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Abstract. A pre-processing optimisation is proposed that can be ap-
plied to the integer and mixed integer linear programming models that
are used to solve the cell suppression problem in statistical disclosure con-
trol. In this paper we report our initial findings and acknowledge that
there is much more work to be done. Early indications are that the pre-
processing optimisation will considerably reduce the resources required
by the solver hence allowing either statistical tables to be protected
quicker or larger statistical tables to be protected. This pre-processing
optimisation may be suitable for application to the τ -Argus Optimal
Method used in protecting statistical tables.
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1 Introduction

Many statistical tables are published with some of the table cells suppressed
(left blank). This is done to prevent the disclosure of individual respondents
which contributed to the cell value. Cells that failed the primary rule are called
primary, or sensitive, cells and must be protected by additional suppressed cells
called secondary cells. Choosing which secondary cells to suppress is known, in
the literature, as the cell suppression problem. The cell suppression problem
involves choosing a set of secondary cells that will remove the risk of disclosing
the values of the primary cells whilst also minimising the information loss from
the published statistical table.
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The cell suppression problem is a member of the class of NP-hard problems
when solving for optimality. In fact, the problem of finding a secondary suppres-
sion pattern is easy to be achieved, for example if all cells are suppressed this
is a feasible pattern but clearly not optimal. It is when solving the cell suppres-
sion problem optimally that as the size of the table to be protected grows the
number of possible solutions that need to be evaluated grows much quicker. For
a table with n cells there are 2n possible suppression patterns. This means that
when trying to find an optimal solution the computational time required grows
rapidly as the table size grows, making finding optimal solutions for large tables
difficult. Because the cell suppression problem is NP-hard MIP techniques can
only find the optimal solution for small and medium sized statistical tables.

It is known that removing anything that is redundant from the mathematical
program can make an efficiency gain. For example redundant equations, variables
and protection levels can be removed. Another pre-processing efficiency gain can
be obtained by removing any table cells that have the value set to zero or whose
values must be published, subject to adjusting any marginal totals necessary.
This decreases the number of working variables and constraints that the solver
requires to find a solution, which in turn allows larger statistical tables to be
protected.

Linear programming models and local search algorithms are used on relaxed
cell suppression problems to obtain near optimal solutions when integer program-
ming models are infeasible. Some have moved away from trying to calculate the
optimal solution and have instead employed heuristic techniques to find near op-
timal solutions quickly. Others have employed hybrid algorithms that combine
linear programming and heuristic techniques [2] [8].

This paper will present further improvements which are obtained when look-
ing at the inferences made by an external attacker to a table. Section 2 presents
definitions to the problem. Section 3 puts forward a proposition for a pre-
processing optimisation. Section 4 describes how the pre-processing optimisa-
tion can be implemented. Section 5 applies the pre-processing optimisation to
the classical IP model for SDC. Section 6 describes our experimental setup. Sec-
tion 7 contains our results. Section 8 contains our preliminary conclusions and
section 9 lists further research.

2 Definitions

The external attacker wishes to deduce the values of cells that have been sup-
pressed in a published statistical table, in order to glean confidential information.
The assumption made in the literature is that the external attacker has only the
knowledge which is provided in the published table, i.e. he is not aware which
suppressed cells are primary nor secondary but he knows that there is a number
of suppressed cells in the table and their location (disclosure pattern). As each
table has row and column totals, often referred to as marginals, the external
attacker is able to calculate lower and upper bounds, feasibility range, for each
of the suppressed cells by solving a set of linear constraint equations [1] [6].
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A statistical table with marginal totals can be represented as a set of cells,
please see details of the model in [1] and [6], ai, i = 1, ..., n, satisfying m lin-
ear constraint equations such that Ma = 0, where Mij has one of the values
{0,+1,−1}.

n∑
i=1

Mijai = 0, j = 1, ...,m

The statistical agency will define a set P of primary cells whose publication will
be suppressed in order to protect the confidentiality of the contributors to those
cells. The statistical agency will provide lower and upper protection levels (lpl
and upl) for each cell in P such that an external attacker must not be able to
calculate ap within the range lplp to uplp. For ap to be safe

ap ≤ lplp and ap ≥ uplp

where ap is the lower bound and ap the upper bound of the feasible range that
the external attacker can calculate for ap if only the primary cells P have been
suppressed [1].

ap = min xp ap = max xp

s.t. Mx = 0 and s.t. Mx = 0
xi ≥ 0, i ∈ P xi ≥ 0, i ∈ P
xi = ai, i /∈ P xi = ai, i /∈ P

If the external attacker is able to calculate ap > lplp or ap < uplp then ap is
unsafe (ap can be disclosed). It should be noted that we are considering the
external attacker on tables which have not yet been protected by secondary
suppressed cells in order to gauge the level of disclosiveness of the tables for our
pre-processing optimisation.

| | | | |
0 lplp ap uplp ∞
ap ≤ lplp lplp < ap ap < uplp uplp ≤ ap

ap is safe ap is unsafe ap is unsafe ap is safe

Noting that some primary cells may occur alone in a marginal total, whereas
others (e.g. those sharing rows/columns) may effectively protect each other, we
define the following partition of the set of primary cells P .

