimization into existing 

ML algorithms, enabling the affordable reuse of the vast amount of techniques 

developed in the area to date. Then, it provides experimental evidence of its efficacy by 

using multilayer perceptrons with different training algorithms. 
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However, AUC calculation is a computationally expensive task that requires sorting 

the scores assigned by a certain classifier to the elements a dataset. As ML algorithms 

are already computationally intensive, calculating the AUC efficiently is key so that our 

approach does not render them impractical. Therefore, as part of this thesis and 

herewith used, an efficient error-bounded method has been devised to approximate the 

AUC with arbitrary precision, rendering its computational complexity linearly 

proportional to the number of dataset elements.  

In addition, providing sufficient statistical evidence to these claims requires 

extensive use of computing resources to train and evaluate different configurations of 

datasets and ML methods. eInfrastructures such as computer clusters, Grids and, more 

recently, Clouds, provide vast amounts of computing resources, but their utilization is 

mostly tied to the access tools and methods offered by the specific infrastructure 

provider, middleware, etc. Furthermore, to gather the required evidence for our 

purposes, we need the ability to manage in an agile way many different configurations 

of third party ML algorithms over a diversity of datasets and training conditions, well 

beyond the capabilities of most user tools existing today to interact with 

eInfrastructures. To overcome this, two software frameworks were developed in this 

thesis. On one side, BiomedTK (the Biomedical Data Analysis Toolkit) allows the 

integration of third party ML algorithms, datasets and ROC analysis, enabling the 

systematic exploration of the space of their possible configurations. On the other side, 

C3 (the Cloud Computing Colonies framework) uses Java industry standards to provide 

a homogeneous way for any software (such as BiomedTK) to access computing 

resources scattered throughout eInfrastructures of different nature. C3 deploys colonies 

of Job Agents onto available eInfrastructures and provides a unified communications 

channel to send them data and deploy and run applications, regardless their actual 

access method. 

At last, the results of this thesis have been successfully applied to obtain well 

performing classifiers offering automated second opinion for assisted diagnosis on breast 

cancer. In tight collaboration with specialized radiologists, datasets including their 

annotations have been analyzed as they were produced, yielding trained classifiers 

ready to be clinically validated for assisted diagnosis and integrated within their 

graphical workstations, medical workflows and informatics systems. 
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Resumo 

Esta tese aborda o problema do uso eficiente da análise ROC (Receiver Operating 

Characteristic) em aprendizagem automática e, especificamente, em classificadores 

baseados em perceptrons multicapas, desde uma perspectiva teórica e prática. Uma 

formulação geral é proposta para melhorar o desempenho AUC (área sob a curva ROC) 

dos métodos de aprendizagem automática existentes, e se demonstra experimentalmente 

a sua eficácia com diferentes tipos de algoritmos de treinamento para perceptrons 

multicapa. Para isso, foi preciso desenvolver um novo método computacionalmente 

eficiente para calcular o AUC e dois ferramentas de software que facilitan a utilização 

de e-Infraestruturas distribuídas na aprendizagem automática em geral e na análise 

ROC em específico. Finalmente, estas contribuições foram aplicadas num caso real no 

campo da análise de imagens biomédicas e os resultados atingidos são aqui descritos. 

A análise ROC é comummente usada para julgar a capacidade de discriminação de 

um teste binário para finalidades de predição. Um teste pode ser, por exemplo, de 

natureza química ou biomédica, mas também pode ser um classificador automático que 

tem como objetivo distinguir as classes de um dataset binário. A análise ROC tem sido 

tradicionalmente uma ferramenta na toma de decisões biomédicas e, durante a última 

década, é cada vez mais usado em aprendizagem automática, onde é especialmente útil 

quando é aplicado a dados biomédicos. As curvas ROC representam o balance entre 

falsos positivos e verdadeiros positivos de um classificador a diferentes limiares 

(thresholds) de decisão, e o AUC é empregado como uma métrica escalar para comparar 

o desempenho dos classificadores. Isto complementa outras métricas comummente 

usadas, tais como a taxa de erro, a precisão, a especificidade, o recall, etc. 

Os algoritmos de aprendizagem automática têm sido historicamente concebidos para 

minimizar a taxa de erro dos classificadores. Apesar de estar relacionados, a literatura 

evidencia que a minimização da taxa de erro não significa necessariamente uma 

maximização do AUC e, nos últimos anos, tem existido tentativas de usar o AUC em 

problemas de optimização que requerem principalmente criar novos algoritmos ou 

transformar significativamente os já existentes. A abordagem apresentada nesta tese 

fornece uma formulação teórica que permite a integração imediata da optimização do 

AUC nos algoritmos já existentes, facilitando a reutilização das técnicas desenvolvidas 

na área até o momento. Após, ele fornece evidência experimental de sua eficácia usando 

perceptrons multicapa com diferentes algoritmos de treino. 
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No entanto, o cálculo da AUC é uma tarefa computacionalmente custosa que requer 

a ordenação dos scores atribuídos por um classificador a um dataset. Dado que os 

algoritmos de aprendizagem já são computacionalmente intensivos, um cálculo eficiente 

do AUC é fundamental para que a nossa abordagem não os torne 

impraticáveis. Portanto, nesta tese se proponde um método para aproximar 

eficientemente o AUC com precisão arbitrária, tornando a sua complexidade 

computacional linearmente proporcional ao tamanho do dataset. 

Além disso, a obtenção de evidência estatística suficiente para apoiar estes 

argumentos requer o uso extensivo de recursos de computação para treinar e avaliar 

diferentes configurações de datasets e métodos de aprendizagem automático. As e-

Infraestruturas, tais como clusters de computadores, computação em grelha e, mais 

recentemente, clouds, fornecem grandes quantidades de recursos computacionais, mas 

sua utilização é principalmente ligada à ferramentas propias da e-Infraestrutura 

específica, middleware, etc. Neste senso, para reunir a evidência necessária para os 

nossos propósitos, é precisa a capacidade de gerir de forma ágil muitas configurações de 

algoritmos através de uma diversidade de datasets e condições de treino, bem além das 

capacidades das ferramentas existentes hoje para interagir com as e-

Infraestruturas. Para superar isso, dois produtos de software foram desenvolvidos neste 

trabalho. De um lado, o BiomedTK (Biomedical Data Analysis Toolkit) facilita a 

integração de algoritmos de aprendizagem automático, datasets e análise ROC, 

permitindo a exploração sistemática do espaço de suas possíveis configurações. Por 

outro lado, o C3 (Cloud Computing Colonies framework) utiliza os standards Java para 

fornecer uma forma homogénea de aceder a recursos de computação espalhados sob e-

Infraestruturas diversas. O C3 mantém colónias de agentes (Job Agents) em e-

Infraestruturas disponíveis e fornece um canal de comunicação unificado para enviá-los 

dados e executar aplicações, independentemente do seu método de acesso real. 

Finalmente, os resultados desta tese têm sido aplicados com sucesso na obtenção de 

classificadores automáticos que permitem oferecer uma segunda opinião no diagnostico 

assistido do cancro da mama. Em colaboração estreita com radiologistas especializados, 

datasets foram analisados ao ser produzidos, gerando classificadores treinados prontos 

para ser validados clinicamente no diagnóstico assistido e integrados dentro de suas 

estações de trabalho gráficas, fluxos de trabalho médicos e sistemas informáticos. 
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Résumé 

Cette thèse aborde le problème de l'utilisation efficace de l’analyse ROC (Receiver 

Operating Characteristic) dans l'apprentissage automatique et, plus précisément, dans 

classificateurs basées sur perceptrons multicouches, dans une approche à la fois 

théorique et pratique. On propose une formulation générale pour améliorer la 

performance AUC (area sous la courbe ROC) des méthodes d’apprentissage 

automatique existants qui est abordable d’implémenter et on démontre 

expérimentalement son efficacité avec différents types d’algorithmes d’entraînement 

pour perceptrons multicouches. Comme moyen de cela, une nouvelle méthode a été 

conçue pour calculer efficacement le AUC et deux logiciels ont été développés que 

facilitent l'exploitation des e-Infrastructures distribués pour l'apprentissage 

automatique en général et pour l'analyse ROC en particulier. Enfin, ces 

développements ont été appliqués à un cas réel dans le domaine de l'analyse d'images 

biomédicales et les résultats obtenus sont décrits ici. 

L’analyse ROC est couramment utilisée pour juger de la capacité de discrimination 

d'un test binaire à des fins prédictives. Un test pourrait être, par exemple, de nature 

chimique ou biomédicale, mais aussi un classificateur automatique visant à distinguer 

les deux classes d'un dataset binaire. L’analyse ROC a toujours été un outil dans la 

prise de décision biomédicale et, pendant la dernière décennie, il a été de plus en plus 

utilisé dans l'apprentissage automatique, où il devient particulièrement utile lorsqu'il 

est appliqué à des données biomédicales. Les courbes ROC représentent le compromis 

entre faux positifs et vrais positifs d'un classificateur à différents niveaux de seuil de 

décision (threshold), et l'AUC est prise comme une métrique scalaire unique pour 

comparer sa performance, en cherchent des classificateurs qu’ont l’AUC plus élevée. Ça 

complément d’autres mesures couramment utilisées, telles que le taux d’erreur, la 

précision, la spécificité, le recall, etc 

Les algorithmes d’apprentissage automatique ont été historiquement conçus  pour 

minimiser le taux d'erreur des classificateurs. Bien que liés, la littérature rapport des 

évidences comme que la minimisation taux d'erreur ne conduit pas nécessairement à la 

maximisation de l’AUC et, ces dernières années, des tentatives ont essayé d’utiliser 

l'AUC dans des problèmes d'optimisation nécessitant la plupart d’eux la conception des 

nouveaux algorithmes ou la transformation significative de ceux existantes. L'approche 

présentée dans cette thèse propose une formulation théorique que permettre une 
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intégration de l’optimisation AUC dans les algorithmes existants, permettant de cette 

façon la réutilisation abordable de la grande quantité de techniques développées dans à 

ce jour. Ensuite, il fournit la preuve expérimentale de son efficacité en utilisant 

perceptrons multicouches avec des différents algorithmes d’entraînement.  

Cependant, le calcul de l’AUC est une tâche coûteuse en ressources 

informatiques. Étant donné que les algorithmes d’apprentissage automatique sont déjà 

intensifs, le calcul efficace de l’AUC est clé pour que notre approche ne les rendre pas 

inutiles. Pour ce la, dans cette thèse, on a conçu une procédure pour approximer l’AUC 

avec une précision d’erreur arbitraire et bornée par l’utilisateur, en faisant sa 

complexité de calcul linéairement proportionnel au nombre d'éléments du dataset. 

D’autre part, la collecte d’évidence statistique suffisent pour supporter ces 

arguments nécessite l'utilisation extensive des ressources informatiques pour entraîner 

et évaluer plusieurs configurations de datasets et algorithmes. e-Infrastructures tels que 

des clusters d'ordinateurs, grilles et, plus récemment, clouds, offrent vastes quantités de 

ressources, mais leur utilisation reste principalement liée à des outils et des méthodes 

d'accès spécifiques des fournisseurs, middleware, etc. Aussi, pour rassembler l’évidence 

précise, on a eu besoin de gérer agilement nombreuses configurations des algorithmes 

sur une diversité d'ensembles de données et des conditions d’entraînement, bien au-delà 

des capacités de la plupart des outils existant aujourd'hui. Pour surmonter cette 

difficulté, deux logiciels ont été développés dans cette thèse. D'un côté, BiomedTK 

(Biomedical Data Analysis Toolkit) facilite l'intégration des algorithmes, des datasets et 

l'analyse ROC, permettant l'exploration systématique de leurs configurations. De 

l'autre côté, C3 (Cloud Computing Colonies Framework) utilise les standards Java pour 

fournir une façon homogène d’accéder aux ressources informatiques distribuées sur des 

e-Infrastructures. C3 déploie des colonies de Job Agents sur les ressources disponibles et 

fournit un canal de communications unifiée pour leur envoyer des données et exécuter 

des applications, indépendamment de leur méthode d'accès réel. 

Finalement, les résultats de cette thèse ont été appliqués avec succès dans 

l’obtention des classificateurs automatiques pour offrir un deuxième avis dans le 

diagnostic assisté du cancer du sein. En utilisant les résultats de cette thèse, et en 

étroite collaboration avec des radiologues spécialisés, des datasets ont été produites et 

analysées obtenant classificateurs prêts à être validés cliniquement pour être utilisés 

dans le diagnostic assisté et intégrés dans leurs logiciels, workflows médicaux et 

systèmes informatiques. 
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Chapter 1 

1 Introduction 

This chapter presents the motivation and objectives of this thesis and states its 

theoretical and technological contributions. But first, in order to better understand 

their relevance, it briefly describes the conceptual background within which the work 

leading to the results herewith presented has been developed. 

A binary classification task aims at labeling elements of dataset into two classes 

(positive/negative) by assigning a score to each element and then applying a threshold. 

ROC analysis (Metz 1978; Fawcett 2006) is a tool for assessing the discrimination 

ability of a binary classifier for predictive purposes when applied to a scored dataset at 

all meaningful thresholds. It provides, therefore, a more comprehensive understanding 

of classifier performance than other metrics (accuracy, precision, etc.) which are taken 

at a single threshold level (Fawcett and Provost 1997; Provost, Fawcett et al. 1998). 

Used primarily in signal detection theory (Egan 1975) to determine if an electronic 

receiver is able to satisfactory distinguish between signal and noise, usage of ROC 

analysis has reached different domains in medical decision making such as diagnostic 

systems, medical data mining, medical imaging, etc. (Swets 1988; Zweig and Campbell 

1993; Hanley 1996; Swets, Dawes et al. 2000; Metz 2008; Iavindrasana, Cohen et al. 

2009). In machine learning (ML), it is used since the early works of (Spackman 1989) 

mostly to evaluate and compare classifier performance (Bradley 1997; Fawcett 2003). 

ML algorithms, such as for training multilayer perceptrons (MLP) or support vector 

machines (SVM), are typically designed to minimize some error rate, which measures 
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how far the score assigned by a classifier to each dataset element falls from its ideal 

value. Although related, literature reports sound evidence that error rate minimization 

does not necessarily yield to AUC optimization (Cortes and Mohri 2004) and, therefore, 

problems focused on ROC analysis are only partially addressed by existing ML 

algorithms, aimed at reducing error rates. Some examples of ML algorithms that have 

been devised for AUC optimization can be found at (Ferri, Flach et al. 2002; 

Rakotomamonjy 2004; Brefeld and Scheffer 2005; Calders and Jaroszewicz 2007; Castro 

and Braga 2008; Marrocco, Duin et al. 2008; Pahikkala, Airola et al. 2008; Takenouchi 

and Eguchi 2009). However, it would be desirable to be able to reuse for AUC 

optimization the vast amount of ML techniques developed to date and, rather than 

developing new ML algorithms, this thesis aimed at introducing AUC optimization into 

existing ones in an affordable manner, providing both the appropriate theoretical 

foundation and material tools to do so with a minimal impact in their implementation. 

The approach chosen for this aim has been (1) to define a general ROC based error 

measure to substitute traditional error rate measures, so that the core logic of existing 

ML algorithms remains intact requiring only replacing the error calculation methods; 

and (2) applying and validating it with different kinds of MLP training algorithms to 

show its effectiveness. This constitutes the central contribution of this thesis. 

The term eInfrastructures refers to large amounts of distributed computing resources 

that are made available in a homogeneous manner to user communities. These include 

computing resources delivering CPU time or storage space, such as those typically 

found in data centers. An eInfrastructure is therefore regularly composed by a 

federation of data centers aggregating their computing resources to offer a large facility 

service. The affordability of computer hardware has led to a proliferation of data 

centers of many sizes and, since almost a decade now, both governments and private 

institutions are devoting a considerable amount of effort and funding to building trans-

national eInfrastructures. Their generalized usage is to take academia and industry to 

new levels of reach in their research and production endeavors. However, their adoption 

has been slower than expected due to many factors (complexity of access tools, 

interoperability issues, cost of refactoring software, etc.) and there is a wide range of 

fields and specific problems that seldom benefit from eInfrastructures as much as they 

could. Machine learning is no exception to this and during the development of this 

thesis we faced the challenge to exploit eInfrastructures to validate our results. The 

technology developed to overcome the difficulties encountered constitutes the core of 

the technological contributions of this thesis. 
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From a global perspective, this thesis has been developed to address classification 

problems through the extensive usage of ROC analysis with machine learning classifiers 

based on MLPs (including the ones optimized for AUC) and SVMs supported on 

eInfrastructures.  The practical utility of this thesis has been demonstrated in the fields 

of image analysis and pattern recognition for breast cancer CAD.  

1.1 Background 

This section provides the basic insight into the fields in whose intersection this thesis 

has been developed: Receiver Operating Characteristic analysis and machine learning, 

the usage of eInfrastructures for scientific production and Computer Aided Diagnosis 

for breast cancer.  

1.1.1 Receiver Operating Characteristic (ROC) analysis 

1.1.1.1 Performance metrics 

Whenever a binary classifier or test is applied to a dataset a series of measures are 

produced to assess its performance and, therefore its efficacy. Figure 1 shows the 

fundamental metrics obtained after the elements of dataset have been classified. 

Particular values are typically obtained by a classifier that assigns scores to each 

dataset element and then sets a threshold level above which elements are classified 

(predicted) to be positive and the rest are classified as negative. 

 

 

Figure 1: Distribution of classified dataset elements 

 

A diversity of measures derived from figure 1 are used in different fields according to 

particular interests. Some of these measures are shown in table 1. For instance, the 

Information Retrieval community usually deals with Precision and Recall (Manning, 
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Raghavan et al. 2008) whereas the signal processing and biomedical communities deal 

mostly with the TPR (True Positive Rate) and FPR (False Positive Rate) (Fawcett 

2003) which somehow encompass all the rest.  

Table 1: Threshold classifier metrics 
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Metrics in table 1 are known as threshold metrics since they are obtained after a 

threshold has been applied to a scored dataset. In addition, other kinds of metrics can 

be considered (Caruana and Mizil 2006) such as rank metrics (AUC –as defined in next 

section–, average precision, precision/recall break point, etc.) or probability metrics 

(squared error, cross entropy, etc.) 

1.1.1.2 ROC Curves 

In this work, we assume that element scores assigned by any classifier fall within the $0,1' interval. By varying the threshold level used by the binary classifier throughout 

such interval, we obtain different values for the above metrics. In specific, we obtain 

different TPR and FPR levels which can then be plotted in a ROC graph. If we start 

with a maximum threshold (at value 1) all elements are classified as negative therefore 

we have neither false positives nor true positives, represented as a point at the (0,0) 

coordinate on the graph. At a minimum threshold (value 0) all elements are classified 

as positive and TPR and FPR reach their maximum levels, represented as a point at 
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the (1,1) coordinate on the plot. As we gradually increase the threshold, each time a 

new dataset element falls below it, it generates a new TPR and FPR and therefore a 

new point in the ROC graph. Figure 2 reproduces an example in (Fawcett 2006). The 

ROC “curve” on the right is created by thresholding the dataset on the left. The 

dataset contains 20 elements and the table shows the score assigned by a classifier to 

each one along with its actual class. Each point in the ROC graph shows the threshold 

value that produces it and corresponds to a different FPR-TPR value pair. For 

instance, a threshold of 0.54 classifies elements 1 to 6 as positive and the rest as 

negative, producing a TPR=0.5 (out of the 10 positive elements of the dataset, 5 were 

classified as positive) and a FPR=0.1 (out of the 10 negative elements, 1 was classified 

as positive). 

 
 Figure 2: Example of ROC graph.  

 

We are therefore in general interested in classifiers yielding ROC graphs bowing to 

the top left corner. One of the useful properties of ROC graphs is that they are 

insensitive to class skew and unbalanced datasets distributions (having, for instance, 

more positive elements than negative). 

The Area Under the ROC Curve (abbreviated by AUC, as used in this thesis, or 

also Az) is then taken as a single measure to compare different classifiers, seeking 

classifiers having greater AUC. A fundamental result is that the AUC is the probability 

that a randomly selected positive element is ranked higher than a randomly selected 

negative element (Hanley and McNeil 1982) which corresponds to the Wilcoxon 

statistic (Wilcoxon 1945) or the Mann-Whitney test (Mann and Whitney 1947) as 

given by the following formula: 
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�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9|  (1.1) 

which measures the empirical AUC of classifier * when used to classify dataset � � �7 ∪ �9 composed of positive instances (�7) and negative instances (�9) having �7 ∩ �9 � ∅. Then, *-.�=� represents the classifier output (score) upon dataset element = and ,$*-.� � / *-.���' denotes the indicator function, yielding the value 1 if *-.� � / *-.��� and 0 otherwise. Basically, for each positive element equation 1.1 

counts how many negative elements have a lower score. A random classifier yields an 

AUC value of 0.5 (the probability for a randomly selected positive element to be 

ranked higher than a randomly selected negative element is the same as the probability 

to be ranked lower) which is represented in a ROC graph as the diagonal joining the 

0,0 and 1,1 points in the FPR-TPR space, such as the dashed lines shown in figure 3. 

From a statistical point of view, the scores of the positive and negative elements of a 

dataset can be considered to be drawn from different distributions whose probability 

density functions (PDF) are denoted by �> and �?, and their respective cumulative 

density functions (CDF) are denoted by �> and �?. Then, since we are assuming that 

the scores assigned by a classifier to dataset elements fall within the $0,1' interval, the 

AUC can be defined in the continuous domain for known distributions as follows: 

�()�*, �� � @�>�=� ∙ �?�=��=A
B

 (1.2) 

which is the continuous equivalent to equation 1.1 and can be interpreted in the same 

way: for each point in the score space, whose probability of being a positive is given by �>�=�, equation 1.2 accounts for the probability of having a negative element below it, 

which corresponds to the CDF of negative elements, �?�=�. Since �>�=� and �?�=� are 

rarely known we are bound to use the empirical AUC in equation 1.1 on a limited 

amount of available samples (datasets) through statistical and machine learning 

methods.  This formulation sets the foundation for further treatment of AUC, such as 

to obtain smooth curves (see figure 3), confidence intervals, assess their statistical 

significance, etc. (Hanley 1996; Jensen, Müller et al. 2000; Faraggi and Reiser 2002; 

Sorribas, March et al. 2002; Agarwal, Graepel et al. 2005; Macskassy, Provost et al. 

2005; He, Lyness et al. 2009; Hanczar, Hua et al. 2010) 
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ROC graph directly obtained by varying the threshold on 

dataset elements (left). Smoothed version for further mathematical treatment (right). 

In addition, in medical imaging, a variation of ROC analysis is often also used when 

diagnosing lesions appearing on images. Free-Response Receiver Operating 

Characteristic analysis (FROC) (Bandos, Rockette et al. 2009) copes with cases where 

the same image might have several lesions or markings which might bias the AUC 

measure as explained above. A FROC curve plots the lesion localization fraction (LLF) 

against the non-lesion localization fraction (NLF). LLF is defined as the number of 

lesions detected divided by the number of total lesions, whereas NLF is the number of 

false lesions identified (false positives) divided by the total number of images processed. 

Observe both from equation 1.1 and figure 2 the need to sort the dataset elements in 

order to compute the AUC, which makes it computationally expensive. From this 

perspective, an additional contribution of this thesis is on devising an efficient 

procedure to approximate the AUC of a score dataset with arbitrary precision, so that 

the user is able to select the maximum error incurred by the approximation whilst 

keeping the procedure computationally efficient. 

1.1.2 Machine learning 

Machine learning (ML) is about programming computers to improve some performance 

measure using example data or past experience. The definition in (Mitchell 1997) has 

become a widely used standpoint: 

Figure 3: Smoothed ROC graph. 
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Learning: A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its performance at tasks 

in T, as measured by P, improves with experience E  

“Data” or “Experience”, in a broad sense, is in practice handled through datasets 

composed of data elements, which represent the specific objects presumed to contain 

the knowledge target for the learning task. These elements may be vectors with 

numeric features, annotated images, sound patterns, etc. Datasets are often split to 

form train datasets, used as input for ML algorithms, and test datasets, used to 

measure the generalization capability on unseen data. Section 1.1.1.1 above showed 

commonly used performance measures. 

Many other fields in Artificial Intelligence and other areas overlap or fall under such 

broad definition, and a considerable wealth of methods and techniques are shared to 

different extents throughout all of them. It is intentionally left undefined what field 

contains what other field, since the literature shows differences in terminology across 

researchers and communities in this respect. For instance, statistics aims at 

understanding the phenomena that have generated the data, often with the goal of 

testing different hypotheses about those phenomena. Data mining aims at finding 

patterns in the data so that they are understandable by people. Even, psychological 

studies of human learning aim at understanding the mechanisms underlying the various 

learning behaviors exhibited by humans (concept learning, skill acquisition, strategy 

change, etc.). In contrast, ML is primarily concerned with the accuracy and 

effectiveness of the resulting computer systems. 

The field of pattern recognition has historically produced many of the methods and 

applications used and addressed by ML. As defined in (Jain, Duin et al. 2000): 

Pattern recognition is the study of how machines can observe the environment, 

learn to distinguish patterns of interest from their background, and make sound 

and reasonable decisions about the categories of the patterns. 

In order to later position appropriately the contributions resulting from this thesis, 

the following paragraphs describe briefly the kinds of problems addressed by ML, the 

methods and techniques mostly used and, finally, provide basic insight into pattern 

recognition processes for breast cancer CAD. 
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1.1.2.1 Learning tasks in ML 

Whenever facing an ML problem (learning from data) it is said that the machine is 

about to carry out a learning task. Most of the problems addressed by ML can be 

catalogued within the following types, according to the nature of the learning task in 

hand, the data available and the learning goal. Detailed information and examples can 

be reviewed in (Mitchell 1997) and (Alpaydin 2010). 

Supervised learning: Each element of a training dataset is given along with the 

desired output expected from a classifier. ML algorithms use this a priori knowledge to 

guide their learning processes and the output of ML classifiers must fall within the 

predefined classes or ranges. Classification is the supervised learning task where the 

allowed classifier outputs can only be from within a finite set of discrete class labels. A 

Binary classification problem is one where only two classes are allowed. Regression is 

the supervised learning task where the classifier is made of a continuous function and, 

therefore, its output can be any real number within a range.  An example of 

classification is the problem of credit score (Hand 1998) where customers must be 

assigned to a set of classes (such as low-risk, medium-risk, high-risk) so that a decision 

on whether a loan is granted or not can be made based on customer data (income, 

savings, age, financial history, etc.). If we are looking for a ML system that can predict 

the price of a car based on its attributes (year, engine capacity, brand, mileage, etc.) 

then we are facing a regression problem. In addition, cost-sensitive classification 

(Elkan 2001) allows to take into account classification problems where different 

misclassification errors incur different penalties such as, for instance, the cost of a false-

negative being much higher than the cost of a false-positive. See (Caruana and Mizil 

2006) for further information on supervised learning. 

Unsupervised learning: The training dataset is given with no class information 

and ML algorithms are to discover classes, patterns or relations in the data with no 

additional a priori knowledge. In statistics this is called density estimation. (Silverman 

1986). Many unsupervised learning methods are based on the idea of clustering, where 

the aim is to find clusters or grouping of inputs through some similarity or distance 

metric. These include Independent Component Analysis (ICA), K-means, Factor 

Analysis, etc. See (Ghahramani 2004) for further information. 

Reinforcement learning: When the output of a system is a sequence of actions, 

ML aims at optimizing the policy by which those actions are generated. In this sense, 
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ML methods should be able to learn from past good and bad sequences of actions in 

order to improve its action generating policy. In many cases, actions produce rewards 

or penalties through which actions and sequences of actions are assessed. Game playing 

is a good example for applying reinforcement learning, where a move is undertaken if it 

is part of a good policy for winning the game. Robot navigation is another good 

example. 

1.1.2.2 Supervised Learning 

Figure 4 below shows the general set up for supervised machine learning, as described 

in (Alpaydin 2010) and (Hastie, Tibshirani et al. 2009). Starting off from a dataset 

containing the experience to be learned from, an ML Method (such as Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), Decision Trees, Bayesian 

Networks, etc.) undergoes a three step process to produce an ML Model, containing the 

results of the learning process so that it can be used in new prediction tasks.  

1. Model Fitting: Encompasses the actual learning process that, starting from 

example data and a set of parameters specific to the ML Method used produces 

an ML Model. In general, this stage is performed many times for different sets 

of parameters producing several ML Models. 

2. Model Selection: Estimates the performance of different ML Models in order 

to choose the best one. 

3. Model Assessment: Having chosen a final model, it estimates its 

generalization error on new data. 

From a statistical point of view, data can be viewed as random variables C and D 

representing the input vectors and target (desired) outputs respectively, related 

through an unknown relation ��C� � D. An ML Model is then a function �E�C� 
representing a prediction model estimated from training data F obtained from sampling C and D. The model �E�C� is our estimation of the unknown underlying function ��C�. 
In classification tasks (such as the ones object of this thesis) an ML Model is referred to 

as an ML Classifier (MLC) and so is mostly used throughout the rest of this text. 
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Figure 4: Elements of machine learning 

A loss function is defined to assess model performance in the sense of the definition 

of learning given in page 8 measuring the error between D � ��C� and �E�C�, denoted by 

G HD, �E�C�I. Typical choices for G are:  

G HD, �E�C�I � JHD � �E�C�IK �L����	�����MD � �E�C�M N����	�	�����O (1.3) 

In fact, one of the contributions of this thesis is on the usage of AUC as a loss 

function. Then, two error measures are defined and used at different stages. The 

training error (also named empirical risk) is the average loss over the training sample  

���PPPPP � 1�QGH�R , �E�=R�I9
RSB  (1.4) 

The test error, also known as generalization error or true risk, is the prediction 

error over an independent test sample of the function �E�C� as estimated over training 

data F. 

���F � � TG HD, �E�C�I |FU 
Where C and D are drawn randomly from their joint distribution (population).  

In a data rich situation, the best approach to ensure independence of the three 

stages depicted in figure 4 is to split the available data into three parts: a train set for 

model fitting, a validation set for model selection and a test set for model assessment. 

It is difficult to give a general rule for dataset splitting in this sense, since it is highly 

influenced by the signal-to-noise ratio of the data and the dataset size. A typical split 

might use 50% of data for model fitting (training), 25% for model selection (validation) 

and 25% for model assessment. 
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However, more than often there is not enough data for such split and the stages 

above need to be approximated either analytically or by efficient sample reuse. In both 

cases, the goal is to estimate the generalization error from the available data. 

Analytical methods are mostly based on the observation that increased model 

complexity tends to overfit training data while failing to generalize on test (unseen) 

data as illustrated in figure 5, obtained by (Hastie, Tibshirani et al. 2009). 

 

Figure 5: Test and train data vs. model complexity 

Measuring model complexity is not straight forward. Using the number of 

parameters required by a model as a metric has been a first choice, but this has shown 

to be insufficient in many cases. In fact, rather than an absolute measure, it is thought 

that model complexity should somehow match the complexity of the data in hand. 

Different measures for model complexity have been devised in this sense, so that later 

can be used to estimate the generalization error from training data and improve model 

selection. Among them: the Bayesian Information Criterion (BIC) (Schwarz 1978), the 

Akaike Information Criterion (AIC) (Akaike 1974), the Minimum Description Length 

(MDL) (Rissanen 1983) and the VC (Vapnik-Chervonenkis) dimension (Vapnik 1998). 

In addition, when data is scarce sampling methods can also be employed to reuse 

available data more efficiently. Among them, cross-validation and bootstrapping are 

widely used (Efron and Gong 1983; Kim 2009). In cross-validation, the generalization 

error is directly estimated by splitting the data in to V parts repeating the process 

above V times, each one using a different part of the split dataset for testing a model 

that has been fitted by using the remaining V � 1 parts. Performance measures are then 
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averaged and a final estimate is given. Leave one out cross validation (LOOCV) refers 

to cross validation when V is equal to the number of elements in the dataset,  and it is 

known to give an unbiased estimator of the generalization error (Efron 1983) at the 

expense of high variance and high computational cost (one fitting process per dataset 

element). For cross-validation, a widely used value for V is 10. On the other side, 

bootstrapping methods sample the dataset for training and testing with replacement. 

The following two sections describe briefly the multilayer perceptrons (MLPs) and 

the support vector machines (SVMs) machine learning methods. A variety of training 

algorithms for MLPs are used in this research to validate experimentally its theoretical 

contributions. Then, together with SVMs, they are used extensively throughout the 

technological contributions herewith presented and their practical application in breast 

cancer CAD. Both MLPs and SVMs represent two significantly different approaches to 

supervised learning (kernel based and biologically inspired) and there is a wealth of 

literature and implementations upon which the work of this thesis can be solidly 

founded. 

1.1.2.3 Multilayer perceptrons 

A multilayer perceptron (MLP) is a feed forward artificial neural network model 

consisting of multiple layers of nodes in a directed graph which is fully connected from 

one layer to the next one (figure 6). The first layer constitutes the one accepting the 

input to the network and the last layer produces the output response. Nodes in 

intermediate layers are neurons with a non-linear activation function (such as 

tangential or sigmoid).  

 
Figure 6: A mutilayer perceptron 

input layer hidden layers output layer

OUTPUTINPUT
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MLPs are trained with a variety of ML algorithms, being feed forward 

backpropagation the most used one by far. As an example, table 2 below shows some of 

the algorithms to train MLPs included in the Encog toolkit (Heaton 2010), a well 

known implementation for ANNs. 

Table 2: Some ML algorithms for multilayer perceptrons 

Feed Forward Back 
Propagation (FFBP) 

Per-element error measures at each output neuron are used 

to adjust neuron weights of the various layers of the MLP 

backwards from the output layer to the input layer, 

through a gradient descent method controlled by two user 

definable parameters: the learning rate and the momentum. 

