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ELIMINATING FORGING DEFECTS USING
GENETIC ALGORITHMS

Carlos C. António, Catarina F. Castro, and Luísa C. Sousa
DEMEGI, IDMEC, Faculdade de Engenharia da Universidade do Porto,
Porto, Portugal

In this article, an optimization method for metal forging process designs using finite
element-based simulation is presented. Using as entry parameters the specifications of
the final product the so-called inverse techniques developed for optimization problems
allows the calculation of the optimal solution, the design parameters that produce the
required product. An evolutionary genetic algorithm is proposed to calculate optimal
shape geometry and temperature. An example demonstrating the efficiency of the
developed method is presented considering a two-stage hot forging process. It considers
optimization of the process parameters to reduce the difference between the realized
and the prescribed final forged shape under minimal energy consumption, restricting
the maximum temperature.

Key Words: Finite element method; Genetic algorithms; Hot forging; Metal-forming processes;
Optimization; Preform design.

1. INTRODUCTION

Metal forming is one of the most important processes in the manufacturing
industry. It can be described as an operation to change the shape and characteristics
of a workpiece through plastic deformation without any removal of the material
during the process.

Process design in metal forming involves selection of initial billet size, preform
shape, design of die shape, ram velocity, etc., among which, the most important
are the initial billet shape and the die geometry. It is very difficult to control metal
flow during the forging process, so it must be controlled by the initial billet size
and/or the die geometry. Therefore, it is necessary to replace experience–oriented
technology with a computer-aided approach to reduce or eliminate the trial and
error of process design in metal forming.

A metal forming system is composed of all the input variables such as
initial billet, tools, conditions at the tool/material interface and finally the plant
environment where the process is being conducted. It is time-consuming and difficult
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510 ANTÓNIO ET AL.

to consider all these parameters for process planning. Recently, however, new
optimization techniques overcome defects, such as folding defects, extensive flash,
and underfill, which appear when using an improper initial billet size for a one-stage
forging and improper preform shapes for two-stage forging.

Parameter optimization based on the finite element method (FEM) has
become an international research interest in the field of metal forming [1, 2].
The optimization methods include mathematical optimization, backward tracing,
artificial intelligence, experiment optimization, and an automatic control algorithm.
First, the backward tracing method [3] considering a finite element method that
simulates metal forming processes in reverse to design the preform die shapes was
considered. Then a sensitivity analysis method was developed for large deformation
and hyperelastic viscoplastic solids and applied to preform design problems in
metal forming [4]. A method to design the preform tools and preform shapes
was introduced by using as the objective function to be minimized the distance
between the achieved and required part [5, 6]. Furthermore, the optimal design
focused on preform die shapes instead of the preform shapes, and an optimization
method for preform die shape design in metal forming using forward simulation
only was developed [7]. Recently, an optimal design considering shape optimization
for both one- and two-step forging operations was developed [8–10]. The shapes
were discretized by using cubic B-spline functions. The objective was to reduce the
area of the zone where the achieved final forging shape and desired final forging
shape do not coincide. B-spline coefficients were considered as the design variables
for sensitivity analysis and optimization.

FEM is the basis of parameter optimization in metal forming. The accuracy
and efficiency of FEM determine whether the optimization calculation is successful
or not and the reliability of the optimal results. In this article, an optimization
method is developed by coupling a thermomechanical code with a genetic algorithm.
The developed method is applied to forging a preheated billet made of AISI
1018 steel. The optimal solution is not gradient dependent and, consequently, does
not have numerical errors resulting from nonaccurate sensitivity calculations. An
advantage of genetic algorithms is that shape and process, discrete and continuous
variables can be simultaneously handled.

2. THE THERMOMECHANICAL MODEL

In forging, elastic deformation is usually omitted because it is very small
compared with the plastic deformation. Therefore, rigid plastic/viscoplastic FEM
is often used to analyze the forming process. Finite element formulation is briefly
outlined here because the basic mathematical description of the method as well as
the solution techniques are well explained in the literature [1, 11].