An exposed primary cell in a statistical table with marginal totals is one
whose value can be calculated, within a given lower and upper protection limit,
by an external attacker when only the primary cells P have been suppressed.
That is to say, p is a member of the set E of exposed primary cells if ap > lplp
or ap < uplp. E ⊆ P .

A not exposed primary cell in a statistical table with marginal totals is one
whose value cannot be calculated, within a given lower and upper protection
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limit, by an external attacker when only the primary cells P have been sup-
pressed. That is to say, p is a member of the set N of not exposed primary cells
if ap ≤ lplp and ap ≥ uplp. N ⊆ P , E∪N = P and E∩N = {}. The reason why
there are not exposed primary cells in a statistical table is due to their locations
in that table. Each not exposed primary cell receives sufficient protection from
other primary cells in the table to prevent an external attacker from being able
to calculate a feasible range of values within the given protection level.

Proposition 1: As not exposed primary cells are already sufficiently protected
they do not require secondary cells for their protection.

An initially exposed primary cell is a primary cell that can be exposed, by an
external attacker when only the primary cells P have been suppressed, without
requiring the exposure of any other primary cell. For example there may be only
one primary cell in a row or column. Let Lp be the subset of linear equations M
that contain the value +1 or −1 in the locations for ap, Lp ⊆M . This subset Lp

only contains the linear equations that apply to ap. Then we can say that p is a
member of the set I of initially exposed primary cells if ap > lplp or ap < uplp,
when,

ap = min xp ap = max xp

s.t. Lpx = 0 and s.t. Lpx = 0
xi ≥ 0, i ∈ P xi ≥ 0, i ∈ P
xi = ai, i /∈ P xi = ai, i /∈ P

I ⊆ E.
Conversely we can say that p is not a member of I if ap ≤ lplp and ap ≥ uplp.
A consequentially exposed primary cell is an exposed primary cell that is not

an initially exposed primary cell. That is to say, p is a member of the set C of
consequentially exposed primary cells if p is a member of E but not a member of
I. C ⊂ E, C ∪ I = E and C ∩ I = {}. Hence a consequentially exposed primary
cell is only vulnerable to an external attacker when at least one other exposed
primary cell has been exposed. When an external attacker has exposed a primary
cell it was for one of two reasons, the cell was either initially or consequentially
exposed. If I = {} then both C = {} and E = {}.

3 Proposition 2

Only the protection of the initially exposed primary cells, I, need to be considered
when selecting secondary cells to suppress in order to make a published statistical
table safe from an external attacker.

3.1 Proof

To protect the primary cells in a published statistical table a set of secondary
cells, S, must be suppressed along with the primary (primary) cells, P . When
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choosing S to protect the primary cells, P , minimising the loss of information
from the published statistical table is considered. Let Sp be a set of secondary
cells that protect p, p ∈ P . Let Lp∪Sp be the subset of linear equations M that
contain the value +1 or −1 in the locations for ap and all as where s ∈ Sp ,
Lp∪Sp

⊆M . This subset Lp∪Sp
only contains the linear equations that apply to

ap and all associated as. The set of secondary cells, Sp, are primarily chosen so
that ap ≤ lplp and ap ≥ uplp, where

ap = min xp ap = max xp

s.t. Lp∪Spx = 0 and s.t. Lp∪Spx = 0
xi ≥ 0, i ∈ P ∪ Sp xi ≥ 0, i ∈ P ∪ Sp

xi = ai, i /∈ P ∪ Sp xi = ai, i /∈ P ∪ Sp

From the definition of initially exposed primary cells we know that for p /∈ I
that ap ≤ lplp and ap ≥ uplp when Sp = {}. We also know that for p ∈ I that
ap > lplp or ap < uplp when Sp = {}. From the definition of Sp we know that for
p ∈ I that ap ≤ lplp and ap ≥ uplp when Sp 6= {}. Therefore the set of secondary
suppressed cells, Sp, are only required to protect ap when p ∈ I, they are not
required in the protection of ap when p /∈ I. So, the only time Sp 6= {} is when
p ∈ I.

p ∈ I ⇔ Sp 6= {}

Hence only the protection of the initially exposed primary cells, I, need to
be considered when selecting secondary cells to suppress in order to make a
published statistical table safe from an external attacker.