Feed Forward Resilient 

Propagation (FFRP) 

A variation of FFBP where each neuron has its own set of 

independent parameters to control the gradient descent 

(similar to the FFBP learning rate and momentum) that 

the algorithm adjusts automatically throughout the 

training process 

Feed Forward Simulated 

Annealing (FFSA) 

The neuron weights of the MLP are taken through several 

“cooling” cycles. Starting at an initial top temperature, at 

each step in each cooling cycle the MLP weights are 

randomized according to the temperature (higher 

temperatures produce higher random variability) 

generating a new MLP. If the new MLP produces a lower 

error on the whole dataset, it is kept to the next cooling 

step. Otherwise it is discarded. Then, the temperature is 

lowered one step and the process continues. The user 

definable parameters it accepts are start-temperature, end-

temperature and number-of-cycles. 

Feed Forward Genetic 

Algorithms (FFGA) 

The vector of MLP neuron weights is interpreted as a 

chromosome and a population of MLPs with identical 

structure and different weights is evolved through 

generations that mate and cross over. MLPs 

(chromosomes) yielding lower errors on the whole dataset 

are considered as best suited and, therefore, with a higher 

probability of survival and mating to the next generation. 

The user definable parameters it accepts are population-

size, mutation-percent and percent-to-mate-with.    
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1.1.2.4 Support vector machines 

Support Vector Machines (SVMs) can be seen as a learning technique that originated 

from the theoretical foundations of statistical learning theory (STL) (Vapnik 1998) and 

structural risk minimization (SRM) (Vapnik and Chervonenkis 1974). STL is a 

theoretical approach to understanding learning and the ability of learning machines to 

generalize, whereas SRM is an inductive principle to assess the choice of a learning 

model (machine) seeking those ones whose complexity is appropriate to describe the 

training data. In the simplest classification tasks, SVMs use a linear separating 

hyperplane to create a classifier with a maximal margin to discriminate between two 

classes (figure 7, right). When the classes cannot be linearly separated in the original 

input space (figure 7, left) as happens in virtually all practical problems, the SVM 

transforms it into a higher dimensional feature space where the classes might be 

separated. This is achieved by using a non-linear map (W) such as a polynomial, 

sigmoidal, radial basis functions, etc. as shown in figure 7. The resulting linear 

hyperplane in the new higher dimensional feature space will be optimal in the sense of 

being a maximal margin classifier with respect to training data. This maximality 

condition is expected to convey good generalization properties on unseen (test) data. 

Additional theoretical instruments are added to this set up to cope with outliers and 

noise by allowing error bands when finding the maximal margin hyperplane. 

 

 On the original input space (left) and 

on the higher dimensional feature space once the feature mapping (W) has been applied (right). The circled 

dataset elements are the support vectors. 
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Figure 7: Separating hyperplanes on a Support Vector Machine. 
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Choosing the right mapping (W) or kernel function is therefore a key issue. The VC 

(Vapnik-Chervonenkis) dimension (Vapnik 1998) is a property of a set of 

approximating functions (such as polynomials, sigmoids or even artificial neural 

networks) which can be interpreted as a measure of the complexity of a family of 

functions with respect to a set of data points. Then, the ideas behind SRM are used to 

choose, from a set candidate models (learning machines), the one whose complexity is 

appropriate to describe the training data. With SVMs, this is done by minimizing both 

the VC dimension and the training error to tune the parameters of the kernel function 

chosen.  

SVMs can be seen as part of a larger class of machine learning techniques called 

kernel-based methods  where this idea of kernel substitution is applied to a wide range 

of data analysis methods, such as Fisher discriminant analysis or least squared 

approaches. These methods are used for supervised learning, but kernel substitutions 

can also be used in unsupervised scenarios such as kernel PCA (Principal Component 

Analysis) and kernel CCA (Canonical Correlation Analysis). Refer to (Campbell and 

Ying 2011) for detailed information.  

1.1.3 eInfrastructures 

The possibility offered by today’s computing resources to develop science and 

engineering into new realms is well established. According to (NASA, NSF et al. 2008): 

“Simulation Based Engineering and Science (SBE&S) today has reached a level 

of predictive capability that it now firmly complements the traditional pillars of 

theory and experimentation/observation. As a result, computer simulation is 

more pervasive today – and having more impact– than at any other time in 

human history. Many critical technologies, including those to develop new 

energy sources and to shift the cost-benefit factors in healthcare, are on the 

horizon that cannot be understood, developed, or utilized without simulation” 

This, together with the fact that computing resources are becoming rapidly cheaper 

and available, has drawn lots of efforts from all kind of institutions in the process of 

integrating distributed and dispersed computing resources to build eInfrastructures 

across the world with the aim of enabling science and engineering to use this new tool 

as a fundamental part of their development, without which such development would 

simply not exist.  
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The charts in figure 8 show the evolution of the supercomputers taking part in the 

TOP500 (Top500 2011), which every six months lists the 500 most powerful 

supercomputers of the world. Each chart shows, historically, the nature of the 

supercomputers in the list according to different criteria. 

 

Figure 8: Historical distribution of the TOP 500 by hardware and OS. 

As it can be seen, the supercomputers taking part on the list are increasingly of 

similar nature as more than 80% of the TOP 500 supercomputers are devised as cluster 

architectures, interconnected with Infiniband or Gigabit Ethernet, with Intel or AMD 

64bit processors, run by Linux operating systems. This means that computer centers 

are becoming more a commodity, being built out of hardware widely available. It is 

straight forward to infer that, outside the TOP 500, this picture lies at the root of the 

current proliferation of computer centers of all sizes across the globe. 

These two issues: the usage of computing resources as a fundamental part of 

scientific and engineering developments and the proliferation of computer centers, is 
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one major reason behind the sustained funding and efforts to build eInfrastructures 

happening in different parts of the world. 

eInfrastructures are made available through a certain computing model and access 

method. According to these, three major kinds of eInfrastructures are available today: 

Grids, Clouds and Supercomputers. Each one of them is addressed to different kinds of 

problems and users and is based on different underlying technologies, etc. as 

summarized in table 3. 

Table 3: Comparison of eInfrastructures 

 Grids Clouds Supercomputers 

Computing 

Model 

Batch uncomunicating jobs  Virtual machines decoupled 

from physical infrastructure 

Batch intercommunicating 

jobs 

Access Method Middleware to federate 

distributed storage and batch 

queue systems 

Virtualization Batch queue systems 

Technologies gLite, Globus, UNICORE VMWare, E2C, OpenNebula, 

Eucalyptus 

SGE, PBS, LSF 

Target 

applications 

Sequential algorithms 

parallelizable by parameter 

sweeps or data partitioning 

Whatever can be encapsulated 

within a virtual machine. 

IaaS, PaaS, SaaS 

Parallelizable algorithms 

Current users Mostly academia Mostly industry Academia & Industry 

    

1.1.4 Breast Cancer CAD 

Machine learning methods produce models that can explain complex relationships in 

the data and, therefore, they seem suitable for biomedical data analysis, often 

consisting on high dimensional quantitative data provided by the state-of-the-art 

medical imaging and high-throughput biology technologies. The general strategy relies 

on expert-curated ground truth datasets that provide the categorical associations of all 

available data samples, constituting the basis for supervised learning as explained in 

previous subsections. 

In statistical pattern recognition (Jain, Duin et al. 2000) a pattern is represented by 

a set of d features, or attributes and viewed as a d-dimensional feature vector. In a 

preprocessing stage, the pattern of interest is segmented out from the background, noise 

is removed, the pattern is normalized, etc. Then, a set of features is 
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extracted/computed representing the segmented pattern and a classifier is trained to 

partition the feature space. When an appropriate classifier has been found, then it can 

be applied to features vectors to provide automatic classification of the pattern. This 

process can be undertaken in a supervised or unsupervised manner, depending on the 

nature of the problem in hand. 

Breast Cancer CAD is a supervised pattern recognition task. With some ambiguity, 

the literature uses the CAD term to refer both to Computer Aided Detection (CADe) 

and the Computer Aided Diagnosis (CADx). While CADe is concerned with locating 

suspicious regions within a certain medical image (such a mammogram), CADx is 

concerned with offering a diagnosis to a previously located region. In general, starting 

from a digital mammogram, the CAD process is performed through the following 

stages, as illustrated in figure 9: 

 

1. Region of Interest (ROI) selection: the specific image region where the 

lesion or abnormality is suspected to be (which can be manual, 

semiautomatic or automatically selected). 

2. Image Preprocessing: the ROI pixels are enhanced so that, in general, 

noise is reduced and image details are enhanced.  

3. Segmentation: the suspected lesion or abnormality is marked out and 

separated from the rest of the ROI by identifying its contour or a pixels 

region. Segmentation can be fully automatic (the CAD system determines 

the segmented region), manual or semi-automatic, where the user segments 

the region assisted by the computer through some interactive technique such 

as deformable models (Chenyang and Prince 1998) or intelligent scissors 

(livewire) (Liang, McInerney et al. 2006). 

4. Features Extraction: quantitative measures (features) of different nature 

are extracted out from the segmented region to produce a features vector. 

These might include representative measures of the image region statistics 

(skewness, kurtosis, perimeter, area, etc.), shape (elongation, roughness, 

etc.) and texture (contrast, entropy, etc.) 

5. Automatic Classification: this last step is the one that finally offers a 

diagnostic to be used as a second opinion, by assigning the vector of 

extracted features to a certain class, corresponding to a lesion type and/or a 

benignancy/malignancy status. 
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Figure 9: Breast Cancer CAD cycle 

1.2 Motivation and objectives 

The present PhD work emerges in the context of the IMED Project (for Development 

of Algorithms for Medical Image Analysis) being carried out between INEGI  (Instituto 

de Engenharia Mecânica e Gestão Industrial, at University of Porto, Portugal) and 

CETA-CIEMAT (Centro Extremeño de Tecnologías Avanzadas, Ministry of Science 

and Innovation, Trujillo, Spain) since 2008 where a mammograms repository is being 

built and deployed at FMUP-HSJ (Hospital de São João–Faculty of Medicine at 

University of Porto, Portugal) and CAD  methods are being developed by exploiting 

the data collected in the repositories. The project is founded on preliminary works to 

use Grid infrastructures for hosting medical image repositories (Calanducci, Ramos-

Pollan et al. 2008; Barbera, Ramos-Pollan et al. 2009), retrieving and analyzing data 

(Ramos-Pollan and Barreiro 2009; Risk, Ramos-Pollan et al. 2009), but soon focused on 

medical imaging for breast cancer to deliver software platforms that include graphical 

user interfaces (for manipulating and classifying mammograms) and interfaces to Grid 

storage and local resources for managing the image repository (Ramos-Pollan, Guevara 

López et al. 2009). Through the IMED project, a pilot platform was deployed at FMUP 

allowing: 
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1. Feeding the data repository with scanned or digital mammograms and 

patient clinical data 

2. Having specialized radiologists segmenting regions in mammograms (through 

a graphical user interface, see figure 9) and issuing a standardized diagnosis. 

3. Building training datasets that include specialists’ assessment, patient 

information and features extracted from segmented regions. 

Confronted with the necessity to find well performing ML classifiers for the 

constructed datasets and offer them to radiologists as second opinion assessment to be 

used in their diagnosis and patient management decisions, the project team identified 

the need to (1) systematically use ML for AUC optimization as required by the medical 

environment within which the project is being developed, specially for multilayer 

perceptrons as they are commonly used in medical image analysis and (2) exploit 

eInfrastructures to perform massive explorations of ML classifiers configurations in an 

agile manner as data was being generated by specialized radiologists. Soon, it became 

evident that results in these aims could be beneficial for ML in general and therefore a 

thesis project was devised to channel the work to be performed and herewith described. 

This led to establishing the following objectives for this thesis: 

Objective 1: to provide a general formulation that integrates AUC 

optimization in existing ML algorithms in an affordable manner (with minimal 

programming effort and impact in source code), and validate it with different 

training algorithms on multilayer perceptrons based classifiers. 

Objective 2: to enable the usage of eInfrastructures for (1) the exploration of 

the search space of possible configurations of ML algorithms with different 

datasets and AUC metrics, and (2) the validation of new ML algorithms and 

classification methods (in particular, the multilayer perceptron based classifiers 

mentioned in Objective 1). 

Objective 3: to demonstrate the usefulness of the above results in the area of 

breast cancer CADx 

With respect to the IMED project, the results of this thesis constitute stage 5 as 

described in figure 9, receiving as input the datasets containing the extracted features 

and the diagnosis information given by the specialized radiologists through the usage of 

the project tools; and providing as output a set of trained ML classifiers to be 
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integrated within the graphical workstations for delivering second opinion assessment to 

radiologists. 

1.3 Thesis statement 

The above objectives and consequent work was therefore carried out to prove the 

following hypothesis:  

Hypothesis 1: Multilayer perceptrons can be improved through new AUC 

based error measures, providing guidance to existing training methods to yield 

better AUC classifier performance. 

Hypothesis 2: Computing power harnessed by eInfrastructres enables 

systematic exploration of search spaces of machine learning classifiers 

configurations for given datasets, specifically biomedical datasets. 

Hypothesis 3: Computing power harnessed by eInfrastructures enables 

thorough validation of new classification methods. 

Hypothesis 4: Given the above three hypothesis, it is possible to develop more 

precise and robust breast cancer CADx methods.  

1.4 Summary of contributions 

The following theoretical and technological achievements were obtained as part of this 

thesis work. 

1.4.1 Theoretical contributions 

Contribution 1: A new AUC based error definition (loss function) for machine 

learning algorithms. 

Contribution 2: An efficient error-bounded AUC approximation method with 

arbitrary precision 

Contribution 3: A methodology to integrate the AUC based error definition 

and the AUC approximation procedure into existing multilayer perceptrons, 

applicable to other ML methods. 
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1.4.2 Technological contributions 

Contribution 4: A software framework for integrating third party machine 

learning classifiers, enabling the exploration of the search space formed by the 

possible parameters configurations of the model fitting processes implemented 

by the integrated classifiers. 

Contribution 5: A software framework developed upon industry standards 

allowing (1) launching and maintaining colonies of Job Agents over 

heterogeneous computing resources and (2) submitting jobs to the Job Agents 

colonies through command line and API interfaces. 

Contribution 6: An exploration methodology for the rational usage of the 

software frameworks (produced in contributions 4 and 5) over local and 

distributed computing resources. 

Contribution 7: An application of the above contributions to search for well 

performing ML classifiers for breast cancer CADx based on medical data 

extracted from mammograms. 

1.5 Thesis outline 

This thesis is, therefore, structured as follows: 

• Chapter 1 is this introduction, which aimed at providing a general 

background for ROC analysis, machine learning, eInfrastructures and 

breast cancer CAD. It established the context within which this thesis 

was motivated, its objectives and summarized its contributions. 

• Chapter 2 describes the current state of the art of the three specific 

areas in whose intersection this thesis contributes: (1) the usage of ROC 

analysis in machine learning, (2) machine learning for breast cancer 

CAD and (3) the usage of eInfrastructures for scientific production. 

• Chapter 3 details the contributions of this thesis to enable AUC 

optimization in machine learning. In specific, it describes the algorithm 

developed to efficiently approximate the AUC within user defined error 

bounds and the method proposed to generalize AUC optimization in 

multilayer perceptrons. 
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• Chapter 4 describes the two software frameworks constructed to enable 

an efficient usage of eInfrastructures for machine learning research and 

development. The Biomedical data analysis Toolkit (BiomedTK) allows 

researchers to manage large number of configurations of ML classifiers 

and train them with different ML algorithms integrating ROC analysis. 

The Cloud Computing Colonies framework (C3) deploys colonies of Job 

Agents into existing eInfrastructures enabling efficient usage of available 

computing resources to applications such as BiomedTK. 

• Chapter 5 shows a practical application of the contributions above in 

the field of breast cancer CAD, using AUC optimization in machine 

learning over eInfrastructures to find well performing ML classifiers to 

provide radiologists an automated second opinion for their diagnosis and 

patient management decisions. 

• Chapter 6 finally summarizes the conclusions of this thesis outlining 

future lines of work opened by its contributions. 
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Chapter 2 

2 State of the Art 

The major theoretical contributions of this thesis are in the area of ROC analysis for 

machine learning. From a technological perspective, the contributions of this thesis 

enable the effective utilization of eInfrastructures for massive exploration of machine 

learning methods and provide a practical application of these in breast cancer CADx. 

This section, therefore, outlines current developments in these three areas. 

2.1 ROC analysis and machine learning 

ROC analysis is used in machine learning since the works of (Spackman 1989) and 

(Bradley 1997). ROC curves are believed to be a more powerful tool than accuracy or 

other threshold measures to assess classifier performance mostly due to the fact that 

they constitute a richer object conveying more comprehensive information (Provost, 

Fawcett et al. 1998; Ling, Huang et al. 2003). In particular, accuracy tends to ignore 

skewed class distributions (more elements in one class than in another) and different 

misclassification costs, as usually arise in real work problems. Take for example a 

dataset with 1000 elements of which 900 are positive and 100 are negative. A naïve 

classifier labeling all elements as positive will achieve 90% accuracy and yet it is 

useless. In addition it seems that maximizing accuracy does not always result in AUC 

optimization. The work of (Cortes and Mohri 2004) formalized this intuition: 

minimizing the error rate (� 1 � �������) as the vast majority of ML methods do, 

does not necessarily yield to AUC optimization. In addition, some results provide 
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evidence that AUC optimization might even yield to better accuracy (Ling, Huang et 

al. 2003). Although these results have still to be interpreted with caution when applied 

to specific application domains, they do indicate that a generalized usage of ROC 

analysis in ML might be beneficial. Since then, a few ML methods have been redesigned 

for AUC optimization, but that is a lengthy and costly task and the majority of 

techniques embedded within existing and newly developed ML methods aim at error 

rate minimization, while ROC analysis remains mostly limited to using the AUC for 

classifier comparison. Results of this thesis enable generalized AUC usage in the model 

fitting stage in machine learning. 

The following subsections offer a perspective on how ROC analysis is used in 

different stages of machine learning, starting with a statistical view on ROC curves. 

2.1.1 Obtaining ROC metrics 

From a statistical perspective it is commonly assumed that the scores assigned by a 

classifier or a diagnostic test to elements of a dataset are instantiations of two random 

variables C> and C? for positive and negative elements respectively. Functions �> and �> denote the PDF and CDF of the distribution of C>, and analogously for C?. The 

actual distributions �> and �? are unknown and the researcher is faced with the 

problem to estimate the ROC curve and/or associated measures (such as AUC) based 

on the available observations (classifier output of a dataset). Regular statistical 

techniques are applied to obtain such estimates and literature is relatively extensive on 

this subject, since many results come from medical areas where ROC analysis is being 

used since earlier than in machine learning. Estimating ROC curves is also known in 

the literature as curve fitting (Metz 1978; Centor and Schwartz 1985; Metz 2008) and, 

as 2D objects, they are somewhat harder to estimate than scalar metrics like accuracy 

or even AUC itself. As usual, estimation techniques existing in literature in this sense 

can be classified into parametric, semi-parametric and non-parametric methods. 

Non-parametric and semi-parametric methods 

Non-parametric methods make no assumption about the underlying distributions of C> 

or C?. Among them, empirical estimates are widely used for their simplicity and 

validity for many real world sized datasets. The method illustrated in figure 2  

(Fawcett 2006) provides a straight forward empirical estimate for the ROC curve and 
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equation 1.1 constitutes a commonly used empirical estimate for the AUC. It is known 

to be an unbiased estimator for the AUC and is based on the fact that the AUC is 

equivalent to the probability of a randomly selected positive element to be ranked 

higher than a randomly selected negative element (Hanley and McNeil 1982) which also 

corresponds to the Mann-Whitney test (Mann and Whitney 1947) and the Wilcoxon 

statistic (Wilcoxon 1945). Observe that, for AUC purposes, in equation 1.1 (page 6) it 

is not the actual scores of each element what matters, but only their relative ranking. 

Several authors (Zou, Hall et al. 1997; Lloyd 1998; Zou, Tempany et al. 1998; Lloyd 

and Yong 1999; Stine and Heyse 2001) discuss refining the non-parametric approach to 

provide a smoothed ROC curve using kernel based methods. In these approaches a 

function family (kernel) such as a Gaussian is chosen for �E> and �E? as estimators of 

the respective PDFs �> and �? to derive an analytical expression for AUC and the 

ROC curve. Observe that in these cases, there is no assumption of the underlying 

distributions of positive and negative elements (�> and �?) but there is a certain shape 

(kernel) imposed to their estimating functions �E> and �E?. In certain conditions (Lloyd 

and Yong 1999), kernel based non parametric estimators have been found to be better 

than empirical ones in the sense of yielding asymptotically a lower mean squared error. 

Parametric methods 

A widely accepted parametric approach (Green and Swets 1966; Hanley 1996) is to 

assume that C> and C? are independent normal variables C>~��Y>, Z>K� and C?~��Y?, Z?K�, referred to as binormality, and consequently the points of the ROC 

curve and the AUC are obtained by using the sample means and standard deviations of 

the positive and negative elements of the dataset in hand. This binormal model can be 

estimated by several methods (Hsieh and Turnbull 1996; Metz, Herman et al. 1998; Zou 

and Hall 2000) among others. In many cases, the normal assumption is untenable 

directly from the dataset data, although ad hoc transformations might make its 

application reasonable as suggested in (Goddard and Hinberg 1990; Reiser and Faraggi 

1997) but those authors also provide examples where binormality fails. 

Several authors proposed other parametric methods, assuming different distributions 

or procedures such as, among others, gamma distribution, logistic regression, etc. 

(Dorfman, Berbaum et al. 1997; Qin and Zhang 2003; Zou, Warfield et al. 2004)   
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In any case, parametric or non-parametric, efficient computation of ROC curves or 

AUC is essential if they are to be used in computing intensive contexts such as in 

machine learning. This issue is also addressed in this thesis as a necessary stage to use 

AUC in model fitting as mentioned previously. 

2.1.2 Interpreting ROC curves 

ROC curves provide a wealth of information about classifier performance and allow 

researchers to make decisions and compare classifiers under different scenarios (class 

skew, different misclassification costs, etc.), discriminating more conditions than regular 

threshold based metrics (such as accuracy). The following paragraphs provide current 

insight on the information that ROC plots can convey. 

ROC space 

The ROC space is defined in a two dimensional unit square with FPR (the false 

positive rate) and TPR (the true positive rate) as = and � axes respectively (Metz 

1978; Fawcett 2006). A calibrated classifier is one that produces a rank on dataset 

elements where a specific threshold has been established to label them as positive or 

negative. This is represented as a point in the ROC space such as points A, B, C, C’ 

and D in figure 10. Points along the horizontal diagonal represent classifiers performing 

equivalently to a random guess and we seek classifiers above the diagonal and 

approaching the �1,0� point. By inverting the class label assigned by any classifier its 

position is mirrored around the random guess line (such as C and C’). 

An uncalibrated classifier, giving a rank of dataset elements produces a curve in the 

ROC space as explained in Section 1.1.1 containing all possible calibrated classifiers 

given that rank as the calibration threshold is moved from 0 to 1. The AUC is then 

taken as a single scalar to measure classifier performance without committing to a 

specific threshold value. However different classifiers might yield similar AUCs and one 

might favor one or other depending on specific problem conditions. As shown in figure 

10, right, classifier containing point A seems to be a better choice on low FPRs than 

classifier containing point B. 
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Figure 10: ROC space with example classifiers (left) and ROC curves (right) 

Another view on ROC plots can be found on introductory ROC texts such as the 

ones mentioned above is the one depicted in figure 11, where points A and B represent 

different thresholds set on the distributions of positive and negative elements. The solid 

vertical line on the left represents point A and the figure shows how it partitions both 

distributions producing a specific point in the ROC space. As the threshold moves from 

A to B (shown as a vertical dashed line), the partition of the probability distributions 

changes and, therefore, the TPR/FPR point moves along the ROC curve. 

 

Figure 11: Example of elements distributions and classifiers in ROC space. 

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

always positive at (1,1)

always negative at (0,0)

FPR

T
P
R

perfect discrimination at (1,0)

A

B

C

C’

D

worse than random

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

FPR

T
P

R

A

B

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.0

0.8

0.6

0.4

0.2

FPR

T
P
R

A

B

TN

TP

FN

FP

A B

distribution of
positive elements

distribution of
negative elements



30 Chapter 2 State of the Art 

 

 

ROC isometrics 

Provost et al. (Provost, Fawcett et al. 1998) showed that classifier comparison and 

selection based on accuracy has severe shortcomings with regard to class and error cost 

distributions. To overcome these problems (Flach 2003) and (Provost and Fawcett 

2001) consider class and error cost distributions as a parameter to performance metrics. 

Evaluation with these metrics is named skew sensitive evaluation and a parameter 

called skew ratio expresses the relative importance of negative versus positive classes in 

terms of class and error cost distributions: 

� � ���,  ��� , �� �� ����� 
where ���,  � and �� , �� denote the cost of false positive and false negative 

respectively, and ���� and �� � is the probabilities of a positive and negative instance. 

Empirically, they correspond to the proportion of positive and negative elements on the 

dataset. Given a certain ����, ���� point on the ROC plot its expected accuracy cost 

is defined as: ���� ∙ �1 � ���� ∙ �� , �� � �� � ∙ ��� ∙ ���,  �. Then two points ���A, ��A� 
and ���K, ��K� have the same performance if their expected accuracy costs are the 

same, which results in the following condition 

��K � ��A��K � ��A � ���,  ��� , �� �� ����� � � 
so � is the slope of the line joining both points which is then defined as an isometric 

accuracy line. This is, all classifiers corresponding to points on the line have the same 

expected accuracy cost when applied to datasets characterized by �. Observe that a 

certain class distribution and misclassification cost correspond to a specific � value that 

characterizes them, so that each set of class distribution and misclassification costs 

defines a family of isometric accuracy lines. For instance, all datasets with the same 

number of positive and negative elements and same misclassification cost for both of 

them produce isometric accuracy lines with a slope of c=1. Lines closes to the top left 

corner on the ROC space correspond to classifiers with higher expected accuracy cost. 

Figure 12, left, shows isometric accuracy lines for c=1 and c=1/2 where it can be 

observed how, in the case of c=1 accuracy corresponds to the non-discrimination line 

(random guess). 
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Figure 12: ROC isometrics for two class and cost distributions 

Isometric accuracy is one of a family of ROC isometrics, where the ROC space can 

be navigated or partitioned by lines representing equivalent classifiers regarding a 

certain metric with respect to a certain class distribution and misclassification cost (� 
value). For illustration purposes figure 12, right, shows the isometric precision lines 

which produce a very different geometry of the ROC space. Observe how, for accuracy, 

we would seek calibrated classifiers or ROC curves approaching the top left corner, 

whereas for precision, we would be more interested on the left border of the ROC 

space. All these issues are further discussed in (Fawcett and Provost 1997; Flach 2003; 

Vanderlooy, Sprinkhuizen-Kuyper et al. 2006; Vanderlooy, Sprinkhuizen-Kuyper et al. 

2009) among others. 

2.1.3 ROC analysis for model evaluation 

ROC analysis is primarily used in machine learning to evaluate and compare classifier 

performance through the AUC and few works in machine learning make a 

comprehensive use of ROC analysis in the sense described above. Apart from those 

mentioned in previous section, some machine learning tasks applied to biomedical 

problems use ROC analysis beyond AUC evaluation specially in medical imaging (Park, 

Goo et al. 2004; Metz 2008; Park, Pu et al. 2009), which is one of the motivations 

behind the work in this thesis. 
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Results in (Provost, Fawcett et al. 1998; Lachiche and Flach 2003; Ling, Huang et 

al. 2003; Cortes and Mohri 2004; Rosset 2004; Vanderlooy and Hullermeier 2008) 

suggest the usage of AUC over accuracy for measuring classifier performance mostly 

due to the difficulties for accuracy to deal with class skews and misclassification costs. 

In later years a few authors questioned the usage of AUC claiming that, in certain 

cases, AUC performance might be misleading since it may introduce excessive noise or 

greater variance in its results with respect to accuracy (Lobo, Jiménez-Valverde et al. 

2008; Hanczar, Hua et al. 2010). 

Application of commonly used evaluation techniques such as cross-validation and 

bootstrap (as mentioned in Section 1.1.1.2) is a key issue to robustly use any 

performance metric.  Researchers have paid attention to the generation of confidence 

intervals or bands for ROC curves so that it could be expected that, assuming test 

examples are all drawn from the same fixed distribution, the model’s ROC curves 

would fall within certain bands with probability 1 � [. These bands could be obtained 

through different techniques. Vertical averaging (Provost, Fawcett et al. 1998) scans 

successive FPR values and averages the TPR values of multiple ROC curves at that 

FPR value (figure 13 left). Threshold averaging (Fawcett 2003), on the contrary, 

freezes successive threshold levels and averages FPR and TPR values (figure 13 right). 

Other approaches to find confidence bands for ROC curves can be found at (Reiser and 

Faraggi 1997; Obuchowski 1998; Shapiro 1999; Jensen, Müller et al. 2000; Sorribas, 

March et al. 2002; Macskassy, Provost et al. 2005; Vergara, Norambuena et al. 2008).  

 

Figure 13: Confidence bands for ROC curves 

These averaging techniques are then also used when applying cross-validation, 
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predictions made in each cross-validation round are pooled into one set and one 

common AUC or ROC curve is calculated from it. For LOOCV (leave one out cross 

validation) this is the only way to obtain them, although (Parker, Gunter et al. 2007) 

showed that when considering AUC with small datasets many commonly used cross-

validation schemes suffered from substantial negative bias. To overcome this (Airola, 

Pahikkala et al. 2009) and (Cortes, Mohri et al. 2007) proposed LPOCV (leave pair out 

cross validation) discarding, at each cross-validation round a different positive-negative 

element pair. However, LPOCV is only computationally feasible for small datasets since 

requires one model fitting cycle per possible positive-negative pair. For a dataset with a  4 �  0 elements (positive and negative) LOOCV requires  4 �  0 cycles and LPOCV 

requires  4 ∙  0 cycles. Obtaining AUC estimates based on these principles can be 

reviewed at (Bradley 1997; Airola, Pahikkala et al. 2009; Airola, Pahikkala et al. 2011). 

2.1.4 ROC analysis for model construction 

Mainstream classifiers are usually designed to minimize the classification error and may 

not necessarily perform optimally when applied to ranking problems as shown by (Ling, 

Huang et al. 2003; Cortes and Mohri 2004). Furthermore, (Ling, Huang et al. 2003) 

suggests that AUC optimization may also result in better accuracy. This has led to a 

certain set of efforts to redesign existing algorithms and develop new ones aimed at 

AUC optimization instead of error rate minimization. 

The empirical estimate of the AUC, or the Wilcoxon statistic, as defined in equation 

1.1 for dataset � � �7 ∪ �9 with respect to the ranking produced by classifier * is 

recalled here: 

�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9|  

Several approaches for AUC optimization apply some gradient descent method. One 

of the major problems is that the indicator function ,$	' (usually modeled as the 

Heavyside step function) is not differentiable and a continuous approximation is often 

adopted such as the sigmoid function or a Chebyshev approximating polynomial. 

However there are two problems associated with this approach. On one side, this 

formulation is non linear with respect to the learning parameters and this requires an 

iterative search to locate the solutions. Consequently, different initializations (such as 

the random weights initially assigned to any ANN) may end up in different local 

solutions, hence incurring laborious trial and error efforts to select an appropriate 
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setting. The second problem is that the objective function could be ill-conditioned to 

the numerous local plateaus resulting from summing the flat regions of the sigmoid and 

step-like approximation and, therefore, a lot of search iterations could be spent in 

making little progress at locally flat regions (Yan, Dodier et al. 2003; Herschtal and 

Raskutti 2004; Rakotomamonjy 2004; Calders and Jaroszewicz 2007; Castro and Braga 

2008; Toh, Kim et al. 2008). Different approaches have been proposed to circumvent 

these problems, mostly by using a different approximation technique such as through a 

quadratic approximation (Toh, Kim et al. 2008) or kernel based methods (Faraggi and 

Reiser 2002; Marzban 2004) which require either the assumption of an underlying 

distribution for the data or additional smoothing functions. 

Complementing gradient descent methods, other learning techniques have been 

redesigned or developed to allow AUC optimization. Among them, SVMs 

(Rakotomamonjy 2004; Brefeld and Scheffer 2005; Joachims 2005; Steck 2007; 

Pahikkala, Airola et al. 2008), heuristic search and decision trees (Mozer, Dodier et al. 

2001; Ferri, Flach et al. 2002; Yan, Dodier et al. 2003; Herschtal and Raskutti 2004), 

linear programming (Ataman, Street et al. 2006), regression learning (Waegeman, De 

Baets et al. 2008) and others approaches based on feature selection (Wang and Tang 

2009), pair wise comparison (Marrocco, Duin et al. 2008) or by similarity with other 

problems (Clémençon, Vayatis et al. 2009) with relative success. Finally, in a similar 

aim to accuracy boosting algorithms such as AdaBoost (Freund and Schapire 1995), 

boosting for AUC has received particular attention recently as a method to combine 

underperforming classifiers (Long and Servedio 2007; Robilliard, Marion-Poty et al. 

2007; Moin 2009; Komori and Eguchi 2010).  

However, the mainstream techniques and accumulated methods for machine learning 

have been or are being designed for error rate minimization. This might be partly due 

to the fact that AUC (and ROC analysis in general) has not yet completely settled 

within the ML community, but also to the fact that redesigning the vast amount of 

existing ML methods is an endeavor requiring considerable effort, as pointed out by 

(Ling, Huang et al. 2003). It is in this context that the theoretical contributions of this 

thesis can be valued, providing a method to integrate AUC optimization into existing 

algorithms with reasonable effort. 
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2.1.5 ROC analysis for model selection 

When ROC analysis is used in machine learning, the empirical AUC (see page 26) is 

the metric largely used for model evaluation and selection. Some variations over the 

AUC have been proposed (Wu and Flach 2005; Wu, Flach et al. 2007; Chatelain, 

Adam et al. 2010) exploiting the richness of ROC space as shown in Section 2.1.2. An 

increasingly referenced method is the ROC convex hull (ROCCH) (Provost and 

Fawcett 2001) based on accuracy isometrics. ROCCH builds on the observation that 

two different calibrated classifiers (points in the ROC space) may perform differently 

for different class distributions and misclassification costs. Figure 14 left illustrates this. 