The rigid viscoplastic flow capability is based on iteration of the velocity field
in an incompressible, non-Newtonian fluid. The normal flow condition for a non-
zero strain rate can be expressed as

sij =
2�̄

3 ˙̄� �̇ij (1)
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ELIMINATING FORGING DEFECTS WITH GAS 511

where

˙̄� =
√
2
3
�̇ij �̇ij (2)

here ˙̄� is the equivalent strain rate, �̄ is the yield stress as a function of strain, strain
rate, and temperature, �̇ij is the infinitesimal strain rate, and the deviatoric stress is
represented by

sij = �ij −
1
3
�ij�ij (3)

From the variational principle, the functional � for rigid plastic material can
be written as follows,

� =
∫
�
�̄ ˙̄� dV −

∫
�1

ti vi dS (4)

where � is the region occupied by the deformed body, having volume V and
surrounding surface � , ti is the traction specified on the boundary �1, and vi is the
velocity component.

The incompressibility may be imposed in two ways: by means of Lagrange
multipliers or penalty functions. In this article, the incompressibility constraint on
admissible velocity fields may be removed by introducing a penalty constant, K and
modifying the functional given in Eq. (4). Then the solution of the original boundary
value problem is obtained from the solution of the dual variational problem, where
the first-order variation of the functional vanishes.

�� =
∫
�
�̄ � ˙̄� dV + K

∫
�
�̇ii ��̇ii dV −

∫
�1

ti �vi dS = 0 (5)

In Eq. (5), �vi is the arbitrary variation of the velocity, and � ˙̄� and ��̇ii are the
variations in strain rate from �vi.

Friction between tool and workpiece is introduced by considering the
condition

�ijtj = �ti (6)

where ti is the unit tangential vector to � at the point under consideration, and
�ti is the friction stress. The friction stress is tangential to the surface and directed
opposite to the relative velocity between the surfaces in contact. According to the
Siebel friction law, the value of the friction stress is proportional to the shear stress
�d at the point under consideration.

�t = m�d (7)

where m is the friction factor and �d = 1√
3
�̄.

Mechanical properties of metals are temperature dependent. Metal forming
processes are characterized by considerable temperature changes because large
plastic strains lead to heat generation. During hot forging cooling of the surfaces

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
-
o
n
 
C
o
n
s
o
r
t
i
u
m
 
-
 
2
0
0
7
]
 
A
t
:
 
1
5
:
4
9
 
2
2
 
F
e
b
r
u
a
r
y
 
2
0
1
1



512 ANTÓNIO ET AL.

contacting the surroundings takes place. This leads to the necessity of considering
a coupled thermoplastic process. The temperature inside the deformed body is
determined by the equation

Ṫ = 1
�cT

	TTii +
Q̇

�cT

 Q̇ = kT �̄ ˙̄� (8)

where 	T is the conductivity coefficient, cT is the specific heat supply, � is the material
density, Q̇ is the rate of dissipation during the plastic deformation converted into heat,
and kT is the fraction of the strain rate energy that turns into heat. The remainder
fraction of the strain rate energy is expected to cause changes in dislocation density,
grain boundaries, and phases and is usually recovered by annealing.

For each material point xi, at each time t, the temperature boundary
conditions are

T�xi
 t� = TS�xi
 t�
 xi ∈ �1 (9)

qn = 	T
T

n
= q̄n
 xi ∈ �2 (10)

where TS is a prescribed temperature on the part �1 of the surface � of the body,
and q̄n is the prescribed heat flux on the part �2 of � .

A developed finite element code based on the rigid viscoplastic finite element
method with an updated Lagrangian formulation [12] has proved to be robust and
efficient for numerical simulations of forging processes under different geometric
and process input parameters [11–13]. This code is considered in the developed
numerical algorithm for optimization of forging processes.

3. INVERSE FORMULATION

3.1. Optimization Problem

Different preform die shapes generate different final forging shapes in a
multistage forging process. For metal forming processes, the design goal is to make
the achieved final forging as close as possible to the desired final forging shape by
designing the proper process planning and optimal preform dies.

