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1. Covering mappings

Let (X, ρX), (Y, ρY ) be metric spaces, α > 0.

Denote BX(x0, r) = {x ∈ X : ρX(x, x0) ≤ r}, x0 ∈ X, r ≥ 0.

Def. 1. F : X → Y is an α-covering mapping if

BY (F (x0), αr) ⊂ F (BX(x0, r)) ∀x0 ∈ X, r ≥ 0.

Here BX(x0, r) = {x ∈ X : ρX(x, x0) ≤ r}.

F : X ×X → Y is α-covering ⇔ ∀ x0 ∈ X, y ∈ Y ∃ x ∈ X :

F (x) = y and ρX(x0, x) ≤
1

α
ρY (F (x0), y).



Examples

1. The identity map F : X → X is 1-covering.

2. Let F : R → R be absolutely continuous.

F is α-covering if and only if(
F ′(x) ≥ α for a.a. x ∈ R

)
or

(
F ′(x) ≤ −α for a.a. x ∈ R

)
.

3. Let X, Y be Banach spaces, F : X → Y be

a surjective continuous linear mapping. By Banach

Open Mapping Theorem, ∃ α > 0 such that

F is α-covering.



2. Local covering property

Let (X, ρX), (Y, ρY ) be metric spaces, α > 0, x0 ∈ X.

Def. 2. F : X → Y is locally α-covering around x0

if exists R > 0 such that

BX(x, r) ⊂ BX(x0, R) ⇒ BY (F (x0), αr) ⊂ F (BX(x0, r)).

Note that if F is α-covering then F is locally

α-covering around any x0 ∈ X.



3. Perturbation theorem

Let (X, ρX) be a metric space, (Y, ‖ · ‖Y ) be a normed

linear space. Numbers α > 0, β ≥ 0, point x0 ∈ X,

mappings F, G : X → Y are given.

Th.1. ∗ If X is complete, F is continuous and

locally α-covering around x0, G is β-Lipschitz

in a neighborhood of x0, and β < α, then F + G

is locally (α− β)-covering around x0.

A similar result was obtained by L.M. Graves. †

∗A.V. Dmitruk, A.A. Milyutin, N.P. Osmolovskii, Lyusternik’s theorem and the
theory of extrema, Uspekhi Mat. Nauk, 35:6(216)(1980), pp. 11-46.
†L. M. Graves, Some mapping theorems, Duke Math. J., 17(1950), pp. 111-114



Corollaries

Let X, Y be Banach spaces, F : X → Y.

Th. 2. ∗ If F is strictly differentiable at x0 and

∂F

∂x
(x0)X = Y, (1)

then F is locally α-covering around x0 with some α > 0.

Th. 3. If F is strictly differentiable at x0 and (1) holds,

then there exists ε > 0, c > 0, x : BY (F (x0), ε) → X :

1) F (x(y)) ≡ y;

2) x(F (x0)) = x0;

3) ‖x(y)− x0‖ ≤ c‖y − F (x0)‖ ∀ y.

∗B.S. Mordukhovich, Variational Analysis and Generalized Differentiation,
V. 1. Springer. 2005.



4. Coincidence points
Let (X, ρX), (Y, ρY ) be metric spaces, F, G : X → Y.

A solution to the equation

F (x) = G(x)

is called a coincidence point of F and G.

Th. 4 ∗ † Let X be complete, F be continuous and

α-covering, G satisfy Lipschitz condition with

a constant β < α. Then ∀x0 ∈ X ∃x ∈ X :

F (x) = G(x) and ρX(x, x0) ≤
ρY (F (x0), G(x0))

α− β
.

∗A.V. Arutyunov, Covering mappings in metric spaces and fixed points,
Dokl. Math. 76(2)(2007), pp. 665-668.
†A. Arutyunov, E. Avakov, B. Gel‘man B, A. Dmitruk, V. Obukhovskii, Locally
covering maps in metric spaces and coincidence points, J. Fixed Points Theory
and Applications, 5:1(2009), pp. 105-127.