Classifier A outperforms (better accuracy) classifier B for a dataset with, for instance, 

the same number of positive and negative elements and the same misclassification costs 

for each (� � 1) as shown by the isometric accuracy line passing by classifier A, but 

leaving B below it. However, for datasets characterized by � � 1/2	 (such as, for 

instance, the ones having twice as many positive elements as negative ones at the same 

misclassification cost), classifier B outperforms A, as shown by the isometric accuracy 

line passing by B. 

 

Figure 14: Isometric accuracy classifier comparison (left) and convex hull (right) 

Given a set of classifiers (such as in figure 14 right) the slope of the isometric 

accuracy line joining them defines what kind of datasets that for which them both 

perform equal. Classifiers lying south east of that line perform worse. The ROCCH is 

then defined as the minimum set of segments of isometric accuracy lines joining 

classifiers so that all classifiers either lie on the convex hull or below it, as shown in 
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figure 14 right. As proven in (Provost and Fawcett 2001) any classifier below the 

convex hull is suboptimal since for any class distribution and misclassification cost (this 

is, for any �) there is always another classifier performing better, such as in the case of 

classifiers D and E in figure 14. Classifiers on the ROCCH are optimal in the sense that 

they are the ones performing the best for certain class distributions. The ROCCH can 

also be useful for sensitivity analysis. Imprecise information about class distribution or 

misclassification cost results in a range of slopes of isometric accuracy line passing by 

each optimal classifier, some of those might change its optimality condition. 

2.1.6 Summary of references 

Table 4: Summary of references for ROC analysis in machine learning 

Introductory (Spackman 1989) (Bradley 1997) (Metz 1978) (Fawcett 2006) (Fawcett 2003) 

Non & Semi

parametric estimation

(Mann and Whitney 1947) (Hajian-Tilaki and Hanley 2002) (Hanley and McNeil 1982)

(Zou, Hall et al. 1997) (Lloyd 1998) (Zou, Tempany et al. 1998) (Lloyd and Yong 1999)

(Stine and Heyse 2001) (Metz 2008) (Fawcett 2006)  

Parametric estimation (Green and Swets 1966) (Hanley 1996) (Hsieh and Turnbull 1996) (Metz, Herman et al. 

1998) (Zou and Hall 2000) (Goddard and Hinberg 1990) (Reiser and Faraggi 1997)

(Faraggi and Reiser 2002) (Dorfman, Berbaum et al. 1997) (Qin and Zhang 2003) (Zou, 

Warfield et al. 2004) 

ROC space and 

isometrics

(Metz 1978) (Fawcett and Provost 1997) (Provost, Fawcett et al. 1998) (Provost and 

Fawcett 2001) (Flach 2003) (Fawcett 2006) (Vanderlooy, Sprinkhuizen-Kuyper et al. 2006)

(Vanderlooy, Sprinkhuizen-Kuyper et al. 2009) 

Model evaluation and 

confidence bands

(Fawcett 2003) (Reiser and Faraggi 1997) (Obuchowski 1998) (Shapiro 1999) (Jensen, 

Müller et al. 2000) (Sorribas, March et al. 2002) (Macskassy, Provost et al. 2005) (Parker, 

Gunter et al. 2007) (Airola, Pahikkala et al. 2009) (Cortes, Mohri et al. 2007) (Bradley 

1997) (Airola, Pahikkala et al. 2011) 

AUC vs. accuracy (Provost, Fawcett et al. 1998) (Lachiche and Flach 2003)  (Huang and Ling 2005) (Ling, 

Huang et al. 2003) (Ling, Huang et al. 2003) (Cortes and Mohri 2004) (Rosset 2004)

(Vanderlooy and Hullermeier 2008) (Lobo, Jiménez-Valverde et al. 2008) (Hanczar, Hua et 

al. 2010) 

AUC optimization 

methods

(Yan, Dodier et al. 2003) (Herschtal and Raskutti 2004) (Rakotomamonjy 2004) (Calders 

and Jaroszewicz 2007) (Toh, Kim et al. 2008) (Faraggi and Reiser 2002) (Marzban 2004)

(Brefeld and Scheffer 2005) (Joachims 2005) (Steck 2007) (Pahikkala, Airola et al. 2008)

(Mozer, Dodier et al. 2001) (Ataman, Street et al. 2006) (Ferri, Flach et al. 2002)

(Waegeman, De Baets et al. 2008) (Castro and Braga 2008) (Wang and Tang 2009)

(Marrocco, Duin et al. 2008) (Clémençon, Vayatis et al. 2009) (Long and Servedio 2007)

(Robilliard, Marion-Poty et al. 2007) (Moin 2009) (Komori and Eguchi 2010) 

Model selection and 

convex hull

(Provost and Fawcett 2001) (Wu and Flach 2005) (Wu, Flach et al. 2007) (Chatelain, 

Adam et al. 2010) 
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2.2 eInfrastructures 

According to (FECYT 2004) eScience is understood as the set of scientific activities 

developed by using distributed resources (mainly computing power and storage 

capacity) accessible through high speed communications networks. Although 

supercomputers have been around already for a while, it is not until the end of the 

1990s than a growing notion of a unified distributed utility computing infrastructure 

started to settle, encouraged by the spreading of increasingly faster communications 

networks and finer grained computer simulated research that was attained as 

computing resources became more affordable and more powerful. This notion of 

eInfrastructure, or Cyberinfrastructure (Atkins, Droegemeier et al. 2003; Newman, 

Ellisman et al. 2003; Hey and Fox 2005), was initially embraced by governments and 

scientific institutions who fostered their birth and funded their development. Today, as 

new technological developments occurred during the last decade, different kinds of 

eInfrastructures populate the world, in terms of their technological foundation, 

organizational reach, geographical distribution, targeted users, etc. 

eInfrastructures can arguably be categorized into three kinds. Supercomputers 

evolved from specially designed state-of-the-art mainframe machines from decades ago, 

to large computer clusters of highly interconnected homogeneous CPUs. 

Supercomputers are mostly suited for HPC (High Performance Computing) 

applications, exploiting parallelism inherent within algorithms’ implementations by 

using high speed inter CPU communication, such as through MPI (MPI-Forum 2009) 

or shared memory. Grids are federations of computer clusters, aggregating large sets of 

heterogeneous computing resources and providing appropriate mechanisms to ensure 

security and federation. Grids are suited for HTC (High Throughput Computing) 

applications, based on sequential algorithms parallelizable by parameter sweeps or data 

partitioning. Due to their academic and historic origins, both supercomputers and 

Grids are rooted in batch queued execution systems to regulate access to CPU cycles. 

Finally, Clouds exploit recent advancements in virtualization technology to decouple 

service provisioning from the physical resources. Services or application are 

encapsulated within virtual machines which can then be deployed on whatever physical 

machines are available. Clouds are not a priori tied to any particular kind of 

application or computing model, and it is the actual functionality encapsulated within a 

certain population of deployed virtual machines and the specifics of the infrastructure 
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provider what determines the final capabilities offered to the user. Virtual machines 

may contain packaged applications, databases, services or even Grid components. 

2.2.1 Grids 

The term “Grid” was coined in the mid-1990s to refer to a distributed computing 

infrastructure for advanced science and engineering. In (DeRoure, Baker et al. 2003) 

and (Foster and Kesselman 2004) three different stages in the evolution of Grid 

technologies are sketched.  First generation Grids deploy proprietary systems in order 

to connect high performance supercomputers between scientific institutions. Second 

generation Grids (Foster 2001) focus on middleware technology to overcome the 

heterogeneity and scalability challenges of distributed systems, mostly built over 

Internet protocols. Third generation Grids (Foster 2005; Hey and Fox 2005) enlarge the 

standardization process of Grid technologies and their application domains. They are 

designed according to the principles of service oriented architectures (SOA) and make 

use of the Web Services technology stack.  

Architecture of Grids 

Second generation Grids’ resources architecture is organized in the following layers 

(Foster 2001). The Fabric Layer includes protocols and interfaces that provide 

sharing facilities of logical resources such as CPU cycles, storage capacity, networks and 

sensors. The Connectivity Layer defines basic Grid specific network protocols, 

including Internet-based communications protocols to exchange messages with resources 

provided by the fabric layer. Furthermore, authentication protocols ensure controlled 

resource sharing. The Resource Layer consists of protocols for a secure negotiation, 

sharing, initiation, monitoring, control, accounting and payment of resources. Protocols 

of this layer are only responsible for local resources. The Collective Layer defines 

protocols and services for global resource management. It provides functions and 

interaction protocols required for collections of distributed resources. The Application 

Layer comprises a variety of Grid enabled user applications that benefit from the 

resources of the underlying Grid infrastructure. 

At its core, a Grid is made of a federation of many Resource Centers (RC) and a set 

of central coordinating services hosted by one or more Resource Operation Centers 

(known as ROCs in middleware terminology, but denoted as RO Center, in this thesis 
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to avoid confusion with the acronym for Receiver Operating Characteristic). RO 

Centers take care of, for instance, maintaining a central catalogue of files stores 

throughout the federation, or to determine which RC is the most appropriate one to 

run a computing job required by a user (according to its hardware, free resources, 

applications available, etc.) A Grid federation is managed through middleware, a set of 

software components through which a federation offers its services. For instance, a RO 

Center hosts the middleware services allowing forwarding jobs to the most appropriate 

RC, gathering its results, storing them and making them available to users, etc. It also 

may guarantee file replicas across different RCs so that they are physically close to job 

execution, authenticate users through digital X.509 certificates, coordinate the 

execution of jobs requiring resources from several RCs, etc. Figure 15 shows a sample 

Grid federation with typical middleware components such as the Computing Element 

(CE, regulating Grid access to local computing power), the Storage Element (SE, 

regulating access to Grid local storage resources), the User Interface (UI, through which 

user interact with all Grid resources, local or remote), the Virtual Organization 

Membership Service (VOMS, determining users’ membership to different VOs), the 

Workload Management System (WMS, distributing jobs to appropriate CEs), the File 

Catalog (LFC, accounting for the SEs where files of the federation are stored and 

replicated), etc.  
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Figure 15: Example Grid federation 

Grid resources are made available to users and applications through the notion of 

Virtual Organizations (VO) (Foster 2001). A VO represents users of a certain 

community, scientists participating in the same experiment, project or disciple. Within 

a Grid federation, a certain VO negotiates with RCs the resources the community 

behind needs to satisfy its computing and storage requirements, aggregating resources 

offered by each RC. Each VO determines and manages, following their own criteria, 

which users belong to the VO, and may negotiate resources across many RCs and Grid 

federations. This is, each VO has its own organization and rules according to the 

culture, procedures, tradition, etc. of the user community it represents. In general, a 

user is granted access to Grid resources of a federation according to the VO he belongs 

to. 
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Beyond resources, architecture for third generation Grids is standardized mostly by 

OGSA, the Open Grid Services Architecture (Global-Grid-Forum 2005) that provides a 

framework to expose Grids’ resources through Web services. For instance, it includes 

execution management services, monitoring and discovering services, data transport, 

replication services, etc. By offering a Web services exposure (beyond artisanal 

command line utilities), OGSA provides the means to build client applications that 

consume Grid provided resources. 

World federations, standardization and middleware 

Today, different transnational Grid federations are being built across the globe, 

supported by middleware stacks increasingly integrated and standardized that enable 

the architectures just described. In Europe, the European Grid Infrastructure (EGI 

2011) integrates the National Grid Infrastructures (NGIs 2011) across the continent to 

create a federated pan-European Grid resource, gathering today more than 300 resource 

centers and 70’000 CPU cores. Created in February 2010, it culminates the series of EU 

funded projects (DataGrid, EGEE I, II and III) starting in 2001 to guarantee the long-

term availability of a generic eInfrastructure for all European research communities and 

their international collaborators. In the US, the TeraGrid integrates high-performance 

computers, data resources and tools, and high-end experimental facilities around the 

country. Currently, TeraGrid resources include more than 2.5 petaflops of computing 

capability and more than 50 petabytes of online and archival data storage, with rapid 

access and retrieval over high-performance networks. Other Grid federations can be 

found in Latin America (IGALC 2011), India (EUIndiaGrid 2011), Japan (NAREGI 

2011), etc. 

GT4, the Globus Toolkit 4 (Foster 2005), is the reference middleware 

implementation of the OGSA model and constitutes the foundation of many 

middleware distributions. In Europe, the gLite middleware (gLite 2011), based on GT4, 

was produced by the EGEE projects and is deployed on most of EGI sites. Other 

middleware distributions were also produced through publicly funded projects such as 

UNICORE (UNICORE 2011) or ARCO (NordUGrid 2011) among others, and a 

comprehensive effort to produce a unified middleware distribution is being done in the 

context of the European Middleware Initiative project (EMI 2011) 

However, in spite of having been around for the last 10 years, Grids are still far from 

achieving the initial expectations of penetration and dissemination throughout scientific 
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disciplines and business domains, remaining mostly within the academic area. Among 

others, one of the reasons behind this is the difficulty of usage of the middleware, 

constituting a steep learning curve and cost barrier for new communities not having the 

tradition nor the resources to work with Grids (Kacsuk 2007; Schwiegelshohn, Badia et 

al. 2009; InsightCorp 2011). In fact, the lifecycle through which new applications are 

adapted to use existing middleware is long and slow and this has caused even the more 

privileged scientific communities (such as High Energy Physics) to develop their own 

particular tools and methods to reduce usage costs and ease up their users’ lives, such 

as, among others, DIRAC (DIRAC 2010) and AliEn (Bagnasco and et al. 2008) used 

respectively by the CERN LHCb and ALICE experiments. 

2.2.2 Clouds 

Since the mid 2000’s, with the increasing maturity of virtualization technology, the 

possibility to decouple the physical infrastructure from the computing service provided 

became a feasible reality. Services, applications, databases, etc. are then encapsulated 

within virtual machines which could now be deployed on a “cloud” of physical resources 

(figure 16). When physical machines are added or removed from the cloud, or even 

when they fail, cloud middleware relocates the virtual machines transparently and 

automatically without disturbing the service. Although many definitions have been 

proposed for the notion of a Cloud both in academia and industry, the one provided by 

(Mell and Grance 2009) seems to include the key elements commonly used: 

“Cloud computing is a model for enabling convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, 

servers, storage, applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider interaction” 

This definition then refers to a set of characteristics, service and deployment modes 

for Clouds. The characteristics are the following: on-demand self-service (computing 

resources are provisioned automatically according to user demand), broad network 

access (including usage by different client hardware platforms such as servers, laptops, 

PDAs, etc.), resource pooling (resources from providers are pooled to/from different 

physical and virtual locations in a transparent manner to end user), rapid elasticity 

(capabilities are quickly provisioned, scaled out and scaled in, appearing to be 

unlimited to the end user) and measured service (providers optimize their resources 

monitoring and leverage them according to demand).  
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Resources capabilities can then be serviced through different models according to the 

end object consumed by the user: Software as a Service (SaaS, the object provisioned 

are software applications or components), Platform as a Service (PaaS, provisioning 

specific platforms, such as for development, etc.) and Infrastructure as a Service (IaaS, 

provisioning specific computing resources, such as virtual machines, storage capability 

or network bandwidth). Applications, platforms or, sometimes operating systems, 

encapsulated within a virtual machine are often denoted as virtual appliances, 

emphasizing the fact that the can be used and disposed off the shelve. 

 

Figure 16: Cloud resource provision through virtualization 

Different Cloud platforms are currently available being Amazon EC2 (Amazon 2011) 

arguably the pioneer, but also Google App Engine (Google 2011), Microsoft Azure 

(Microsoft 2011), IBMs Blue Cloud (IBM 2011), Nimbus (NIMBUS 2011), Open 

Nebula (OpenNebula 2011), etc. See (Rimal, Eunmi et al. 2009) for a comprehensive 

review. Across the different cloud providers, virtualization is the key technology being 

used, decoupling the final service provisioning (whether SaaS, PaaS or IaaS) from the 

physical infrastructure and enables achieving many of the previously mensioned 

characteristics by managing the load of virtual machines over the physical 

infrastructure. This way, the physical resources do not need to be prepared in advance 

to host a user demand as long as they can host the virtual machines servicing it. 
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2.2.3 Using eInfrastructures 

Grids have mostly remained in the academic area, whereas Clouds seem to gain terrain 

in industry. However a few issues still remain unsolved in both worlds. One such issue 

is interoperability, which refers to the capability of different eInfrastructures to 

seamlessly interchange resource provisions to comply with a user demand (such as user 

jobs being transferred between different Grid federations or virtual machines between 

different Clouds) and remains still unsolved both in Grid and Cloud systems 

(Parameswaran and Chaddha 2009). This is mostly an organizational issue since, 

technically, interoperability is a standardization issue. Several architectures, 

standardization bodies and working task forces have been established to seeking 

solutions to this problem such as (CCIF 2011; Cordys 2011; UnifiedCloud 2011) just to 

mention a few. However, their success depends mostly on the degree on consensus 

achieved between the different stakeholders in the public and private sectors (resource 

providers, users, service providers, developers, etc.) 

Another issue is cost of usage, in terms of effort required to efficiently exploit 

eInfrastructures for a problem in hand. In Grids, this refers to the percentage of jobs 

failing due to middleware and non-application specific causes (job reliability), and the 

overhead in job execution due to middleware handling of jobs (job latency). Depending 

on middleware and data center installations Grids typically show job latencies in the 

order of several minutes, see (Tristan, Diane et al. 2007; Glatard, Zhou et al. 2009). It 

is also known that job failure rates are significantly high ranging between 5% of 25% of 

submitted job failures due to middleware reasons (Hui, Groep et al. 2006), although 

this is improving in latest releases. All this requires users and administrators to develop 

their own management tools (for resubmitting failed jobs, data integrity checking, job 

checkpointing, etc.) to ensure their scientific production gets correctly executed and the 

infrastructure can be managed (Ramos-Pollan, Callejon et al. 2007), raising 

considerably the cost (effort) of using and maintaining Grids and therefore slowing its 

adoption in a wide sense. 

2.3 Machine learning classifiers for breast cancer CAD 

There are two types of examinations performed using mammography: screening 

mammography and diagnostic mammography. Screening allows detecting breast cancer 

in an asymptomatic population and diagnostic aims to examine a patient who has 
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already demonstrated abnormal clinical findings (Ng KH 2003). Double reading of 

mammograms (two radiologists read the same mammograms) (Brown, Bryan et al. 

1996) has been advocated to reduce the proportion of missed cancers, but the workload 

and cost associated are high. With the support of computer-aided detection and/or 

diagnosis (CAD) systems only one radiologist is needed to read each mammogram 

rather than two.   

2.3.1 Mammography classification standards 

Mammography is a radiological diagnostic method which relies on an X-ray 

examination of breasts and is a process involving the use of low-dose amplitude-X-rays 

(usually around 0.7 mSv). The aim of mammography is to detect very small 

abnormalities in the breast tissue before they develop into breast cancer, typically 

through detection of characteristic masses and/or microcalcifications. Mammography is 

a very sensitive diagnostic method that requires very precise equipment and qualified 

medical personnel to perform the examination (Kowalik and Konstanty 2010) 

The BIRADS Atlas (D'Orsi, Bassett et al. 2003), for Breast Imaging-Reporting and 

Data System, developed by the American College of Radiology, is a quality assurance 

tool originally designed for use with mammography widely used in the community. In 

day-to-day usage, the term BIRADS refers to standardized mammography assessment 

categories and lesion descriptions. BIRADS defines nine categories typically assigned by 

a radiologist when interpreting a mammogram. These categories are listed in table 5. 

Table 5: BIRADS categories for standardized diagnostic assessment 

BIRADS-0 Incomplete, additional evaluation required 

BIRADS-1 No findings. 0% possibility of cancer 

BIRADS-2 Benign findings. 0% possibility of cancer 

BIRADS-3 Probably benign findings, further control after  months needed. 0% to 3% chance of cancer 

BIRADS-4 Doubtfully malign finding 

BIRADS-4.a Low suspicious of malignancy. 3 to 49%  chance of cancer 

BIRADS-4.b Medium suspicious of malignancy. 50% to 89% chance of cancer 

BIRADS-4.c Medium-high suspicious of malignancy. 90% to 94% hance of cancer 

BIRADS-5 High suspicious of malignancy. >95% chance of cancer 

BIRADS-6 Malignancy confirmed 
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Transversally to this, mostly four kinds of lesions are of interest in the breast cancer 

CAD field as shown in examples in figure 17. 

 
Figure 17: Common kinds of mammography lesions 

These lesions are defined by the BIRADS Atlas as follows: 

Masses: A Mass is a space occupying lesion seen in two different projections. If 

a potential mass is seen only in one projection it should be called an 

“Asymmetry” until it is three-dimensionally confirmed. 

Calcifications: Calcifications that can be identified as benign on 

mammography are typically larger coarser and more easily seen than malignant 

calcifications. Calcifications associated with malignancy  (and many benign ones 

as well) are usually very small and require often the use of a magnifying class to 

see them. 

Architectural Distortion: The normal architecture is distorted with no 

definite mass visible. This includes thin lines or spiculations radiating from a 

point and focal retraction or distortion of the edge of the parenchyma. 

Architectural distortions can also be associated with a mass, asymmetry or 

calcifications. In the absence of appropriate history of trauma surgery, 

masses calcifications

architectural distorsions assimetries
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architecture distortion is suspicious for malignancy or radial scar and biopsy is 

appropriate. 

Asymmetries: Asymmetric breast tissue is judged relative to the 

corresponding area in the contralateral breast and represents a greater volume 

of breast tissue over a significant portion of the breast. There is no mass, 

distorted architecture or associated suspicious calcifications. Global asymmetric 

breast tissue usually represents a normal variation, but may be significant when 

it corresponds to a palpable abnormality. 

 

BIRADs further characterizes these lesions by providing more specific criteria 

(shape, texture, margins, etc.) and standardizes notation for location, description, etc. 

In fact, usually calcifications are easier to detect (either manually or automatically) for 

their small determined size and high contrast. 

2.3.2 Computer Aided Detection/Diagnosis 

Developing CAD schemes has been attracting rapidly growing interest in biomedical 

imaging research field in the past two decades, aiming to assist clinicians (radiologists, 

pathologists, etc.) more accurately, consistently and efficiently to read and understand 

biomedical images. With some ambiguity, the literature uses the CAD term to refer 

both to “Computer-Aided Detection” (CADe) and the “Computer Aided Diagnosis” 

(CADx). While CADe is concerned with locating suspicious regions within a certain 

medical image (such a mammogram), CADx is concerned with offering a diagnosis to a 

previously located (identified/segmented) region. The applied work presented in this 

thesis is focused on the CADx area. 

Breast cancer CAD methods/systems have been applied to detect suspicious lesions 

depicted on mammography images. After identifying initial candidates for the targeted 

suspicious lesions, most schemes use a pre-trained multi-image-feature based machine 

learning classifier to classify these candidates into two groups of positive (malignant) 

and negative (benign) tissue detections. In these systems a radiologist uses the output 

from computerized analysis of medical images as a “second opinion” in detecting and 

classifying lesions with subsequent diagnostic and patient management decisions 

(Cheng, Cai et al. 2003; Cheng, Shi et al. 2006; Yoon 2007; Dehghan and Abrishami-

Moghaddam 2008; Giger and Suzuki 2008; López, Novoa et al. 2008; Paquerault, Hardy 

et al. 2010).  
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At present, developed CAD systems have been mainly focused onto the detection of 

lesions associated to both microcalcifications and masses, but methods with better 

performance are related to microcalcification detection. Clusters of microcalcifications 

are an important indicator of breast cancer appearing in 30%–50% of diagnosed cases 

(Kopans 2006). Microcalcification detection methods could be divided into the following 

categories: image enhancement, stochastic modeling, multiscale decomposition and 

machine learning (ML). The basic idea behind image enhancement is to improve the 

contrast of microcalcifications, and then apply a threshold to separate them from their 

surroundings. Successful approaches include filtering (Nishikawa, Giger et al. 1995), 

noise and histogram equalization (McLoughlin, Bones et al. 2004; López, Novoa et al. 

2008), and region grouping (Wei, Fei et al. 2002). Its main advantages are its 

simplicity, ease implementation and efficiency. Stochastic modeling exploits statistical 

differences (skewness, kurtosis, etc) between microcalcifications and their surroundings 

(Gurcan, Yardimci et al. 1997). Stochastic modeling based on Markov random fields 

(Casaseca-de-la-Higuera, Arribas et al. 2005) demonstrated advantages to characterize 

the spatial intensity distribution of an image, but estimating a proper prior distribution 

remains a challenging task. Multiscale decomposition makes use of differences in 

frequency content among microcalcification spots and their surrounding background 

and it is generally used as feature extraction technique. Wavelet transforms 

decomposition, with higher regularity, yield improved performance for multiscale 

decomposition techniques in detection and segmentation of clustered microcalcifications 

(Lemaur, Drouiche et al. 2003). Combined methods such as filter banks associated to a 

Bayes classifier (Nakayama, Uchiyama et al. 2006) and wavelet transform associated to 

hidden Markov random fields (Regentova, Zhang et al. 2007) demonstrated to be 

satisfactory.  

2.3.3 Machine learning for breast cancer CAD 

Machine learning based detection/diagnosis methods for supporting semi-automated or 

automated breast cancer CAD systems have been developed with minor or major 

degree of success in the last two decades, seeking to modify the habitually qualitative 

diagnostic criteria into a more objective quantitative feature classification task. ML 

classifiers based on ANN (Songyang and Ling 2000), evolutionary genetic algorithms 

(Jiang, Yao et al. 2007) and support vector machines (SVM) (Singh, Kumar et al. 

2006) have been demonstrating high accuracy, specially in detecting microcalcifications. 

Other approaches include naïve Bayes classification methods, such as in (Butler, Webb 
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et al. 2003), distinguishing between the diffraction patterns of normal (20 instances) 

and cancerous tissue (22 instances) using as input a dataset of computed features 

vectors from X-ray mammography scatter images (above 90% accuracy); a supervised 

fuzzy clustering classification technique (Abonyi and Szeifert 2003) validated with the 

UCI Wisconsin breast cancer dataset (bcw, see table 24 on page 154) to distinguish 

between benign and malignant cancers (95.57% accuracy); a method for rule extraction 

from ANN (Setiono 2000) validated on the bcw  (98.1% accuracy); an hybrid model 

integrating a case-based data clustering method and a fuzzy decision tree (Fan, Chang 

et al. 2011) validated on the bcw (98.4% accuracy); a comparative study of different 

SVM training methods (Sweilam, Tharwat et al. 2010) that integrated: particle swarm 

optimization, quantum particle swarm optimization, quadratic programming, and the 

least square SVM method  tested on the bcw (93.52% accuracy). 

Masses are more difficult to detect than microcalcifications because the features of a 

mass may be obscured by or be similar to those of normal breast parenchyma. Masses 

are space-occupying lesion seen in more than one projection, usually characterized by 

its shape and margin. Regular shape masses have a higher probability of being benign, 

whereas irregular shape masses have a higher probability of being malignant. Some 

significant reported mass detection ML methods are: SVM-based featureless approach 

(Campanini, D Dongiovanni et al. 2004) that used two SVM classifiers. A first SVM 

classifier retrieves the masses candidates, and the second SVM classifier reduces the 

number of false positives (80% true positive detection was reported); a comparative 

study of logistic regression and ANN-based classifiers (Song, Venkatesh et al. 2005) 

using as input a dataset of features vectors extracted from ultrasound images of 24 

malignant and 30 benign masses (ANN-based classifier with 0.856 ROC Az, 95% 

sensitivity and 76.5% specificity); an automated CAD (Bellotti, De Carlo et al. 2006) 

including three steps: edge-based segmentation to select the suspicious regions, eight 

gray-tone independent texture ROI features and a supervised two-layered trained 

feedforward neural network classifier was employed to classify masses in a database of 

3369 mammographic images (including 2307 negative and 1062 positive cases), 

reporting an area under the ROC curve = 0.783±0.008 for the ROI based classification 

and 80% of sensitivity in mass detection. An experimental CAD system (López, Novoa 

et al. 2008) including five steps: ROI selection, contrast-limited adaptive histogram 

equalization, segmentation, selected features extraction and classification using ANN-

based classifier was used to diagnosis six mammography pathological lesions classes as 

benign or malignant tissues, achieving 94.0% of true positives detection rate. A recent 
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review of existing approaches of automatic detection and segmentation of masses 

methods (including a single or multiples mammography views) can be found in (Oliver, 

Freixenet et al. 2010), and an overview of digital image processing and pattern analysis 

techniques addressing several areas in breast cancer CADe, including: contrast 

enhancement, detection and analysis of calcifications, detection and analysis of masses 

and tumors, analysis of bilateral asymmetry, and detection of architectural distortion 

can be revised in (Rangayyan, Ayres et al. 2007).  

Finally, it can be concluded that ML-based methods for detecting breast cancer are 

achieving now a successful development degree, and these are beginning to be accepted 

and introduced by the medical community. However, a major effort is needed for 

developing more precise and robust ML-based methods, as support, to improve the 

performance of breast cancer CADx systems focused on diagnosis (classification) of 

suspicious breast cancer pathological lesions. 

2.3.4 Mammography data availability and clinical acceptance 

Although a large number of image features and machine learning classifiers have been 

developed and tested using different image databases, selecting the optimal image 

features and a machine learning classifier remains a challenged issue in CAD 

development and the performance of current commercial CAD systems still needs to be 

improved so that they can meet the requirements of clinics and screening centers (Park, 

Goo et al. 2004; Pisano, Gatsonis et al. 2005; Ciatto, Houssami et al. 2007; Metz 2008; 

Park, Pu et al. 2009; Oliver, Freixenet et al. 2010).  

Two main publicly available annotated mammograms databases are used in the vast 

majority of the CAD systems in the literature: the Mammographic Image Analysis 

Society Digital Mammogram Database (MIAS) (J. Suckling, S. Astley et al. 1994) 

consisting on about 300 mammograms classified into seven different classes and the 

University of South Florida Digital Database for Screening Mammography (DDSM) 

(Heath, Bowyer et al. 2001) containing about 3000 annotated mammograms. 

Additionally, the Nijmegen database (Karssemeijer 1993) is also used in some studies 

but left often recently. 

Most CAD systems presented in literature are evaluated with a few hundred cases 

from those databases or custom ones developed usually in collaboration with some 

medical institution providing anonimized patient cases. In general, together with the 

preprocessing required to handle the images, this makes results difficult to compare. 
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Apart from this, data is scarce and collecting it is a lengthy and tedious process, as 

requires deep involvement of specialists to segment and classify mammograms and 

access to potentially private data is mostly unwelcome by health sector technical staff. 

2.3.5 Summary of references 

Table 6 gathers selected literature sources for different aspects on breast cancer CAD 

and computer methods for medical imaging in general. Additionally, tables 7 and 8 

show a selection of results reported in the literature using different methods for the 

classification of microcalcifications and masses respectively. Note how results are 

reported using a variety of metrics using different datasets. For instance, the notion of 

specificity sometimes is reported as false positives per image (FPI) and sometimes as a 

true negative rate. 

Table 6: Selected general references for breast cancer CAD methods 

CAD reviews (Eadie, Taylor et al. 2011) (Sadaf, Crystal et al. 2011) (Oliver, Freixenet et al. 2010)

(Sweilam, Tharwat et al. 2010) (Jiang, Trundle et al. 2010) (Boyer, Balleyguier et al. 

2009) (The, Schilling et al. 2009)  (Rangayyan, Ayres et al. 2007) (Nishikawa 2007) (Wei, 

Yang et al. 2005)  

Image enhancement

reviews

(Martí, Oliver et al. 2010)  (Gurcan, Boucheron et al. 2009) (Krupinski 2008) (Rangayyan 

2005). 

Clinical acceptance (Onega, Aiello Bowles et al. 2010) (Paquerault, Hardy et al. 2010)  (Sanchez Gómez, 

Torres Tabanera et al.) (Wang, Jiang et al. 2010) (Sohns, Angic et al.) (Park, Pu et al. 

2009) (Metz 2008) (Ciatto, Houssami et al. 2007) (Pisano, Gatsonis et al. 2005) (Park, 

Goo et al. 2004)  

 

Table 7: Selected references for microcalcifications classification methods 

Reference Classification method and dataset used Results 

(Ren, Wang et al. 2011) ANN with DDSM, 648 cases, 633 benign, 115 malign AUC=0.975 

(Yu and Huang 2010) ANN with 20 mammograms from MIAS 94% sensitivity @ 1 FPI 

(Balakumaran, Vennila et 
al. 2010) 

Filter banks, 100 patients from DDSM 94% sensitivity @ 0.8 FPI 

(Kang, Ro et al. 2009) Foveal based method 93% sensitivity 
87.5% specificity 

(Papadopoulos, Fotiadis et 
al. 2008) 

Image enhancement techniques on MIAS and Nijmegen 
datasets  

AUC=0.932 (MIAS) 
AUC=0.915 (Nijmegen) 

(Regentova, Zhang et al. 
2007) 

Wavelet transforms and Markov random fields. 40 
mammograms from MIAS, 150 from DDSM 

95% sensitivity @ 2.5 FPI 
98% sensititivy @ 3.3% FP 

(Jiang, Yao et al. 2007) Genetic Algorithms with DDSM , 188 mammograms, 300 
ROI MC present, 300 ROI no MC 

AUC=0.9684 
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(Yongyi, Liyang et al. 2007) Content retrieval based. Custom dataset with 104 cases 
of which 46 malignant and 58 benign 

AUC=0.82 

(Singh, Kumar et al. 2006) SVM. Custom dataset with 435 mammograms AUC=0.9803 

(Yu, Li et al. 2006) Wavelet filters and Markov random fields. 20 
mammograms from MIAS database. 

