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INTRODUCTION

Existence conditions for an equilibrium play an important role in the study of models of economic pro�
cesses. By the equilibrium of an economic system with several interdependent participants, we mean such
a state in which none of them wants to change their state.

The participants of an economic system are usually divided into producers and consumers. The system
includes a given list of products with unified prices. Every producer chooses and implements a technolog�
ical process of transforming certain products into other ones, trying to maximize their profit. Every con�
sumer chooses and buys the most desired set of products within their income. For the economic system
thus organized to be viable, its state must be balanced in terms of material product flows; i.e., the aggregate
production (supply) of each product must be no less than its aggregate consumption (demand) or, more
restrictively, the former must be exactly equal to the latter. In this case, the state of the system is called an
economic equilibrium and the prices at which the equilibrium occurs are called equilibrium prices.

Proofs of the existence of equilibria and the examination of their properties have made up a stage in the
development of mathematical economic theory. However, for nonlinear models that describe actual pro�
cesses more accurately than linear ones, the available mathematical apparatus is insufficient. Based on the
results of [1, 2], which concern the existence of coincidence points of mappings in metric spaces, we can
substantially expand the available set of research tools and obtain sufficient conditions for the existence of
an equilibrium in nonlinear models.

The goal of this work is to derive sufficient conditions for the existence of an equilibrium in particular
versions of the demand–supply model. Formally, the problem in question is formulated as follows.

Consider metric spaces X and Y with metrics ρX and ρY, respectively. Let BX(x, r) denote the closed ball
of radius r centered at the point x in X. Similar notation is introduced for Y.

Definition 1 (see [1]). Given α > 0, a mapping S : X  Y is said to be α�covering if

The following result was obtained in [1].

Coincidence point theorem (see [1]). Let X be a complete space, and let S, D : X  Y be arbitrary map�
pings, of which the first is continuous and α�covering, while the second satisfies the Lipschitz condition with a
Lipschitz constant β < α. Then, for arbitrary x0 ∈ X, there exists ξ = ξ(x0) ∈ X such that

(1)

The solution ξ of Eq. (1) may not be unique. This solution ξ is called a coincidence point of the map�
pings S and D.

S BX x r,( )( ) BY S x( ), αr( ) r∀ 0, x∀ X.∈≥⊇

S ξ( ) D ξ( ), ρX ξ x0,( )
ρY S x0( ) D x0( ),( )

α β–
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A straightforward consequence of the above theorem (see [1]) is Milyutin’s theorem on perturbations
of a covering mapping.

Perturbation theorem. Let X be a complete metric space, Y be a normed space, and S : X  Y be a con�
tinuous α�covering mapping. Then, for any mapping D : X  Y satisfying the Lipschitz condition with a Lip�
schitz constant β < α, S + D is an (α – β)�covering mapping.

The equilibrium price vector in the demand–supply model is a coincidence point of the demand and
supply mappings. Using a local version of the coincidence point theorem, namely, Theorem 1 from [2],
we analyze the existence of an equilibrium in the demand–supply model.

1. CONSUMER BEHAVIOR MODEL AND THE DEMAND FUNCTION

The idea behind the consumer behavior model is that, for given prices and an available income, con�
sumers seek to maximally satisfy their needs, i.e., to maximize utility. The utility maximization problem
for a consumer can be formulated as follows.

There is a consumer with a certain income I > 0, and there are n ∈ � goods with the jth good having

the price pj > 0, j = . We are given an open set G ⊂  = {x = (x1, …, xn) : xj > 0, j = } of subsets of
goods x = (x1, …, xn) that can be bought by the consumer. When buying a collection of goods x, the con�
sumer purchases x1 units of the first good, x2 units of the second good, …, xn units of the nth good. Suppose
that we are given a utility function u : G  � whose values u(x) reflect the consumer’s preference for a
collection of goods x ∈ G; i.e., if u(x) > u( ), then the consumer prefers x to . Out of all the collections

x ∈ G whose cost  does not exceed I, the consumer buys that one for which the utility function u
has the maximal value.

In view of the economic interpretation of the problem, we additionally assume that the utility
function u and the set G are such that the utility function maximum is reached only when the income con�

straint  ≤ I holds as an exact equality.

Thus, the consumer’s choice is reduced to finding a conditional extremum of the utility function:

(2)

Assume that the utility function u is such that problem (2) has a unique solution. This solution is known
as demand, while the dependence of the demand on the price p is known as the optimal demand function,
or the demand function.

