Covering mappings. Theory and applications

S.E. Zhukovskiy

July 2013

1. Covering mappings

Let (X, ρ_X) , (Y, ρ_Y) be metric spaces, $\alpha > 0$. Denote $B_X(x_0, r) = \{x \in X : \rho_X(x, x_0) \le r\}, x_0 \in X, r \ge 0$.

Def. 1. $F : X \to Y$ is an α -covering mapping if

$$B_Y(F(x_0),\alpha r) \subset F(B_X(x_0,r)) \ \forall x_0 \in X, \ r \ge 0.$$

Here $B_X(x_0, r) = \{x \in X : \rho_X(x, x_0) \le r\}.$

 $F: X \times X \to Y \text{ is } \alpha \text{-covering } \Leftrightarrow \forall x_0 \in X, y \in Y \exists x \in X :$ $F(x) = y \text{ and } \rho_X(x_0, x) \leq \frac{1}{\alpha} \rho_Y(F(x_0), y).$

Examples

1. The identity map $F: X \to X$ is 1-covering.

2. Let $F : \mathbb{R} \to \mathbb{R}$ be absolutely continuous. F is α -covering if and only if $\left(F'(x) \ge \alpha \text{ for a.a. } x \in \mathbb{R}\right)$ or $\left(F'(x) \le -\alpha \text{ for a.a. } x \in \mathbb{R}\right)$.

3. Let X, Y be Banach spaces, $F : X \to Y$ be a surjective continuous linear mapping. By Banach Open Mapping Theorem, $\exists \alpha > 0$ such that F is α -covering.

2. Local covering property

Let (X, ρ_X) , (Y, ρ_Y) be metric spaces, $\alpha > 0, x_0 \in X$.

Def. 2. $F : X \to Y$ is locally α -covering around x_0 if exists R > 0 such that

 $B_X(x,r) \subset B_X(x_0,R) \Rightarrow B_Y(F(x_0),\alpha r) \subset F(B_X(x_0,r)).$

Note that if F is α -covering then F is locally α -covering around any $x_0 \in X$.

3. Perturbation theorem

Let (X, ρ_X) be a metric space, $(Y, \|\cdot\|_Y)$ be a normed linear space. Numbers $\alpha > 0$, $\beta \ge 0$, point $x_0 \in X$, mappings $F, G : X \to Y$ are given.

Th.1. * If X is complete, F is continuous and locally α -covering around x_0 , G is β -Lipschitz in a neighborhood of x_0 , and $\beta < \alpha$, then F + Gis locally $(\alpha - \beta)$ -covering around x_0 .

A similar result was obtained by L.M. Graves. [†]

*A.V. Dmitruk, A.A. Milyutin, N.P. Osmolovskii, Lyusternik's theorem and the theory of extrema, Uspekhi Mat. Nauk, 35:6(216)(1980), pp. 11-46.

[†]L. M. Graves, Some mapping theorems, Duke Math. J., 17(1950), pp. 111-114

Corollaries

Let X, Y be Banach spaces, $F : X \to Y$.

Th. 2. * If F is strictly differentiable at x_0 and

$$\frac{\partial F}{\partial x}(x_0)X = Y,\tag{1}$$

then *F* is locally α -covering around x_0 with some $\alpha > 0$. **Th. 3.** If *F* is strictly differentiable at x_0 and (1) holds, then there exists $\varepsilon > 0$, c > 0, $x : B_Y(F(x_0), \varepsilon) \to X$: 1) $F(x(y)) \equiv y$; 2) $x(F(x_0)) = x_0$; 3) $||x(y) - x_0|| \le c ||y - F(x_0)|| \forall y$.

*B.S. Mordukhovich, Variational Analysis and Generalized Differentiation, V. 1. Springer. 2005.

4. Coincidence points

Let (X, ρ_X) , (Y, ρ_Y) be metric spaces, $F, G : X \to Y$. A solution to the equation

$$F(x) = G(x)$$

is called a coincidence point of F and G.

Th. 4 * [†] Let X be complete, F be continuous and α -covering, G satisfy Lipschitz condition with a constant $\beta < \alpha$. Then $\forall x_0 \in X \quad \exists x \in X$:

$$F(x) = G(x) \text{ and } \rho_X(x, x_0) \le \frac{\rho_Y(F(x_0), G(x_0))}{\alpha - \beta}$$

*A.V. Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math. 76(2)(2007), pp. 665-668.

[†]A. Arutyunov, E. Avakov, B. Gel'man B, A. Dmitruk, V. Obukhovskii, Locally covering maps in metric spaces and coincidence points, J. Fixed Points Theory and Applications, 5:1(2009), pp. 105-127.