92% sensitivity @ 0.75 FPI 

(Wei, Yongyi et al. 2005) Relevance Vector Machine. Custom, dataset with 141 
mammograms 

90% sensitivity @ 1 FPI 

(Soltanian-Zadeh, Rafiee-
Rad et al. 2004) 

Feature selection and wavelets. Custom dataset with 103 
mammograms 

90% sensitivity @ 0.5 FPI 

(Butler, Webb et al. 2003) Naïve Bayes. Custom dataset with 20 normal cases and 
22 tumorous 

>90% accuracy 

(El-Naqa, Yongyi et al. 
2002) 

SVM. Custom dataset with 76 mammograms 94% sensitivity @1 FP 

(Songyang and Ling 2000) 
 

ANN with Nijmegen dataset, 40 mammograms 105 
clusters of MCs 

90% sensitivity @ 0.5 FPI 

 

 

Table 8: Selected references for mammographic masses classification methods 

Reference Classification method and dataset used Results 

(Moon, Shen et al. 2011) Logistic regression custom dataset with 147 cases, 76 
benign, 71 malignant 

AUC=0.9466 
84.5% sensitivity 
85.5% specificity 

(Tzikopoulos, Mavroforakis 
et al. 2011) 

SVM  with 322 mammograms from MIAS dataset 85.7% accuracy 

(Shi, Cheng et al. 2010) Fuzzy SVM with 87 ultrasound images, 36 malignant, 51 
benign 

AUC=0.964 
91.67% sensitivity 
96.08% specificity 

(Wang, Lederman et al. 
2010) 

ANN trained with genetic algorithms, custom dataset 
with 200 mammograms (100 positive, 100 negative) 

AUC=0.754 
42% sensitivity 
90% specificity 

(Oliver, Freixenet et al. 
2010) 

Review (by reimplementing) different methods (region, 
contour, model, cluster based) on 261 mammograms 
from MIAS and 89 from custom dataset 

AUC=0.787 (MIAS) 
AUC=0.757 (custom) 

(Velikova, Samulski et al. 
2009) 

Bayesian network on multiview custom dataset with 
1063 cases (385 cancerous) 

AUC=0.868 

(Eltonsy, Tourassi et al. 
2007) 

Multiple concentric layers contours on 270 mammograms 
from DDSM 

81% sensitivity @ 2.4 FPI 

(Kom, Tiedeu et al. 2007) Local thresholding on custom dataset with 61 
mammograms 

AUC=0.946 
95.91% sensitivity 

(Bellotti, De Carlo et al. 
2006) 

ANN with custom dataset 3360 images (2307 negative, 
1062 positive) 

AUC=0.783 
80% sensitivity 

(Song, Venkatesh et al. 
2005) 

ANN with custom dataset 24 malignant, 30 benign AUC=0.856 
95% sensitivity 
76.5% specificity 

(Campanini, D Dongiovanni 
et al. 2004) 

Ensembled SVM 80% sensitivity 
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2.4 Conclusion 

The above sections aimed at describing current developments and status in the three 

different areas in whose intersection this thesis contributes, namely (1) ROC analysis 

usage in machine learning, (2) exploiting eInfrastructures and (3) machine learning 

applied to breast cancer computer aided diagnosis. In summary, this thesis aims to 

contribute at dealing with the following issues which have not yet been addressed to its 

full extent in related work: 

1. ROC analysis is not used systematically in machine learning. Mostly, AUC 

measures are used for classifier evaluation and primarily when ML is applied 

in specific areas such as medical imaging. 

2. There is substantial evidence that error rate minimization does not 

necessarily yield to AUC optimization but the vast majority of ML methods 

are designed for error rate minimization. This makes them suboptimal when 

AUC is a more appropriate measure for the problem in hand (such as in 

medical imaging). This is partly due to the fact that AUC usage in ML 

started relatively recently but also because of the magnitude of the effort to 

required to redesign the existing methods. In addition, there is moderate 

evidence that AUC might be a more comprehensive metric than error rate 

for evaluating classifier performance. 

3. eInfrastructures are in general costly to use, in terms of the effort required to 

adapt existing software and the available tools to interact with existing 

middleware and resource providers, specially in Grids. Furthermore, 

interoperability issues limit the practical possibility to exploit 

eInfrastructures different from the ones in which an application is initially 

deployed, hindering the reach of the invested efforts. 

4. In automated breast cancer detection there have been significant results in 

the CADe for microcalcifications but moderate progress have occurred in 

CADe for masses, architectural distortions and asymmetries. CADx is still 

underdeveloped with respect to CADe and more work is needed in this area. 

5. Machine learning applied to breast cancer CAD has obtained reasonably 

good results but, as shown before, still needs improvement. Systematic 

inclusion of ROC analysis in machine learning could contribute to results in 
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this area which might, in turn, become a rich application ground for ROC 

oriented machine learning. 

Therefore, the work leading to this thesis was devised to contribute in these issues 

and, as such, the goals and contributions described in Sections 1.2 and 1.3. The 

following sections describe this work and its results. First, Chapter 3 describes a 

method by which existing ML methods can be adapted for AUC optimization with 

reasonable effort. It also provides the means for the proposed method to be practical by 

developing a computationally efficient AUC calculation algorithm. Then, Chapter 4 

describes the software tools developed to enable effective exploitation for machine 

learning of computational resources provided by eInfrastructres. These tools enable 

both the validation of ML methods (such as what is described in Chapter 3) and its 

application in practice. This is precisely what is shown in Chapter 5, which uses the 

techniques and tools developed in a real medical environment for breast cancer CADx. 

This last issue constitutes the contribution of this thesis to the project within which it 

was initially conceived. 
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Chapter 3 

3 ROC analysis for Machine 
Learning based classifiers  

3.1 Introduction 

Evidence reported by literature (see Section 2.1) shows that AUC optimization is not 

necessarily achieved by minimizing the error rate, which is what most machine learning 

methods are designed for. Although a few efforts have been devoted into developing 

new machine learning algorithms for AUC optimization it would be desirable to be 

equipped with a method to adapt existing algorithms with reasonable effort, so that the 

existing body of knowledge and techniques can be reused for AUC optimization. 

However, AUC calculation is computationally costly and this constitutes a major 

drawback since machine learning algorithms using AUC intensively may become too 

expensive to compute rendering them impractical. To sort this out firstly, Section 3.2 

describes a method to efficiently approximate the AUC of any ranked dataset with 

arbitrary user defined precision. Then, Section 3.3 provides a general formulation for an 

AUC based loss function aimed at substituting the error measures used in machine 

learning (such as the squared error) enabling existing machine learning algorithms for 

AUC optimization. Then, it is incorporated and experimentally validated into different 

kinds of existing training algorithms for multilayer perceptrons (Ramos-Pollan, 

Guevara Lopez et al. 2010).  
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3.2 Efficient AUC error bounded approximation 

Efficient AUC computation is essential when using AUC based metrics in iterative ML 

algorithms, since it may render good theoretical results impractical to use. In the initial 

experimental runs of this thesis work, it was observed that commonly used AUC 

calculation techniques, such as the Wilcoxon-Mann-Whitney statistic provided by 

Weka (Mark Hall, Eibe Frank et al. 2009), slow down 5 to 10 times the ML algorithms 

modified for AUC optimization described in Section 3.3. Still, it was also observed that 

Weka already provides a fast method with respect to other implementations of the 

statistic. To overcome this, and herewith presented, an efficient AUC calculation 

method was developed to approximate the actual AUC value to an arbitrary maximum 

error established by the user. It is based on discretizing the score space for each dataset 

element and, therefore, removing the need to full sorting which is what hinders 

computing performance. Additionally, it produces all necessary error metrics and 

partial AUC components required by the method described later in Section 3.3.  

3.2.1 Definition 

Table 23 in page 153 shows the notation used throughout this thesis to denote datasets 

and classifiers. The Wilcoxon-Mann-Whitney statistic providing an empirical measure 

of the AUC of dataset � � �7 ∪ �9 whose elements have been ranked by classifier * was 

given in equation 1.1 and it is recalled here: 

�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9|  

Now, we define the contribution of element = ∈ � to the AUC in as 

�()�=, *� � 	
\]̂
]_		∑ ,$*-.� � / *-.�=�'0∈23 |�7| ∙ |�9| 	
�	= ∈ 	 �7				∑ ,$*-.�=� / *-.���'4∈25 |�7| ∙ |�9| 	
�	= ∈ 	 �9

O (3.1) 

Note that in the Wilcoxon-Mann-Whitney statistic the order of the summation does 

not matter, therefore: 

Q�()�=, *�`∈2 � Q �()��, *�4∈25
�	 Q �()� , *�0∈23

� 2	�()��, *� 
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We also define the maximum contribution of element = ∈ � by observing that, if = is 

positive, the maximum possible value for �()�=, *� is reached when the score of = is 

greater than all negative elements of �, and inversely when = is negative 

�()ab`�=� � 	
\]̂
]_		 |�9||�7| ∙ |�9| � 	 1|�7| 				
�	=	 ∈ 	 �7		 |�7||�7| ∙ |�9| � 	 1|�9| 				
�	=	 ∈ 	 �9

O (3.2) 

Approximation through discretization 

The notation in table 9 is used to define a discretization of the score space into 

contiguous, non-overlapping subintervals of equal length. Then, each element of the 

dataset is assigned to the subinterval containing the score given to it by a classifier 

(denoted by cd̀), and positive and negative elements in subintervals below and above 

are counted in the corresponding definition for N���e. cd̀,25 , N���e. cd̀,23 , N���. cd̀,25 
and		N���. cd̀,23 

Table 9: Discretization of the score space 

c � gcA, … , ci, … , caj ci ⊂ $0,1',! ∈ l		 A set of ! subintervals in the $0,1' interval. 
 ci denotes a generic interval of the set ∀	ci, cn ∈ c, ci ∩ cn � 	∅	 All intervals are non overlapping ∀	ci, cn ∈ c, |ci| � |cn|	 All intervals have the same length 

o cipq∈	p
�	 $0,1' The set of intervals fully covers the $0,1' 

interval ci / cn ⇔	∀	
 ∈ ci,	∀	s ∈ cn 			
 / s	 Order relation between any two intervals 

cd̀ �	 ci	|	*-.�=� 	∈ 	 ci	 Interval to which  = ∈ � belongs according 
to the score given by classifier * cid,2 � g	= ∈ �	|	cd̀ � cij	 Set of elements belonging to interval  ci 

cid,25 			cid,23  
Sets of positive and negative elements 
belonging to interval  ci 

cd̀,2 � g=′ ∈ �	|	*-.�=′� ∈ cd̀j Set of elements belonging to the interval to 
which = ∈ � belongs 

cd̀,25 		cd̀,23  
Set of positive/negative elements belonging 
to the same interval to which = ∈ � belongs N���e. cd̀,2 �	 o cid,2pqu	pvw	

 Set of elements belonging to intervals below 
the interval to which = ∈ � belongs 

N���e. cd̀,25 		N���e. cd̀,23  

Set of positive/negative elements belonging 
to intervals below the interval to which = ∈ � belongs 
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N���. cd̀,2 �	 o cid,2pqx	pvw	
 Set of elements belonging to intervals above 

the interval to which = ∈ � belongs 

N���. cd̀,25 		N���. cd̀,23  

Set of positive/negative elements belonging 
to intervals above the interval to which = ∈ � belongs 

 

With this, the contribution of element = ∈ � as defined in equation (3.1) is 

approximated by 

�()b44�=, *� � 	
\]̂
]_		|N���e. cd̀,23||�7| ∙ |�9| 	
�	= ∈ 	 �7		
		|N���. cd̀,25||�7| ∙ |�9| 	
�	= ∈ 	 �9

O (3.3) 

This is, for positive elements, by counting the number of negative elements in 

subintervals below the one to which the positive element belongs; and for negative 

elements, by counting the number of positive elements in subintervals above the one to 

which the negative element belongs. Figure 18 below illustrates this discretization 

process with positive elements (in blue) and negative elements (in red) binned into the 

corresponding intervals. The count of positive and negative elements is also shown for 

each interval. 

 

Figure 18: Discretization of AUC score space 

 

Finally, �()��, *�, the actual dataset AUC, is approximated either by looping over 

the positive elements: 

�()yz{��, *� � 	∑ |N���e. c4d,23|4∈25|�7| ∙ |�9|  (3.4) 

or by looping over the negative elements: 
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�()yz{��, *� � 	∑ |N���. c0d,25|0∈23|�7| ∙ |�9|  (3.5) 

The function is named �()yz{��,  � since it actually constitutes a lower bound of the 

actual AUC, as will become evident below. In fact, we observe that the expression 

|N���e. c4d,23| renders the same value for all positive elements of each subinterval so we 

do not need to loop over all positive elements, but only over all subintervals knowing 

that all positive elements of such subinterval will contribute the same value through 

this approximation. This way equation 3.4 can be rewritten as: 

�()yz{��, *� � 	∑ |cid,25| ∙ |N���e. cid,23|pq∈	p |�7| ∙ |�9|  (3.6) 

As all subintervals have the same length Mcid,25M and Mcid,23M	can be calculated in one 

scan of the dataset � by dividing the score of each element with the chosen subinterval 

length, and |N���e. cid,23| can be calculated in one further scan over the set of 

subintervals accumulating Mcid,23M. This way, �()yz{��, *� computing time is 

proportional to |�| � |c| (the number of elements in the dataset plus the number of 

subintervals defined). Since |c| is a fixed constant established a priori, not depending on 

dataset size, the time complexity of this method remains as |� �, where  � |�|, as 

opposed to |� log� �� as required by the sorting operations usually made to calculate 

the Wilcoxon-Mann-Whitney statistic in equation 1.1. In fact, experiments in Section 

3.2.2 below show that values for |c| between 50 and 100 give produce in general the 

greatest speedups. 

Computing the approximation error 

We choose equation 3.4 to understand the error we are incurring when using it as 

approximation for the AUC (an analogous reasoning could be made for equation 3.5). 

For any positive element � ∈ �7 the Wilcoxon-Mann-Whitney statistic uses the 

expression: 

Q ,$*-.� � / *-.���'0∈23
 (3.7) 

which counts the number of negative elements whose score is less than the score of �, whereas equation 3.4 uses the expression: 
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|N���e. c4d,23| (3.8) 

which denotes the number of negative elements in subintervals below the subinterval 

to which � belongs, without including the elements of the subinterval itself (this is why 

3.4 constitutes a minimum). Therefore, the only negative elements that equation 3.8 

leaves out with respect to equation 3.7, are the negative elements belonging to the same 

subinterval of �, denoted by c4d. Those elements are accounted for by equation 3.7 only 

if their score is less than the score of �. In the worst case (perfect relative score of 

positive and negative elements within c4d), all negative elements of c4d have a lower score 

than � itself and will be accounted for in equation 3.7 but not in equation 3.8, so the 

maximum number of negative elements left out by using 3.8 instead of 3.7 will be 

Mc4d,23M which denotes the number of negative elements of the subinterval to which � 

belongs. Thus, the maximum error of using equation 3.3 to approximate the 

contribution of a positive element � ∈ �7 to the AUC is then: 

�()ab`.���z���, *� � 	 |c4d,23||�7| ∙ |�9| 
Note that the maximum error is the same for all positive elements within any 

subinterval. So the accumulated maximum error of all positive elements within the 

same subinterval is: 

�()ab`.���z��	ci, *� � 	 |cid,25| ∙ |cid,23||�7| ∙ |�9|  (3.9) 

 

where, recalling the definitions made before, |cid,25| and |cid,23| denote respectively 

the number of positive and negative elements of subinterval ci. And finally, we add up 

the maximum error of all subintervals to obtain the total maximum error incurred 

when using this approximation for a given dataset: 

�()ab`.���z���, *� � 	∑ |cid,25| ∙ |cid,23|pq∈p|�7| ∙ |�9|  (3.10) 

Therefore, using equation 3.6, the maximum value for Az is given by: 

�()dR�d��, *� � 	�()yz{��, *� � �()ab`.���z���, *� 
A naive approximation to the total AUC would be to take the midpoint between �()dR�d��, *� and �()yz{��, *� 
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�()b44��, *� � �()yz{��, *� � �()ab`.���z���, *�2  

� 	∑ |���,��| ∙ |�����. ���,��|��∈	� |��| ∙ |��| � ,�∑ |���,��| ∙ |���,��|��∈�|��| ∙ |��| ⇒ 

�()b44��, *� � ∑ |cid,25| ∙ �2|N���e. cid,23| � |cid,23|�pq∈p 2|�7| ∙ |�9|  

 

(3.11) 

and it is this expression that we use as approximation to �()��, *�. This 

approximation can be calculated in the same interval scan together with |N���e. cid,23| 
adding no extra time complexity to the method. A pseudo code to compute this 

approximation is shown in algorithm 1, page 161. 

Note that, in equations 3.9 and 3.10, subintervals having no negative or no positive 

elements produce no error and thus �()b44 is exact for those intervals. This means 

that datasets whose positive and negative elements are well distributed in different 

intervals tend to get better approximations. 

Approximation example 

An example illustrates how this approximation works with a synthetically generated 

dataset of 30 elements, running the proposed method by using 15 subintervals of equal 

length. Table 10 shows the dataset, composed of 17 positive and 13 negative elements 

and whose Wilcoxon-Mann-Whitney statistic for its Az value is 0.905.  

Table 10: Elements of example dataset 

element 1 2 3 4 5 6 7 8 9 10 
class P P P P P P P P P P 
score 0,071 0,108 0,158 0,222 0,299 0,388 0,484 0,579 0,666 0,737 

element 11 12 13 14 15 16 17 18 19 20 
class P P P P P P P N N N 
score 0,782 0,798 0,782 0,737 0,666 0,579 0,484 0,388 0,299 0,222 

element 21 22 23 24 25 26 27 28 29 30 
class N N N N N N N N N N 
score 0,158 0,108 0,071 0,045 0,027 0,016 0,009 0,005 0,002 0,001 

 

Table 11 shows the components of equation 3.11 for each one of the 15 intervals. 

The actual AUC=0.905 lies well within the [0.900, 0.936] range determined by the �()yz{ and �()ab`.���z�. The approximated AUC is therefore 0.919 and the actual 

error of this approximation is 0.014. Note that only intervals containing at least one 

positive element contribute to the AUC, and only the ones containing both positive and 
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negative elements contribute to the error, as expressed in equation 3.9. This shows how 

datasets having positive and negative elements mixed up within the same intervals get 

higher approximation errors. 

Table 11: AUC approximation components for the example dataset 

ci 
ci 

 low limit 

ci  

high limit 
|cid,23| |cid,25| |N���e. cid,23| �()yz{ �()ab`.���z� �()b44 

1 0,000 0,067 7 0 0 0,000 0,000 0,000 
2 0,067 0,133 2 2 7 0,063 0,018 0,072 
3 0,133 0,200 1 1 9 0,041 0,005 0,043 
4 0,200 0,267 1 1 10 0,045 0,005 0,048 
5 0,267 0,333 1 1 11 0,050 0,005 0,052 
6 0,333 0,400 1 1 12 0,054 0,005 0,057 
7 0,400 0,467 0 0 13 0,000 0,000 0,000 
8 0,467 0,533 0 2 13 0,118 0,000 0,118 
9 0,533 0,600 0 2 13 0,118 0,000 0,118 
10 0,600 0,667 0 2 13 0,118 0,000 0,118 
11 0,667 0,733 0 0 13 0,000 0,000 0,000 
12 0,733 0,800 0 5 13 0,294 0,000 0,294 
13 0,800 0,867 0 0 13 0,000 0,000 0,000 
14 0,867 0,933 0 0 13 0,000 0,000 0,000 
15 0,933 1,000 0 0 13 0,000 0,000 0,000 
     TOTALS 0,900 0,036 0,919 

 Error bounded AUC approximation 

The same process we just did by splitting the [0,1] interval and assigning all the 

elements of the dataset to its subintervals, can be repeated within selected subintervals 

to lower their �()ab`.���z��	ci, *� and then reach a priori established desired error 

bounds. To calculate �()b44��, *� with �()ab`.���z���, *� � �, having � a user defined 

maximum desired error, we proceed as follows, starting with [0,1] as our first interval:  

 

1. split current interval and distribute its elements into its subintervals 

2. calculate �()b44��, *� and �()ab`.���z���, *� 
3. while (�()ab`.���z���, *� >  � ) 

choose subinterval ci with greatest �()ab`.���z��	ci, *� and repeat steps 1 and 2 

but applied only to elements within ci 

4. end while 

 

Figure 19 illustrates this approach, where the interval having the greatest error is 

chosen for further granularity in its discretization. Whenever steps 1 and 2 are 
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performed to further split a selected subinterval, ci, an extra time complexity |�|cid,2|� 
is added to our method where, recall, |cid,2| denotes the number of elements of interval ci. In the worst, and rare, case ci gathers all dataset elements (and all other 

subintervals remain empty) adding an extra |� � time complexity, with  � |�|, the 

dataset size. In our validation below, test runs needed an average of five iterations 

(splitting the initial [0,1] interval and other three subintervals) to reach a maximum 

guaranteed error � � 0.01, meaning that the time complexity of this method stayed in 

practice well below 5|� �, since each iteration deals with a decreasing number of 

dataset elements. Appendix II shows the algorithms implementing the full method, 

which is denoted in the rest of this text as �()b44. 

 

Figure 19: Iteratively reducing the AUC approximation error 

3.2.2 Experimentation and Validation 

�()b44 is to be used in situations when AUC needs to be computed intensively such as 

for AUC optimization in ML methods as in Section 3.3. Therefore, building evidence 

that it actually speeds up AUC computation is essential to use it with confidence 

further on. Its major theoretical weakness is that, in order to achieve a user defined 

maximum error in the approximation, the number of recursions needed to be performed 

is left unbounded, depending on the degree of “mixture” of the scores assigned by a 

classifier to negative and positive elements of a dataset. It is therefore necessary to 

understand how �()b44 behaves with scored datasets with different degrees of 

overlapping of their distributions for positive and negative elements. 
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The goal of the experiments carried out is two-fold: 
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1. Measuring whether �()b44 actually provides a faster AUC computation than 

a selected baseline implementation. 

2. Gaining some insight on the conditions (scored datasets) under which �()b44 provides greater or lower speedups. 

A straight forward implementation of the Wilcoxon-Mann-Whitney statistic for a 

scored dataset would require sorting and then counting how many negative elements 

fall below each positive element. This approach has been taken by virtually all software 

toolkits providing AUC metrics and, in particular, the Weka toolkit (Mark Hall, Eibe 

Frank et al. 2009) which is a widely used machine learning toolkit implemented in 

Java. Weka uses its own optimized data structures for dataset manipulation (fast 

vectors) so it is in general faster than other algorithms using standard Java data 

structures (Lists, Collections, etc). This was tested by developing a straight forward 

implementation of the Wilcoxon-Mann-Whitney statistic sorting regular Java 

collections and comparing its computation time with Weka’s. This resulted in Weka 

being always faster in computing AUC and, in the case of large datasets (10000 

elements or more), by almost one order or magnitude. In addition, Weka’s source code 

is publicly available which allows for deeper understanding and comparison of its 

implementation. 

Therefore, Weka’s AUC is considered to be the baseline used herewith against which 

a Java implementation of �()b44 would be compared. In particular, the following 

class/method included in Weka 3.6.4 (released on Dec 2010) is used in this thesis to 

compute the AUC: 

weka.classifiers.evalaution.ThresholdCurve.getROCArea() 

AUC computation times of Weka and �()b44 were measured strictly, this is, 

discarding all data preparation and processing stages required before and after making 

the call to the actual computation method, and the speedup obtained by �()b44 for a 

given dataset � with respect to Weka is defined as the ratio of the measured times: 

�������	��� � �
!����V�����
!���()b44���� 
Thus, a speedup=2 means that �()b44 runs twice as faster as Weka (in half the 

time), and a speedup=1/2 means the opposite.  
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3.2.2.2 Experimental setup 

Two sets of experiments were designed to cover the goals just explained. First using 

synthetically generated datasets and, second, with real datasets scored by ML 

classifiers. Using synthetic datasets allows control of the generated distributions of the 

scores for positive and negative elements and, therefore, experiments can be designed to 

cover different degrees of overlapping of the distributions, aiming at gaining insight on 

the behavior of the speedups provided by �()b44. Real datasets, which need to be 

scored by a certain ML classifier to produce a rank, allow understanding its 

applicability in practice. In this sense, experiments were designed to understand 

speedups with respect to (1) datasets with different number of elements, class skew and 

distributions of positive and negative scores and (2) the number of intervals used when 

running �()b44 
Synthetic Datasets 

Synthetic scored datasets were generated by drawing the score of the positive and 

negative elements from two different normal distributions, denoted in their generic form 

by �7�Y7 , Z7� and �9�Y9, Z9�. A normal distribution is determined uniquely by its 

mean (Y) and standard deviation (Z) and if both are similar for �7 and �9 their 

distributions are more mixed up. This might hinder �()b44 performance, since 

recursion only happens if positive and negative scores lie within the same intervals. 

Therefore, to observe �()b44 behavior under this perspective, scored datasets were 

generated from different combinations of �7 and �9 having, each combination, 

different means and standard deviations. Table 12 below shows the values used to 

generate the synthetic datasets. 

Table 12: Values of means and standard deviations for synthetic datasets 

Y7 0,0 0,2 0,4 0,6 0,8 1,0 Y9 0,0 0,2 0,4 0,6 0,8 1,0 Z7 0,01 0,05 0,1 0,2 0,3 0,5 Z9 0,01 0,05 0,1 0,2 0,3 0,5 

 

There are 6� different combinations of the values in table 12 and for each 

combination datasets were generated of different sizes (with 100, 1000, 10000 and 

100000 elements) and different class skews (with 10%, 30%, 50%, 70% and 90% of the 
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elements labeled as positive). Note that �()b44 requires scores to lie within the $0,1' 
interval so, when sampling, values outside $0,1' were discarded. Due to this, the final 

sampled distributions of positive and negative scores are not exactly normal, but 

nevertheless, valid for our purposes. Finally, for each dataset AUC computation with �()b44 and Weka was run 10 times to allow for statistical smoothing. 

The AUC of each dataset is therefore determined by four parameters (Y7 , Z7 , Y9 , Z9). 

To simplify data visualization and analysis, datasets are grouped by the difference of 

means (Y7 � Y9) and standard deviations (Z7 � Z9) of their positive and negative 

distributions, so that experimental analysis can be focused in the degree of mixture of 

positive and negative scores that, as just mentioned, might hinder �()b44 performance. 

Figure 20 shows, for each Y7 � Y9 and Z7 � Z9, the PDFs of the positive scores (blue) 

and negative scores (red) of a representative generated dataset of that group, together 

with the averaged AUC of all datasets generated in that group. It can clearly be seen 

how AUC is directly influenced by Y7 � Y9 and, at a lesser degree, by Z7 � Z9. 

 

Figure 20: Representative positive and negative distributions of synthetic datasets 
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UCI datasets 

Table 24 in page 154 shows the datasets used in this experimentation which were 

retrieved from the UCI Machine Learning repository (Frank and Asuncion 2010). 

Several datasets were chosen with a variety of class skews and sizes. Most datasets are 

originally binary while others distributed data into more than two classes. In these 

cases different classes were merged together as indicated to finally produce a single 

binary dataset.  

For each selected UCI dataset 50 configurations of multilayer perceptron and 

support vector machine classifiers were trained and later used to score the dataset. The 

resulting scored datasets were then given to �()b44 and Weka for AUC computation 

and times were measured. �()b44 was run five times, each one with a different number 

of preset intervals (50, 75, 100, 200 and 500). This process was repeated 10 times and 

measured times were averaged. The goal was not to obtain well performing classifiers 

and, in fact, we were interested in obtaining a variety of AUC scores for each dataset 

since the aim is to understand the speedups obtained by using �()b44. For this reason, 

for each classifier configuration values of the parameters (such as learning rate or 

number of intermediate neurons for multilayer perceptrons, or kernel type, gamma or 

cost for support vector machines) were randomly selected before each of the 50 training 

and scoring cycles for each dataset.  

3.2.2.3 Results and discussion 

For synthetic datasets, table 13 shows the average speedup obtained by �()b44 with 

respect to Weka for the different Y7 � Y9 and Z7 � Z9 ranges shown in figure 20. Then, 

figure 21 shows the speedup further averaged per Y7 � Y9 (left) and Z7 � Z9 (right). 

Each point represents the average of speedups obtained by all datasets with the same Y7 � Y9 and Z7 � Z9 values and vertical bars represent with their length one standard 

deviation (for the speedup). 
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Table 13: AUC speedup per differential mean and standard deviation range 

 

 

Figure 21: AUC speedup per differential mean and standard deviation range 

It can be clearly seen that greatest speedups are obtained when the means for 

positive and negative scores are more separated which, in general, corresponds to less 

mixed up distributions (see figure 20). This confirms the intuition that �()b44 works 

better in these cases. Nevertheless, the average speedup is always above 3.5. Differences 

in standard deviation seem to have a must lesser influence.  

Figures 22 and 23 show the speedup obtained with respect to dataset size and class 

skew. Whereas for synthetic datasets (left sides) the plot shows the averages and 

standard deviation for the speedup obtained for all generated datasets, in the dispersion 

plot for the selected UCI datasets the speedup is shown for each dataset represented as 

a dot when running �()b44 with 75 intervals. 
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Figure 22: AUC speedup per dataset size for synthetic and UCI datasets 

 

Figure 23: AUC speedup per class skew for synthetic and UCI datasets 

Finally, figure 24 shows how the choice of the number of intervals with which �()b44 is run also influences speedup. Observe that the number of intervals is a user 

definable parameter when running �()b44 and not a dataset characteristic such as the 

dataset size or class skew. Therefore, the right plot shows the averaged speedup for all 

UCI dataset for each number of intervals and the standard deviations obtained. 

 

 

Figure 24: AUC speedup per intervals for synthetic and UCI datasets 
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Results show that speedups obtained by �()b44 are mostly influenced by dataset 

size and the number of intervals used to run �()b44. Whereas dataset size is 

determined by the nature of the dataset in hand, the number of intervals is a user 

definable parameter and, based on this experimentation, values between 75 and 100 

seem to be a reasonable choice. Class skew seems not to influence speedup. 

In addition, the behavior observed in the selected UCI datasets seems to follow the 

one modeled by the synthetic datasets with somewhat lower speedups and greater 

variability, which might be due to the great difference in the sampling population in 

each case (several thousands of synthetic datasets and 18 selected UCI datasets). In 

any case, this is a result that provides the longed for confidence to effectively use �()b44 in the following developments of this thesis. Furthermore, these experiments 

were also useful to tune the number of intervals with which �()b44 was to be later 

used. 

3.3 Generalizing AUC optimization in multilayer 
perceptron classifiers 

This section provides a general formulation for an AUC error measure to be used as 

loss function in machine learning, where typically a squared error measure is used. 

Doing so, existing machine learning algorithms can be adapted for AUC optimization 

with reasonable effort by interchanging the error calculation routines and leaving their 

core logic untouched. Experimental validation was performed on different training 

algorithms for multilayer perceptrons showing, in the way, how to sort out their 

specific particularities. 

3.3.1 Theoretical definition 

The general definitions made in table 23 in page 153 and those in Section 3.2 for 

measuring �()�=, *� and �()ab`�=� are now used to define the following error 

measures for individual dataset elements and for the whole dataset: 

�����=, *� � 1 � �()�=, *��()ab`�=� 
 ������, *� � 1 � 	�()��, *� 

(3.12) 
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Recall that �()�=, *� represents the contribution of element = to the AUC of 

dataset � with respect to the scores assigned by classifier *, and �()ab`�=�, is the 

maximum possible contribution of element =. It would have been tempting to define �����=, *� � 	�()ab`�=� � �()�*, =�, however, �()ab`�=� is usually a very small 

value (specially for large datasets), which would make it unpractical for machine 

learning training purposes. Therefore, �����=, *� and ������, *� become, respectively, 

the loss function (for a single dataset element) and empirical error over the whole 

training set to substitute the commonly used ones in machine learning (see equations 

1.3 and 1.4 on page 11): 

G��, *�=�� � �����=, *� ���PPPPP � ������, *� (3.13) 

Observe, first, that this definition preserves the fact that ���PPPPP is the mean of G��, *�=�� as demonstrated in Lemma 1 (page 164) and, second, it is only the loss 

function or the global empirical error that needs to be substituted whenever using this 

approach in existing machine learning algorithms, leaving their core logic intact. 

Equally important, the contribution to the dataset AUC of each element, �()�=, *�, 
can provided by the efficient AUC approximation method described in previous section 

through �()b44�=, *� as defined in equation 3.3.   