Let us find the demand function for Stone’s utility function (consumer’s preference function). Given

numbers aj > 0 and αj ∈ (0, 1), j = , let G = {x ∈  : xj > aj, j = }, and let the function u : G  �
be define as

The parameters determining u have the following economic interpretations. The number aj is the mini�
mum necessary amount of the jth good that is purchased in any case and is not chosen, while the coeffi�

cients αj characterize the relative “value” of the goods for the consumer. Assume that  < I.
Under these assumptions, the maximum of the utility function is reached only if the income con�

straint  ≤ I holds as an exact equality.
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Thus, the Stone model has the form

(3)

This maximization problem is solved by applying the Lagrange principle. The Lagrange function for
problem (3) is given by

Since the constraints in problem (3) are regular, necessary optimality conditions are that there exists λ ≥ 0
such that

(4)

Since the utility function u is concave and the constraints in problem (3) are linear, conditions (4) are
sufficient conditions for a maximum. Thus, a pair (x*, λ*) is a solution of system (4) if and only if x* solves
problem (3).

The Lagrange multiplier λ* is known as the marginal utility of income. The first n equalities in (4)
mean that the utility is maximized when the goods to be bought are chosen so that the ratios of their mar�
ginal utility to their price are identical for all the goods. In other words, in the optimal collection of goods,

the marginal utilities of the selected goods are proportional to their prices; i.e., ∂u/∂xj(х*) = λ*pj, j = .

System (4) is equivalent to the system

Multiplying the first line of the system by λpj and summing the result over j, we have

Substituting  = I yields

u x( ) xj aj–( )
αj

max,
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Therefore, the solution of system (4) and, hence, of problem (2) is given by

These formulas suggest that the utility is maximized if the consumer first buys the minimum necessary
amount ai of each good and then spends the remaining sum on buying each good in an amount propor�
tional to its “weight” αi.

Thus, for any i = , the demand function Di :   � for the ith good has the form

(5)

Note that the functions Di are defined for p ∈  such that  < I. For the other p ∈ , the func�
tions Di are defined by formula (5).

2. PRODUCER BEHAVIOR MODEL AND THE SUPPLY FUNCTION

Consider the following model of the producer’s behavior. There are n different goods, of which the first
m ≤ n are produced with the consumption of all n goods. The other n – m goods are imported into the
system from the outside. Given are the price of the jth good pj > 0 and the amount of money bi > 0 spent

on buying resources (inputs) required for producing the ith product, where i =  and j = . Let

xij > 0 denote the amount of the jth product spent on the production of the ith product, i = , j = .

Given is a profit function π :    whose value π(x) is the producer’s profit at a given resource

consumption x = (x11, x12, …, x1n, …, xm1, xm2, …, xmn) and at a fixed price p = (p1, …, pn) ∈ . Out of all

possible input collections x ∈  such that the production cost of the ith good does not exceed bi for any

i = , the producer chooses that one at which the profit is maximal.

Thus, the producer’s choice is reduced to finding a conditional extremum of the profit function:

(6)

In the production model under study, the profit function is calculated in terms of the production func�

tions fi :   �, i = , by applying the formula

The production function fi(xi1, xi2, …, xin) quantifies the amount of the ith good the producer creates by
consuming the input collection (xi1, xi2, …, xin).
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Let x* = ( , , …, , …, , , …, ) ∈  be a solution of problem (6). The total sale

amount of the ith good at a given price vector p ∈  is calculated by the formula

The quantity S(p) = (S1(p), …, Sm(p)) is known as supply, and its dependence on the price vector p is
known as the supply function.

Given numbers Ci > 0 and βij > 0, i = , j =  such that  < 1, i = , let the production
functions be given by the formula

 i = .

Here, Ci are neutral technical change parameters and βij > 0 are the input elasticity coefficients. Note that
these production functions have nonincreasing returns to scale (see [3]), which is observed in actual econ�
omies.

Thus, the producer’s profit function is given by the formula

for any x = (x11, x12, …, x1n, …, xm1, xm2, …, xmn) ∈ . Therefore, problem (6) is reduced to

(7)

This maximization problem is solved by applying the Lagrange principle. The Lagrange function for
problem (7) has the form

Since the constraints in problem (7) are regular, necessary optimality conditions are that there exists λ ≥ 0
such that

(8)

Since  < 1 for any i = , all the production functions fi are concave. Therefore, the necessary
optimality conditions (8) for problem (7) are sufficient as well.