Forging is a complex problem due to its non steady nature involving the
evolution of boundary conditions. Let us consider the open die forging of a
workpiece with a prescribed final shape. The only information known beforehand is
the final product shape and material. Starting from an initial bar, the deformation
paths are not unique. They will depend on conditions such as the intermediate
tool geometries and temperature. Therefore, an inverse problem can be proposed
(i.e., find the optimal temperature of the workpiece and the optimal geometry of
intermediate tools).

The inverse problem is an optimization problem with an objective function
measuring several parameters of the process. Parameters that have to be taken
into account in most forging sequences are the total energy of the process
and the distance between the current shape at the end of the process and the
prescribed shape.
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ELIMINATING FORGING DEFECTS WITH GAS 513

The distance between the current shape at the end of the process and the
prescribed shape can be calculated as

�d�b� =
∫
�end

���X�− X�b��2 dS (11)

where b are the design variables, and ��X� is the projection of a material point X of
the workpiece boundary �end onto the surface of the prescribed shape at the end of
the simulation process.

The total energy is a measure of the actual cost of the process and is given by

�e�b� =
∫ t

0

( ∫
�
t · v dS

)
dt (12)

where t is the applied traction vector and v is the die velocity.
The optimization problem to be solved is stated mathematically as follows.
Find the vector of design variables b = �b1
 � � � 
 bD� ∈ RD that minimizes the

objective functional

��b� = �1 �e�b� + �2 �d�b� (13)

subject to

T end�b�
Ta

≤ 1 (14)

bd− ≤ bd ≤ bd+ d = 1
 � � � 
 D (15)

and to the thermal-mechanical problem, Eqs. (5) and (8). The number of design
variables is D and bd−
 bd+ are the side constraints for each variable. The parameters
�i are weighting parameters, Ta is the maximum allowed temperature, and T end is
the maximum temperature registered in the workpiece along the forging process.

3.2. Evolutionary Search Model

The genetic algorithm (GA) method is a stochastic search method based on
evolution and genetics, and exploits the concept of survival of the fittest [14]. For a
given problem or design domain of significant complexity, there exists a multitude
of possible solutions that form a solution space. In a GA, a highly effective search
of the solution space is performed, allowing a population of strings representing
possible solutions to evolve through basic genetic operators.

In GA implementation, data codification is very important for further
manipulation. The design vector b is codified by using the binary code format with a
different and independent space design for each variable. Clearly, the dimension of
the space design, even for a comparatively small chromosome structure, can be very
large. The goal of the genetic operators of the algorithm is to progressively reduce
the space design driving the process into more promising regions.

One important step for the evolutionary search is to define the fitness, which
is related to the objective function, Eq. (13), and the constraints, Eqs. (14) and (15),
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514 ANTÓNIO ET AL.

of the problem. In this work, a hybrid method is adopted based on the basis
of a graded penalization of the solutions according to its constraint violation.
The genetic algorithm will seek to increase the fitness as it operates. Then the
fitness function for the optimization problem, established from Eqs. (13) to (15), is
defined as

F�b� = F −��b�−�1�b� (16)

with

�1�b� =



0
 if Tend�b� ≤ Ta

�

[
Tend�b�

Ta

− 1
]�


 if Tend�b� > Ta

(17)

where � and � are calculated constants considering two degrees of violation of the
constraints, and F is a predefined constant to ensure a positive fitness function.

Figure 1 describes the developed genetic algorithm, namely, in the inserted
area corresponding to the genetic operators.

It is based on four operators supported by an elitist strategy that always
preserves a core of best individuals of the population whose genetic material
is transferred into the next generations. A new population of solutions Pt+1 is
generated from the previous Pt using the following genetic operators: Selection,
Crossover, Elimination/Substitution, and Mutation seeking improvement of the
fitness.

After random generation of the initial population, the operators are applied
in the following sequence.

3.2.1. Step 1: Selection. Population ranking according to solution fitness.
Definition of the elite group that includes individuals highly fitted. Selection of the
progenitors: one from the best fitted group (elite) and another from the least fitted
one. This selection is done randomly with an equal probability distribution for each
solution. Transfer of the whole population Pt to an intermediate step where they
will join the offspring determined by the Crossover operator.