AUC optimization in multilayer perceptrons 

We now set forth to use this definition with different kinds of training algorithms for 

multilayer perceptrons (MLP) and experimentally validate it (Ramos-Pollan, Guevara 

Lopez et al. 2010). Without loss of generality, definitions in table 23 include those for 

binary MLP based classifiers having two output neurons which, for a given input vector =, produce two values, *7�=� and *9�=�, within the $  ���	,   � ¡' interval. The 

output neuron producing *7�=� conveys a notion of the positiveness ascribed by * to 

input vector = and *9�=� its negativeness. Thus, their ideal values are defined as:  

�7�=� �   � ¡	�9�=� �   ��� 				
�			= ∈ �7 

 �7�=� �   ���	�9�=� �   � ¡					
�			= ∈ �9 

(3.14) 

and fix a score metric which linearly transforms the output of the two neurons to 

the [0,1] interval according to equation 3.14, so that a score of 0.0 corresponds to an 
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ideal negative element (*7�=� �   ���	 and *9�=� �   � ¡	) and a score of 1.0 

corresponds to an ideal positive element (*7�=� �   � ¡	 and *9�=� �   ���	) 

*-.�=� � *7�=� � *9�=�2�  ab` �   ���	� � 12 

 

It can be easily proven that this definition ensures that *-.�=� stays within the [0,1] 

interval. In fact, for AUC purposes this restriction is not strictly needed as what 

matters is the relative ordering between positive and negative dataset elements induced 

by the score *-. assigned to each one. Commonly, a distance metric measures the error 

at the neuron’s output with respect to the ideal output: 

∆7�=, *� � �7�=� � *7�=� 
∆9�=, *� � �9�=� � *9�=� (3.15) 

and a root mean square error defines the loss function and empirical error: 

�£¤2�=, *� � ¥∆7�=, *�K � ∆9�=, *�K2  

 

�£¤2��, *� � ∑ �£¤2�=, *�`∈2 |�|  

(3.16) 

so that ���PPPPP � �£¤2��, *� and G��, *�=�� � �£¤2�=, *� preserving the fact that ���PPPPP is 
the mean of G��, *�=��. Then, �£¤2�=, *� is mapped to each output neuron by simply 

using the distance metric of equation 3.15 as follows 

 �7�=, *� � �7£¤2�=, *� � ∆7�=, *� 
 �9�=, *� � �9£¤2�=, *� � ∆9�=, *� 

At this point it is relevant to distinguish two kinds of MLP training algorithms: (1) 

those using the loss function iteratively at each dataset element = through �7�=, *� and �9�=, *�, the error measures at each output neuron, and (2) those using ���PPPPP � ���, *�, 
the global empirical error measure for the whole dataset. We denote the first kind of 

algorithms by element error training algorithms and the second kind by dataset error 

training algorithms. Notice that dataset error training algorithms only use ���, *� 
regardless how it is calculated. In the case above (equation 3.16), it happens that �£¤2 
directly uses �£¤2, but this might not be necessarily the case. 
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Now, to enable for AUC optimization existing MLP training algorithms using �£¤2 
or �£¤2, we use instead ���� and ���� as defined in equation 3.12. Out of the four 

MLP training algorithms mentioned in table 2 (page 14) both feedforward 

backpropagation (ffbp) and resilient propagation (ffrp) are element error training 

algorithms, whereas feedforward simulated annealing (ffsa) and genetic algorithms 

(ffga) are dataset error training algorithms, which provides a rich test ground for 

validating the proposed substitution. 

However, one final twist is required, since �����=, *� still needs to be mapped to 

each output neuron of a binary MLP classifier so that the error at each neuron can be 

backpropagated in the case of element error training algorithms (ffbp and ffrp). This is 

done by defining �7�=, *� � �7����=, *� and �9�=, *� � �9����=, *� in the following way: 

�7����=, *� � �����=, *� ∙ ∆7�=, *�|∆7�=, *�| � |∆9�=, *�| 
 

�9����=, *� � �����=, *� ∙ ∆9�=, *�|∆7�=, *�| � |∆9�=, *�| 
 

Therefore, the loss function, G��, *�=�� � �����=, *� is distributed between the 

positive and negative neurons according to how far each one is from their ideal value, 

maintaining the direction of the distance metric (∆7 and ∆9). This way, dataset 

elements having a perfect AUC score, where �()�=, *� � �()ab`�=�, do not produce 

any error even if the output values of the output neurons are not the ideal ones. This 

argument is at the root of the analysis in (Cortes and Mohri 2004) claiming that error 

rate minimization does not necessarily yield to AUC optimization. In the limit case, 

where |∆7�=, *�| � |∆9�=, *�| � 0, we establish both �7����=, *� � 0 and �9����=, *� � 0.  
With this, the proposed ������, *� error measure is injected for dataset error 

training algorithms (ffsa and ffga) replacing �£¤2��, *�, whereas �7����=, *� and �9����=, *� replace �7£¤2�=, *� and �9£¤2�=, *� respectively for element error training 

algorithms (ffbp and ffrp). This is achieved by simply substituting the error calculation 

routines without altering the rest of the algorithm logic. 

3.3.2 Experimentation and Validation 

The error calculation routines of each of the four MLP training algorithms mentioned 

(ffbp, ffrp, ffsa and ffga, as implemented in the Encog toolkit) were modified to inject 



74 Chapter 3 ROC analysis for Machine Learning based classifiers 

 

 

���� and ���� as just defined. The corresponding modified algorithms are named 

ffbproc, ffrproc, ffsaroc and ffgaroc and, since only the error calculation routine is 

modified, they accept the exact same training parameters as their unmodified 

counterparts. The term original algorithms will be used to refer generically to the 

algorithms as originally delivered by Encog (using RMS based error measures), whereas 

the term modified algorithms refers to their counterparts modified as described in 

previous section to target for AUC optimization. A training configuration is a set of 

particular values of the training parameters each MLP training algorithm accepts. 

Therefore, the same training configuration can be used by the original and the modified 

algorithms facilitating comparisons. For instance, learning rate and momentum are the 

training parameters accepted by both ffbp and ffbproc.  

3.3.2.1 Goals and metrics 

Experimentation seeks to provide evidence that the modified algorithms actually obtain 

better AUC measures that their original counterparts. A variety of datasets and 

training configurations was devised so that experimentation was rich enough to provide 

evidence statistically meaningful. For each dataset, the same configurations were 

trained for each algorithm (such as ffbp) and its modified counterpart (ffbproc), and the 

AUC obtained by all configurations for each one were averaged. Therefore, each dataset 

and training algorithm produced two AUC measures, one representing the average of 

all the configurations trained with the original algorithms and another one representing 

the average of the same configurations trained with its modified version. Direct 

comparison of both measures across all datasets is to give, for each algorithm, a notion 

of the difference in AUC obtained by the method proposed above. 

3.3.2.2 Experimental setup 

The following datasets from the UCI repository described in table 24 in page 154 were 

used: bcwd, echocard, glass, haber, heartsl, liver, mmass, park, pgene, pimadiab and 

spectf. The criteria to select those datasets was: (1) they are binary datasets, (2) they 

provide a diversity of skews in their class distribution, (3) they represent classification 

tasks of different nature and (4) they contain less than 1000 elements, which makes 

MLP training affordable from a computational point of view. Class skew was 

considered important since AUC is known to be insensitive to class distribution and 

this might affect optimization obtained. 
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For each dataset, a set of MLP configurations was defined for each original 

algorithm and its modified version (ffbp/ffbproc, ffrp/ffrproc, ffsa/ffsaroc, ffga/ffgaroc). 

The BiomedTK/C3 software frameworks (see Section 4) were used to manage MLP 

configurations and send them to a Grid computer cluster for training. MLP 

configurations are defined in text files with a specific format. Figure 25 shows the 

configuration file used for ffsa/ffsaroc MLPs with the SPECTF dataset, which results 

in 24 configurations for ffsa and another 24 configurations forffsaroc.  

 
Figure 25: Configurations evaluated to compare FFSA vs. FFSAROC. 

Configurations include MLPs with one or two hidden layers, with 89 or 178 neurons 

in the first hidden layer, with the parameter start-temperature set to 30 or 100, etc. 

Similar configurations sets were defined for each algorithm and dataset, fixing the 

particular parameters of each training algorithm to be the same for all datasets and 

varying only the number of input neurons according to the dataset input features while 

keeping the same proportions in the number of neurons of the hidden layers with 

respect to the input layer as in the example in figure 25. Each MLC configuration was 

trained with 10-fold cross-validation. All together, 180 MLC configurations were trained 

for each of the 12 datasets, 90 MLC configuration corresponding to the original 

algorithms and 90 to their corresponding modified versions. In total, 2160 MLC 

explore.neurons.input = 44

explore.neurons.output = 2

explore.neurons.layer.01            = 89:178

explore.neurons.layer.02            = 44:132

explore.activation.function = sigm

explore.trainingsets = spectf

explore.trainengines = encog.ffsa:encog.ffsaroc

explore.validation = cvfolds 10

explore.encog.ffsa.starttemp = 30:100

explore.encog.ffsa.endtemp = 2:10

explore.encog.ffsa.cycles = 50

explore.encog.ffsa.stop.epochs = 300

explore.encog.ffsa.stop.error = 0.0001

explore.encog.ffsaroc.starttemp = 30:100

explore.encog.ffsaroc.endtemp = 2:10

explore.encog.ffsaroc.cycles = 50

explore.encog.ffsaroc.stop.epochs = 300

explore.encog.ffsaroc.stop.error = 0.0001

explore.numberofjobs = 40
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configurations were trained on a Grid cluster with 50 computers which, dedicated, took 

about 4 full physical days. 

3.3.2.3 Results and discussion 

Tables 25 and 26 (pages 155 and 156) summarize experimental results. For each 

dataset and training algorithms, results are processed and averaged in following way: 

1. Each MLP configuration is trained both with the original algorithm from Encog 

and its modified version. 

2. AUC results from all configurations trained with the original algorithms are 

averaged and its standard deviation is calculated. This is shown in column 

‘ORIGINAL’ for each algorithm. 

3. AUC results from all configurations trained with the modified algorithms are 

averaged and its standard deviation is calculated. This is shown in column 

‘MODIFIED’ for each algorithm. 

4. The percentage of improvement of the averages (positive or negative) obtained 

by the modified version (column ‘MODIFIED’) is calculated with respect to the 

original version (column ‘ORIGINAL). This is shown in column ‘IMPROV’ 

through the following formula: 


!���� � 100 ¦§¨©c�c�©bn� � ¨�cªc��Gbn�¨�cªc��Gbn�  

5. Table 25 in page 155 summarizes the results per training algorithm and dataset, 

whereas table 26 in page 156 aggregates them in total (column ‘OVERALL’, 

shown graphically in figure 26) and per category of algorithm (dataset error 

based or element error based). Finally, table 27 in page 156 provides some 

correlation measures between different obtained variables. 
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Figure 26: Averaged AUC for MLP algorithms modified for AUC optimization  

As it can be observed, there is a generalized AUC improvement by our proposed 

method, having occasional degradations in particular datasets (mostly in pgene, bcwd 

and park). The global averaged improvement is 5.86% (table 26 page 156) with a great 

variability on each dataset and algorithm. It can also be observed that improvement is 

greater in element error training algorithms (fffbp and ffrp) than in dataset error 

training algorithms, although this might be due to the fact that these later ones tend to 

give better results as shown by the correlation between improve and ORIGINAL AUC 

avg in table 27 line 2 (improvement is greater when ORIGINAL AUC is lower). 

However, it is important to acknowledge that this last observation might be biased by 

the way improv is defined since greater AUC leave less room for improvement. 

Other interesting observations are the following: 

· Both AUC averages and standard deviations are strongly correlated between 

the original algorithms and their modified versions (table 27 lines 4 and 5). 

Notice that small standard deviations result from MLC configurations 

producing similar AUC scores (all configurations classify the dataset as good 

or as bad), whereas larger standard deviations result from some MLC 

configurations producing significantly better AUC scores than others. The 

strong correlations observed in averages and standard deviations leads to 

pgene mmass heartsl liver bcwd pimadiab tictac echocard haber park glass spectf

ORIGINAL 0,7425 0,7818 0,7950 0,6226 0,9005 0,7048 0,7337 0,5668 0,6293 0,8404 0,8761 0,6735

MODIFIED 0,7316 0,8273 0,8541 0,7075 0,9035 0,7418 0,7863 0,6239 0,6747 0,8469 0,8997 0,7127
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think that modified algorithms behave similarly to the original ones in the 

sense that they respond in the same way to dataset particularities (difficulty 

or easiness to classify). 

· Class skew seems to have little influence on improvement (table 27 line 1), 

or at least in a non-homogeneous way across the different training 

algorithms.  

· Except in the case of ffbp, there seems to be a significant correlation (table 

27 line 3) between the standard deviation of the ORIGINAL AUC and the 

improvement obtained by our method in the positive direction (increasing 

standard deviation with increasing improvement). Large standard deviations 

may occur in many scenarios, such as when a dataset is hard to separate 

and well performing MLP configurations are scarce. The observed 

correlation might suggest that our method could be more appropriate in 

these situations to increase overall MLP AUC performance. 

All these issues might be subject of further research, seeking still stronger statistical 

evidence to support the hypothesis outlined. 

3.4 Conclusion 

This Chapter presented the major theoretical contribution of this thesis (see Section 

1.4): a new method to insert AUC based error metrics in existing machine learning 

algorithms for AUC optimization and validated it with different kinds of multilayer 

perceptrons. In practical terms, the proposed approach only requires the substitution of 

the error computing functions of the underlying training algorithms, respecting their 

core logic. Experimental evidence demonstrated a consistent improvement in AUC in 

multilayer perceptrons through a variety of datasets and training algorithms requiring 

little coding effort. In addition, and equally important, an efficient AUC calculation 

method has been developed ensuring training remains computationally affordable when 

using the proposed AUC based error metrics. Finally, it can be concluded that the 

newly developed AUC error metrics show a consistent behavior in both its theoretical 

definition and experimental results. 

As it could be observed, experiments carried out specially in Section 3.3 required 

extensive access to computer power such as that provided by eInfrastructures (see 

Sections 1.1.3 and 2.2) to train different sets of parameter configurations throughout a 
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variety of datasets and training algorithms. Without such, providing evidence to the 

claim that the proposed method actually improves AUC would simply be impossible. 

However, as mentioned in Chapter 2, access to eInfrastructures is not straight forward 

and a set of software tools had to be developed to undertake the experimental 

endeavor. Given the project context within which this thesis was developed (see page 

20), rather that developing something ad-hoc for this purpose the goal was to develop a 

general purpose tool to exploit eInfrastructures for machine learning, allowing an agile 

management of datasets, configurations and algorithms over the computer resources 

available. This would allow an efficient classifier and CAD construction cycle as data is 

being produced by the project. These tools are referred to as the BiomedTK/C3 

software frameworks and they are the subject of next chapter. 
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Chapter 4 

4 Exploiting eInfrastructures 
for Machine Learning Classifiers 

4.1 Introduction 

As shown in previous section, seamless access to computing resources is key to validate 

new machine learning methods. This is even more the case when machine learning is to 

be applied to specific problems, such as for breast cancer CAD as happens in the case 

of the project within which this thesis was motivated and described in Chapter 5. 

Confronted with the task of finding well performing machine learning classifiers for 

specific data, researchers need to evaluate many parameters configurations for different 

kinds of classifiers acting on a variety of datasets generated from the original data 

(such as the ones produced by using different data preprocessing techniques, etc.). This 

results in a classifier development lifecycle through which researchers build knowledge 

on what classifier configurations and data preprocessing options suit better their 

problem in hand. Access to computing resources is required to materially be able to 

train classifiers and process data, but it is the agility with which those computing 

resources can be harnessed that determines how efficiently that knowledge can be built 

and its reach. This agility refers to the capability of efficiently setting up datasets and 

classifier configurations, evaluating them on computing resources, analyze their results, 

refine or reprocess datasets and configurations, evaluate and analyze them again and so 

on. 
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Aware of the common difficulties in accessing computing resources available through 

existing eInfrastructures (see Section 2.2), two software frameworks were developed to 

reduce their utilization effort cost and simplify classifier development lifecycles in the 

sense just described, providing the tools to exploit computing resources in a systematic 

manner for discovering and evaluating machine learning classifiers for data mining and, 

specifically, for biomedical data (Ramos-Pollan, Guevara-López et al. 2011). The 

Biomedical Data Analysis Toolkit (BiomedTK) enables the definition, management 

and execution of explorations of parameter configurations for third party classifier 

implementations for data mining, whereas the Cloud Computing Colonies Framework 

(C3) enables the maintenance of colonies of Job Agents over distributed and 

heterogeneous e-Infrastructures, providing a fast job submission service and a 

transparent application deployment mechanism.  

In this sense, a wide interpretation of the notions behind Cloud and Grid computing 

is herewith adopted and, through BiomedTK/C3, we show (1) how existing industry 

standards, mostly Java based, can be used to leverage resources in an agile, affordable 

and efficient manner, both for the end user, and the resource provider (decoupling to a 

great extent user application specifics from resource providers and performing, at a 

much simpler scale, what virtualization obtains in existing Cloud Computing 

implementations) and (2) how Grid resources can be used to provision, in a basic 

manner, Cloud characteristics such as On-demand Self-service, Resource Pooling and 

Rapid Elasticity (see page 43). 

4.2 The Biomedical data analysis ToolKit (BiomedTK) 

The Biomedical Data Analysis Toolkit (BiomedTK) is a Java software tool that 

exploits third party libraries for data analysis augmenting them with methods and 

metrics commonly used in the biomedical field. In addition, it provides the means to 

massively search, explore and combine different configurations of machine learning 

classifiers provided by the underlying libraries to build robust data analysis tools. It is 

possible to manipulate datasets, train Multilayer Perceptrons (MLP), and Support 

Vector Machines (SVM) based binary and multiclass classifiers with many different 

configurations, search for best ensemble classifiers, generate different types of ROC 

curve analysis, etc. BiomedTK uses the Cloud Computing Colonies Framework (C3) 

described in Section 4.3 to harness seamlessly the resources scattered throughout 

distributed computing infrastructures of different nature. In addition, it is possible to 
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manipulate datasets, including export/import to/from data formats of commonly used 

applications, allowing users to feed BiomedTK with datasets preprocessed by other 

tools to, for instance, filter, or transform the data, normalize it, reduce its 

dimensionality, etc. For researchers, it offers a command line interface to access its 

functionality (manage datasets, launch classifier explorations, analyze results, etc. see 

table 28 in page 157 for a list of BiomedTK commands). For programmers, it offers a 

simple API (Application Programming Interface) so that new data analysis engines can 

be integrated in a modular manner with reasonable effort (Ramos-Pollan, Guevara-

López et al. 2011).  

4.2.1 BiomedTK engines and basic elements 

BiomedTK integrates engines from the Encog toolkit (Heaton 2010) implementing 

multilayer perceptrons, the libsvm toolkit (Chang and Lin 2001) implementing support 

vector machines and the multilayer perceptron Encog engines modified for AUC 

optimization as explained in Chapter 3. Table 14 lists the engines currently integrated 

in BiomedTK along with the parameters each one accepts. Particular values of those 

parameters for a specific engine constitute a classifier configuration for that engine.  

For a given data analysis task in hand, classifier design amounts to finding 

configurations yielding acceptable performance results and, therefore, the researcher is 

often confronted with the need to explore and evaluate several classifier configurations. 

For any engine, BiomedTK allows the evaluation of binary classifiers through plotting 

ROC curves and computing their AUC (Fawcett 2006; Yoon 2007) offering the bi-

normal distribution method as provided by JLABROC4 (Eng 2011), the Wilcoxon-

Mann-Whitney statistic provided by WEKA (Mark Hall, Eibe Frank et al. 2009) and 

the approximation method proposed in Section 3.2.  

Table 14: Machine learning engines integrated in BiomedTK 

engine  description accepted parameters source 

ffbp multilayer perceptron trained with 

backpropagation 

ANN structure, learn rate, momentum encog 

ffbproc ffbp modified for AUC optimization ANN structure, learn rate, momentum modified encog 
(see Section 3.3) 

ffrp multilayer perceptron trained with resilient 

propagation 

ANN structure (no more params) encog 
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The following summarizes the basic elements of BiomedTK: 

Dataset (train/test datasets): Contains the data to analyze. A dataset is made 

of a set of elements (or instances), each one containing a set of numerical features used 

as input values for classifiers and, optionally, an ideal class to which it belongs for 

supervised training (expected classifier output). Depending on validation strategies, 

elements of a dataset are usually split into two subsets, one for training and one for 

testing. The training subset is used in training classifiers built to distinguish 

automatically the classes to which each element belongs. The test subset is used to 

measure the generalization capabilities of classifiers when applied to unseen data. 

Binary Dataset: A dataset whose elements belong to only two classes. As opposed 

to a Multiclass Dataset, whose elements may belong to several (more than two) 

classes. As part of its functionality, BiomedTK provides the tools to create multiple 

binary training sets for a given multi-class training set, each one to build a classifier 

specific for each class. 

Engine: Engines encapsulate third party classifiers (such as MLPs from Encog or 

SVMs from libsvm). Each engine accepts a different set of parameters for training 

(MLP structure specification, learning parameters, etc.) 

Engine or Classifier configuration: An engine configuration specifies the 

parameters with which a particular engine is used to train given a dataset. For 

instance, a configuration of a MLP might specify an Artificial Neural Network (ANN) 

ffrproc ffrp modified for AUC optimization ANN structure (no more params) modified encog 

(see Section 3.3) 

ffsa multilayer percptron trained with simulated 

annealing 

ANN structure, start temp, end temp, 

cycles 

encog 

ffsaroc ffsa modified for AUC optimization ANN structure, start temp, end temp, 

cycles 

modified encog 

(see Section 3.3) 

ffga feed forward ANN trained with genetic 

algorithms 

ANN structure, population size, mating 

size, survival rate 

encog 

ffgaroc ffga modified for ROC optimization ANN structure, population size, mating 

size, survival rate 

modified encog 

(see Section 3.3) 

csvc cost based Support Vector Machine kernel, cost, degree, gamma, coef0, 

weight, shrink, estimates 

libsvm 

nusvc « Support Vector Machine kernel, nu, degree, gamma, coef0, shrink, 

estimates 

libsvm 
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with 3 layers having 10 neurons each, using the sigmoid activation function, with 0.1 as 

learning rate and 0.5 as momentum over 10000 iterations. 

Exploration: An exploration over a dataset defines a set of classifier configurations 

to train in batch mode in order to find the one(s) that best classify the dataset, or to 

later use them to build ensemble classifiers. 

Jobs: Each exploration is split into a number of user defined jobs. Each job will 

train a subset of the engine configurations defined in a given exploration. Jobs can be 

then executed in sequentially over the same computer or in parallel over a distributed 

computing infrastructure. 

BiomedTK interfaces seamlessly with distributed computing resources made 

available through C3 (see Section 4.3) providing commands to launch and manage 

explorations to C3 job agents, enabling researchers to harness computing power in an 

agile manner and allowing them to gradually gain understanding on what engine 

configurations better classify their data. This constitutes the basis of the exploration 

method described below. 

4.2.2 BiomedtTK explorations 

The classifier exploration method supported by BiomedTK and herewith described, 

is aimed at addressing two issues: 1) the need to manage, in a simple and unified way, 

many classifier configurations integrating third party engine implementations of 

different nature (implementing different machine learning models such as ANNs, SVMs, 

etc. on different programming languages such as C, Java, etc.) and 2) the need to 

efficiently exploit distributed resources required to evaluate such a diversity of classifier 

configurations. In this sense, efficiency denotes both an economy in the researcher’s 

effort to setup and run experiments and a rational usage of available computing 

resources. BiomedTK supports this method through a series of configuration artifacts 

and tools that together with C3 constitute the material means through which 

researchers can efficiently use eInfrastructures to perform complex explorations of 

classifier configurations. 

Explorations of classifier configurations are the key element of this method. Through 

them, researchers can gradually build understanding on the search space of possible 

classifiers (engine configurations) for a given dataset. With BiomedTK explorations are 

defined in text files with a specific format. Figure 27 shows an example exploration file 
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producing configurations to train classifiers for two datasets derived from the original 

BREAST-TISSUE dataset from the UCI repository with the engine using ffrp, ffsaroc, 

ffga and nusvc (see Table 14, page 83).  

 

Figure 27: Example BiomedTK exploration file 

For MLP based engines, this exploration will generate configurations with ANNs 

having three hidden layers with 18 or 36 neurons in the first hidden layer, 9 or 18 in 

the second one, different neuron activation functions, etc. It also contains classifier 

specific parameter sweeps. For instance this exploration generates ffsaroc configurations 

with the starttemp parameter set to 10 and 15, the endtemp parameter set to 2 and 4, 

nusvc configurations with radial basis and polynomial kernel functions, etc. This 

exploration generates, for each dataset, 32 ANN based configurations for the ffrp engine 

(it is an engine with no parameters, 32 is the number of combinations of MLPs 

generated with the specified layers, neurons and activation functions per layer), 64 

configurations for the ffga engine, 128 for ffsaroc and 24 for nusvm (a SVM engine and, 

therefore, not using ANN structure specifications). In total this exploration generates 

496 engine configurations (248 for each dataset) split into 50 jobs as specified in the 

same exploration file. This way, 49 jobs will train 10 engine configurations, and one job 

that will train 6 configurations. 

Exploration jobs are sent to computing resources for training the classifier 

configurations they contain. Explorations can be made as large or small as desired, 

depending their feasibility on the capacity of the available computing resources. 

Training times for different classifier engines vary greatly depending on dataset size, 

explore.neurons.input = 9

explore.neurons.output = 2

explore.neurons.layer.01 = 18:36

explore.neurons.layer.02 = 9:18

explore.neurons.layer.03 = 5:9

explore.activation.input = tanh

explore.activation.output = tanh:sigm

explore.activation.layer.01 = tanh:sigm

explore.activation.layer.02 = tanh

explore.activation.layer.03 = tanh

explore.nblayers.fixed = yes

exploreexploreexploreexplore....datasetsdatasetsdatasetsdatasets ==== BREASTBREASTBREASTBREAST----TISSUETISSUETISSUETISSUE....CARCARCARCAR

BREASTBREASTBREASTBREAST----TISSUETISSUETISSUETISSUE....NORMNORMNORMNORM

explore.stop.error = 0.1

explore.stop.epochs = 2000

exploreexploreexploreexplore....enginesenginesenginesengines ==== ffrpffrpffrpffrp::::ffgaffgaffgaffga::::

ffsarocffsarocffsarocffsaroc::::nusvcnusvcnusvcnusvc

explore.validation = testpct 40

exploreexploreexploreexplore....numberofjobsnumberofjobsnumberofjobsnumberofjobs ==== 50505050

explore.encog.ffga.matepercent = 0.5

explore.encog.ffga.percentmate = 0.2

explore.encog.ffga.population = 100:200

explore.encog.ffsaroc.starttemp = 10:15

explore.encog.ffsaroc.endtemp = 2:4

explore.encog.ffsaroc.cycles = 100

explore.libsvm.nusvc.kernel = rbf:pol

explore.libsvm.nusvc.nu = 0.4:0.35

explore.libsvm.nusvc.degree = 2:3:4

explore.libsvm.nusvc.gamma = 0.03:0.035

explore.libsvm.nusvc.coef0 = 0.0

explore.libsvm.nusvc.shrink = yes

explore.libsvm.nusvc.probestimates = yes
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parameters, MLP complexities, etc. When confronted to a new dataset for which one 

wants to explore classifier configurations, the following method is proposed: 

1. Start with small explorations launched locally (on the desktop computer) to 

get a sense on the computing times needed by each different classifier and 

their initial performance. 

2. Perform increasingly larger explorations, first locally and then over a larger 

computing infrastructure, to understand what classifier parameters might 

work better with each classifier. 

3. Devise very large explorations (either by number of configurations and/or by 

computing time each configuration takes) and send them to a large 

computing infrastructure. 

For this method to be effective, an agile and fast interaction between the researcher 

and the computing infrastructure becomes essential, so that, if computing resources are 

available, multiple explorations can be tested in reasonable time. It is fundamentally 

this agile interaction that allows researchers to efficiently build exploration strategies 

and gain understanding on what classifiers suit better a certain problem in hand.  

For performing explorations BiomedTK offers the researcher two options: (1) launch 

the jobs sequentially over his local machine (desktop), or (2) submit them to C3 Job 

Agents running on available computing resources. Results (accuracy and AUC 

measures for test and train data) of each trained engine configuration are stored in a 

database that can be later inspected through standard SQL sentences. A command line 

tool exposes BiomedTK functionality to researchers. There are commands to import 

and manipulate datasets, to create a job set from an exploration file, to launch locally 

and exploration, to launch and monitor explorations to an eInfrastructure made 

available through C3, to inspect and test exploration results, to build ensemble 

classifiers, etc. See table 28 in page 157 for a list of BiomedTK commands. In practice, 

when faced with the task of exploring MLC configurations for a given dataset, 

BiomedTK enables researchers to cycle through the following steps  

1. make initial exploration issuing BiomedTK commands jobset + launch (local 

launch) 

2. inspect database for results  

3. refine and enlarge initial exploration by  issuing commands jobset + 

c3.prepare + c3.submit 
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4. inspect database for results 

5. repeat from step 1 or step 3 

Figure 41 in page 158 shows a typical BiomedTK session, importing a dataset and 

launching an exploration locally. BiomedTK and the method it supports are focused on 

providing the means to exploit eInfrastructures for exploring classifier configurations, 

regardless the sources and previous manipulations of data. For this purpose, BiomedTK 

provides basic functionality for data normalization and tools for importing and 

exporting data to commonly used formats (CSV, WEKA arff, etc.), so that researchers 

can use their usual tools for data preprocessing before feeding datasets to BiomedTK. 

Validation 

When performing explorations BiomedTK implements several validation strategies for 

the researcher to use. Validation is a key issue to understand the applicability and 

significance of classification results and was addressed in Chapters 1 and 2. Table 15 

lists the validation procedures available in BiomedTK through the value of the 

explore.validation field in any exploration configuration file (see example in figure 

27). 

Table 15: Validation procedures available in BiomedTK 

field value description 

asints Uses the test/train split as specified in the dataset stored in the database, 
where each dataset element is tagged as either test or train. This tag can be 
set manually by the researcher by using standard SQL tools on the 
database, or also through the BiomedTK command split.dataset, 
researchers can establish a certain test/train split percentage for the dataset. 
In this case, the split is stratified (the class composition percentage is 
preserved in the generated train and test datasets) 

cvfolds N Uses cross validation with N folds each fold using one Nth of the dataset 
elements for testing and the rest for training. This split is also stratified 

one2all Uses leave one out cross validation (LOOCV). It is equivalent to using 
cvfolds with N equal to the number of elements in the dataset minus one. 

testpct N Before training each classifier configuration a stratified split is made with 
N% of the elements for testing. This implies that each classifier configuration 
is trained with a different set of elements (although always representing the 
same stratified percentage of the dataset). This enables bootstrapping 
validation through repeating this process several times and then averaging 
(see repeats exploration parameter in table 16) 
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Other exploration options 

Additionally, a few other parameters are accepted by BiomedTK within exploration 

files to fine tune its behavior as shown in Table 16.  

Table 16: Additional BiomedTK exploration parameters 

name description 

probeperiod number of training iterations between which BiomedTK reports training 
progress on stdout 

store.trainelements specifies if the list of dataset elements used for training are stored in 
BiomedTK DB together with the classification results of each trained classifier 
configuration 

store.engine whether to store the trained classifier (fitter model) of each configuration. 
Storing it allows to apply it to other datasets later on. 

store.scores whether to store in the DB the scores assigned by a classifier to dataset 
elements. 

store.cvfolds whether to store in the DB the classification results of each cross validation 
fold or only the final averaged cross validation result 

plot.testroc whether to plot a ROC curve for test element for each trained 
classifier configuration. ROC curves are stored as PNG files in the 
current directory 

repeats number of times each classifier configuration is trained. Used in 
conjunction with testpct validation enables bootstrapping validation 

min.errortrend as training progresses for any classifier engine, BiomedTK measures 
how much the training error has been reduced in the last 15% of the 
training process. If the error trend falls below the value specified in 
this parameter then BiomedTK stops training. This usually enables 
to detect stalled training processes. 

skip.trained before training a classifier configuration BiomedTK checks whether a 
result already exists in the DB for this configuration. If this is the 
case and this parameter is set to “yes” then BiomedTK does not train 
this configuration. This allows completing unfinished explorations. 

 

4.2.3 BiomedTK architecture 

BiomedTK is a software framework developed as a stand-alone Java application which 

fully supports the cycle explained in previous section. Figure 28 shows the architecture 

of BiomedTK.  
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Figure 28: BiomedTK component archtecture 

The BiomedTK Engine orchestrates all functionality invoking the Exploration 

Generator to process explorations and the JobSet Generator to effectively execute the 

explorations. Itself, the JobSet Generator handles jobs to a Local Job Launcher or to a 

C3 Job Launcher according to the user command. Jobs are sent to C3 by the C3 Job 

Launcher using the C3 Client Lib which is delivered by C3 simply as a jar file that is 

included within the BiomedTK distribution. For completeness and clarity, figure 28 

includes a simplified representation of the C3 architecture which is further explained in 

Section 4.3. Datasets and exploration results are stored in a common database. Jobs, 

whether launched locally or over C3, feed the BiomedTK database with results. Any 

JDBC compliant database can be used and, for convenience, BiomedTK embeds the H2 

database engine (H2 2011) which uses the local filesystem for storage, so there is no 

need to install another third party database if it is not desired. Initially, BiomedTK 

was initially conceived to send jobs directly to a gLite infrastructure and, hence, 

included a gLite Job Launcher and a set of command line functionalities to manage 
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jobs submitted to gLite. But the impact of accumulated job latencies in the classifier 

exploration cycle made us develop the C3 framework as mentioned before. Note how, 

through the C3 Job Launcher, BiomedTK jobs arrive directly at the Job Agent already 

living on a computing resource (such as gLite working node) without interacting with 

any middleware. 

Finally, BiomedTK defines a Classifier API through which new classifier engines are 

integrated. Java classifier engines must deliver their implementation as a jar file 

containing the interface classes implementing the BiomedTK Classifier API and their 

own implementation classes (the actual engine). The following shows an excerpt of the 

BiomedTK Classifier API main interface that each classifier engine must implement: 

 

public interface TrainedClassifier { 

 public void initialize (ClassifierParameters p, Dataset d); 

 public String getEncodedEngine(); 

 public void setEncodedEngine(String encodedEngine); 

 public ClassifierParameters getParameters(); 

 public Double getTrainError(); 

 public void train(TrainListener l); 

 public void ClassifierParameters[] 

    generateParameterSweep(ExploreProperties p); 

 public void classify (List<DatasetElement> e); 

} 

 

It is a simple Java interface requiring mainly implementations of methods to train 

and classify datasets, to generate parameters sweeps from an exploration definition and 

create and restore a trained engine to/from a String based representation, which 

allows BiomedTK to store and reconstruct any third party trained engine. BiomedTK 

also supports native implementations of classifier engines. In this case, a classifier must 

deliver a jar file containing the interface classes, and a set of precompiled binaries for 

different hardware platforms. This way, whenever invoking a third party classifier 

BiomedTK searches for the platform specific binary and it will be able to use engines 

for as many hardware platform as precompiled binaries are provided. This is the case of 

the already integrated libsvm C library, for which binaries for MacOS, Windows XP/7, 

and different Ubuntu and Scientific Linux kernels were generated. This allows users, for 

instance, to start using BiomedTK to classify a given dataset on their local MacOS 

machine and then send larger explorations to a C3 Job Agent Colony living on top of a 
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Scientific Linux based gLite Grid infrastructure in a completely transparent manner. In 

total, BiomedTK is approximately made of 18000 lines of code and 160 Java classes. 

