
Distribution and Integration

Technologies

.NET Architecture

.NET Architecture 2

Traditional Architectures

Libraries

GUI

Services

Network

Services

Scripts

Web

Data

Access

Other

Services

Operating System

Execution environment (Posix, Win32, ...)

Web

applications
Other

applications

Local

applications

Distributed

applications

.NET Architecture 3

Standard Java Packages

Swing Enterprise

Java Beans

Java Server

Pages
JDBC Others

Operating System

Java Virtual Machine (JVM)

Web

applications
Other

applications

Local

applications

Distributed

applications

Java Architecture

.NET Architecture 4

.NET Framework Class Library (FCL)

Windows

Forms

Enterprise

Services

ASP.NET ADO.NET Others

Operating System

Common Language Runtime (CLR)

Web

applications
Other

applications

Local

applications

Distributed

applications

.NET Architecture

.NET Architecture 5

Common Language Runtime (CLR)

All .NET applications use the CLR

The CLR is OO

It is independent from high level languages

The CLR supports:

 A common set of data types for all languages (CTS)

 An intermediate language independent from the

native code (CIL)

 A common format for compiled code files

(assemblies)

All the software developed using the CLR is

known as managed code

.NET Architecture 6

All the languages able to generate code

for the CLR make use of the CTS (the CLR

implements the CTS)

There is 2 type categories:

 Value

• Simple types

• Allocated in the stack

 Reference

• Complex types

• Allocated in the heap

• Destroyed automatically by garbage collection

Common Type System (CTS)

stack

top

41

class A

String:

Double: 271.6

heap

string

“abcdef”

.NET Architecture 7

The CTS

Object

ValueType

Boolean

Byte

Char

Decimal

Double

Int16

Int32

Single

Int64

UInt16

UInt32

UInt64

Class

String

Array

Interface

Delegate

Reference types Value types

Enum

Structure

Others Others

.NET Architecture 8

Value and Reference Types

class Ref { public int x; }

struct Val { public int x; }

…

void Method () {

Ref r1 = new Ref();

Val v1 = new Val();

r1.x = 5;

v1.x = 5;

…

Ref r2 = r1;

Val v2 = v1;

r2.x = 8;

v2.x = 9;

…

} Stack Heap

x = 5r1:

r2:

v1:

v2:

x = 5

x = 5

x = 8

x = 9

.NET Architecture 9

Value and Reference Types

Int32: 169

Int16: 43

Char: A

String:

Stack Heap

Hello

Reference type

Value type

.NET Architecture 10

Intermediate Code

Source

code
Compiler

Common

Intermediate

Language

(CIL)

Compilation

JIT

compiler

Native

code

For the first time

that a method is

called

Execution

.NET Architecture 11

Execution in the CLR

Class X

Class Y

Class ZMethod 1

Method 2

Method 3

Método 1

Method 2

CIL code

Native code

JIT compiler

2) Compiles

CIL code 3) Replaces

CIL by native

code

Method 1

Method 2

Method 3

Método 4

1) Calls

a method

Method 1

5) Compiles

CIL code

4) Calls a

method 6) Replaces

CIL by native

code

Method 4

7) Calls

a method

8) Calls next

method . . .

.NET Architecture 12

Application domains

Several .NET applications can run in the

same process (CLR) but in different

domains

The domains are isolated from each other

 Domains can communicate using some

inter process communication techniques

Domains can run several threads

An application can be made

multithreaded easily

.NET Architecture 13

Application domains

Common Language Runtime

Assembly A

An OS process

App Domain 1

Assembly B

Assembly C

Assembly D

App Domain 2

Assembly E

Assembly F

App Domain 3

Threads

.NET Architecture 14

Application domain and CLR

Stack Heap

Class Y Class Z

JIT Compiler

Method 4

Method 3

Method 2

Method 1

Method 2

Method 1

Class X

Method 3

Method 2

Method 1

Loader

Common Language Runtime

App Domain

Garbage

Collector

Metadata for the Classes X, Y and Z

Assembly

.NET Architecture 15

Assemblies

When we do a compilation from a high level
.NET language we create modules of managed
code

One or more modules can constitute an
assembly (one or more files)

The modules also contain metadata describing
types, methods, fields, …

One of the assembly modules contains a
manifest, describing the assembly components
(modules)

A private assembly gets installed by a simple
copy
 There is no registry entries, include files, etc.

.NET Architecture 16

Assemblies
Class X …

Class Y …

Class Z …

Metadata for classes X, Y and Z

Class X

CIL

Class Y

CIL

Class Z

CIL

Compiler

(C#,…)

app1.exe

Assembly A

Metadata for classes P and Q

app2.dll

Class P Class Q

Assembly B

Metadata for class R

app3.netmodule

Class R

Manifest

Manifest

.NET Architecture 17

Languages

Any language capable of supporting a

well defined subset of the CLR/CTS (CLS -

Common Language Specification) can be

used as a high level .NET language

 One of them is the new C# language (follows

closely the CTS and CLR specifications)

 From Microsoft: VB.NET, C++.NET, J#, F#

and JScript.NET

 Others: APL, COBOL, Pascal, Eiffel, Haskell,

ML, Oberon, Perl, Python, Scheme, Smalltalk,

Fortran, etc.

.NET Architecture 18

Framework Class Library (FCL)

It is very broad

Accessible from any .NET language

It’s written in C# (most of it)

It’s organized is several namespaces

 Base: namespace System

Contains thousands of classes, structs

and enums

Many more thousands of methods,

properties and events

.NET Architecture 19

Ports to other platforms
For Linux / Solaris / Mac OS:

Mono - CLR (with JIT), C# Compiler and other tools and a very

substantial part of FCL

Cross platform, open source, .NET development framework

http://www.mono-project.com

For iPhone and iPad (iOS):

Xamarin.iOS – Apps with .NET and C# integrated in Xcode and UI designer

http://xamarin.com/platform

For Android:

Xamarin.Android - .NET and C# for Android platform integrated with VS

http://xamarin.com/platform