3.2.2. Step 2: Crossover. The crossover operator transforms two chromo-
somes (progenitors) into a new chromosome (offspring) having genes from both
progenitors. The offspring genetic material is obtained by using a modification of
the parametrized uniform crossover technique [15]. This is a multipoint combination
technique applied to the binary string of two selected chromosomes. This Crossover
is applied with a predefined probability P�c� to select the offspring genetic material
from the highest fitted chromosome. The new individuals created by Crossover will
be joined to the original population Pt.

3.2.3. Step 3: Elimination/substitution. New ranking of the enlarged
population solutions according to their fitness. Then it follows Elimination of
solutions with similar genetic properties and subsequent Substitution by new
randomly generated individuals. Then deletion of the worst solutions with low
fitness simulates the natural death of low fitted and old individuals. Now the
dimension of the population is smaller than the original one. The original size
population will be recovered after including a group of new solutions obtained from
the Mutation operator.
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ELIMINATING FORGING DEFECTS WITH GAS 515

Figure 1 The developed optimization algorithm for the forging sequence.
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516 ANTÓNIO ET AL.

3.2.4. Step 4: Mutation. The Mutation genetic operator is used to
overcome the problem induced by Selection and Crossover operators where some
generated solutions have a large percentage of equal genetic material. The
implemented mutation is characterized by changing a set of bits of the binary
string corresponding to one variable on a chromosome selected at random from the
elite group. The Mutation makes possible the exploitation of previously unmapped
space design regions and guarantees the diversity of the generated population. After
mutation, the new population Pt+1 is obtained and the evolutionary process will
continue until the stopping criteria are reached.

3.3. Design Optimization Algorithm

An optimization algorithm has been implemented for product quality control
of a two-stage forging process with preform and final operations. It is an inverse
problem, namely, given a required forged product, the solution will optimize the
preform tool geometry and the initial temperature of the workpiece.

After the establishment of a prescribed final product and the corresponding
final stage tool shape, a design space is defined by selecting an interval of allowable
values for each design variable. Each interval is discretized independently, and
the binary code format for each variable is defined. The gathering of the binary
encoding of all variables of the design vector b will constitute an individual.
Then it will be possible to select randomly an individual that will be associated
to a particular design vector b. The optimization algorithm performs iteratively
along t = 0
 1
 2
 � � � 
 n generations of populations until convergence conditions are
reached. The iterative process is described in Fig. 1 as follows.

1. An initial population P0 is generated by randomly selecting Npop individuals.
For each individual of the population, an independent numerical simulation of
the two-stage forging direct problem is performed. Each forging simulation will
produce a forged piece with an associated fitness value.

2. A new population of solutions Pt+1 is generated from the previous Pt using
the described genetic operators: Selection, Crossover, Elimination/Substitution and
Mutation.

3. The optimization program checks if the stopping criteria are satisfied. The
stopping criterion used in the convergence analysis is based on the relative
variation of the mean fitness of a reference group during a fixed number of
generations and the feasibility of the corresponding solutions. The size for the
reference group is predefined. If the constraints of the problem are not satisfied,
then the evolutionary process continues. Supposing that there is a feasible
solution for the optimization problem, the search is stopped if the mean fitness
of the reference group does not evolve after a finite number of generations.
Otherwise, the population evolves to the next generation Pt+1 and the iterative
process continues.

The set of design variables of vector b need not have the same units. Two sets
of variables will be considered: shape design variables and process variables. The
shape of the preform tool geometry can be discretized by using B-spline functions.
The displacements of some selected points of the B-splines are the shape design
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ELIMINATING FORGING DEFECTS WITH GAS 517

parameters defined in the design parameter vector b. The considered process variable
is the initial temperature of the workpiece, T0. The temperature of the workpiece
will change along the forging process due to shear stress, die velocity, and friction,
among others, and its maximum value, Ta, strongly influences the quality of the final
product.

4. DESIGN EXAMPLE

In this work, the presented design algorithm is used to optimize a two-stage
forging process. The upsetting solution considers a first-stage forging using an
optimized preform die shape and a final forging stage with a die shape that matches
exactly the required final product. The preform die shape will be optimized by
considering different geometries expressed by B-spline curves. The goal of the design
example is to search for a preform die shape and a workpiece temperature that
will produce after forging a flashless cross-sectional H-shaped axisymmetric product
with complete die fill. For H-shaped forging products, two stages should be used to
get the final forging. Axisymmetric turbine disks and ribs are examples of H-shaped
industrial forging applications.

