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Common Language Runtime (CLR)

All .NET applications use the CLR

The CLR is OO

It is independent from high level languages

The CLR supports:

 A common set of data types for all languages (CTS)

 An intermediate language independent from the 

native code (CIL)

 A common format for compiled code files 

(assemblies)

All the software developed using the CLR is 

known as managed code
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All the languages able to generate code 

for the CLR make use of the CTS (the CLR 

implements the CTS)

There is 2 type categories:

 Value

• Simple types

• Allocated in the stack

 Reference

• Complex types

• Allocated in the heap

• Destroyed automatically by garbage collection

Common Type System (CTS)

stack

top

41

class A

String: 

Double: 271.6

heap

string

“abcdef”
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The CTS
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Value and Reference Types

class Ref  { public int x; }

struct Val { public int x; }

…

void Method ( )  {

Ref  r1 = new Ref( );

Val v1 = new Val( );

r1.x = 5;

v1.x = 5;

…

Ref  r2 = r1;

Val  v2 = v1;

r2.x = 8;

v2.x = 9;

…

} Stack Heap

x = 5r1:

r2:

v1:

v2:

x = 5

x = 5

x = 8

x = 9
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Value and Reference Types

Int32: 169

Int16: 43

Char: A

String:  

Stack Heap

Hello  

Reference type

Value type
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Execution in the CLR
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Method 2
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Method 2
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8) Calls next

method . . .
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Application domains

Several .NET applications can run in the 

same process (CLR) but in different 

domains

The domains are isolated from each other

 Domains can communicate using some 

inter process communication techniques

Domains can run several threads

An application can be made 

multithreaded easily
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Application domains
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Application domain and CLR
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Assemblies

When we do a compilation from a high level 
.NET language we create modules of managed 
code

One or more modules can constitute an 
assembly (one or more files)

The modules also contain metadata describing 
types, methods, fields, …

One of the assembly modules contains a 
manifest, describing the assembly components 
(modules)

A private assembly gets installed by a simple 
copy
 There is no registry entries, include files, etc.
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Assemblies
Class X …

Class Y …

Class Z …

Metadata for classes X, Y and Z

Class X

CIL

Class Y

CIL

Class Z

CIL

Compiler

(C#,…)

app1.exe

Assembly A

Metadata for classes P and Q

app2.dll

Class P Class Q

Assembly B

Metadata for class R

app3.netmodule

Class R

Manifest

Manifest
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Languages

Any language capable of supporting a 

well defined subset of the CLR/CTS (CLS -

Common Language Specification) can be 

used as a high level .NET language

 One of them is the new C# language (follows 

closely the CTS and CLR specifications)

 From Microsoft: VB.NET, C++.NET, J#, F#  

and JScript.NET

 Others: APL, COBOL, Pascal, Eiffel, Haskell, 

ML, Oberon, Perl, Python, Scheme, Smalltalk, 

Fortran, etc.
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Framework Class Library (FCL)

It is very broad

Accessible from any .NET language

It’s written in C# (most of it)

It’s organized is several namespaces

 Base: namespace System

Contains thousands of classes, structs

and enums

Many more thousands of methods, 

properties and events
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Ports to other platforms
For Linux / Solaris / Mac OS:

Mono - CLR (with JIT), C# Compiler and other tools and a very

substantial part of FCL

Cross platform, open source, .NET development framework

http://www.mono-project.com

For iPhone and iPad (iOS):

Xamarin.iOS – Apps with .NET and C# integrated in Xcode and UI designer

http://xamarin.com/platform

For Android:

Xamarin.Android - .NET and C# for Android platform integrated with VS

http://xamarin.com/platform