Conditions (8) imply that, in an optimal combination of inputs, the limiting efficiencies of the inputs
are proportional to their prices. Moreover, the Lagrange multipliers  corresponding to the optimal
solution characterize the limiting efficiency of finance.
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Summing up the first line of system (8) over j and substituting the resulting equality into the second
line, we have

Substituting this expression into the first line of system (8) yields its solution

According to the above argument, the found vector x = (x11, …, x1n, …, xm1, …, xmn) is a solution of system (7).

Thus, the supply function Si :   � of the ith good is given by the formulas

(9)

where

(10)

3. MAIN RESULTS: EXISTENCE AND STABILITY OF AN EQUILIBRIUM 
IN THE DEMAND–SUPPLY MODEL

Given positive integers m and n such that m ≤ n, let I > 0 be a real number; a = (a1, …, an), α =

(α1, …, αn) ∈  and C = (C1, …, Cm) ∈  be vectors; and � be an n × m matrix with components βij > 0

(i = , j = ) such that

(11)

Additionally, let c1 = (c11, …, cn1), c2 = (c12, …, cn2) ∈  be given vectors such that cj1 < cj2, j = .

For arbitrary vectors x = (x1, …, xn),  = ( , …, ) ∈ �
n
, we define  = . Assume that

(12)

A mathematical market model is a collection

satisfying conditions (11), (12), and cj1 < cj2 for j = . The set of collections σ = (I, a, α, C, �, c1, c2)

satisfying inequalities (11), (12), and cj2 > cj1 for j =  is denoted by Σ. Obviously, Σ ⊂  is
an open set.

Given a collection of parameters (I, a, α, C, �), the demand function D :   �
m
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m
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las (5) and (9), respectively. Here, the numbers Ki and Li are given by (10). The components of the vectors
c1 and c2 determine the natural constraints on the price pj of the jth good; i.e., we assume that cj1 ≤ pj ≤ cj2

for each j = .

In this model, it is assumed that there are n goods in the market, of which m are sold by the producer,
while the other n – m are imported from the outside. The vector D(p) is called the aggregate demand cor�
responding to the price vector p, and the vector S(p) is called the aggregate supply corresponding to the price
vector p. Given p, if there is an index i such that Di(p) > Si(p), then a shortage occurs in the market; if there
is i such that Di(p) < Si(p), then there is a surplus. Such prices cannot be considered satisfactory, since the
purchasers are affected in the former case, and the marketers, in the latter. For this reason, the equality
S(p) = D(p) is considered the best variant for the economy.

Define

Definition 2. A vector p ∈ P is called an equilibrium price vector in a model σ if S(p) = D(p).
Now we state the main results. Define

Theorem 1. Assume that a model σ ∈ Σ satisfies conditions (11) and (12), and, additionally, let

(i) ;

(ii) .

Then there exists an equilibrium price vector p = (p1, …, pn) in the model such that cj1 < pj < cj2, j = .

The proofs of this and the following theorems are given in Section 4.
Let us show that the equilibrium price vector, which exists by Theorem 1, is stable with respect to small

perturbations in the model. Specifically, let a sequence of models , where σN = (IN, aN, αN, CN,

�
N

, , ), and a model σ = (I, a, α, C, �, c1, c2) be given. The sequence of models  is said
to converge to the model σ if as N  ∞

IN  I, aN  a, aN  a, CN  C, �
N

  �,     c2.

Define

Theorem 2. Assume that a model σ satisfies all the assumptions of Theorem 1 and a sequence of models
{σN} converges to σ. Then, for any equilibrium price vector p ∈ P in σ satisfying the inequality cj1 < pj < cj2

for any j = , there exists a positive integer  and a sequence  ⊂  such that

(i) for any N > , pN is an equilibrium price vector in the model σN;

(ii) pN  p as N  ∞.
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4. PROOFS OF THE MAIN RESULTS

First, we describe the necessary constructions. Let (X, ρX) and (Y, ρY) be metric spaces, S : X  Y be
a given mapping, and M ⊂ X be a given nonempty subset.

Definition 3 (see [2]). Given α > 0, S is called an α�covering mapping on the set M if, for any x ∈ M and
r ≥ 0 such that BX(x, r) ⊆ M, we have

The supremum of all α > 0 such that S is an α�covering mapping on M is denoted by cov(S|M). If M = X,
this supremum is denoted by cov(S).