In practical forging processes, the final forging usually has excessive flash due
to the inappropriate design of the preform die shapes. It is important to reduce
material waste as flash and excessive die wear to realize a flashless forging process.
Elimination of the trimming stage may also be realized for a flashless forging.

The theoretical modeling of the process was performed by using the finite
element program [12]. The initial billet is a cylinder of 25mm diameter by 20mm
height of AISI 1018 steel. The final product prescribes a 29�8mm equatorial
diameter with a height going from 10�1mm at the inner radius (z-axis) up to
16�7mm at the highest top of the H-shape and down to 8�3mm at the outer radius.
The simulation considers only one quarter of the process, taking advantage of
symmetric conditions. The two-dimensional (2D) computer program models the
geometry of the workpiece and dies by a combination of four node and linear
friction elements (Fig. 2). The initial workpiece is heated and the dies are considered
at room temperature.

AISI 1018 is a low-carbon steel, having higher manganese content than certain
other low-carbon steels used in many industrial applications. The temperature-
dependent material constitutive relation is given by [16, 17]

� = 173�73 �̇0�07 �MPa� T < 1143K

� = 108�93 �̇0�152 �MPa� 1143K < T < 1363K

� = 75�83 �̇0�192 �MPa� T > 1363K

(18)

The material properties of the workpiece for the thermal model [16, 17], necessary
for the calculation of heat transfer are shown in Table 1 where 	T is the
conductivity, � is the density, cT is the specific heat supply, hlub is the lubricant heat
transfer coefficient, hs is the surface heat transfer coefficient, and rad represents the
radiation heat flow. The fraction of plastic work transformed into heat is kT = 90%.
The constant shear friction factor m is taken as 0.6.

The die matrix is assumed to be rigid with no internal heat generation with an
initial die temperature, Tdie = 285K.
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518 ANTÓNIO ET AL.

Figure 2 Geometry and finite element mesh for the forging problem.

Figure 2 presents the four-node linear element discretization of the tool
and workpiece and the mesh deformation patterns considering only one forging
stage. The final forging exhibits defects that have to be discarded by considering
the optimization algorithm. The defects are the die underfill and the observable
material flash.

Let us consider the shape of the preform die contact zone defined by a cubic
B-spline curve. The control points determine the shape of the B-spline curve, and
the B-spline curve is bounded by its control polygon. For 2D problems, each control
point Pi
 i = 1
 � � � 
 N has two coordinates, �Pi�r�
 Pi�z��. The z displacements
(corresponding to the height) of selected active control points of the B-spline
function become the geometric design parameters.

In this example, six control points were used to define the B-spline curve
representing the preform die shape (Pi
 i = 1
 � � � 
 6� corresponding to the first six
components of the design vector b. The seventh component of the design vector b
is the initial temperature of the workpiece, T0.

The optimization problem has been solved by applying the developed genetic
algorithm. Using acquired experience on the H-shape geometry and considering the
usual temperatures for steel hot forging, the problem constraints were

−2 ≤ bd ≤ 2mm
 d = 1
 � � � 
 6
1000K ≤ T0 = b7 ≤ 1400K

(19)

and the maximum allowed temperature during forging was Ta = 1450K.

Table 1 Material properties for the low-carbon steel AISI 1018

	T [N/sK] 0�0469× T + 77�467
�cT [N/mm2K] 4× 10−8 × T 3 − 6× 10−5 × T 2 + 0�0344× T − 2�3977
hlub [N/smmK] 4.0
hs [N/smmK] 0.00295
rad [N/msK4] 567�0× 10−13�1�0× 10−7 × T 2 − 9�0× 10−5 × T + 0�044�
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ELIMINATING FORGING DEFECTS WITH GAS 519

As a compromise between elitist strategy and population diversity, parameters
for the genetic algorithm were taken as Npop = 12 and Ne = 5 for the population
and elite group size, respectively. The number of bits in binary codifying for the
geometric and temperature design variables was Nbit = 5. The evolutionary process
stops when convergence is achieved (i.e., when the mean fitness of the six best
individuals does not change during five consecutive generations). For the objective
function defined in Eq. (13), different weights were given to energy and shape fitness
components with the weighting parameters �1 = 10−4 and �2 = 102. This way the
shape fitness will be the main goal of the optimization problem.