4.2.4 Building ensemble classifiers 

Ensemble methods in machine learning (Dietterich 2000) combine existing classifiers as 

an attempt to improve the performance of single classifiers either by compensating with 

each other in cases where a single classifier outperforms other, or by combining 

redundancy classification offered by several single classifiers. 

For their simplicity and generality we are interested in Error Correcting Output 

Codes, a technique developed in the context of digital signal processing theory 

(Hocquenghen 1959; Bose and Ray-Chaudhuri 1960) providing redundancy in 

communications to compensate for noise and applied in machine learning since 

(Dietterich and Bakiri 1991). In short, for a given multiclass classification problem with   classes, an Error Correcting Output Code (ECOC) is defined by a matrix of 

size	! ¦   describing, for each of the   possible final classes, how the ! available 

binary classifiers are combined. This matrix is referred to as the codematrix, and figure 

4 shows an example where 7 binary classifiers are used to produce a 6 class ensemble 

classifier. Each class is assigned a codeword that represents the participation of each 

binary classifier in that class. When an input vector is fed into each one of the 7 

classifiers, a binary codeword is produced combining the output of all the binary 

classifiers. Then, a distance measure between codewords is defined and the class with 

the closest codeword to the one produced by the binary classifiers is selected to be the 

one assigned to the initial input vector. ECOCs are being used frequently in machine 

learning (Passerini, Pontil et al. 2004; Escalera, Tax et al. 2008; Huiqun, Stathopoulos 

et al. 2009) and also in biomedical contexts (Escalera, Pujol et al. 2008). 

BiomedTK supports the ECOC based method for building ensemble classifiers. This 

includes  (1) the definition of code matrices for a certain multiclass dataset, (2) the 

generation of binary datasets for each column in the code matrix and (3) assembling 

previously trained binary classifiers for each column into ensemble classifiers. Figure 29 

represents an actual codematrix definition file as accepted by BiomedTK, where 

BREAST-TISSUE is a six-class dataset (from the UCI repository, dataset with 

electrical impedance measurements of freshly excised tissue samples from the breast) 

and the codematrix specifies seven binary classifiers (columns). The first six columns 

would be used to train classifiers distinguishing each class from the rest. The norm 
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column will be used to train classifiers distinguishing elements tagged as car (for 

carcinoma), fad (fibro-adenoma) or mas (mastopathy) from the rest (representing 

normal tissue tagged as glandular, connective or adipose). 

 
Figure 29: Example codematrix defintion file 

The following summarizes the method supported by BiomedTK for building 

ensemble MLC: 

1. Start with a multiclass dataset with   classes and a code matrix specification 

with   rows and ! columns, such as the one in figure 4. Then, create for 

each column in the code matrix a new binary dataset according to the 

column specification (for column �, each element is labeled as “c” or “non-C” 

according to whether its ideal class in the original dataset is marked as 1 or 0 

in column �).  This generates ! binary datasets.  

2. Explore classifier configurations for each newly created binary dataset. In 

fact, figure 2 shows an exploration file to search binary classifier 

configurations for the car and norm derived binary datasets as created in the 

previous step starting from the code matrix shown in figure 29. This 

generates, for each column, a set of trained classifiers. BiomedTK supports 

this step through the exploration method explained in section 2.1. 

3. Choose, one classifier for each column and ensemble them through the ECOC 

method. This is done through the ensembles command, which takes classifiers 

for each column, ensembles them and measures the performance on the 

ensemble classifier. 

Observe that, for each column in a code matrix, one might have generated several 

binary classifiers in step 2 above; hence, the researcher needs to decide which specific 

classifier to use. BiomedTK supports this by interpreting the ensemble.classifiers.select 

line in the codematrix in which, for each column, the researcher specifies what criteria 

to follow to select binary classifiers. With bestPct, the binary classifier for that column 

ensemble.trainingset = BREAST-TISSUE

ensemble.classifiers.validation = cvfolds 10

ensemble.classifiers.select = bestPct any bestAUC 4035  bestPct bestPct any

ensemble.classifiers.names =  car    fad gla mas    con    adi norm

ensemble.codematrix.car =   1      0      0     0      0      0      0

ensemble.codematrix.fad =   0      1      0     0      0      0      0

ensemble.codematrix.gla =   0      0      1     0      0      0      1

ensemble.codematrix.mas =   0      0      0     1      0      0      0

ensemble.codematrix.con =   0      0      0     0      1      0      1

ensemble.codematrix.adi =   0      0      0     0      0      1      1
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with best classification rate for test data is used. With bestAUC the one with best AUC 

measure for test data is chosen. A number (such as in the mas column) refers to the ID 

of a specific binary classifier present in the database that the researcher wants to use. 

With any, we instruct BiomedTK to try all binary classifiers available for that column. 

4.3 The Cloud Computing Colonies framework (C3) 

The Cloud Computing Colonies Framework (C3) is a Java light weight, open 

standards based set of utilities providing a fast job submission mechanism to 

distributed computing resources and a transparent, non-intrusive application 

deployment facility. It decouples user interaction from particularities of access methods 

of computing resources of different nature (different middleware, technologies, etc.). It 

is based on a Job Agents architecture such as in the DIRAC (DIRAC 2010) or AliEn 

(Bagnasco and et al. 2008) frameworks of different CERN experiments where, once job 

agents are deployed to the actual computing resources, all communications (job 

submission, status, results transfer, etc.) happen between the job agent and the C3  

system, using specific resource provisioning mechanisms (such as gLite in case of 

certain Grid infrastructures) merely as a means to deploy Job Agents into the 

computing resources (worker node, host machine, etc.) 

Once deployed, a C3 Job Agent receives incoming jobs directly from the C3 system, 

looks up in an application repository the application specified in the job description, 

executes it locally, sends regularly job status information to the C3 system (including 

process stdout and stderr as they are produced by the application) and, finally, sends 

the results back to the C3 system for publishing. Users and other applications interact 

with a C3 system to send jobs and retrieve their status, stdout, stderr and final results. 

A command line utility is offered to users exposing this functionality, and a simple 

client API, distributed as a jar file, is available for applications to programmatically 

manage this interaction. This is the case of BiomedTK as described in previous section. 

C3 introduces the notion of a Job Agent colony, representing a set of job agents 

deployed on a specific computing infrastructure, such as on the worker nodes of a 

specific gLite (gLite 2011) computing element within the EGI federation (EGI 2011). A 

colony maintainer is a C3 module that tries to ensure a certain job agent population 

over a specific computing infrastructure. C3 includes colony maintainers for computing 

resources available through gLite middleware, Amazon EC2 and regular SSH access. 

New colony types to harness computing resources available through other technologies 
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and models can be easily integrated by developing new colony maintainers to deploy 

job agents colonies into their computing resources. Colony maintainers must follow the 

C3 colony API and encapsulate all specifics of accessing a particular computing 

resource. All job agents, regardless the colony to which they belong or the colony 

maintainer that ensures their existence, are readily available in a homogeneous manner 

to all users of the C3 system that manages them. 

4.3.1 C3 architecture 

C3 is mainly based on the Java Message Service (JMS 2011) an industry standard 

general purpose message delivery mechanism for distributed applications. As in other 

standards, JMS establishes the concepts and implementations that any JMS provider 

must offer, and clients following JMS are not tied to a specific provider. A JMS 

Provider is therefore, a software package implementing the JMS specification and a 

JMS Client is any application or process producing and/or receiving messages through 

a certain JMS Provider. Messages can be interchanged through Queues or Topics, 

which are managed by the JMS Provider. Messages sent to a Queue are guaranteed to 

arrive exactly to one JMS Client, and will be stored in a staging area until some JMS 

Client asks to receive a message from the Queue. If several clients decide so, the JMS 

provider will leverage the queue of messages among the existing JMS Clients as they 

become available, delivering each message once to only one client. Topics follow a 

publish/subscribe model where messages sent to a topic are delivered to all clients 

registered to that topic and, if no client is subscribed when it is published, the message 

usually goes ashtray. 

JMS Clients may choose to receive only certain messages from queues or topics 

according to custom message properties or other criteria. JMS Providers implement all 

logic necessary to guarantee message delivery, persistence, security, etc. as required by 

the JMS specification. C3 is therefore engineered as a set of JMS Clients interchanging 

messages through Queues and Topics configured in a JMS Provider. C3 currently uses 

the Open Message Queue (MQ 2011), an open source implementation of JMS. Figure 

30 shows the C3 architecture, organized around a set of Queues and Topics.  
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Figure 30: C3  component architecture 

Three C3 components act as JMS Clients: the C3 Client, which submits jobs and 

receives jobs notifications (status, stdout, stderr), the C3 Job Agent, which receives jobs 

to be executed in the computing resource where they live and commands (such as 

‘shutdown’, or ‘cancel job’) and the C3 Server Engine, which is the core of the C3 

system. The C3 Server Engine regulates traffic of jobs, status messages and commands 

among the different actors. It is a Java process that must be kept running along with 

the JMS provider (Open Message Queue in our case). These components interact 

through the following queues and topics: 

C3 Job Requests Queue: Clients use this queue to send three kinds of messages:  

jobs submission, job status query and job cancelation. Only C3 clients send messages to 

this queue. The only consumer for this queue is the C3 Server Engine.  

C3 Job Agent Job Delivery Queue: When the C3 Server Engine receives a job 

submission message through the previous queue, checks its content, updates the jobs 

database, publishes its input sandbox in the web server and dispatches it to the C3 Job 

Agent Job Delivery Queue. All job agents are potential consumers for all messages to 

this Queue and they register to receive new jobs (encapsulated within a JMS message) 

only when they are finished running a previous job. A job agent may only execute one 

job at a time and if several job agents are free, the JMS Provider will distribute evenly 
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job submission messages across them. The JMS specification guarantees that each job 

submission message is either held in the queue if no job agents are available, or 

delivered to exactly one job agent. This logic is implemented by the JMS Provider. C3 

components just limit their activity to receive and send messages to queues. 

C3 Job Agent Commands Queue: This queue is used by the C3 Server Engine 

to deliver commands to specific job agents. Although all active job agents are 

consumers to this queue, messages are addressed to a single job agent using standard 

message filtering as defined in JMS. This way, the C3 Server Engine can instruct a 

specific job agent to cancel the job it’s running after receiving a job cancellation request 

sent by a C3 client to the C3 Job Requests Queue. It works analogously for job status 

requests, or agent shutdown commands. 

C3 Job Agent Events Queue: This queue is used by job agents to send regularly 

information about their status (start up, shutdown, job processing progress, etc.) to the 

C3 Server Engine who, in turn, usually updates the database with the received 

information. The database is later used to know what agent is processing what job, how 

many agents are available, etc. 

C3 Notifications Topic: This is a topic, so JMS simply delivers messages to the 

active clients that have subscribed to this topic if there is any, otherwise the message 

goes ashtray. Typically, a C3 client subscribes to this topic to receive regular messages 

about job or agent status. These messages include job status and stdout and stderr 

chunks as they are produced by the job process running, information about the 

machine in which the job agent is running, etc. This allows any C3 client to easily 

monitor job status and progress.  

In addition, C3 uses an input and output sandbox model similarly to Grid 

middleware, where users have the possibility to determine a set of files to travel with 

the job submission (input sandbox) and a set of files which persist after job execution 

(output sandbox). C3 provides a simple implementation of this model, where files in 

the input and output sandboxes are published through a web server by the C3 Server 

Engine when jobs are submitted and finished. Afterwards, users can employ standard 

HTTP/HTTPS tools to access them (browsers, command line fetching, etc.) 

C3 makes intensive use of Java Web Start (JWS 2011) as a transparent application 

deployment mechanism avoiding custom application installation on computing 

resources and not requiring users to include their applications as part of their input 

sandbox. With JWS, an application and its dependant libraries are made available at a 
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certain web server where an application description file contains information on 

application versioning, libraries and dependencies. Application descriptions are given in 

JNLP files (for Java Network Launching Protocol). When using JWS, an application is 

launched by providing a URL to its application descriptor and the underlying JWS 

implementation reads it, fetches its library files, checks versions, etc. and finally 

launches it. C3 Job Agents use JWS to launch applications and C3 clients, when 

submitting jobs, specify what application to launch by simply providing the URL to the 

application descriptor. Applications can then be published into an application 

repository through any web server, including the one already bundled with C3. Two 

JWS features are of key benefit for C3. First, JWS is included as part of any regular 

Java installation (JDK, the Java Development Kit, or JRE, the Java Runtime 

Environment) and a JWS client library is part of the C3 Job Agent package, so it 

imposes no additional installation requirements on computing resources hosting job 

agents. Second, it provides versioning and caching of applications so that they are only 

fetched from the repository if they do not exist in the local job agent cache (managed 

by JWS) or if a new version has been published. 

As in the case of BiomedTK, C3 works with any JDBC database and also with any 

Web server as long as there is a shared file system through which input and output 

sandboxes can be published. For convenience, the H2 database server (H2 2011) and 

the Jetty web server (Jetty 2011) have been embedded within C3 so that they can be 

started together with the C3 Server Engine process, avoiding, if desired, the need to 

install additional database or web server software. 

As mentioned, C3 client functionality is exposed through an API so that other 

applications can programmatically interact with the C3 system. C3 also provides a 

command line tool (which just uses C3 Client API, as BiomedTK or any other 

application may do) for users to directly submit jobs and query the status of the jobs 

and job agents. The C3 Client API is delivered as a set of utility classes through a 

regular jar file with a very small footprint (128KB) which together with the required 

JMS client libraries makes a total footprint of about 900KB. The following shows the 

main utility class that any C3 client application can use: 

public class JobActionsJobActionsJobActionsJobActions { 

    public static Long submitJobsubmitJobsubmitJobsubmitJob (C3JobProperties props); 

    public static String cancelJob cancelJob cancelJob cancelJob (Long jobid); 

    public static JobBean getJobInfo getJobInfo getJobInfo getJobInfo (Long jobid); 

    static String getLastStdouterr getLastStdouterr getLastStdouterr getLastStdouterr (Long jobid); 

} 
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It contains straight forward methods for job submission and management. Note the 

getLastStdouterr method allowing client applications to retrieve the last reported 

stdout/stderr chunk from the jobs. It is actually the job agents the ones in charge of 

capturing stdout/stderr and other job status conditions and sends them to the C3 Job 

Agent Events Queue and the C3 Notifications Topic.  

4.3.2 C3 jobs 

From a client application perspective (such as BiomedTK), a C3 job is a simple object 

containing the following properties (C3JobProperties class of the C3 Client API): 

public class C3JobPropertiesC3JobPropertiesC3JobPropertiesC3JobProperties extends BasicC3Properties { 

    public String   jnlpurljnlpurljnlpurljnlpurl; 

    public String[] inputfilesinputfilesinputfilesinputfiles; 

    public String[] outputfilesoutputfilesoutputfilesoutputfiles; 

    public String   commandcommandcommandcommand;     

    public String[] argumentsargumentsargumentsarguments;   

} 

which basically amounts to defining two lists of files that make the input and output 

sandboxes and then either (1) a command and a set of arguments or (2) the address of 

an application in a Java Web Start repository (the jnlp property). When a job arrives 

to a job agent, it first checks if the jnlp property is set and uses the standard Java 

runtime utilities to fetch and launch locally the application through Java Web Start. 

Otherwise it executes whatever command and arguments are present in the job 

description. Applications using the C3 Client API, create C3JobProperty instances to 

submit jobs.  

From a user perspective, the C3 Command Line interface (invoked through the c3c 

command line shell), being itself just another C3 client, retrieves the job properties 

from a job definition file so that users can later submit the job and query their status. 

Figure 31 shows a sample job file and user session, with the commands issued by the 

user to submit the job and query its status. Note how the information on what job 

agent the job was run is kept and shown. Of course, this data is also available 

programmatically to applications invoking the C3 Client API.  In this example, the job 

was executed in job agent number 21, belonging to a gLite colony of the EELA-CETA 
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Grid federation, and the jnlpurl property of the job file was used to specify the address 

of the application to fetch and run by JWS when the job arrives to a job agent. 

 
Figure 31: Sample C3 job file and client session 

C3 Jobs go through a state workflow which typically takes a job from submitted 

(timestamp of the user localhost when submitted), to scheduled (when it enters the C3 

Job Agent Job Delivery Queue), to running (when the JMS job message is delivered by 

the JMS provider to a job agent and the job is started), to finished (when its output 

sandbox is finally published in the web server). Alternatively, jobs may fall into 

canceled (if the user requested its cancellation), aborted (if the job agent running it 

stopped or was instructed to shutdown before it finished) or failed (if the job process 

finished with a non-zero exit code). The sample application in figure 31 waits for 30 

seconds and then outputs a “hello” message (see Last Stdout Chunk section in the job 

info output). Note the little latency between submit and running (1 second), that 

includes (1) zipping the input sandbox (just a few kilobytes in this example), (2) 

sending a JMS Message to the C3 Job Requests Queue, (3) having the C3 Server 

rlx@rlx-desktop:~/c3/as-client$ c3c submit sample.job 

[INFO] [2010.08.05 19:00.04 ]  submitting job from file sample.job

[INFO] [2010.08.05 19:00.05 ]  job submitted successfully. jobid =14

rlx@rlx-desktop:~/c3/as-client$ c3c info 14

--------------- JOB INFORMATION ----------------------------------

job id             14

job status         FINISHED

submit date        2010.08.05 19:00.04

scheduled date     2010.08.05 19:00.04

running date       2010.08.05 19:00.05

finished date      2010.08.05 19:00.37

exit code 0

--------------- AGENT INFORMATION --------------------------------

agent id           21

agent name c1b345

agent hostname ba-01-14.ceta-ciemat.es

agent ip address 192.168.30.21

agent colony EELA-CETA

agent colony type glite

agent os name Linux

agent os arch Linux

agent os version 2.6.9-67.EL.cernsmp

agent java version 1.6.0_16

agent max wait 50000

----------------------- LAST STDOUT CHUNK --------------------------------

[14.out.00001] ba-01-14 hello from a sample job

-------------------------------------------------------------------------

c3job.jnlpurl:      http://ui-eela.ceta-ciemat.es/apps/HelloWorld.jnlp

c3job.inputfiles:   dummy-input-1.txt:dummy-input-2.txt
c3job.outputfiles:  dummy-output.txt
c3job.command:      java
c3job.arguments:    “hello from a sample job”

file sample.job

User session
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Engine receiving the message, verifying its contents, publishing its input sandbox in the 

web server, updating the C3 database and relying it to the C3 Job Agent Job Delivery 

Queue, (4) relying on the JMS Provider delivers the job message to some job agent and 

(5) having the job agent effectively forking and running a new process. Note as well the 

little latency to process its output in a similar fashion (32 seconds between running and 

finished states, which includes the 30 seconds of application effective running). 

4.3.3 C3 job agents and colony maintenance 

The mission of colony maintainer modules is to ensure that populations of job agents 

are available on specific computing resources. Usually, colony maintainers stay running 

monitoring the population of job agents available, redeploying agents if they die to 

ensure, if resources are available, the population reaches a certain number of job 

agents. C3 includes three colony maintainers, one to deploy job agent populations to 

gLite infrastructure, encapsulated within virtual machines for Amazon EC2 and, 

finally, another one to deploy job agents to remote machines through remote SSH 

commands execution. The gLite C3 Colony Maintainer uses the standard gLite job 

submission mechanisms (through issuing glite-wms-job-submit and glite-wms-job-status 

commands and using JDL files generated on the fly) to deploy C3 job agents on gLite 

worker nodes. A job agent is encapsulated within a JDL file, including the C3 libraries 

within the input sandbox and then submitted to gLite. The gLite Colony Maintainer is 

started on a gLite user interface and uses the credentials (proxy) of the user launching 

the maintainer process. 

The SSH Colony Maintainer issues ssh commands to remote machines sharing some 

file system to deploy the job agents. In both cases, the only pre-requisite on the final 

resources (gLite worker nodes or remote SSH available machines) is that the Java 

Runtime Environment v1.5 or above is installed on the remote machines.  

In the case of Amazon EC2 it was only required to encapsulate the C3 job agents 

within a standard Linux virtual machine on their Cloud. This was straight forward, 

starting off from a basic virtual machine template (in which java is already installed) 

requiring simply the installation of the C3 toolkit and setting it up so that it is the C3 

job agent is launched when the machine starts, and that the machine shuts down when 

the C3 agents finishes or dies (so that the instance is removed and billing by Amazon 

stopped). No specific colony maintainer was required since the AWS Management 
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Console (see Figure 34 on page 108) provides all functionality to launch, manage and 

monitor virtual machines. 

If a certain eInfrastructure does not provide mechanisms guaranteeing the survival 

of the colony, C3 includes a utility for colony monitoring and simple management 

through which it can easily integrate new colony maintainers which must implement 

the C3 Colony API. The following shows the main interface of this API: 

public interface C3Colony { 

    public void initinitinitinit        (C3ColonyProperties colonyProperties); 

    public void addAgentsaddAgentsaddAgentsaddAgents   (int numberOfAgents); 

    public void removeAgentremoveAgentremoveAgentremoveAgent (C3ColonyAgent agent); 

    public List<C3ColonyAgent> getColonyAgentsgetColonyAgentsgetColonyAgentsgetColonyAgents(); 

} 

which requires new colony maintainers to implement straight forward methods to 

add, remove and find out what agents are available. For instance, in the case of the 

gLite Colony Maintainer, its implementation of the addAgents method that creates the 

JDL file on the fly, includes the C3 libraries and submits the actual gLite job. 

C3 job agents auto shutdown if they have not received jobs for a certain amount of 

time configurable by the administration that launches the colony. This is so to avoid 

C3 take over resources that may not be used if there are no users submitting C3 jobs. 

When a colony maintainer is instructed to ensure a colony population of, say, 20 job 

agents, it will constantly monitor the population and, as job agents die, it will redeploy 

them. Job agents may die for many reasons, among them, because they auto shutdown 

due to lack of activity. This gives a chance for other users or applications to access the 

same computing resource. Anyhow, if a job agent is kept constantly busy (because of 

long jobs, or because of many jobs) it will not auto shutdown. 

Figure 32 shows a sample deployment scenario of using C3 over a single gLite 

federation where (1) the C3 Server Engine runs together with the Open Message Queue 

JMS provider in the same server machine, (2) a C3 gLite Colony Maintainer runs 

within a gLite User Interface, which is required so that it can effectively submit and 

check the gLite jobs containing the job agents and (3) the user sends jobs to C3 from 

his desktop.  
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Figure 32: C3 sample deployment scenario 

Note that gLite jobs (containing C3 job agents) are sent under a certain user 

credentials and all C3 jobs will be run on the worker nodes under those user 

credentials. Also, the C3 Server Engine and JMS providers do not need to be on the 

same private network as the worker nodes, as long as the right connectivity between 

them is provided (as explained below). Even the C3 Server Engine and the JMS 

providers may be in different physical machines, since the C3 Server Engine is simply 

one additional JMS Client. This property allows many deployment and scalability 

options. 

4.3.4 Other issues 

Communication: C3 components (C3 Server Engine, C3 Clients and C3 Job Agents) 

are JMS Clients so they need connectivity to the JMS Provider ports for sending and 

receiving messages. In JMS, it is always the JMS Client who initiates any connection to 

any JMS Provider, therefore all C3 components require outgoing connectivity to reach 

the JMS Provider, but not incoming connectivity. This is quite convenient as in most 

occasions, job agents are deployed in computing resources not visible from the internet 

(with local IP addresses) but with outgoing connectivity (through NAT or other 

mechanism). The Open Message Queue JMS Provider currently used by C3 listens for 
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JMS clients on port 7676 by default and this is configurable. In case ports cannot be 

reached by clients, it also offers a servlet based HTTP bridge that can be deployed into 

any web container and thus made available through port 80 which is regularly allowed 

for outgoing connections. This HTTP bridge is included and configured within the 

Jetty web server embedded in C3 and therefore ready to use. The HTTP bridge 

however introduces latencies in message delivery that could reach a few seconds. 

Scalability: High utilization systems may generate many messages (for job 

submission, job status events, commands, etc.). Two main bottlenecks may arise within 

a C3 System when too many messages are produced: (1) the JMS Provider, Open 

Message Queue in our case, cannot timely deliver the messages and (2) the C3 Server 

Engine cannot timely process the messages as explained in Section 4.3.1. The first case 

must be solved at the JMS Provider level, and most JMS Providers today, including 

Open Message Queue, are inherently scalable, offering some mechanism through which 

new hardware and processes can be added to share the message processing and delivery 

load. For the second case, it must be observed that the C3 Server Engine is a stateless 

service, processing independently each message from others. New instances of the C3 

Server Engine can be added with no reconfiguration required, consuming messages from 

the same queues and standard JMS Provider message delivery mechanisms will 

distribute the message processing load among the available C3 Server Engine instances 

present, which might also be distributed into different machines. This includes the 

possibility to hot-start new instances as the load increases, not because a C3 design 

quality, but profiting from the application model devised in the JMS specification. 

Security: C3 adheres to the JAAS (JAAS 2011) security standard (Java 

Authentication and Authorization Service) and while, in a first stage, C3 provides a 

simplistic security model, more elaborate authentication and authorization mechanisms 

can be plugged in following JAAS. This would allow to control, for instance, that jobs 

are only sent to colonies to which the user has permission, to delegate job acceptance to 

each colony maintainer, or retain a centralized authorization control, etc. 

Other job delivery mechanisms: Currently the C3 Server Engine, takes all job 

submission requests and sends them to any agent available through the C3 Job Agent 

Job Delivery queue. As needs arise, more complicated delivery mechanisms can easily 

be incorporated within the C3 Server Engine logic by using JMS filtering facilities, just 

like C3 uses them now to send commands (such a job cancel command) to a specific 

job agent. For instance, one might want to specify, as part of the C3 job properties, 
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certain criteria to limit the range of job agents that might accept a specific job, such as 

memory or operating system requirements. 

4.4 Experimentation and Validation 

A set of experiments was setup in order to show the contribution of BiomedTK/C3 and 

the exploration method it supports to researchers’ efficiency and experimental reach 

(Ramos-Pollan, Guevara-López et al. 2011). The aim was to demonstrate how (1) 

complex experiments consisting of several datasets, engines and classifier configuration 

can be managed with relative simplicity and (2) the computing resources required to 

execute the proposed experiments (about 16000 CPU hours) could be utilized in an 

efficient manner. In these experiments, BiomedTK/C3 is to be used to find classifiers 

for selected datasets from the UCI machine learning repository (Frank and Asuncion 

2010) by exploiting distributed computing resources, and aiming at reaching, in 

reasonable time, accuracy levels comparable to the ones reported in different literature 

sources for the given datasets. By being able to obtain efficiently these results, 

researchers are then positioned to pursue research in a timely manner using the 

methods herewith described.  

4.4.1 Goals and metrics 

The main design objective of the experiments described below was to set up a complex 

exploration task involving different datasets, engines and classifier configurations 

through several exploration cycles, as described in page 87, requiring a large number  of 

computing resources. Showing the utility of BiomedTK/C3 amounts to (1) 

demonstrating the agility with which computing resources can be used to perform the 

experiments and (2) reporting acceptable classification results on the selected datasets 

with the classifier configurations evaluated by BiomedTK/C3. 

A notion on the degree of the agility achieved is conveyed by describing in next 

section the experimentation process through the number of configurations managed, the 

number of local and C3 exploration cycles performed and the CPU hours consumed. In 

particular, in order to gain understanding on what classifier configurations to evaluate, 

it is important to observe how for each dataset different exploration cycles had to be 

performed both locally and over the computer resources made available by C3. 
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Then, classification results obtained for each dataset were compared with those 

reported on different literature sources that included the following references: (Wilson 

and Martinez 1997; Estrela da Silva, Marques de Sá et al. 2000; Vlachos, Domeniconi et 

al. 2002; Li and Wong 2003; Sebban, Nock et al. 2003; Soares 2003; Domeniconi and 

Yan 2004; Esmeir and Markovitch 2004; Fung, Dundar et al. 2004; Jiang and Zhou 

2004; Kotsiantis, Zaharakis et al. 2006; Elter, Schulz-Wendtland et al. 2007; Lorena, de 

Carvalho et al. 2008; Urbanowicz and Moore 2009) The aim was not to make an 

exhaustive literature review, but to sample referenced works and reach comparable 

results in reasonable time.  

4.4.2 Experimental setup 

The UCI datasets shown in table 24 on page 154 were selected for experimentation. For 

each dataset, increasingly larger explorations were devised including all engines 

supported by BiomedTK (see table 14 on page 83) according to the following 

exploration cycle: 

1. Reformat original UCI data file, import and normalize it 

2. Create exploration file and perform a few local classifier explorations. 

3. Analyze results and refine exploration file for large explorations 

4. Launch large explorations to C3. 

5. Analyze and gather results. 

Datasets were imported from a CSV formatted file, after some reformatting from the 

datasets delivered by the UCI repository, and basic data normalization that was 

performed by BiomedTK before the explorations. This normalization consisted in 

mapping each input feature to the [0,1] interval so that for each element of a dataset 

the value �R of feature 
 was normalized to �R′ � n¬¤b`¬?¤R0¬ where §
 R and	§=R are the 

minimum and maximum values of feature 
 in all elements of the dataset 

Explorations for each dataset included many classifier configurations (see table 17 

below and table 14 on page 83), each configuration using different classifier parameters, 

(ANN layers, neurons per layer, SVM kernel type, etc.) Each exploration was tuned for 

each dataset to account for their different characteristics. For instance, the input layer 

of any ANN for a multilayer perceptron must have as many neurons as dataset 
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features, datasets harder to classify might require more exploration cycles, larger 

datasets require more training time so explorations cannot be as large, etc. 

In addition, experimental conditions change between authors in validation methods 

used, how results are summarized, etc. so comparisons must be carefully interpreted. 

To be as coherent as possible with the different setups, 10-fold cross validation was 

used. Furthermore, in some works it is not clear what specific classifier configuration or 

validation method was used, which somehow also constitutes a challenge in the 

exploration endeavor undertaken. 

A total of 200 C3 job agents were deployed on different computing resources as 

shown in figure 33. Although most job agents were deployed on a gLite Grid 

infrastructure a small C3 Amazon EC2 colony and C3 remote SSH colony  were setup 

to demonstrate how, regardless where they were physically deployed, all jobs agents 

become available to BiomedTK/C3 in a homogeneous manner and jobs, executing 

classifier explorations as they were handled to free job agents indistinctly. 

 

Figure 33: C3 job agents deployment for experimentation 

C3 job agents were distributed in the following way: 180 C3 job agents on a gLite 

Grid site and managed by the the C3 gLite Colony Maintainer; 10 C3 job agents were 

deployed on office computers through the SSH C3 Colony Maintainer and 10 job 
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agents were also deployed for 10 hours on the Amazon EC2 service (as shown on the 

screenshot of the Amazon EC2 management console in figure 34).  

 

 
Figure 34: Amazon EC2 Management Console with 10 C3 job agents running 

Datasets were explored in the order described in the results tables (table 17 and 

table 29) and, as large explorations for a given dataset were sent to C3, work started 

on the following dataset (importing it, performing local explorations, enlarging them  

and sending them also to C3.). This produced a great overlap on what specific datasets 

and classifier configurations were being evaluated on the C3 Job Agents at any given 

moment, as it is desirable to use efficiently the computing resources. 

4.4.3 Results and discussion 

A total of 16519 CPU hours were consumed to train 8842 different classifier 

configurations over 15 datasets. For each dataset, experiments were set up by creating 

a single exploration configuration file containing classifier configurations for all engines. 

Then, this file was refined at each the exploration cycle adding and removing 

configuration parameters. Table 17 shows, for each dataset, the number of 

configurations trained, the number of local and C3 explorations, the total CPU hours 
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consumed by the C3 explorations, and the actual physical time taken by them over the 

available job agents. The whole experiment took less than a week to be carried out, 

including all configuration and data analysis tasks. 

Table 17: Summary of configurations and computer resources in explorations 

 bcw  bcwd  btcat  echocard haber  heartsl  hepat  liver  
configs 280  228 856 872 942 568 376 736 

local explorations 2 2 1 3 3 1 3 3 

C3 explorations 1 2 1 2 1 1 1 2 

C3 CPU hours 695.38 1215.67 714.87 423.65 198.89 1072.72 644.16 321.06 

C3 run time (hrs) 5.07 13.46 6.34 3.44 2.16 12.14 7.07 4.04 

 mmass  park  pgene  pimadiab spam  spectf  tictac  TOTAL 

configs 464 736 612 676 176 616 704 8842 

local explorations 3 3 2 3 1 4 2 36 

C3 explorations 1 2 2 2 1 1 1 21 

C3 CPU hours 1167.61 1679.26 1778.35 1644.43 2396.98 1115.97 1450.55 16519 

C3 run time (hrs) 10.44 21.00 26.68 15.46 46.91 17.28 11.30 202 

 

Table 29 on page 159 shows further detail per dataset and engine: (1) how many 

configurations were trained, (2) how many CPU hours took to train them, (3) the best 

percentage of elements correctly classified on the test part of the dataset (accuracy), 

and (4) the best AUC obtained on the test part of the dataset. Finally, the bottom 

lines in table 29 show the best results obtained overall in our exploration (accuracy and 

AUC)  and those found in our literature review (accuracy in all datasets, except the 

mmass dataset, where reference (Elter, Schulz-Wendtland et al. 2007) gave their results 

in AUC). Figure 35 shows the two ROC curves generated by BiomedTK for one 

classifier configuration over the bcw dataset. The curve on the left corresponds to the 

Wilcoxon-Mann-Whitney statistic and the curve on the right is its smoothed version 

using the bi-normal distribution method from JLABROC (Hanley 1996). 
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Figure 35: Empirical and smoothed ROC curves for a bcw dataset classifier 

Note how for some datasets larger explorations were made than for others, as more 

exploration refinement cycles were required until satisfactory results were found. A key 

factor was acquiring a notion on the requirements of computing time for each classifier 

and dataset so that explorations can be adjusted to the available computing resources. 