3.2 Corollary

If I = {} then N = P and therefore the statistical table is already adequately
protected.

4 Finding initially exposed primary cells without using a
solver

We present here a method that provides a superset of the elements in P that
contains all those in I.

For each element p ∈ P let J denote the set of linear constraint equations
(equivalent to rows of M) in which p participates, i.e. ∀j ∈ J ·Mpj 6= 0.

A necessary, but not sufficient, condition for us to establish that p ∈ I is the
existence of at least one marginal total in which the amount of ”uncertainty”
(and hence protection) provided by the absolute values of the other suppressed
primary cells in that total is less than the required protection limits. Formally,
for each j ∈ J let Hj be the set of primary cells in j, we require that one of the
following conditions holds:
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|Hj | = 1 or

|Hj | > 1 ∧ (Max(ap − lplp, uplp − ap) >
∑

i∈Hj/p

ai)

4.1 Example

Taking a 6 by 6 statistical table with marginal totals (Table 1) as an example, the
process of finding I, C and N can be shown. In our example the statistical agency
has defined P = {8, 12, 15, 16, 19, 20, 24, 27}. When the test for the fully exposed
primary cells is applied five primary cells are exposed, E = {16, 19, 20, 24, 27}
and therefore N = {8, 12, 15}. The values of cells 16, 20, 24 and 27 are calculated
exactly and the feasibility range of cell 19 is calculated within its lower and upper
protection levels which in this case is 10% of the cell’s value.

By contrast applying the test for initially exposed primary cells (Table 2)
we find that I = {16, 19, 24}, and therefore N ∪ C = {8, 12, 15, 20, 27}. For this
pre-processing optimisation to work it is not necessary (nor is it possible) to
determine which cell is in C and which is in N .

Total 1 2 3 4 5 6

Total 1472 193 278 203 294 233 271

A 199 8 9 1 51 41 47 12 3 1 48

B 164 15 8 2
16 1 1 54 44 19 45 2

20 12 2

C 245 8 70 24 6 2 76 64 27 21 2

D 248 33 46 45 27 37 60

E 312 87 51 18 35 49 72

F 304 48 59 39 65 35 58

Table 1. Example of a 6 by 6 statistical tables with marginal totals. There are 8
primary cells. Each primary cell has its cell number top left and number of contributors
bottom right.

Applying a SAS/OR implementation of the classical IP SDC model to the
whole set of primary cells in table 1 the set of secondary cells S = {37, 38, 40} was
obtained. The solver required 833 variables, 1824 constraints and 23.28 seconds
of cpu time to protect table 1.

Applying a SAS/OR implementation of the modified classical IP SDC model
to only the initially exposed primary cells, I = {16, 19, 24}, in table 1 the set
of secondary cells S = {37, 38, 40} was also obtained. The solver required 343
variables, 689 constraints and 3.75 seconds of cpu time to protect table 1.
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Protection Sum of other Sum of other
Cell range Primary Primary Protected

Cells in Row Cells in Column

8 ±1 3 8 Yes

12 ±1 8 45 Yes

15 ±1 58 9 Yes

16 ±1 65 0 No

19 ±4.5 21 3 No

20 ±1.2 54 21 Yes

24 ±1 21 0 No

27 ±2.1 6 12 Yes

Table 2. Workings to find members of the superset of I. Any cell that has either a sum
of other primary cells in either the row or column that is larger than it’s protection
range is a member of the superset of I.

5 Applying the Proposition to the Classical IP Model for
SDC

The cell suppression problem is the problem faced by statistical agencies when
they release statistical tables, they must balance the risk of disclosing confiden-
tial information against the loss of information from the table caused by not
publishing the suppressed cells in the table [3] [7] [4] [8] [5].