The proposed algorithm is efficient in determining the optimal solution
of the numerical example. After 74 generations, the evolutionary process has
converged. Figure 3 shows the objective function history over the optimization
process represented by the solution with best fitness along each generation of the
process.

The evolution of the distance and energy components of the objective function
is given by Eqs. (11) and (12). The energy component varies not only with the
preform die design but also with the variation of the initial temperature of the
workpiece. The compromise between distance and energy components is given by
the fitness evolution of the best solution along each generation. The energy required
by the optimized process is 10% lower than other processes simulated along the
evolutionary process. Consequently, forging load and die wear are significantly
reduced.

The optimal solution is shown in Figs. 4 and 5. The optimal design vector
is bT = �1�73
 0�93
−0�66
 1�73
+0�66
−1�46
 1346�6� where the first six components
correspond to the z-displacements in mm of the B-spline control points deviating
from the highest value z = 10mm. The seventh component is the initial temperature
of the workpiece, Toptimal = 1347K. After forging, the barreling effect is minimal
and the die is completely filled. The cross section of the resulting disk is almost
rectangular so the optimized result is very close to the desired shape. If all material
outside the minimum radius were to be trimmed away, this would account for
material savings by using the optimized design.

Figure 3 Evolution of the fitness function components.
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Figure 4 First stage of the optimized forging.

If the objective function would consider only the shape fitness component,
�1 = 0, one would expect an optimal workpiece solution exhibiting an H-shape
for the forged disk cross section. The pursuit of such solution demands too much
computer time with oscillating near optimal solutions. So, the introduction of the
energy weighting parameter represents a regularization effect.

No violation of the temperature constraint was detected along the two-stage
optimal forging. The highest temperature detected during forging was Tmaximum =
1360K at the end of the first forging stage (Fig. 4). The temperature transfer
between workpiece and die is observable. Before forging, the die temperature
is assumed constant and at room temperature, Tdie = 285K, and according to
the optimal solution the initial workpiece temperature is Toptimal = 1347K. After
forging, the highest achieved temperature in the workpiece is Tmax = 1349K at the

Figure 5 Final stage of the optimized forging.
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equatorial plane and the lowest is Tmin = 820K at the die/workpiece contact area.
The decrease in temperature is due to the heat transfer between die and workpiece.

To simulate one single two-stage forging process using the thermal mechanical
code and a Pentium III takes only a couple of minutes. The implemented
example took around 24h to reach the optimal solution. Although time-consuming,
the developed genetic algorithm presents some advantages over sensitivity-based
methods: the algorithm is not sensitivity dependent, runs well even for discontinuous
derivative fields, discrete design variables, and does not introduce iteration-
dependent numerical errors.

5. CONCLUSIONS

This article presents an optimization method to design preform die shapes in
forging processes.

The methodology was applied to design the optimal preform die shape of
an axisymmetric forming process, the forging of an H-shaped product, starting
from a straight cylindrical billet. The material of the billet is AISI 1018 steel. A
flashless and completely filled final forging was produced by using the optimized
preform die. Due to achieving a flashless forging, the forging load and die wear
were significantly reduced, along with the possible elimination of the trimming stage
and a reduction in machining costs. These results indicate that the method is very
effective in realizing netshape forging.

This work gave special attention to shape optimization, namely, the difference
between the desired and achieved final forging shapes. In fact, preform design
is related to many process parameters, such as energy requirement, uniform
deformation, and die wear. The authors believe that shape design is the most
important parameter. Other parameters can be incorporated into the objective
function to realize a multiobjective optimization of metal forming processes, such
as folding defect, wear of tools, level of effective strain and stress, or uniform
distribution of the mechanical properties.
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