Observe in this sense how datasets with larger number of elements or input features 

take longer time to train with ANN engines and, were not for the possibility to harness 

distributed computing resources, exploring even a few classifier configurations for them 

would simply be impossible. Without an appropriate supporting tool, following the 

method herewith proposed requiring such large explorations, would imply providing the 

logistics to manage different output formats for the different underlying engines, 

organize configuration files for each resource provider (such as for gLite jobs), etc. In 

addition, in the case of gLite resources, it would require monitoring the execution of the 

gLite jobs, keeping accounting of failed ones and resubmitting them, gather different 

outputs for each job and consolidate them in a single file or database, etc. It is the 

reduction of the effort cost of taking care of all these logistics that makes it possible to 

efficiently harness computing resources for machine learning in a systematic way. 

In practical terms, for each dataset a single exploration configuration file was 

defined and maintained which is the key to be able to manage large amount of CPU 

hours for such a diverse exploration with reasonable effort. In addition, the whole 

process is easily reproducible rendering classifier exploration requiring large computing 

resources a systematic task. This allows researchers to focus on their core research, 
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devising exploration strategies, evaluating dataset preprocessing algorithms, new 

classification methods, etc. instead of sorting out the logistics of access methods to 

computing resources, preparing datasets differently for each third party engine, etc. 

This is what enabled the thorough validation of the AUC optimization method 

described in Section 3.3. 

4.5 Conclusion 

This Chapter described the major technological contributions of this thesis (see Section 

1.4) based on two software frameworks, BiomedTK/C3, and their associated classifier 

exploration methods that enable systematic and agile exploitation of available 

distributed computing resources of different nature for massively exploring and 

evaluating configurations of machine learning classifiers. Experimentation showed their 

utility with commonly used datasets and experimental conditions, reaching in 

reasonable time classifier performance comparable to that reported in a variety of 

literature sources. Their development was motivated by the IMED project within which 

this thesis originated, and its need to efficiently use available computing resources to 

find well performing classifiers for breast cancer CAD in a timely manner as datasets 

are being produced by specialized radiologists annotating and classifying mammograms.  

These classifiers would become targets upon which CAD systems can be built. 

However, as shown by experimentation, their reach lies far beyond this application 

domain and, together with the method to enable AUC optimization in existing machine 

learning classifiers described in Chapter 3, they can be used in biomedical data analysis 

tasks but also in other domains where machine learning classifiers can be applied. 

Therefore, at this stage the material means are ready to start field work applying 

the artifacts obtained so far into the IMED project and this is described in next 

Chapter. Besides the specific contribution to the project, next Chapter should also be 

viewed as an example on how the results of this thesis can be applied on a real world 

problem. 
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Chapter 5  

5 Application in Breast Cancer 
CAD 

5.1 Introduction 

The IMED project constitutes the context within which this thesis has been developed 

contributing to achieve part of the project objectives as described in Section 1.2.  The 

first Portuguese breast cancer database has been built in the course of the project, with 

anonymous cases from medical historical archives supplied by FMUP-HSJ (Hospital de 

São João–Faculty of Medicine at University of Porto, Portugal) complying with current 

privacy regulations as they are also used to teach regular and postgraduate medical 

students. The database is referred to as the “Breast Cancer Digital Repository” (BCDR) 

in this thesis. BCDR is supported and hosted on the Digital Repositories Infrastructure 

(DRI) platform developed by the Center of Extremadura for Advanced Technologies 

(CETA-CIEMAT) in Spain.  

As part of the project work plan, specialized radiologists segmented and diagnosed 

images from the BCDR as explained in Section 1.1.4 using software tools and graphical 

workstations developed by the project. The datasets resulting from this process 

constitute the input for this thesis, with the goal of applying the developments 

described in previous chapters to obtain well performing classifiers that can be 

integrated back in the medical graphical workstations for assisted diagnosis.  
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From the IMED project perspective, the machine learning classifiers described in 

this section and discovered through the artifacts produced by this thesis constitute its 

contribution (output) to the project (Ramos-Pollan, Guevara-López et al. 2011). This 

includes the multilayer perceptrons modified for AUC optimization described in 

Chapter 3. From this thesis perspective, the IMED project provides a real world case to 

demonstrate the applicability of its results (Ramos-Pollan, Rubio del Solar et al. 2009; 

Ramos-Pollan, Franco et al. 2010; Ramos-Pollan, Franco et al. 2010; Ramos-Pollan, 

Rubio del Solar et al. 2010). 

5.2 The Breast Cancer Digital Repository (BCDR) 

Usage of DRI to create and host the BCDR repository can be revisited in the references 

just mentioned. DRI simplifies hosting of digital repositories (such as for medical 

imaging) over distributed storage resources across different locations (hospitals, 

university, computer centers, etc.). Its architecture offers a simple network API 

(Application Programming Interface) facilitating development of client applications, 

like specialized graphical image processing interfaces such as the one shown in figure 9 

(page 20), but also batch interfaces to proprietary picture archiving and communication 

systems (PACs), custom information sources, etc. (figure 36). Repositories are 

described in regular XML files, allowing agile implementation of evolving data models, 

such as it often happens in medical environments. In addition, reconfiguration and 

redistribution of repository content over different physical storage services (local 

storage, Grid, web based, databases, etc.) can be done transparently to the final user. 

With this, the project was able to start at FMUP-HSJ with an embedded configuration, 

where all components are bundled within the same physical machine into a medical 

doctor´s desktop. This allowed specialized radiologist segmenting and classifying 

mammograms straight away and, thus, enabled the generation of datasets for training 

machine learning classifiers for CAD shown in this section reasonably early in the 

project. Meanwhile, its evolution towards real distributed configurations is 

transparently ensured allowing us to evaluate how to best integrate it within medical 

doctors’ workflows and institutional computing environments with the least possible 

impact, complying with required privacy and technical regulations. 



Chapter 5 Application in Breast Cancer CAD 115 

 

 

 

Figure 36: IMED project digital repository and CAD development lifecycle 

The BCDR data model (Ramos-Pollan, Franco et al. 2010), hosted at DRI 

infrastructure set up by the project, is a subset of the DICOM medical file format 

(NEMA 2008) customized by radiologists at the FMUP-HSJ for storing and managing 

specific case information related to digital mammography images (see data model in 

figure 37). At the time of writing BCDR includes samples of all BIRADS (D'Orsi, 

Bassett et al. 2003) classes and it is composed of over one thousand cases, each one 

with the associated proven biopsy that constitutes the golden standard. This work 

complemented recent results in managing DICOM objects within Grid environments, 

such as the TRENCADIS middleware (Blanquer Espert, Hernández García et al. 2009) 

and others (Bellotti, Cerello et al. 2007; Glatard, Zhou et al. 2009; Maheshwari, Missier 

et al. 2009), by applying the DICOM standard at FMUP-HSJ. BCDR is fully 

integrated with lifecycle to develop machine learning classifiers (figure 36), where (1) 

mammography images of the BCDR are preprocessed through a graphical workstation, 

(2) specialized radiologists mark and classify biopsied cases which are then stored in the 

BCDR, (3) data features are extracted from the stored annotations, (4) MLC 

configurations are explored and selected and (5) selected MLC are integrated back into 

the workstation providing automated second opinion diagnosis to doctors. Step 4 

constitutes the contribution of this thesis to the project and this is what is shown in 

this section.  
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Figure 37: Data model for the Breast Cancer Digital Repository 

The BCDR data model (figure 37) supports each patient undergoing one or more 

studies, each study composed of one or more images (such as digitized film screen 

mammography images) and one or more lesions. Each image may have one or more 

segmentations (for different lesions) and each lesion can be associated to several 

segmentations, typically in mediolateral oblique (MLO) and/or craniocaudal (CC) 

images of the same breast.  Moreover, each lesion can be also linked to many 

classifications (by different specialists, automatic classifiers, etc.).  For each segmented 

region 18 features are automatically computed and stored forming a features vector, 

which is representative of the image region statistics, shape and texture. Then, the 

features vector can be assigned to a certain class by an expert radiologist or a machine 

learning classifier. The BCDR model supports the possibility to assign to the same 

features vector several classifications by different clinicians and MLC under different 

class families. In the IMED project only the BIRADS class family (D'Orsi, Bassett et 

al. 2003) was considered. BCDR also allows the storage of a variety of sets of 

experiments of classification runs, performed both by human experts and automatic 

classifiers, so that later they become available for statistical analysis.  

A specialized graphical workstation supports specialists segmenting and diagnosing 

images as explained in Section 1.1.4. Segmentation is semi-automatic, where the user 

segments the region assisted by the computer through an interactive technique based 

on deformable models such as snakes, active shape model, etc. (Cootes, Taylor et al. 

1995; Chenyang and Prince 1998) and/or intelligent scissors (Liang, McInerney et al. 

2006) also known as livewire. 

The datasets containing the extracted features constitute the input for this thesis 

and well performing discovered are then to be integrated back within specialized user 

interfaces to be used for second opinion in assisted diagnosis. 
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5.3 Dataset construction and processing 

From BCDR, two specialized radiologists at FMUP-HSJ used a graphical workstation 

to evaluate and BIRADS classify 286 cases (Ramos-Pollan, Guevara-López et al. 2011). 

Only cases having both CC and MLO mammography images of left and right breasts 

were selected, including associated critical information such as lesion type 

(microcalcification, calcification, mass or asymmetries), biopsies results, etc. Several 

image processing operations were applied and validated on all selected images to 

improve ROIs details. The goal was to find fast and simple image preprocessing 

operations for denoising and enhancing possible pathological lesions or normal tissue 

image regions. This validation included suitable combinations of pre-processing filters, 

mathematic morphology, thresholding and edge detection among others techniques. 

However, the most common defect of mammography images was the poor contrast 

resulting from a reduced, and perhaps nonlinear, image amplitude range. Then, it was 

found that in a first preprocessing step, ROI details can be in general improved by 

adjusting image intensities (a conventional contrast enhancement technique based on 

amplitude rescaling of each pixel). To enhance images contrast gray scale intensity 

values of input CC and MLO mammography images were mapped to new values such 

that 1% of data is saturated at low and high intensities to produce a new image in 

which the contrast is increased. 

Special effort was made by specialists trying to locate possible ROIs for the same 

lesion in both CC and MLO associated mammography images for each case (see figure 

38). This double-segmentation was successfully performed in 126 cases producing each 

one two features vectors (one for each CC and MLO image), whereas in the remaining 

160 cases only one ROI was segmented, either in the CC or in the MLO image, 

producing one single features vector. This was attributable to various reasons, including 

technical issues, difficulties in ROI identification in both CC and MLO images or casual 

contingencies. For each segmentation (in MLO and/or CC images) the extracted 

features vector contained 18 features including statistics (skewness, kurtosis, perimeter, 

area, standard deviation, minimum, maximum, mode and  mean), shape (elongation, 

roughness, form, circularity) and texture (correlation, angular second moment, 

contrast, inverse difference moment, entropy). See (Haralick, Dinstein et al. 1973; 

Rodenacker 2001; López, Novoa et al. 2008) 



118 Chapter 5 Application in Breast Cancer CAD 

 

 

 

Figure 38: Double segmentation, feature extraction and BIRADS classification 

From this raw data three primary datasets were constructed, as shown in figure 39. 

Dataset HSJ.2D holds all 412 features vectors with 18 features extracted from the 286 

cases, where the 126 double-segmentation cases produced 252 vectors and the 160 

single-segmentation cases produced one vector each. Dataset HSJ.3DSNGL (for single) 

contains only the 252 vectors produced by the double-segmentation cases. Finally, for 

each features vector pair from double-segmentation cases, a single vector was formed 

joining the 18 features segmented from the MLO image and the 18 features segmented 

from the CC image. This resulted in the HSJ.3DJOIN dataset, containing 126 vectors 

with 36 features each. With this, the aim was understanding if relating MLO and CC 

segmentations on same lesion could be exploited to gain classification accuracy. In 

addition, as shown in figure 39, five datasets were further derived from HSJ.2D in order 

to understand if including all 18 features or only a selected group of features (shape, 

texture, statistic or a heuristic selection) would prominently contribute to MLC 

accuracy over the others. This was not done for the HSJ.3DSNGL and HSJ.3DJOIN 

since experimentation on HSJDS.2D derived datasets showed that it was best to keep 

all features. Thus, the five datasets derived from HSJ.2D together with HSJ.3DSNGL 

and HSJ.3DJOIN, makes a total of seven base datasets.  
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Figure 39: Datasets built from BCDR after classification by specialists 

Table 18 shows the distribution of BIRADS classes for each original dataset. Since 

some BIRADS classes were rather scarce and the primary medical interest was to 

distinguish benign cancers from malignant ones, BIRADS classes 1, 2 and 3 were all 

tagged as benign, while BIRADS classes 4, 5 and 6 were tagged as malign, making 

therefore all datasets binary. 

Table 18: Class distribution for mammography datasets 

class HSJ.2D HSJ.3DSNGL HSJ.3DJOIN 

BIRADS 1 8 4 2 

BIRADS 2 172 146 73 

BIRADS 3 75 32 16 

BENIGN 255 182 91 

BIRADS 4 55 20 10 

BIRADS 5 26 16 8 

BIRADS 6 76 34 17 

MALIGN 157 70 35 

TOTAL 412 252 126 
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Dataset normalization is required before feeding data to any MLC, since different 

features of the same vector usually take values over ranges of different sizes and nature. 

This affects MLC performance and in this study each of the seven datasets just 

described was normalized using three different techniques, seeking to understand how 

to better preprocess them, producing a total of 21 datasets to explore as shown in 

figure 39. The three normalization procedures used were Euclidian, range to [0,1] 

and principal component analysis. 

Euclidean normalization was calculated by � � �/||�|| where � � ��A, �K, … , �0� 
represents the original features vector and � � ��A , �K , … , �0 � the normalized resulting 

vector. ||�|| is the vector norm defined as ||�|| � 	√� ∙ � � ¯�AK �⋯� �0K 
Range normalization [0,1] processes individually each vector’s feature �R to 

guarantee they all fall within the [0,1] interval and it was calculated as �R � n¬¤b`¬?¤R0¬ 
where �R and �R are the original and normalized feature values respectively and §
 R 
and	§=R are the minimum and maximum values of feature 
 in all elements of the 

dataset. 

Principal Component Analysis (PCA) was done using the Weka toolkit (Mark 

Hall, Eibe Frank et al. 2009), reducing the dimensionality of each dataset to account 

for 99% of its variability. 

In summary, first from HSJ.2D, HSJ.3DSNGL and HSJ.3DJOIN seven base datasets 

were built: HSJ.2D.a (412 features vector, all 18 features), HSJ.2D.t (412 features 

vectors, with only the 5 texture features), HSJ.2D.f (412 features vectors, with only the 

4 shape features), HSJ.2D.e (412 features vectors, with only the 9 statistic features), 

HSJ.2D.c9 (412 features vectors, with only 9 heuristically selected statistic, shape and 

texture features), HSJ.3DSNGL.a (252 features vector, all 18 features) and 

HSJ.3DJOIN.a (126 features vector, all 36 features, 18 from each original vector). 

Second, we created 21 working datasets that were produced after normalizing each 

dataset with range [0,1], euclidian and PCA normalization procedures. All working 

datasets were finally named as described in figure 39. 
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5.4 Experimentation and Validation 

5.4.1 Goals and metrics 

Experimentation is aimed at massively exploring classifier configurations to obtain well 

performing classifiers for the datasets just described. This includes also gaining 

understanding on what data preprocessing operations are more convenient 

(normalization and feature selection) and what datasets yield better classification 

results. Besides the specific classifiers obtained, knowledge gained in this endeavor will 

also be key to design further experiments and data collection processes within the 

IMED project. 

Due to the medical domain within which this data analysis process takes place, AUC 

is the major metric through which classifier performance is to be measured, compared 

and, most importantly, communicated to medical staff to share the degree of success of 

discovered classifiers before they can be used in the CAD construction and validation 

process. 

Together with AUC, strong statistical validation of obtained results is essential since 

data is typically scarce in these domains and, specially, at the beginning of the project. 

Special emphasis was put into using strong validation methods profiting from the 

capabilities offered by BiomedTK/C3 to exploit computing resources. Therefore leave-

one-out validation was used whenever possible and bootstrapping in all cases leaving 

the door open for stronger statistical in further classifier discovery tasks as more data 

becomes available from the IMED project. 

5.4.2 Experimental setup 

BiomedTK/C3 was used to explore SVM and MLP based classifiers search spaces for 

the datasets described above (Ramos-Pollan, Guevara-López et al. 2011). The goal was 

to find well performing MLC configurations for each dataset and understanding what 

feature set and normalization procedure would produce best classification. Following 

the method described in Section 4.2, both for SVMs and MLPs the strategy was first to 

make general explorations with a wide range of parameters and then performing more 

fine grained explorations around the MLC configurations yielding better classification 

performance. Validation was done through the bootstrapping method tagging for 

testing 40% of each dataset before training each classifier configuration and repeating 
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the process 5 times to allow statistical smoothing. This is referred to as testpct40 in the 

reported results (preserving BiomedTK notation). In addition, since SVMs are 

computationally more affordable to train, leave-one-out validation was also used for all 

SVM configurations (denoted as one2all in experiments) where a dataset of size n is 

trained n times, each one with n-1 elements used for training, the one left out for 

testing and averaging the results. For MLPs, all available engines in BiomedTK were 

used, which includes the original Encog ones (ffbp, ffrp, ffsa and ffga) and their 

counterparts modified for AUC optimization (ffbproc, ffrproc, ffsaroc, ffgaroc) as 

explained in Section 3.3. This way, the behavior of AUC optimized MLPs resulting 

from this thesis could also be observed in this application case. 

Well performing classifiers resulting from exploring the 21 working datasets would 

become the targets to be integrated into CAD systems, with the corresponding image 

and data preprocessing. In total, for each dataset, 1200 SVM configurations and 

another 240 MLP configurations were set up in the following way: 

• 600 SVM configurations with one2all validation (480 configurations for a 

general exploration and the rest for finer ones). Observe that with one2all 

validation each configuration is trained once per element of the target 

dataset. 

• 600 SVM configurations with testpct40 validation (the same 600 

configurations as with one2all validation, trained 5 times each one with 

testpct40). 

• 240 MLP configurations with testpct40 validation. This is, 30 configurations 

for each of the 8 MLP engines, trained 5 times each one with testpct40 (20 

configurations for a general exploration and 10 configurations for the finer 

ones). 

Not all configurations were trained for each one of the 21 datasets, since as 

experimentation begun, it was rapidly observed that certain datasets would 

systematically yield worse classification results, so they were left out of the rest of the 

experiments for a more rationale usage of the computing resources. At the end, datasets 

were explored in the following sequence: 

Step 1. HSJ.2D with SVM. The 15 normalized datasets derived from HSJ.2D.a, 

HSJ.2D.t, HSJ.2D.f, HSJ.2D.e and HSJ.2D.c9 with SVMs, including all (412) features 

vectors. 
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Step 2. HSJ.2D.a with MLP. In the step above it was observed that selecting all 

available features (working datasets derived from HSJ2D.a) consistently produced 

better classification results so, since MLPs are much more computationally expensive to 

train, explorations were restricted only to three datasets: HSJ.2D.a.p, HSJ.2D.a.r and 

HSJ2D.a.e. In Step 1 it was also observed that Euclidean normalization tends to yield 

the worse results within the same dataset. However, as this seems to be secondary to 

feature selection, it was decided that Step 2 would still include datasets with the three 

normalization procedures. 

Step 3. HSJ.3DSNGL.a.p with SVM and MLP. At this step exploration of the 

datasets containing only CC and MLO related segmentations started with the dataset 

including only 256 selected features vectors and all (18) features with PCA 

normalization. In addition to what was concluded by Step 1 above (it is best to use all 

available features), Step 2 confirmed that Euclidean normalization performs 

consistently worse and that both PCA and range normalization gave similar results. 

Therefore, only dataset HSJ.3DSINGLE.a.p was explored. 

Step 4. HSJ.3DJOIN.a.p with SVM and MLP. Dataset including only 126 

selected features vectors and 36 features with all joint features and PCA 

normalization. Only dataset HSJ.3DJOIN.a.p was explored for the same reasons as 

above. 

In total, 17 out of the 21 generated datasets were explored with SVMs (training 

1200x17=20400 configurations) and five with MLPs (training 240x5=1250 

configurations). Marks in figure 39 show which dataset was trained with SVMs and 

which one with both SVMs and MLPs. This took around 200 days of CPU time, 

requiring over four physical days on the public gLite Grid computer cluster at CETA-

CIEMAT with 50 CPU cores with BiomedTK/C3. After training and validation, each 

MLC configuration produced two measures for classifier performance, on the test part 

of the dataset: test.PCT, the percentage of elements correctly classified (accuracy) 

and test.AUC, the area under the ROC curve. 

5.4.3 Results and discussion 

Tables 19 summarizes the results for the explorations performed with SVMs on the 15 

working datasets derived from HSJ.2D for Step 1 as described above. Table 20 

summarizes the best 10 results obtained with MLP engines on HSJ.2D.a derived 
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datasets for Step 2. Tables 21 and 22 show the specific configurations of the best 

classifiers obtained for the HSJ.3DSNGL and HSJ.3DJOIN for Steps 3 and 4 

respectively. ROC curves for best test.AUC marked in gray in all tables are plotted in 

figure 40.  It is important to remark that, although for simplicity results from one2all 

and testpct40 validation methods are shown together (specially in tables 21 and 22) 

their comparative interpretation must be undertaken with care. In one2all a dataset of 

size n is trained n times, each one labeling n-1 elements for training and one for testing. 

Each time, the accuracy of the test part of the dataset (only one element) is either 0% 

or 100%, but then it is averaged over all elements of the dataset once the n training 

processes are completed. With this, test.PCT and test.AUC measure classifier 

performance on the whole dataset (since each element is used for testing once). In 

particular, test.PCT represents more a proper probability rather than an averaged 

classifier score. On the other hand, with testpct40 classifier performance (test.PCT and 

test.AUC) refers only to the 40% selected as test instances. Moreover, it is more subject 

to outliers, since random selection of the test elements may eventually favor those 

easier to classify. 

Table 19: Results summary for HSJ.2D datasets (SVMs/Step 1 by test.AUC) 

test.PCT test.AUC 
dataset configs max avg stdev max avg stdev 

one2all validation 

HSJDS.2D.a.p 600 0,689 0,667 0,010 0,683 0,656 0,011 
HSJDS.2D.a.r 600 0,687 0,662 0,013 0,677 0,654 0,010 
HSJDS.2D.c9.p 600 0,675 0,634 0,017 0,661 0,589 0,036 
HSJDS.2D.f.e 600 0,655 0,635 0,010 0,649 0,518 0,067 
HSJDS.2D.c9.r 600 0,667 0,634 0,014 0,647 0,602 0,028 
HSJDS.2D.a.e 600 0,653 0,621 0,018 0,632 0,506 0,063 
HSJDS.2D.c9.e 600 0,648 0,599 0,022 0,632 0,498 0,084 
HSJDS.2D.e.e 600 0,648 0,614 0,014 0,625 0,440 0,096 
HSJDS.2D.e.r 600 0,658 0,632 0,013 0,623 0,583 0,018 
HSJDS.2D.e.p 600 0,655 0,631 0,011 0,623 0,582 0,026 
HSJDS.2D.t.r 600 0,629 0,609 0,008 0,594 0,407 0,081 
HSJDS.2D.f.p 600 0,653 0,620 0,017 0,587 0,506 0,040 
HSJDS.2D.f.r 600 0,653 0,630 0,009 0,578 0,504 0,049 
HSJDS.2D.t.p 600 0,646 0,610 0,020 0,538 0,403 0,059 
HSJDS.2D.t.e 600 0,631 0,614 0,008 0,530 0,431 0,052 

testpct 40 validation 

HSJDS.2D.a.r 600 0,750 0,654 0,031 0,778 0,660 0,053 
HSJDS.2D.a.p 600 0,733 0,655 0,030 0,770 0,664 0,055 
HSJDS.2D.c9.r 600 0,744 0,637 0,070 0,755 0,601 0,065 
HSJDS.2D.c9.p 600 0,738 0,638 0,045 0,743 0,605 0,056 
HSJDS.2D.a.e 600 0,709 0,613 0,021 0,733 0,511 0,104 
HSJDS.2D.c9.e 600 0,671 0,611 0,027 0,724 0,519 0,108 
HSJDS.2D.t.r 600 0,655 0,607 0,020 0,723 0,504 0,092 
HSJDS.2D.e.p 600 0,709 0,633 0,041 0,721 0,596 0,062 
HSJDS.2D.f.p 600 0,695 0,624 0,035 0,720 0,568 0,081 
HSJDS.2D.f.r 600 0,689 0,625 0,036 0,712 0,570 0,088 
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HSJDS.2D.e.r 600 0,709 0,635 0,048 0,707 0,599 0,056 
HSJDS.2D.t.p 600 0,659 0,608 0,031 0,704 0,504 0,088 
HSJDS.2D.e.e 600 0,677 0,613 0,028 0,702 0,519 0,074 
HSJDS.2D.f.e 600 0,691 0,626 0,039 0,700 0,555 0,080 
HSJDS.2D.t.e 600 0,667 0,611 0,034 0,666 0,489 0,109 

 

Classification Performance of HSJ.2D datasets. Table 19 summarizes the 

performance of obtained SVM classifiers for the HSJ.2D datasets (Step 1) per classifier 

engine and validation type. Each line summarizes the number of MLC configurations 

trained for each working dataset derived from HSJ.2D, separating results from 

explorations performed with one2all or testpct40 validation. For ach dataset, it shows 

the number of SVM configurations trained, along with the maximum, the average and 

the standard deviation for test.AUC and test.PCT obtained with those SVM 

configurations. The maximum value refers to a specific configuration, and the best 

test.AUC and test.PCT were in some cases obtained by the different configurations. 

SVM-based classifiers using the one2all validation method yielded a maximum 

test.AUC of 0,683 and 0,778 with testpc40. Table 20 shows similar information for 

MLPs. In this case (Step 2), only the three datasets derived from HSJ.2D.a were 

explored with each one of the eight MLP available engines (ffbp, ffbproc, ffrp, ffrproc, 

ffsa, ffsaroc). This makes 24 combinations and table 20 shows the top ten combinations 

producing best maximum test.AUC. The best test.AUC was 0.788. These results are 

marked in gray in both tables and their ROC curves are plotted in figure 40 (left). This 

allows us to consider that: (1) range [0,1] and PCA normalization are more suitable for 

HSJ.2D than Euclidean normalization (2) there is a non negligible difference between 

SVM results using one2all and testpct40 validation, recalling the remarks made above; 

and (3) similar classification performance results were obtained in SVM and MLP 

based classifiers (with testpct40). 

Table 20: Top ten results for HSJ.2D datasets (MLPs/Step 2 by test.AUC) 

   test.PCT test.AUC 
dataset engine configs max avg stdev max avg stdev 

HSJDS.2D.a.p ffsaroc 30 0,709 0,656 0,025 0,788 0,704 0,044 
HSJDS.2D.a.r ffsa 30 0,733 0,659 0,046 0,771 0,700 0,043 
HSJDS.2D.a.p ffbproc 30 0,721 0,640 0,054 0,758 0,679 0,032 
HSJDS.2D.a.r ffsaroc 30 0,726 0,650 0,038 0,752 0,683 0,044 
HSJDS.2D.a.p ffrproc 30 0,712 0,639 0,041 0,750 0,668 0,043 
HSJDS.2D.a.p ffgaroc 30 0,703 0,619 0,037 0.746 0,667 0,059 
HSJDS.2D.a.p ffbp 30 0,709 0,635 0,039 0,744 0,662 0,045 
HSJDS.2D.a.p ffga 30 0,709 0,618 0,052 0,737 0,622 0,060 
HSJDS.2D.a.r ffbproc 30 0,673 0,631 0,021 0,735 0,669 0,038 
HSJDS.2D.a.r ffsaroc 30 0,695 0,637 0,036 0,733 0,675 0,039 
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Classification Performance of HSJ.3DSNGL.a.p and HSJ.3DJOIN.a.p 

datasets. As explained, Steps 3 and 4 explored only the HSJ.3DSINGLE.p.a and 

HSJ.3DJOIN.p.a datasets, normalized by PCA and using both SVM and MLP based 

classifiers. In order to show concrete classifier configurations discovered, tables 21 and 

22 detail the best classifiers respectively obtained for the HSJ.3DSINGLE.p.a and 

HSJ.3DJOIN.p.a datasets with SVM and MLP configurations, including the classifier 

parameters used. A significant increase of test.PCT and test.AUC values in classifiers 

for both datasets can be observed with respect to all HSJ.2D datasets. The highest 

test.AUC values (0,996 in HSJ.3DJOIN.a.p and 0,992 in HSJ.3DSINGLE.a.p) were 

produced by MLP-based classifiers (with testpct40 validation). However, SVM-based 

classifiers also produced high test.AUC values (0,984 in HSJ.3DJOIN.a.p and 0,953 in 

HSJ.3DSINGLE.a.p). Figure 40 (center and right plots) shows the ROC curves 

corresponding to these test.AUC values. 

Table 21: Best configurations discovered for HSJ.3DSNGL.a.p dataset 

 

In general, starting this exploration endeavor with SVMs (Step 1) was beneficial 

because it allows a first filter on datasets with affordable computer power, allowing a 

more rational effort when exploring MLPs which, in the case of HSJ.3DSNGL and 

HSJ.3DJOIN datasets ended up yielding slightly better performance. Additionally, it 

can be seen that the AUC optimization proposed in Chapter 3 for MLPs (ffbproc, 

ffsaroc, etc.) improves the obtained AUC when performance is far from optimal (tables 

19 and 20), consistently with results obtained by experiments in Section 3.3. 

engine config params config values validation test.PCT test.AUC 

SVM CONFIGURATIONS 

svm kernel degree gamma shrink 
coef0 cost weight probestimates 

pol 2 0.0048 true 
1.0 64.0 0.5 true 

one2all 0,917 0,953 

svm kernel degree gamma shrink 
coef0 cost weight probestimates 

pol 2 0.0010 true 
0.6 512.0 1.0 true 

one2all 0,933 0,950 

svm kernel degree gamma shrink 
coef0 cost weight probestimates 

sigm 2 0.0010 true 
0.6 512.0 1.0 true 

testpct 40 0,901 0,949 

svm 
 

kernel degree gamma shrink 
coef0 cost weight probestimates 

pol 2 0.0010 true 
0.1 1.0 0.1 true 

testpct 40 0,885 0,946 

MLP CONFIGURATIONS 

ffbp layers and neurons 
learnrate momentum epochs 

[18:27:14:7:2] 
0.1 0.2 500 

testpct 40 0,950 0,992 

ffsaroc layers and neurons 
starttempendtemp cycles epochs 

[18:27:14:7:2] 
100.0 2.0 100 200 

testpct 40 0,920 0,966 

ffbproc layers and neurons 
learnrate momentum epochs 

[18:27:14:7:2] 
0.1 0.2 500 

testpct 40 0,931 0,956 

ffsa layers and neurons 
starttempendtemp cycles epochs 

[18:27:14:7:2] 
100.0 2.0 100 200 

testpct 40 0,911 0,951 
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Table 22: Best configurations discovered for HSJ.3DJOIN.a.p dataset 

 

Validation method. Results in (Efron 1983) indicate that one2all (leave-one-out) 

validation gives a nearly unbiased estimator for classifier accuracy, but often with high 

variability, specially in small datasets. Our experiments showed little variability on all 

classifiers (both on accuracy and AUC), which encourages us to place stronger 

confidence in our results, at the expense of additional computing power required to 

train classifiers. Interestingly enough, results of testpct40 and one2all validation differ 

very little in the HSJ.3DSINGLE.a.p and HSJ.3DJOIN.a.p datasets, which might 

suggest that testpct40 could be used for these datasets instead of one2all, reducing 

significantly computing time. The fact that this is not exactly the case in HSJ.2D 

datasets, but still one2all and testpct40 results are quite close, suggests that using a 

different percentage in testpct might lead to similar results, reducing as well the 

computing requirements of explorations for those datasets. This might be the subject 

for further analysis, specially for biomedical datasets, since more data is being 

generated as the project at the FMUP-HSJ continues, and statistically consistent 

results at reduced computing costs will be key to allow us place increasingly stronger 

confidence on the automatic diagnoses made by the systems developed by the project. 

engine config params config values validation test.PCT test.AUC 

SVM CONFIGURATIONS 

svm kernel degree gamma shrink 
coef0 cost weight probestimates 

pol 2 0.0048 true 
1.0 64.0 0.5 true 

one2all 0,937 0,984 

svm kernel degree gamma shrink 
coef0 cost weight probestimates 

pol 2 0.0010 true 
0.1 1.0 0.1 true 

testpct 40 0,937 0,982 

svm kernel degree gamma shrink 
coef0 cost weight probestimates 

sigm 2 0.0010 true 
0.1 1.0 0.1 true 

one2all 0,921 0,981 

svm 
 

kernel degree gamma shrink 
coef0 cost weight probestimates 

rbf 2 0.01 true 0.6 
1.0 1.0 true 

testpct 40 0,913 0,981 

MLP CONFIGURATIONS 

ffbp layers and neurons 
learnrate momentum epochs 

[36:54:27:14:2] 
0.1 0.2 500 

testpct 40 0,941 0,996 

ffsa layers and neurons 
starttempendtemp cycles epochs 

[36:54:27:14:2] 
100.0 2.0 100 200 

testpct 40 0,940 0,983 

ffbproc layers and neurons 
learnrate momentum epochs 

[36:54:27:14:2] 
0.1 0.2 500 

testpct 40 0,902 0,964 

ffsaroc layers and neurons 
starttempendtemp cycles epochs 

[36:54:27:14:2] 
100.0 2.0 100 200 

testpct 40 0,902 0,960 
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Figure 40: ROC Curves for best classifiers on HSJ datasets 

The results just described (Ramos-Pollan, Guevara-López et al. 2011) can be 

compared with those reported in Section 2.3 - Machine learning classifiers for breast 

cancer CAD. However, interpretation of this comparison must be undertaken with care, 

accounting for the different datasets and experimental conditions with which the 

different results are obtained across the literature sources. Comparison of these results 

with the ones obtained with the FMUP-HSJ datasets is not straight forward although 

the final classification goal is analogous, due to the different nature of the datasets. In 

addition, results reported in Section 2.3  can also be compared with those obtained for 

the bcw UCI dataset in Chapter 4 to validate the BiomedTK/C3 software frameworks 

and reported in table 29 on page 159 

5.5 Conclusion 

The aim of this Chapter was to show the developments of this thesis applied in practice 

to a real world problem. With this, three major contributions are provided by this work 

to the IMED project within which this thesis came into existence:  

1. The specific classifier configurations discovered through the exploration 

process enabled by the BiomedTK/C3 software frameworks. Additionally, 

these configurations include the ones resulting from modifying multilayer 

perceptrons for AUC optimization as described in Chapter 3. These 

configurations are to be included within the graphical workstations used by 

medical doctors to build CAD systems for assisted diagnosis or automated 

second opinion. 