Definition 4 (see [2]). Given α > 0, S is called a locally α�covering mapping at a point x ∈ X if, for any
ε > 0, there exists a positive r < ε such that

The supremum of all α > 0 such that S is a locally α�covering mapping at the point x ∈ X is denoted
by cov(S|x).

Below, we need the following result, which was obtained in [2].
Theorem 3 (see Theorem 1 in [2]). Assume that X is a complete space and x0 ∈ X, α > 0, and R > 0 are

given. Let the mapping S : X  Y be closed and α�covering on BX(x0, R). Then, for any nonnegative β < α
and any mapping D : BX(x0, R)  Y satisfying the Lipschitz condition with the constant β such that

the mappings S and D have a coincidence point ξ ∈ X (i.e., S(ξ) = D(ξ)) such that

The following assertion is a local version of Theorem 2 in [4] on the stability of coincidence points.
Let Sn, Dn : X  Y, n = 1, 2, …, be given mappings.

Theorem 4. Assume that X is a complete space; x0 ∈ X is a given coincidence point of mappings S and D
(i.e., S(x0) = D(x0)); and α > 0, β ≥ 0, and R > 0 are given numbers with α > β. Let the following conditions
also hold:

(i) For any positive integer n, the mapping Sn is closed and α�covering on BX(x0, R).

(ii) For any positive integer n, the mapping Dn satisfies the Lipschitz condition with the constant β on BX(x0, R).

(iii) ρY(Sn(x0), S(x0))  0, ρY(Dn(x0), D(x0))  0 as n  ∞.

Then there exists an index  > 0 and a sequence {xn} ⊂ X such that

  as n  ∞.

Moreover,

Proof. First, we note that the triangle inequality implies that

By virtue of (iii), there exists a number  > 0 such that

for any n > . Therefore,

BY S x( ) αr,( ) S BX x r,( )( ).⊆

BY S x( ) αr,( ) S BX x r,( )( ).⊆

ρY S x0( ) D x0( ),( ) α β–( )R,≤

ρX x0 ξ,( )
ρY S x0( ) D x0( ),( )

α β–
���������������������������������� .≤

n

Sn xn( ) Dn xn( ) n∀ n,>=

xn x0

ρX xn x0,( )
ρY Sn x0( ) S x0( ),( ) ρY Dn x0( ) D x0( ),( )+

α β–
���������������������������������������������������������������������������� n∀ n.>≤

ρY Sn x0( ) Dn x0( ),( ) ρY Sn x0( ) S x0( ),( ) ρY S x0( ) D x0( ),( )+≤

+ ρY D x0( ) Dn x0( ),( ) ρY Sn x0( ) S x0( ),( ) ρY D x0( ) Dn x0( ),( ).+=

n

ρY Sn x0( ) S x0( ),( ) 2
1– α β–( )R, ρY Dn x0( ) D x0( ),( ) 2

1– α β–( )R≤ ≤

n

ρY Sn x0( ) Dn x0( ),( ) 2
1– α β–( )R 2

1– α β–( )R+≤ α β–( )R=
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for any n > . According to Theorem 3, there exists a point xn ∈ X such that Sn(xn) = Dn(xn) and

for any n > .
Recall some facts associated with the above concepts. Let X and Y be Banach spaces with norms ||·||X

and ||·||Y, respectively, and let A : X  Y be a linear continuous operator. Then (cov(A))–1 coincides with
the Banach constant for the operator A.

Let S : X  Y be a strictly differentiable mapping at the point x0 ∈ X. Then

(13)

Let M ⊂ X be a closed ball of nonzero radius. Then

This fact is a straightforward consequence of Theorem 4 in [2].
Let D : M  Y be a mapping that is continuous on M and continuously differentiable on intM.

Denote by lip(D|M) the infimum of all β ≥ 0 such that D satisfies on M the Lipschitz condition with the
constant β. Then

Here and below, the norm of an arbitrary linear operator A : X  Y is defined by the formula ||A|| =
.

Proof of Theorem 1. The spaces �
n
 and �

m
 are equipped with the norms

Let X =  and Y = . Consider metric spaces (X, ρX) and (Y, ρY), where the metric ρX is defined

by the norm , and the metric ρY, by the norm .

Let

Obviously, M = [c11, c12] × … × [cn1, cn2]. Note that the metric space X is not complete, but the complete�
ness of the ball BX( , 1) is sufficient for the subsequent argument.