5. Ordinary differential equations

unsolved for the derivative of unknown function

f : [0,1]× Rn × Rn → Rk, x0 ∈ Rn

f(t, x, ẋ) = 0, x(0) = x0. (2)

• f(·, x, ẋ) is measurable ∀ x, ẋ;

• f(t, ·) is continuous ∀̇ t;

• ∀ ρ > 0 ∃ Λ > 0 : |x|+ |v| < δ ⇒ |f(t, x, v)| ≤ Λ ∀̇ t.

Equation (2) is locally solvable if

∃ τ > 0, x ∈ AC∞[0, τ ] : x(0) = x0 and

f(t, x(t), ẋ(t)) = 0 ∀̇ t ∈ [0, τ ].



6. One more perturbation theorem

Let (X, ρX), (Y, ρY ) be metric spaces, Γ : X ×X → Y,

x0 ∈ X. Given a point y ∈ Y, consider the equation

Γ(x, x) = y.

Th. 5. ∗ † Let X be complete, Γ be continuous. If

• Γ(·, x2) is α-covering around ∀ x2;

• Γ(x1, ·) is β-Lipscitz ∀ x1;

• β < α;

then x ∈ X : Γ(x, x) = y and ρX(x0, x) ≤ ρY (Γ(x0,x0),y)
α−β .

∗A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, On the well-posedness of
differential equations unsolved for the derivative, Diff. Eq., 47:11(2011), pp. 1–15.
†A.V. Arutyunov, E.R. Avakov, E.S. Zhukovskii, Covering mappings and
their applications to differential equations unsolved for the
derivative, Diff. Equations 45(5)(2009), pp. 627–649.



7. Solvability condition for the ODEs

f(t, x, ẋ) = 0, x(0) = x0 (2)

• f(·, x, ẋ) is measurable ∀ x, ẋ;

• f(t, ·) is continuous ∀̇ t;

• ∀ ρ > 0 ∃ Λ > 0 : |x|+ |v| < δ ⇒ |f(t, x, v)| ≤ Λ ∀̇ t.

Th. 6. ∗ † Assume that

A) f(t, x, ·) is α-covering ∀̇ t ∈ [0,1], ∀ x ∈ Rn;

B) f(t, ·, u) is k-Lipschitz ∀̇ t ∈ [0,1], ∀ u ∈ Rn;

Then (2) is locally solvable.

∗A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, On the well-posedness of
differential equations unsolved for the derivative, Diff. Eq., 47:11(2011), pp. 1–15.
†A.V. Arutyunov, E.R. Avakov, E.S. Zhukovskii, Covering mappings and
their applications to differential equations unsolved for the
derivative, Diff. Eq. 45(5)(2009), pp. 627–649.



8. Differential inclusions unsolved for the derivative

of unknown function

Consider a differential inclusion

0 ∈ F (t, x, ẋ), x(0) = x0. (3)

Here x0 ∈ Rn, F : [0,1]× Rn × Rn → K(Rk),

• F (·, x, u) is measurable for any (x, u);

• F (t, ·, ·) is continuous for almost all t;

• ∀ d ≥ 0 ∃ m ≥ 0 : |x| ≤ d and |u| ≤ d ⇒
|y| ≤ m ∀y ∈ F (t, x, u), ∀̇t ∈ [0,1].

Inclusion (3) is locally solvable if ∃ τ > 0,

x ∈ AC∞[0, τ ] : x(0) = x0 and 0 ∈ F (t, x(t), ẋ(t)) ∀̇ t.



Given metric spaces X, Y, G : X ⇒ Y is α-covering if

BY (G(x), αr) ⊂ G(BX(x, r)) ∀ x ∈ X, r ≥ 0.

0 ∈ F (t, x, ẋ), x(0) = x0. (3)

Th. 6. Assume that

A) F (t, x, ·) is α-covering ∀̇ t ∈ [0,1], ∀ x ∈ Rn;

B) F (t, ·, u) is k-Lipschitz ∀̇ t ∈ [0,1], ∀ u ∈ Rn;

Then (3) is locally solvable.
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