5. Ordinary differential equations unsolved for the derivative of unknown function

 $f: [0,1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^k, \ x_0 \in \mathbb{R}^n$

$$f(t, x, \dot{x}) = 0, \ x(0) = x_0.$$
 (2)

- $f(\cdot, x, \dot{x})$ is measurable $\forall x, \dot{x};$
- $f(t, \cdot)$ is continuous $\dot{\forall} t$;
- $\forall \rho > 0 \exists \Lambda > 0 : |x| + |v| < \delta \Rightarrow |f(t, x, v)| \le \Lambda \forall t.$

Equation (2) is locally solvable if $\exists \tau > 0, x \in AC_{\infty}[0, \tau] : x(0) = x_0$ and $f(t, x(t), \dot{x}(t)) = 0 \quad \forall t \in [0, \tau].$

6. One more perturbation theorem

Let (X, ρ_X) , (Y, ρ_Y) be metric spaces, $\Gamma : X \times X \to Y$, $x_0 \in X$. Given a point $y \in Y$, consider the equation

$$\Gamma(x,x) = y.$$

Th. 5. * [†] Let X be complete, Γ be continuous. If

- $\Gamma(\cdot, x_2)$ is α -covering around $\forall x_2$;
- $\Gamma(x_1, \cdot)$ is β -Lipscitz $\forall x_1$;
- $\beta < \alpha$;

then $x \in X$: $\Gamma(x, x) = y$ and $\rho_X(x_0, x) \leq \frac{\rho_Y(\Gamma(x_0, x_0), y)}{\alpha - \beta}$.

*A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, On the well-posedness of differential equations unsolved for the derivative, Diff. Eq., 47:11(2011), pp. 1–15.
[†]A.V. Arutyunov, E.R. Avakov, E.S. Zhukovskii, Covering mappings and their applications to differential equations unsolved for the derivative, Diff. Equations 45(5)(2009), pp. 627–649.

7. Solvability condition for the ODEs

$$f(t, x, \dot{x}) = 0, \ x(0) = x_0 \tag{2}$$

- $f(\cdot, x, \dot{x})$ is measurable $\forall x, \dot{x}$;
- $f(t, \cdot)$ is continuous $\dot{\forall} t$;
- $\forall \rho > 0 \exists \Lambda > 0 : |x| + |v| < \delta \Rightarrow |f(t, x, v)| \le \Lambda \forall t.$

Th. 6. * [†] Assume that

- A) $f(t, x, \cdot)$ is α -covering $\forall t \in [0, 1], \forall x \in \mathbb{R}^n$;
- **B)** $f(t, \cdot, u)$ is k-Lipschitz $\forall t \in [0, 1], \forall u \in \mathbb{R}^n$;

Then (2) is locally solvable.

*A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, On the well-posedness of differential equations unsolved for the derivative, Diff. Eq., 47:11(2011), pp. 1–15.
[†]A.V. Arutyunov, E.R. Avakov, E.S. Zhukovskii, Covering mappings and their applications to differential equations unsolved for the derivative, Diff. Eq. 45(5)(2009), pp. 627–649.

8. Differential inclusions unsolved for the derivative of unknown function

Consider a differential inclusion

$$0 \in F(t, x, \dot{x}), \quad x(0) = x_0.$$
 (3)

Here $x_0 \in \mathbb{R}^n$, $F : [0, 1] \times \mathbb{R}^n \times \mathbb{R}^n \to K(\mathbb{R}^k)$,

- $F(\cdot, x, u)$ is measurable for any (x, u);
- $F(t, \cdot, \cdot)$ is continuous for almost all t;
- $\forall d \ge 0 \exists m \ge 0 : |x| \le d \text{ and } |u| \le d \Rightarrow$ $|y| \le m \ \forall y \in F(t, x, u), \ \forall t \in [0, 1].$

Inclusion (3) is locally solvable if $\exists \tau > 0$, $x \in AC_{\infty}[0,\tau]$: $x(0) = x_0$ and $0 \in F(t, x(t), \dot{x}(t)) \forall t$. Given metric spaces $X, Y, G : X \rightrightarrows Y$ is α -covering if $B_Y(G(x), \alpha r) \subset G(B_X(x, r)) \ \forall \ x \in X, \ r \ge 0.$

$$0 \in F(t, x, \dot{x}), \quad x(0) = x_0.$$
 (3)

Th. 6. Assume that

A) $F(t, x, \cdot)$ is α -covering $\dot{\forall} t \in [0, 1], \forall x \in \mathbb{R}^n$; **B)** $F(t, \cdot, u)$ is k-Lipschitz $\dot{\forall} t \in [0, 1], \forall u \in \mathbb{R}^n$;

Then (3) is locally solvable.

Thank you for your attention!