Our goal is to apply Theorem 3. To this end, we first compute cov(S|M). For p ∈ intM, we have

where �(p), �(p) : �
n
  �

m
 are linear operators defined by the matrices

n

ρX xn x0,( )
ρY Sn x0( ) Dn x0( ),( )

α β–
�������������������������������������

ρY Sn x0( ) S x0( ),( ) ρY D x0( ) Dn x0( ),( )+
α β–

����������������������������������������������������������������������������≤ ≤

n

cov S x0( ) cov ∂S
∂x
����� x0( )⎝ ⎠

⎛ ⎞ .=

cov S M( ) cov S x( ).
x intM∈

inf=

lip D M( ) ∂D
∂p
������ p( )

p intM∈

sup .=

Ax Y
x X 1≤

sup

x
�

n 2
xj

cj2 cj1–
�������������� x∀

j  = 1 n,

max x1 … xn, ,( ) �
n
,∈= =

y
�

m yi y∀
i  = 1 m,

max y1 … ym, ,( ) �
m

.∈= =

�+
n

�+
m

·
�

n ·
�

m

c̃
c1 c2+

2
������������, M BX c̃ 1,( ).= =

c̃

∂S
∂p
����� p( ) � p( ) � p( ),–=

� p( )
L1p1

2– … 0 … 0

… … … … …

0 … Lmpm
2– … 0⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=
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Therefore, by the perturbation theorem,

Moreover,

Consequently,

It follows from (13) and Theorem 4 in [2] that

Now we estimate the Lipschitz constant of the mapping D. For any p ∈ intM,

� p( )

K1β11p1
1–

pj

β1 j–

j 1=

n

∏ … K1β1npn
1–

pj

β1 j–

j 1=

n

∏

… … …

Kmβm1p1
1–

pj

βmj–

j 1=

n

∏ … Kmβmnpn
1–

pj

βmj–

j 1=

n

∏⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

cov ∂S
∂p
����� p( )⎝ ⎠

⎛ ⎞ cov � p( )( ) � p( ) .–≥

cov � p( )( ) Li ci2 ci1–( )

2pi
2

����������������������
i  = 1 m,

min Li ci2 ci1–( )

2ci2
2

���������������������� ,
i  = 1 m,

min≥=

� p( ) � p( )x
�

m

x
�

n  = 1
max Kiβijpj

1–
xj pk

βik–

k 1=

n

∏
j 1=

n

∑
i  = 1 n,

max
⎝ ⎠
⎜ ⎟
⎛ ⎞

x
�

n  = 1
max= =

≤ Ki pk

βik–

k 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

βi jpj
1–

xj

j 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

i  = 1 m,

max
x

�
n  = 1

max

≤ Ki pk

βik–

k 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

βij
cj2 cj1–

2pj

��������������
j 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

i  = 1 m,

max
x

�
n  = 1

max

≤ Ki cj1

βij–

j 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

βij
cj2 cj1–

2cj1

��������������

j 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

i  = 1 m,

max .

cov ∂S
∂p
����� p( )⎝ ⎠

⎛ ⎞ Li ci2 ci1–( )

2ci2
2

����������������������
i  = 1 m,

min Ki cj1

βij–

j 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

βi j
cj2 cj1–

2cj1

��������������
j 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

⎝ ⎠
⎜ ⎟
⎛ ⎞

.
i  = 1 m,

max–≥

cov S M( ) cov S p( )
p intM∈

inf α σ( ).≥=

∂Di

∂pj

������� p( )

αiaj pi αk

k 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1–

if i– j;≠

αi I pkak

k 1 n, k i≠,=

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

pi
2 αk

k 1=

n

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1–

if i– j.=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=
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Therefore, repeating the argument used in estimating the norm of �(p), we have

for any p ∈ intM. Therefore, lip(D|M) ≤ .

Combining assumptions (i) and (ii) of the theorem with the inequalities cov(S|M) ≥  and

lip(D|M)≤ , we conclude that there exist positive numbers α and β such that  < β < α < 
and  < α – β, S is α�covering on M, and D is β�Lipschitz continuous on M. Since ρY(S( ), D( )) = ,
it follows from (ii) that ρY(S( ), D( )) ≤ (α – β). Thus, according to Theorem 3, there exists a vector p ∈ X
such that S(p) = D(p) and

This inequality implies that p ∈ int M, since M = BX( , 1) and ρY(S( ), D( )) =  < (α – β). There�

fore, cj1 < pj < cj2 for any j = . Finally, the inclusion M ⊂ P and, hence, p ∈ P follow from assumption (12).

