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Abstract In this paper an artificial neural network (ANN)
aiming for the efficient modelling of a set of machining
conditions for orthogonal cutting of polyetheretherketone
(PEEK) composite materials is presented. The supervised
learning of the ANN is based on a genetic algorithm (GA)
supported by an elitist strategy. Input, hidden and output
layers model the topology of the ANN. The weights of the
synapses and the biases for hidden and output nodes are
used as design variables in the ANN learning process.
Considering a set of experimental data, the mean relative
error between experimental and numerical results is used to
monitor the learning process obtaining the completeness of
the machining process modelling. Also a regularization
term associated to biases in hidden and output neurons are
included in the GA fitness function for learning. Using a
different set of experimental results, the optimal ANN
obtained after learning is tested. The optimal number of
nodes on the hidden layer is searched and the positive
influence of the regularization term is demonstrated. This
approach of ANN learning based on GA presents low mean
relative errors in learning and testing phases.
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1 Introduction

Since machining processes are non-linear and time-dependent,
it is difficult for classical identification methods to provide
accurate models. To address this difficulty, non-classical
methods such as artificial neural networks (ANNs) are used.
The ANNSs are robust models having properties of universal
approximation, parallel distributed processing, learning, and
adaptive behaviour and can be applied to multivariate systems.
ANNs s give a kind of implicit relationship between inputs and
outputs by learning from a data set representing the behaviour
of a system.

In the last years, modelling using artificial neural networks
(ANNs) have been extensively used and investigated in
machining (Liu and Altintas [1]; Lin and Ting [2]; Das et al.
[3]; Choudhury et al. [4]; Briceno et al. [5]; Oktem et al. [6];
Tsai et al. [7]; and Suresh et al. [8], among others), and in
other materials processing technologies (Zhecheva et al. [9];
Altinkok and Koker [10]). In particular, the ANNs have been
used in machining processes such as milling, turning, and
drilling. Liu and Altintas [1] developed a feed-forward neural
network algorithm (MLFF N-Network) using cutting speed,
feedrate, and measured cutting forces as input parameters to
get on-line monitoring of flank wear in turning. Lin and Ting
[2] used a back propagation neural network (BPNN) with
sample and batch mode, and observed a faster convergence to
minimal error in the case of the sample mode. For a neural
network with two hidden layers with the same number of
nodes, they also noticed that convergence is achieved faster
than with one hidden layer, and they reported that at higher
learning rate, error is reduced. In another work, Das et al. [3]
used a back propagation algorithm for measuring the flank
wear of carbide tool in turning operation. Choudhury et al. [4]
developed a three-layer, feed-forward back propagation neural
network for predicting flank wear in turning operations, using
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a geometrical relationship when correlating the flank wear on
cutting tool with changes in workpiece dimensions. Briceno
etal. [5] showed the feasibility of radial basis network (RBN)
in the modelling process of metal cutting operations. ANN
models were proposed by Oktem et al. [6], Tsai et al. [7], and
Suresh et al. [8] to predict surface roughness during the end
milling process. In particular, Oktem et al. [6] and Suresh
et al. [8] used ANN together with genetic algorithm (GA) to
minimize the surface roughness.

A literature survey of ANN applications shows that only a
small number of works is devoted to orthogonal cutting and
all of them are not applied to polymeric composite materials.
Modelling of orthogonal cutting of composite materials is
implemented in this work. By definition, the cutting is
orthogonal when the tool has a position angle of 90° and an
inclination angle of 0°, enabling this way a bi-dimensional
representation of the plane deformation of the chip as
referred by Childs et al. [11]. To explain this phenomenon,
the physical-mathematical model of approximation of
Merchant has been used to obtain the vector analysis of
cutting forces and stresses of the machining process.
However, for some applications such as in composite
materials machining processes, the Merchant model is not
satisfactory. Furthermore some machining parameters as-
sume discrete values, making the use of polynomial
approximations inappropriate. The proposed alternative is
to use an approximation model based on ANN.

The objective of this work is to develop an ANN model
based on evolutionary learning, applied to polymeric
composite materials machining. Section 2 presents the
model overview, the topology of ANN, the input and
output parameters, the data pre-processing and the dynam-
ics of ANN. Section 3 describes the ANN learning process
based on genetic search. The learning variables, the code
format, the fitness function and the genetic algorithm are
the main aspects of Section 3. The results of learning
procedure and the discussion of the best configuration for
the ANN are presented in Section 4. The influence of the
regularization term associated with biases in hidden and
output nodes is studied. The testing of the optimal ANN
topology is presented and discussed also in this section.
Finally, the achievements obtained with the developed
approach are presented in Section 5.