Here we consider the case of a single external attacker who has no other
knowledge than what is in the published table. It is usually assumed that the
external attacker, prior to attack, knows that the cell ai lies within the range from
lbi to ubi. If the external attacker has no other knowledge than that published
in the table then lbi = 0 and ubi =∞. Fischetti and Salazar-González [3], when
they defined the classical model, introduced a weighing wi for each cell ai to
represent the information loss should the cell ai be suppressed. A variable zi

was introduced for each ai to indicate whether or not ai had been suppressed
(zi = 0 means that ai is published and zi = 1 means that ai is suppressed).
Two tables where introduced that are consistent with a = [a1, ..., an], these
tables fp = [fp

1 , ..., f
p
n] and gp = [gp

1 , ..., g
p
n] are used to calculate the lower and

upper feasible limits for p ∈ P . In the classical model the lower and upper
bounds (lbi and ubi) are translated into LBi and UBi, where LBi = ai − lbi
and UBi = ubi − ai. Those cells that are suppressed and are members of P are
called primary suppressed cells and those cells that are suppressed but are not
members of P are called secondary suppressed cells.
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5.1 Classical Model

min
∑n

i=1 wizi

subject to

zi ∈ {0, 1} for i = 1, ..., n

and for all p ∈ P :∑n
i=1Mijf

p
i = 0 for j = 1, ...,m

ai − LBizi ≤ fp
i ≤ ai + UBizi for i = 1, ..., n∑n

i=1Mijg
p
i = 0 for j = 1, ...,m

ai − LBizi ≤ gp
i ≤ ai + UBizi for i = 1, ..., n

fp
p ≤ lplp
gp

p ≥ uplp
gp

p − fp
p ≥ splp

5.2 Modified Classical Model

Applying propositions 1 and 2, the proof and the corollary in this paper we
derived the Classic Model from Fischetti and Salazar as follows:

min
∑n

i=1 wizi

subject to

zi ∈ {0, 1} for i = 1, ..., n

zp = 1 for all p ∈ P
and for all p ∈ I(initially exposed primary cells) :∑n

i=1Mijf
p
i = 0 for j = 1, ...,m

ai − LBizi ≤ fp
i ≤ ai + UBizi for i = 1, ..., n∑n

i=1Mijg
p
i = 0 for j = 1, ...,m

ai − LBizi ≤ gp
i ≤ ai + UBizi for i = 1, ..., n

fp
p ≤ lplp
gp

p ≥ uplp
gp

p − fp
p ≥ splp

6 Experimental Setup

6.1 Comparing the Classical and Modified Classical Models

A set of 20 2-dimensional non-hierarchical magnitude statistical tables with
marginal totals (see Table 3) were generated for the purpose of comparing the
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classical and modified models [8]. These statistical tables with marginal totals
were protected using a SAS/OR implementation of the classical model and a
SAS/OR implementation of the modified (initially exposed primary cells only)
classical model, using the same computer. These experiments were ran at ONS
on a Dell Optiplex GX270 processor with 2GB RAM. The SAS version used was
SAS 9 solver with SAS/OR Opt module. There are a variety of solvers in SAS
and OptMILP was used. The selected secondary suppressed cells, the number
of variables required, the number of constraints and the required cpu-time were
recorded for comparison. For each of the statistical tables the percentage change
in performance was calculated using the following formula.

ReductionInCellsConsidered =
(SensitiveCells− InitiallyExposedCells) ∗ 100

SensitiveCells

ImprovementInV ariables =
(ClassicalV ariables−ModifiedV ariables) ∗ 100

ClassicalV ariables

ImprovementInConstraints =
(ClassicalConstraints−ModifiedConstraints) ∗ 100

ClassicalConstraints

ImprovementInCPUTime =
(ClassicalCPUTime−ModifiedCPUTime) ∗ 100

ClassicalCPUTime

For each of these statistical tables the improvement in the number of vari-
ables, constraints and cpu time was plotted against the reduction in the number
of primary cells needing to be considered, see Fig. 1.

6.2 Estimating the Improvement for Different Table Sizes

A set of 3360 2-dimensional non-hierarchical statistical tables with marginal
totals, sizes ranging from 100 cells to 900,000 cells, were generated with random
values. For each different table size; 40 tables were generated, these tables had
either 10% or 25% primary cells and either 10% or 20% of cells set to zero. For
each of these tables the percentage reduction in the number of primary cells
that need to be considered when using the modified classical model was plotted
against the table size, see Fig. 2.

7 Results

7.1 Comparing the Classical and Modified Classical Models

Both models, classical and modified, selected the same secondary cells to sup-
press. The number of variables required, the number of constraints and the
required cpu-time for each model is recorded in Table 4.
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Table Rows Columns Cells Zeros Primary Initially Constraint Hierarchical
Cells Exposed Equations