Proof of Theorem 2. Our goal is to apply Theorem 4. For this purpose, we need the following auxiliary
constructions.

Given an arbitrary ε > 0, let

Obviously, for any positive ε < 1, we have  <  (j = ) and Mε ⊂ P.

Let p ∈ P be an equilibrium price vector in the model σ that satisfies the inequality cj1 < pj < cj2 for any

j = . Then p ∈ intM and, therefore, there exists ε1 > 0 such that p ∈ Mε for any positive ε < ε1.

The assumptions of the theorem imply that, for any ε > 0, there exists an index N1(ε) > 0 such that
Mε ⊂ PN for any N > N1(ε).

Let α and β be arbitrary positive numbers such that  < β < α < . Since the functions 

and  are continuous, there exists a positive ε2 < 1 such that (I, a, α, C, �, , ) < β and α <

(I, a, α, C, �, , ) for any ε < ε2. Moreover, for any ε > 0, there exists an index N2(ε) > 0 such that

(IN, aN, αN, CN, �
N

, , ) < β and α < (IN, aN, αN, CN, �
N

, , ) for any N > N2(ε).

We set ε = 2–1min{ε1, ε2}, N3 = max{N1(ε), N2(ε)} + 1, X = , and Y = . For convenience, �
n
 and

�
m

 are equipped with other norms:

∂D
∂p
������ p( )

αi

pi
2

���� I pkak

k 1 n, k i≠,=

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

ci2 ci1–( )
αi

pi

���� aj cj2 cj1–( )

j 1 n, j i≠,=

∑+
i  = 1 m,

max

2 αk

k 1=

n

∑

���������������������������������������������������������������������������������������������������������������������������≤

≤

αi

ci1
2

���� I ck1ak

k 1 n, k i≠,=

∑–
⎝ ⎠
⎜ ⎟
⎛ ⎞

ci2 ci1–( )
αi

ci1

���� aj cj2 cj1–( )

j 1 n, j i≠,=

∑+
i  = 1 m,

max

2 αk

k 1=

n

∑

������������������������������������������������������������������������������������������������������������������������������ β σ( )=

β σ( )

α σ( )

β σ( ) β σ( ) α σ( )
γ σ( ) c̃ c̃ γ σ( )

c̃ c̃

ρX p c̃,( ) 1
α β–
����������ρY S c̃( ) D c̃( ),( ).≤

c̃ c̃ c̃ γ σ( )

1 n,

v1
ε

c̃ 1 ε–( ) c̃ c1–( ), v2
ε

– c̃ 1 ε–( ) c2 c̃–( ), M
ε

+ v11
ε

v12
ε,[ ] … vn1

ε
vn2

ε,[ ]×× .= = =

vj1
ε

vj2
ε

1 n,

1 n,

β σ( ) α σ( ) α ·( )

β ·( ) β v1
ε

v2
ε

α v1
ε

v2
ε

β v1
ε

v2
ε α v1

ε
v2

ε

�+
n

�+
m

x 1 2
xj

vj2
ε

vj1
ε

–
���������������� x∀

j  = 1 n,

max x1 … xn, ,( ) �
n
,∈= =

y 2 yi y∀
i  = 1 m,

max y1 … ym, ,( ) �
m

.∈= =
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Consider the metric spaces (X, ρX) and (Y, ρY), where the metric ρX is defined by the norm ||·||1, while the
metric ρY is defined by the norm ||·||2.

Let SN, DN : X  Y be the respective demand and supply functions in the model σN = (IN, aN, αN, CN,

�
N

, , ). Repeating the argument used in the proof of Theorem 1, we find that, for any N > N3, the

mappings SN are (IN, aN, αN, CN, �N, , )�covering on Mε and, hence, α�covering on Mε. Similarly,

we find that the mappings DN on Mε satisfy the Lipschitz condition with a constant β < α.

Choose an arbitrary R > 0 such that BX(p, R) ⊂ Mε. From formulas (5), (9), and (10), it follows that
SN(p)  S(p) and DN(p)  D(p) as N  ∞. Therefore, according to Theorem 4, there exists an index

 > N3 and a sequence {pN} ⊂ BX(p, R) such that SN(pN) = DN(pN) and pN  p as N  ∞. Since pN ∈

BX(p, R) ⊂ Mε ⊂ PN for any N > , we conclude that pN is an equilibrium price vector in the model σN.
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