2 Artificial neural networks model

2.1 Model overview

In the present work, a set of experimental results in turning
of polyetheretherketone (PEEK) composite materials has

been obtained considering as process parameters the cutting
speed, feedrate, type of insert of the tool, and type of
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workpiece material. Then, a set of these experimental
results is used in the learning algorithm of ANNs to
establish the relationship between the referred input
parameters and the output machining parameters such as
cutting force, feed force, and chip thickness after cutting.
The learning procedure is performed as an optimization
algorithm based on a genetic search. The optimal ANN is
tested after the learning process using another set of
experimental data. Figure 1 shows the flowchart of learning
and testing procedures of the proposed ANN model.

2.2 Neural network topology

The artificial neural network (ANN) is a computational
structure inspired by biological neural human systems.
ANN is formed of simple and highly interconnected
processors called neurons. These neurons are connected to
each other by weighted links denoted by synapses. These
connections establish the relationship between input data
O and output data o,

The biases in the neurons of the hidden and output layers,
b,(c1> and b,(cz) respectively, are controlled during data process-
ing. Input, hidden, and output layers form the topology of the
ANN used in this work. Figure 2 shows the topology of the
ANN together with the input and output parameters.

Two sigmoid activation functions are used in hidden and
output layers. The relative error determined by comparing
experimental and numerical results is used to monitor the
learning process as an optimization process. The objective is to
obtain the completeness of modelling of the machining process.
A regularization function related with biases in hidden and
output neurons is introduced to improve the learning process.

2.3 Input and output parameters

In order to sufficiently train the network arrays of input and
output, a considerable number of data pairs is considered.
Two materials are used in the experimental procedure: (1)
unreinforced polyetheretherketone (PEEK) and (2) rein-
forced polyetheretherketone with 30% of glass fibres
(PEEK GF 30) (supplied by ERTA®). Table 1 shows the
mechanical and thermal properties of these materials.

The orthogonal cutting tests were carried out in extruded
workpieces with a diameter of 50 mm and a length of
100 mm, using a polycrystalline (PCD) insert tool and
cemented carbide (K20) tool. A type SDJCL 2020 K16 tool
holder was used. The tool geometry was as follows: rake
angle 0°, clearance angle 7°, cutting edge angle 91° and
cutting edge inclination angle 0°.

A CNC lathe “Kingsbury MHP 50” of 18 kW spindle
power and a maximum spindle speed of 4,500 rpm were
used to perform the experiments. Figure 3 shows the
experimental apparatus used in the process.
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The plan of tests was developed without refrigeration
and contemplates combinations between four values of
cutting velocity and five values of feedrate. A constant
depth of cut at 2.5 mm was considered. A Kistler® 9121
piezoelectric dynamometer with a charge amplifier (model
5019) was used to acquire the cutting forces and feed
forces. Data acquisition was made through the charge
amplifier and a computer using the appropriate software
(Dynoware by Kistler®). The chip thickness measurement
after cutting was implemented through a Mitutoyo® digital
micrometer with a range of 0-25 mm and a resolution of
0.001 mm. The process parameters and respective ranges
were selected according to acquired industrial experience

for polymeric composite materials. Then, in the experimen-
tal tests, the following values were considered for cutting
parameters: cutting speed: {80, 160, 320, 500} [m/min],
feedrate: {0.05, 0.10, 0.15, 0.20, 0.30} [mm/rev].

The above values of the process parameters were combined
with: Two workpiece materials: (1) unreinforced PEEK and (2)
glass reinforced PEEK GF 30: Two insert tools: (1) K20 and
(2) PCD to obtain the experimental results for cutting force,
feed force, and chip thickness after cutting. A total number of
67 patterns have been obtained from this experimental
procedure as presented in Table 2. Close to 80% of these
pattern results are used in ANN learning procedure and the
remaining ones used in testing the achieved optimal ANN.
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Fig. 2 Topology of artificial
neural network
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2.4 Data pre-processing

Each pattern consisting of an input vector and an output
vector needs to be normalized to avoid error propagation
during the learning process of the ANN. This is achieved
using the following data normalization:

ON max —

ON min
Omax - Omin

ak = + ON min

= (O — Omin) (1)

where Oy is the real value of the variable before normali-
zation, Opyin and Oy, are the minimum and the maximum
values of Oy in the data set to be normalized. Then they
are normalized to values Oy min and On max such that
Oy min < O < Oy max. Depending on the input or the output
data different predefined values of Oy min and Oy max can be
used.