2. The knowledge gained on what dataset preprocessing operations 

(normalization and feature selection in this case) seem to be more 
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appropriate for the problem in hand. In fact, it is the capability to harness 

computing power to train constructed datasets in an agile manner that 

allowed gaining this knowledge and enabled tuning further exploration 

strategies as knowledge was being built.  

3. The data analysis process itself using BiomedTK/C3 constitutes now a fine 

tuned workflow ready to continue discovering new classifier configurations as 

new datasets are made available through the IMED project, produced by 

further segmentations and annotations by specialized radiologists. 

Besides this, through the application domain addressed in this Chapter (discovering 

machine learning classifiers for breast cancer CAD), the aim was also to show the 

diversity and complexity of situations that can be handled with the contributions of 

this thesis, leading to a better knowledge of the application domain. In particular, the 

results herewith described, open questions for further research within the IMED project 

such as:  

• Is there an appropriate split percentage when using testpct validation 

(bootstrap) on HSJ datasets so that its results are comparable to those of 

one2all (leave one out) but at a reduced computational cost? 

• Is the increased performance found when using HSJ.3D datasets statistically 

significant? 

• If so, since the performance improvement is so noticeable, is it worthwhile to 

focus the IMED project objectives into building a CAD system enforcing 

double segmentation to ensure better CAD performance when the user (a 

medical doctor) resorts to it for second opinion? 

Regardless how the IMED project finally settles these (and other) issues, it is due to 

the results obtained with this thesis that they were raised and their resolution can 

contribute to the success of the project. So beyond the specific classifier configurations 

and dataset preprocessing criteria obtained, these issues illustrate how the experimental 

reach of the application domain is augmented by the artifacts produced by this work 

(BiomedTK/C3 and enabling AUC optimization). 
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Chapter 6 

6 Conclusions 

6.1 Development of this thesis 

The different developments and findings resulting from this thesis were motivated by 

the need to find better machine learning classifiers for the CAD methods and systems 

that were being developed within the IMED project. Retrospectively, working towards 

this driving aim, most contributions resulted by from the need to overcome specific 

difficulties as they arose and the opportunity to extend their reach beyond the scope of 

the project. The following points summarize briefly the historical development of the 

contributions described in this document: 

1. The need to find better machine learning classifiers for CAD methods was 

defined within the IMED project. See Section 1.2 (Calanducci, Ramos-Pollan 

et al. 2008; Ramos-Pollan, Guevara López et al. 2009). 

2. AUC was acknowledged to be a commonly used metric in medical 

environments and, thus, its usage appropriate for the IMED project. 

Additionally, literature review showed evidence that error rate minimization 

(as typically targeted by machine learning methods) does not necessarily 

yield to AUC optimization, which lead to think that an opportunity to 

enable a more systematic use of AUC within machine learning in general 

could exist. 
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3. An AUC optimization method affordable to use in existing machine learning 

methods was defined. See Section 3.3 (Ramos-Pollan, Guevara Lopez et al. 

2010) 

4. The multilayer perceptron training algorithms delivered through the Encog 

toolkit were modified for AUC optimization using the method previously 

defined (Section 3.3). This included the feedforward backpropagation, 

resilient propagation, simulated annealing and genetic algorithms (Ramos-

Pollan, Guevara Lopez et al. 2010). 

5. Confronted with the large amounts of computing power available at the 

research institutions where the IMED project evolves and this thesis was 

developed, it was determined to exploit them to (1) validate the AUC 

optimization method just defined and (2) massively explore the search space 

of classifiers configurations to discover well performing configurations 

suitable for CAD. Therefore, a software framework (BiomedTK) was 

developed to manage explorations of classifier configurations over Grid 

eInfrastructures serviced by the gLite middleware (Section 4.2). 

6. It was observed that performance of the modified multilayer perceptron 

training algorithms degraded largely when using the new AUC optimization 

method. This was due to the fact that they are heavily iterative algorithms 

and AUC calculating occurred constantly during the iterative processes. In 

some cases this degradation rendered the algorithms impractical to use. 

7. A method was defined to provide a fast computation of the AUC, by making 

an error bounded approximation, having the error to be as small as desired 

by the researcher. After definition, the method was implemented and 

validated experimentally (Section 3.2). 

8. The modified training algorithms were updated to use the fast AUC method 

just developed. With this, the AUC optimization method as applied to 

multilayer perceptrons was experimentally validated (Section 3.3).  

9. Grid resources were started to be used through BiomedTK during this 

experimental validation, but it was soon observed a large dependency on the 

underlying gLite middleware. Seeking to isolate BiomedTK from gLite 

changes and instabilities, the possibility to generalize access to 

eInfrastructures was identified to be feasible and affordable (in development 
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effort) by using Java industry standards to implement a job agents/colony 

model. 

10. A software framework was then developed to enable this decoupling, 

providing a simple and fast mechanism to exploit computing resources 

available throughout eInfrastructures of different nature for users and 

applications in general (like BiomedTK). This software framework was 

named C3 (for Cloud Computing Colonies) and it was developed initially to 

use gLite Grid, Amazon EC2 Cloud and SSH available distributed computing 

resources (Section 4.3). BiomedTK was updated to use C3 rather than gLite 

directly. Together, BiomedTK and C3 were thoroughly tested. See Section 

4.4 (Ramos-Pollan, Guevara-López et al. 2011). 

11. Finalized experimental validation for AUC optimization, now over 

BiomedTK/C3 (Section 3.3.2) 

12. Application in breast cancer CAD was now overtaken as data started being 

available from specialized radiologists annotating and classifying 

mammograms in the IMED project. In a first stage this initial raw data had 

to be processed to construct the datasets so that machine learning classifiers 

could be evaluated upon them. See Section 5.3 (Ramos-Pollan, Rubio del 

Solar et al. 2009; Ramos-Pollan, Franco et al. 2010; Ramos-Pollan, Franco et 

al. 2010; Ramos-Pollan, Rubio del Solar et al. 2010) 

13. Massive machine learning classifier exploration was undertaken on the 

datasets resulting from the step above over BiomedTK/C3. Discovered 

classifier configurations are finally handed over to the IMED project and 

become targets upon which CAD systems are being built and validated. 

Section 5.4 (Ramos-Pollan, Guevara-López et al. 2011). 

6.2 Main conclusions 

Through the different Chapters of this document it has been shown how the initial 

objectives set forth have been accomplished by developing the contributions announced 

in Section 1.3. These contributions are now reviewed in the light of the results exposed 

so far: 

Contribution 1: A new AUC based error definition (loss function) for machine 

learning algorithms. The definition is based on determining the contribution of the 



134 Chapter 6 Conclusions 

 

 

score of each dataset element to the Wilcoxon-Mann-Whitney statistic and measuring 

how far it is from the maximum possible contribution. Section 3.3 (Ramos-Pollan, 

Guevara Lopez et al. 2010). This measure can now be used in a variety of situations 

where per-element ROC analysis is required, such as for AUC optimization in machine 

learning (see Contribution 3 below) 

Contribution 2: An efficient error-bounded AUC approximation method with 

arbitrary precision. The method is based on discretizing the space for element scores 

into fixed length intervals, counting the positive and negative elements that correspond 

to each interval and then, approximating the contribution of each dataset element by 

adding up the number of elements in intervals below the one it belongs to. 

Additionally, the method produces per-element AUC error measures as defined in 

Contribution 1 above so that they can be readily used by machine learning algorithms 

for AUC optimization. Experiments described in Section 3.2 compare the time required 

by the proposed method with the AUC computation algorithm provided by Weka, 

based on sorting dataset elements using fast Java data structures. Measured speedups 

(number of times the proposed method runs faster) vary with datasets. Synthetically 

generated datasets based on drawing positive and negative elements from different 

normal distributions yielded speedups between 3.5 and 6.5. Experiments with a 

diversity of binary UCI datasets yielded speed ups between 2 and 7. 

Contribution 3: A methodology to integrate the AUC based error definition and the 

AUC approximation procedure into existing multilayer perceptrons, applicable to other 

ML methods. The previous AUC based error definition was used to define a new loss 

function that can substitute the ones used by machine learning classifiers and, thus, 

enabling them for AUC optimization. It was also shown that this new loss function 

retains the property that the error of the whole dataset is the arithmetic mean of the 

error of all dataset elements. In the case of multilayer perceptrons, a further step was 

required to map the loss function to particular values of output neurons (Section 3.3). 

Experimentation included multilayer perceptrons with different kinds of training 

algorithms using both per-element error and global dataset error over a variety of UCI 

datasets (Ramos-Pollan, Guevara Lopez et al. 2010). An average global improvement in 

AUC of 5.86% was achieved when the loss function is substituted when training 

multilayer perceptrons with backpropagation, resilient propagation, simulated 

annealing and genetic algorithms. 
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Contribution 4: A software framework for integrating third party machine learning 

classifiers, enabling the exploration of the search space formed by the possible 

parameters configurations of the model fitting processes implemented by the integrated 

classifiers. The software framework developed (BiomedTK) is described in Section 4.2. 

It allows managing complex explorations consisting of many classifier configurations 

from third-party machine learning toolkits over different datasets through a reduced set 

of configuration artifacts (exploration configuration files). This, together with the C3 

framework resulting from Contribution 5 below, enabled the exploitation of distributed 

computing resources for massively evaluating machine learning classifiers for selected 

UCI datasets, reaching in reasonable time results comparable to those reported in 

different literature sources (Ramos-Pollan, Guevara-López et al. 2011). 

Contribution 5: A software framework developed upon industry standards allowing 

(1) launching and maintaining colonies of Job Agents over computing resources and 

(2) submitting jobs to the Job Agents colonies through command line and API 

interfaces. The software framework developed (named C3, for Cloud Computing 

Colonies) is described in Section 4.3 and it can be used seamlessly by applications 

through its API interface to exploit computing resources available through gLite Grid 

middleware, Amazon EC2 Clouds and SSH access. It shields applications and users 

from specific details of accessing a particular eInfrastructure offering a unified interface 

regardless the final service or hardware where the colonies of C3 Job Agents are 

maintained by C3. Any application can use the C3 API to interface with C3 Job 

Agents anywhere they are deployed, and BiomedTK constituted the first application 

through which C3 has been thoroughly tested. 

Contribution 6: An exploration methodology for the rational usage of the software 

frameworks (produced in contributions 4 and 5) over local and distributed computing 

resources. This methodology is described in Chapter 4 and is based on iteratively 

gaining understanding on what classifier configurations work better with a certain 

dataset in hand. The method benefits from the agility provided by BiomedTK/C3 to 

easily define classifier explorations and use efficiently computing resources to evaluate 

them (Ramos-Pollan, Guevara-López et al. 2011). This way, researchers can gradually 

build exploration strategies by evaluating many third party classifiers indistinctly on 

local or remote computing resources as appropriate in their knowledge acquisition 

endeavor. 
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Contribution 7: An application of the above contributions to search for well 

performing ML classifiers for breast cancer CADx based on medical data extracted 

from mammograms. This constitutes the final contribution of this thesis to the IMED 

project within which it was conceived. Chapter 5 details the whole process by which 

datasets produced by the project were processed and fed into a massive classifier 

exploration process over distributed computing resources (using BiomedTK/C3) that 

yielded well performing classifiers with AUC greater than 0.9 in certain cases (Ramos-

Pollan, Guevara-López et al. 2011). In addition, this process shed light on other issues 

which may become relevant for the IMED project such as the kind of dataset 

preprocessing operations that might be more convenient (feature selection, 

normalization) and for what medical workflows CAD systems might be better suit 

(such as for double MLO and CC segmentation of mammograms). 

In the same way, development of these contributions provided the evidence to 

sustain the hypothesis sought for as stated in Section 1.3. This can be reviewed in 

detail in the Experimentation and Validation sections of each chapter and it is 

summarized here: 

Hypothesis 1: Multilayer perceptrons can be improved through new AUC based error 

measures, providing guidance to existing training methods to yield better AUC classifier 

performance. Experimental results in Section 3.3.2 show how the AUC of multilayer 

perceptrons trained with different algorithms for a variety of datasets is consistently 

improved by injecting the AUC based error metrics defined in Section 3.3.1 into the 

existing loss function used by the algorithms. Details can be found in tables 25, 26 and 

27 in Appendix I. 

Hypothesis 2: Computing power harnessed by eInfrastructres enables systematic 

exploration of search spaces of machine learning classifiers configurations for given 

datasets, specifically biomedical datasets. The software frameworks developed within 

this thesis (BiomedTK/C3) constitute the basis to sustain this hypothesis. 

Experimentation carried out through Chapter 3, 4 and 5 shows how distributed 

computing resources can be effectively used for large explorations of configurations of 

machine learning classifiers for different purposes. These computing resources are 

provided by eInfrastructures of different nature (Grid, Cloud) which can be accessed in 

a seamless and unified manner through BiomedTK/C3. In Chapter 3 the goal was to 

validate and measure the performance of modified training algorithms for AUC 

optimization. In Chapter 4, classifier configurations for commonly used datasets were 
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explored with the aim to reach, in reasonable time, results comparable to those 

reported in existing literature sources. In Chapter 5, computing resources were used to 

discover well performing classifiers to be used in breast cancer CAD systems. In all 

cases, thousands of classifier configurations were evaluated with a few configuration 

artifacts across a large variety of datasets consuming a wealth of CPU hours. 

Hypothesis 3: Computing power harnessed by eInfrastructures enables thorough 

validation of new classification methods. The AUC optimization method proposed in 

this thesis was validated through the experimentation described in Section 3.3. 

Experiments were designed to include several datasets, multilayer perceptron engines 

and configurations to gather enough statistical evidence of the obtained results. This 

required access to a substantial amount of computing power to evaluate all devised 

combinations of classifier configurations and datasets. Without such computing power 

confidence on the proposed method would remain partial. This was provided by 

different eInfrastructures (mostly Grid) which, managed through the software 

frameworks developed in this thesis (BiomedTK/C3), offered the material means to 

implement a comprehensive methodology for classifier evaluation. 

Hypothesis 4: Given the above three hypothesis, it is possible to develop more precise 

and robust breast cancer CADx methods. The machine learning classifier explorations 

performed in Chapter 5 illustrate how the different results of this thesis can contribute 

to find well performing classifiers for datasets derived from breast cancer data. 

Furthermore, results reported here raise additional questions which contribute to focus 

the construction of CADx method regarding their suitability for certain medical 

workflows and the data preprocessing operations that are more appropriate. However, 

it is not only the specific classifier configurations discovered in the context of this thesis 

which supports this hypothesis (whose performance is already promising at AUC > 

0.9), but also the data analysis workflow that was enabled by the different 

contributions of this thesis. Through this workflow, classifiers for breast cancer data 

can be evaluated and discovered in a continuous and systematic manner as new 

annotated data is being generated in the medical environments where CADx systems 

are being developed. 

In summary, the contributions of this thesis suggest that (1) it is possible to reuse 

existing machine learning algorithms for AUC optimization, as demonstrated in the 

case of multilayer perceptrons and (2) performing massive explorations of machine 

learning configurations over distributed infrastructure of different nature (Grid, Cloud) 
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is feasible with little configuration and management effort. In both cases, efficiency is 

understood in the sense of economy in the effort required to undertake a research 

endeavor by possessing the appropriate tools, but also by devising the adequate 

methods to use them. Their reach is thus expanded by both the conceptual advances 

and the material means through which they can be taken into practice. In 

retrospective, it is the tools developed and shown in Chapter 4 that enabled the 

validation of the theoretical constructs developed in Chapters 3 and their practical 

application in Chapter 5. 

From the IMED project perspective, the results obtained in this thesis contribute to 

its evolution to new phases enabling the final stages to construct CAD methods, but 

also helping in building confidence on the data acquisition and analysis processes put 

into place by the different professionals participating in the project (medical doctors, 

computer engineers, etc.) 

6.3 Future work 

Future work will be focused on two issues. First, the classifier discovery workflow 

herewith described will continue analyzing datasets as they are being generated from 

radiologists annotating mammograms, producing more classifier configurations suitable 

for CAD, shedding light on the existing research questions and, probably, raising new 

ones. Second, a process will start to clinically validate the CAD methods constructed 

with the classifiers obtained and their associated dataset preprocessing operations. 

Besides having a clinical assessment of specific classifier and CAD methods the aim is 

to establish a continuous validation workflow that can run as new data and classifiers 

are generated. 

In addition, two further issues will be addressed. On one side, other widely used 

machine learning engines will be incorporated to BiomedTK, enlarging the capabilities 

of its explorations. The ones available through the Weka toolkit are the first priority. 

Then, the AUC optimization method described in Chapter 3 will be injected in 

additional machine learning algorithms as considered appropriate either for purely 

research reasons or project driven such as, for instance, considering that a certain 

family of classifiers raises the interest of the IMED project. 
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Appendix I. Tables and figures 

Table 23: Definitions for binary classifiers 

±	 ⊂ ²4 Domain of elements consisting of input vectors (with � features) ³ � g�,�j The two classes into which input vectors are classified �=, ��, = ∈ ±, � ∈ ³ Element with its associated class (for supervised training) �© � g�=A, �A�, … , �=0 , �0�j Dataset (for supervised training) �7 � g=	|	�=, �� ∈ �©j Positive elements of dataset �9 � g=	|	�=, �� ∈ �©j Negative elements of dataset � � �7 ∪ �9 Elements of a dataset ��=� � � Class associated to element = through dataset � |�| �   Size of dataset ´ � g	�:± → ³		j Set of functions representing binary classifiers * ∈ ´ A binary classifier *�=� ∈ ³ Output of binary classifier * when applied to element = 

*-.�=� ∈ ² 
Score assigned by binary classifier * to element = it is typically used by * to 
determine *�=� by applying some threshold, and obtain ROC curves ���, *� A global error measure of classifier * when applied to training set � ��=, *� An individual error measure of classifier * when applied to element x �()��, *� Area under the ROC curve (AUC) of dataset � when classified with classifier * 

| � $  aR0,   ab`' ⊂ ² 
Range of output values for the two output neurons of a multilayer perceptron 
based binary classifier (binary MLP) *7�=�, *9�=� ∈ | 
Output of the positive and negative neurons of the binary MLP * upon 
element = �7�=�, �9�=� ∈ | Ideal value for positive and negative neurons for = 

�7�=, *�, �9�=, *� Error measures for the output of the positive and negative neurons of binary 
MLP * upon element = 
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Table 24: UCI datasets used in this theseis 

name description 
# 

elements 
# 

features 
% 

positive 

bcw Cell based metricsi for breast cancer 699 9 35% 

bcwd Diagnostic breast cancer Wisconsin database 569 30 63% 
btcat Carcinoma in breast tissue 106 9 34% 

echocard Data for classifying if patients will survive for at least one 
year after a heart attack 

131 8 33% 

glass From USA Forensic Science Service; 6 types of glass; 
defined in terms of their oxide content (i.e. Na, Fe, K, etc.) 
(merged into two classes) 

214 9 76% 

haber Survival of patients who had undergone surgery for breast 
cancer 

306 3 26% 

heartsl Patient indicators for presence of heart disease 270 13 44% 

liver BUPA Medical Research Ltd. database on liver desease 345 6 58% 

magic MAGIC Gamma Telescope Data Set  19020 11 65% 

mmass Benign/malignant mammographic masses based on 
BIRADS attributes and the patient's age 

961 5 54% 

park Oxford Parkinson's Disease Detection Dataset 195 22 75% 

pgene E. Coli promoter gene sequences (DNA) with partial 
domain theory 

106 57 50% 

pimadiab Patient indicators for presence of diabetes 768 8 35% 

spam Classifying email as spam or not spam 4601 57 39% 

spectf Data on cardiac Single Proton Emission Computed 
Tomography (SPECT) images 

267 44 21% 

statlog.land Statlog (Landsat Satellite) Data Set  (first three classes 
against the rest) 

6435 36 56% 

statlog.shuttle Statlog (Shuttle) Data Set (first class against the rest) 58000 9 80% 

tictac Binary classification task on possible configurations of tic-
tac-toe game 

958 9 65% 

yeast Yeast Protein Localization Sites (first class against the 
rest) 

1484 8 31% 

waveform Waveform Database Generator (first two classes merged) 5000 21 34% 
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Table 25: AUC performance of MLP algorithms modified for AUC optimization. 
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Table 26: AUC performace in dataset and element based MLP algorithms 

 

 
OVERALL AUC 

ELEMENT BASED AUC         
(ffbp and ffrp) 

DATASET BASED AUC      
(ffsa and ffga) 

 
ORIGINAL MODIFIED improv ORIGINAL MODIFIED improv ORIGINAL MODIFIED improv 

pgene 0,7425 0,7316 -1,01% 0,7861 0,7651 -2,44% 0,6988 0,6980 0,43% 

mmass 0,7818 0,8273 6,65% 0,7084 0,7825 11,23% 0,8552 0,8721 2,07% 

heartsl 0,7950 0,8541 7,93% 0,7408 0,8136 10,37% 0,8492 0,8946 5,48% 

liver 0,6226 0,7075 14,59% 0,6050 0,6840 13,91% 0,6402 0,7310 15,26% 

bcwd 0,9005 0,9035 0,20% 0,8319 0,8261 -0,83% 0,9691 0,9809 1,23% 

pimadiab 0,7048 0,7418 5,19% 0,6350 0,6652 4,32% 0,7747 0,8184 6,07% 

tictac 0,7337 0,7863 7,81% 0,7474 0,7943 6,87% 0,7200 0,7784 8,75% 

echocard 0,5668 0,6239 11,01% 0,5070 0,6059 19,45% 0,6265 0,6419 2,57% 

haber 0,6293 0,6747 7,30% 0,5802 0,6354 9,33% 0,6784 0,7141 5,28% 

park 0,8404 0,8469 1,18% 0,8009 0,8047 1,08% 0,8799 0,8891 1,27% 

glass 0,8761 0,8997 3,15% 0,7957 0,8385 5,85% 0,9565 0,9609 0,46% 

spectf 0,6735 0,7127 6,25% 0,6163 0,6609 7,47% 0,7308 0,7645 5,02% 

          

averages 0,7389 0,7758 5,86% 0,6962 0,7397 7,22% 0,7816 0,8120 4,49% 

 

 

 

 

 

 

Table 27: Some correlations in AUC optimization experiments 

 

 

  

 ffbp ffrp ffsa ffga all 

(1)  improvement  vs. class skew -0,2578 0,2591 0,1038 -0,2089 
 

-0,0267 

(2)  improvement vs. ORIGINAL AUC avg -0,3652 -0,8724 -0,6649 -0,5537 
 

-0,7170 

(3)  improvement vs. ORIGINAL AUC stddev 0,0635 0,4545 0,3624 0,2087 
 

0,1783 

(4) ORIGINAL AUC stddev vs. MODIFIED AUC stddev 0,8834 0,6312 0,8843 0,8286 
 

0,6823 

(5) ORIGINAL AUC avg  vs. MODIFIED AUC avg  0,8488 0,9564 0,9816 0,9568 
 

0,9715 
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Table 28: Summary of BiomedTK commands 

command description 

 
dataset manipulation commands 

dataset generates biomedtk dataset set from a CSV file, or creates a simmulated one 

bindatasets generates a positive/negative dataset for each class of an existing dataset 

arff.export exports a dataset into a WEKA ARFF file 

arff.import imports a dataset from a WEKA ARFF file 

libsvm.export exports a dataset into a LIBSVM file 

split.dataset splits a dataset into test/train data 

cmatrix.datasets generates binary datasets from a multiclass dataset following a decomposition specified in 
a code matrix 

dataset.metrics shows dataset metrics 

norm.dataset normalizes a dataset 

 classifier evaluation and exploration commands 

jobset generates a jobset to perform an exploration 

launch executes sequentially the jobs of a jobset in this machine 

ensembles creates ensemble classifiers from binary classifiers 

 classifier reusage commands 

apply applies to a dataset a classifier obtained from a previous training process 

summary summarizes results stored in the DB for a particular dataset 

verify verifies results stored in DB by reconstructing engines and applying them to datasets 

 C3 commands 

c3.prepare prepares an exploration for c3 

c3.submit submits a prepared exploration to c3 

c3.launch prepares and submits an exploration to c3 

c3.status retrieves the status of an exploration submitted to c3 

 utility commands 

db start H2 db server 

show.classifiers shows available classifiers and parameters accepted by each classifier 
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Figure 41: Sample BiomedTK session 
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Table 29: BiomedTK/C3 experimental exploration summary 
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Appendix II. Algorithms 

 

Algorithm 1: Approximate AUC for given interval 
 
Datastruct: 
    intervalType { 
 subintervals[]  intervalType 
 nPositive number of positive elements within this interval (defaults to 0) 
 nNegative  number of negative elements within this interval (defaults to 0) 
 nBelow  number of negative elements in intervals below this one (defaults to 0) 
 maxScore maximum score of elements within this interval (defaults to 0) 
 minScore  minimum score of elements within this interval (defaults to 1) 
 approxAz the approximated Az calculation for this interval (defaults to 0) 
 maxError the maxError calculation for this interval (defaults to 1) 
 data[]  elements of the dataset belonging to this interval 
     } 
Inputs:  interval  an intervalType with a list of dataset elements in its data[] field. 
 intervalBegin  lower limit of the interval 
 intervalEnd upper limit of the interval 
 numberOfSubIntervals number of subintervals into which split the data 
 
Outputs: the following fields of input parameter interval filled in:  approxAz, maxError,  subintervals (list of 
subintervals each one with all fields filled in except the subintervals field) 
Algorithm: 

1: subintervals ← new  array of intervals of size numberOfSubIntervals 
2: subintervalSize ← R0¸��nby¹0º?R0¸��nby»��R00ia¼��½¾2i¼R0¸��nby-  

3: numberOfPositiveElements ← 0 
4: numberOfNegativeElements ← 0 
5: for for for for i=1 totototo data.length 

6: subintervalNumber  ←     integerPart integerPart integerPart integerPart H
 	����¿�À
 � ºb¸b$R'-i¼R0¸��nby2RÁ�I + 1    
7: if if if if data[i]    is a positive example    thenthenthenthen    

8: subintervals[subintervalNumber].nPositive++ 
9: numberOfPositiveElements++ 

10: elseelseelseelse    

11: subintervals[subintervalNumber].nNegative++ 

12: numberOfNegativeElements++ 
13: end if end if end if end if     

14: if if if if interval.data[i]    > subintervals[subintervalNumber].maxScore thenthenthenthen    

15: subintervals[subintervalNumber].maxScore ← interval.data[i] 
16: end if end if end if end if     

17: if if if if data[i]    < subintervals[subintervalNumber].minScore thenthenthenthen    

18: subintervals[subintervalNumber].minScore ← interval.data[i] 
19: end if end if end if end if     

20: addaddaddadd interval.data[i]    to to to to subintervals[subintervalNumber].data    
21: end forend forend forend for 

22: interval.approxAz    ← 0    
23: interval.maxError ← 0 
24: for for for for i=1 totototo numberOfSubintervals    
25: ifififif i>1 thenthenthenthen   

26:        subintervals[i].nBelow ← subintervals[i-1].nNegative + subintervals[i-1].nBelow   
                               + interval.nBelow    

27: end ifend ifend ifend if 

27: subintervals[i].maxError ← -i¼R0¸��nby-$R'.07z-R¸Rn�	¦	-i¼R0¸��nby-$R'.09��b¸Rn�0ia¼��½¾7z-R¸Rn�¹y�a�0¸-	`	0ia¼��½¾9��b¸Rn�¹y�a�¸0- 
28: subintervals[i].approxAz ← -i¼R0¸��nby-$R'.07z-R¸Rn�	¦	�-i¼R0¸��nby-$R'.09��b¸Rn�>K¦-i¼R0¸��nby-$R'.0»�yz{�K	¦0ia¼��½¾7z-R¸Rn�¹y�a�0¸-	¦0ia¼��½¾9��b¸Rn�¹y�a�0¸-  

29: interval.approxAz ← interval.approxAz + subintervals[i].approxAz 
30: interval.maxError ← interval.maxError + subintervals[i].maxError 
31: end forend forend forend for    

32: interval.subintervals ← subintervals 



162 Appendix II. Algorithms 

 

 

Algorithm 2: Approximate ROC Az for a dataset with a maximum error bound 
 
Inputs:  elements   set of elements to calculate ROC Az for 
 numberOfSubintervals number of subintervals for subdividing each interval 
 errorBound   maximum error allowed 
 
Outputs: approxAz   the approximated area under the ROC curve 

maxError   the maximum error of the approximation 
 

  
Algorithm: 

1: initialInterval ← create newcreate newcreate newcreate new intervalType 

2: initialInterval.data ← elements 
3: maxError ← 1.0 
4: approxAz ← 0.0 
5: whilewhilewhilewhile maxError > errorBound dodododo  

6: nextInterval ← select interval with greatestselect interval with greatestselect interval with greatestselect interval with greatest maxError    

7: call Algorithm 1 with inputcall Algorithm 1 with inputcall Algorithm 1 with inputcall Algorithm 1 with input    

8: interval ← nextInterval 
9: intervalBegin ← nextInterval.minScore 
10: intervalEnd ← nextInterval.maxScore 
11: numberOfSubintervals 

12: end callend callend callend call    

13: update update update update maxError with with with with nextInterval.maxError    

14: update update update update approxAz    with with with with nextInterval.approxAz    

15: end whileend whileend whileend while    
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Appendix III. ROC definitions 

The Wilcoxon-Mann-Whitney statistic for empirical AUC for dataset � and scores 

assigned by classifier * 

 

�()��, *� � 	∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9|  

Where ,$G' denotes the indicator function, yielding 1 if G is true and 0 otherwise. From 

here, the following definitions were developed in this thesis: 

 

Definition 1. Contribution of dataset element = to �()��, *� 

�()�=, *� � 	
\]̂
]_∑ ,$*-.� � / *-.�=�'0∈23 |�7| ∙ |�9| 	
�	= ∈ 	 �7
∑ ,$*-.�=� / *-.���'4∈25 |�7| ∙ |�9| 	
�	= ∈ 	 �9

O 

 

Definition 2. Maximum contribution of dataset element = to �()��, *� 
 

�()ab`�=, *� � 	
\]̂
]_ |�9||�7| ∙ |�9| � 	 1|�7| 				
�	=	 ∈ 	 �7|�7||�7| ∙ |�9| � 	 1|�9| 				
�	=	 ∈ 	 �9

O 
 

Definition 3: AUC error incurred by classifier * when scoring dataset �, with respect 

to the ideal AUC=1.0 ������, *� � 1 � 	�()��, *� 
 

Definition 4: AUC error incurred by the score assigned to element = by classifier * 

�����=, *� � 1 � �()�=, *��()ab`�=, *� 
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Lemma 1: ������, *� is the mean of �����=, *� over the dataset elements. 

The proof of this lemma simply develops the summation of �����=, *� over all 

detaset elements by adding up the positive and negative elements separately as follows: 

 

Q�����=, *�`∈2 � Q ������, *�4∈25
� Q ����� , *�0∈23

 

�	 Q Â1 � �()��, *��()ab`���Ã4∈25
� Q Â1 � �()� , *��()ab`� �Ã0∈23

 

� |�7| � Q �|�7| ∙ �()��, *��4∈25
� |�9| � Q �|�9| ∙ �()� , *��0∈23

 

� |�7| � Q Â|�7| ∙ ∑ ,$*-.� � / *-.���'0∈23 |�7| ∙ |�9| Ã4∈25
� |�9| � Q Â|�9| ∙ ∑ ,$*-.� � / *-.���'4∈25 |�7| ∙ |�9| Ã0∈23

 

� |�7| � |�7| ∙ ∑ ∑ ,$*-.� � / *-.���'0∈234∈25 |�7| ∙ |�9| � |�9| � |�9| ∙ ∑ ∑ ,$*-.� � / *-.���'4∈250∈23 |�7| ∙ |�9|  

� |�7| � |�7| ∙ �()��, *� � |�9| � |�9| ∙ �()��, *� 
� |�7| ∙ �1 � �()��, *�� � |�9| ∙ �1 � �()��, *�� 

� �|�7| � |�9|� ∙ �1 � �()��, *�� � |�| ∙ �1 � �()��, *�� � 	 |�| ∙ ������, *� 
⇒	������, *� � ∑ �ÄÅÆ�`,d�v∈Ç |2|   

∎ 

 

 