1 5 5 36 3 8 6 12 No

2 5 6 42 7 8 3 13 No

3 5 7 48 5 7 4 14 No

4 5 8 54 8 17 3 15 No

5 5 9 60 5 17 4 16 No

6 7 7 64 11 14 5 16 No

7 7 8 72 7 16 5 17 No

8 7 9 80 19 13 5 18 No

9 8 8 81 13 13 7 18 No

10 8 9 90 15 17 5 19 No

11 10 10 121 19 31 4 22 No

12 10 12 143 28 40 4 24 No

13 25 5 156 5 4 4 32 No

14 25 5 156 6 11 8 32 No

15 25 5 156 7 4 4 32 No

16 25 5 156 32 7 7 32 No

17 25 5 156 35 7 4 32 No

18 25 5 156 26 9 9 32 No

19 25 5 156 7 11 10 32 No

20 50 5 300 9 25 18 56 No

Table 3. Range of statistical tables with marginal totals

For every percentage reduction in the number of primary cells that need to
be considered when using the modified classical model to protect a published
statistical table there is an equal percentage improvement in the number of vari-
ables and constraints required to solve the associated linear programme. There
is also a similar improvement in the required cpu time, however the relationship
is not as smooth as it is for the number variables and constraints required, see
Fig. 1. For those statistical tables where all of the primary cells are initially
exposed, P = I, the modified classical model may require more cpu time than
the classical model.

7.2 Estimating the Improvement for Different Table Sizes

The reduction in the number of primary cells that needed to be considered when
using the modified classical model was affected by some of the properties of the
statistical tables being protected. The reduction was greater for larger tables,
tables that were more square than long and tables that had a higher proportion
of primary cells. This is explained by each factor increasing the probability that
more than one primary cell would occupy the same row or column and hence
provide some protection to each other.
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Table Classical Modified
Variables Constraints cpu-time Variables Constraints cpu-time

1 612 1376 4.32 468 1034 2.95

2 714 1584 3.71 294 599 1.32

3 720 1568 8.17 432 899 2.43

4 1890 4250 4.07 378 764 0.6

5 2100 4692 4.17 540 1117 0.98

6 1856 4088 8.31 704 1469 2.39

7 2376 5216 31.07 792 1641 4.62

8 2160 4680 113.78 880 1808 27.48

9 2187 4732 38.23 1215 2554 24.65

10 3150 6834 84.81 990 2022 6.98

11 7623 16492 95.56 1089 2155 2.57

12 11583 24960 256.65 1287 2532 5.98

13 1404 2768 4.82 1404 2768 4.86

14 3588 7612 78.46 2652 5539 62.9

15 1404 2768 31.57 1404 2768 31.7

16 2340 4844 18.07 2340 4844 29.82

17 2340 4844 22.67 1404 2771 8.45

18 2964 6228 267.31 2964 6228 267.31

19 3276 6921 2.23 3276 6921 2.2

20 15300 32900 110.70 11100 23695 45.96

Table 4. Comparison of the two models

8 Conclusions

This pre-processing optimisation has been shown to be very effective when ap-
plied to the classical IP SDC model developed by Fischetti and Salazar-González
[3]. This optimisation works by reducing the resources that the solver requires to
protect statistical tables, hence allowing statistical tables to be protected quicker
or allowing larger statistical tables to be protected. The classical IP SDC model
has been implemented, as the Optimal Method, in the SDC tool, τ -Argus [5] [9].
It may be the case that this pre-processing optimisation could be applied to the
τ -Argus Optimal Method to enable it to handle larger tables.

9 Further Research

How the properties of the statistical tables affect the amount of improvement
that this pre-processing optimisation provides requires further investigation.
How hierarchical statistical tables affect the amount of improvement that this
pre-processing optimisation provides requires further investigation. This pre-
processing optimisation should be applied to other SDC techniques to see if
similar performance improvements can be obtained.
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Reduction Improvement Improvement Improvement
Table in Cells in in in

Considered Variables Constraints CPU Time

1 25 23.52 24.85 31.71

2 62.5 58.82 62.18 64.4

3 42.86 40 42.67 70.26

4 82.35 80 82.02 85.26

5 76.47 74.29 76.19 76.5

6 64.29 62.07 64.07 71.24

7 68.75 66.67 68.54 85.13

8 61.54 59.26 61.37 75.85

9 46.15 44.44 46.03 35.52

10 70.59 68.57 70.41 91.77

11 87.1 85.71 86.93 97.31

12 90 88.89 89.86 97.67

13 0 0 0 -0.83

14 27.27 26.09 27.23 19.83

15 0 0 0 -0.41

16 0 0 0 -65.02

17 42.86 40 42.80 62.73

18 0 0 0 0

19 9.09 0 0 1.35

20 28 27.45 27.98 58.48

Table 5. Percentage Reduction in Primary Cells Considered, the Number of Variables
needed by SAS/OR, the Number of Constraints needed by SAS/OR and the CPU
Time needed by SAS/OR
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Fig. 2. The Percentage Reduction in Primary Cells Considered by the Number of Cells
in the Table.