Table 1 Mechanical and thermal properties of PEEK and PEEK
GF30

Mechanical and thermal PEEK PEEK Unit
properties GF30
Tensile modulus (E) 4,200 8,100 N/mm?
Rockwell hardness ISO 2039-2 M105 M108 -
Elongation 20 3 %
Tensile strength 110 160 N/mm?
Glass transition temperature (Tg) 143 143 °C
Melting temperature 340 340 °C
Density 131 1.5 Kg/m®
Coefficient of thermal expansion SE-05 2.5E-05 m/m.K
(<150°C)
Coefficient of thermal expansion 11E-05 5.50E-05 m/m.K
(>150°C)
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2.5 Dynamics of neural network

The output of the k-th neuron in the hidden layer O/ is
define as,

hi 1
O;c ‘= —hid (2)
1+ exp ( .

T

)

with

i
;=3 "wi o+ b

J=1

(3)

where N7 is the number of elements in the input, O_;"p is
the input data, w](,: ) is the connection weight of the synapse
between the j-th neuron in the input layer and the k-th
neuron in the hidden layer, bfcl) is the bias in the k-th neuron

of the hidden layer and 7™ is a scaling parameter.

KISTLER dynamometer

Tool holder

workpiece

Fig. 3 Experimental apparatus
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Table 2 Patterns of input/output used in learning and testing processes of ANN

Experiment Cutting speed Feedrate Insert Workpiece Chip thickness Cutting Feed
number [m/min] [mm/rev] tool material [mm] force [N] force [N]
1 80 0.05 K20 PEEK GF 30 0.094 33.239 55.144
2 80 0.05 PCD PEEK GF 30 0.096 31.609 50.847
3 80 0.10 PCD PEEK GF 30 0.184 33.280 84.480
4 80 0.15 K20 PEEK GF 30 0.258 43.331 130.065
5 80 0.15 PCD PEEK GF 30 0.263 38.231 118.172
6 80 0.20 K20 PEEK GF 30 0.328 45325 162.214
7 80 0.30 K20 PEEK GF 30 0.450 47.287 224.452
8 80 0.30 PCD PEEK GF 30 0.459 43.385 208.232
9 160 0.05 K20 PEEK GF 30 0.093 31.376 53.211
10 160 0.05 PCD PEEK GF 30 0.094 30.739 50.586
11 160 0.10 K20 PEEK GF 30 0.177 35.145 89.322
12 160 0.15 K20 PEEK GF 30 0.254 40.963 128.136
13 160 0.15 PCD PEEK GF 30 0.257 37.389 119.466
14 160 0.20 K20 PEEK GF 30 0.322 46.132 162.378
15 160 0.20 PCD PEEK GF 30 0.324 41.256 149.692
16 160 0.30 PCD PEEK GF 30 0.447 42.697 206.814
17 320 0.05 K20 PEEK GF 30 0.092 30.263 52.693
18 320 0.05 PCD PEEK GF 30 0.093 28.785 50.051
19 320 0.10 PCD PEEK GF 30 0.177 32.142 83.217
20 320 0.15 K20 PEEK GF 30 0.252 36.870 124.021
21 320 0.20 K20 PEEK GF 30 0.322 42.117 160.526
22 320 0.30 K20 PEEK GF 30 0.438 42.961 225.594
23 80 0.05 K20 PEEK 0.071 37.504 65.157
24 80 0.05 PCD PEEK 0.074 36.978 63.058
25 80 0.10 K20 PEEK 0.140 41.016 110.422
26 80 0.10 PCD PEEK 0.144 40.528 106.027
27 80 0.15 K20 PEEK 0.205 43.535 154.032
28 80 0.20 K20 PEEK 0.268 45.954 197.576
29 80 0.20 PCD PEEK 0.275 45316 190.397
30 80 0.30 PCD PEEK 0.396 48.284 274.746
31 160 0.05 K20 PEEK 0.070 37.409 64.205
32 160 0.10 K20 PEEK 0.138 39.221 106.212
33 160 0.10 PCD PEEK 0.143 37.334 103.049
34 160 0.15 PCD PEEK 0.209 39.678 143.652
35 160 0.20 K20 PEEK 0.266 42.157 191.534
36 160 0.20 PCD PEEK 0.272 41.019 187.385
37 160 0.30 K20 PEEK 0.390 44.930 274.340
38 160 0.30 PCD PEEK 0.393 43.698 270.094
39 320 0.05 K20 PEEK 0.069 35.957 61.830
40 320 0.10 K20 PEEK 0.136 36.006 102.898
41 320 0.10 PCD PEEK 0.141 35.626 100.680
42 320 0.15 K20 PEEK 0.200 37.823 145.994
43 320 0.15 PCD PEEK 0.207 36.539 141.589
44 320 0.20 K20 PEEK 0.262 38.581 187.006
45 320 0.20 PCD PEEK 0.270 37.304 180.577
46 320 0.30 PCD PEEK 0.390 38919 260.073
47 500 0.05 K20 PEEK 0.068 29.674 58.148
48 500 0.05 PCD PEEK 0.072 27.789 55.501
49 500 0.10 PCD PEEK 0.140 29.331 97.498
50 500 0.15 K20 PEEK 0.198 32.035 142.446
51 500 0.15 PCD PEEK 0.206 30.656 136.500
52 500 0.20 K20 PEEK 0.260 33.442 182.998
53 500 0.30 K20 PEEK 0.381 36.583 264.289
54 500 0.30 PCD PEEK 0.387 34.189 257.752
55 80 0.10 K20 PEEK GF 30 0.180 37.285 92.714
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Table 2 (continued)

Experiment Cutting speed Feedrate Insert Workpiece Chip thickness Cutting Feed
number [m/min] [mm/rev] tool material [mm] force [N] force [N]
56 80 0.20 PCD PEEK GF 30 0.335 41.585 150.471
57 160 0.10 PCD PEEK GF 30 0.179 32.191 84.045
58 160 0.30 K20 PEEK GF 30 0.444 49.061 227.572
59 320 0.10 K20 PEEK GF 30 0.176 33.706 88.746
60 80 0.15 PCD PEEK 0.211 43.150 148.378
61 80 0.30 K20 PEEK 0.390 48.879 279.209
62 160 0.05 PCD PEEK 0.074 36.481 61.697
63 160 0.15 K20 PEEK 0.203 40.649 147.965
64 320 0.05 PCD PEEK 0.073 33.818 59.834
65 320 0.30 K20 PEEK 0.384 40.172 267.522
66 500 0.10 K20 PEEK 0.140 29.331 97.498
67 500 0.20 PCD PEEK 0.267 31.898 178.558

The value of the output neuron is calculated as,

1
e (4)
1 4+ exp <— ﬁ)
with
Nhid
=3 wi O+ b7 5)
=1

where N is the number of neurons in the hidden layer,
wf,? is the connection weight of the synapse between the
i-th neuron of the hidden layer and the k-th neuron in the
output layer, bf) is the bias in the k-th neuron of the output
layer and 7 is a scaling parameter for this layer.

During training, the computed output is compared with the

measured output and the mean relative error is calculated as

E(Wm’ w® p0), b<z>>

—=out

Nout | —=exp

1 & -0 .
TONEXp ’; Nout; E?XP . ( )

where N°* is the number of neurons of the output layer, N°7
is the number of experimental patterns and 5;"” and 5;’” are
the normalized predicted and measured values, respectively.

The error obtained from (6) is back propagated in to the
artificial network. This means that from output to input the
weights of the synapses and the biases can be modified

until the error falls within a prescribed value.

3 Learning based on genetic search
Genetic algorithms (GAs) have been used with increasing

interest in a large variety of applications. They search the
solution space simulating the evolution of survival of the
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fittest according to Darwin’s theory. The GAs use a
structured exchange of data to explore all regions of the
domain and lead some operators to exploit potential areas.
Besides genetic operator’s basic concepts such as chromo-
some representation, generation of initial population,
stopping criteria and fitness function are important in GAs.

The use of GAs in ANN learning is a methodology
applied by some authors such as Mok et al. [12], Nakhjavani
and Ghoreishi [13] in materials processing simulation. In
the present work, the objective is to explore some
advantages of GAs in handling discrete input parameters
associated with the machining process such as type of
workpiece material and type of insert of the tool. This way
the learning process becomes an optimization process.

By means of training, the neural network models the
underlying process of a certain mapping. In order to model
the mapping, the network weights and biases of the ANN
topology have to be found. There are two categories of
training algorithms: supervised and unsupervised. In this
work supervised learning is used and a set of data samples
called a training set for which the corresponding network
outputs are known is provided. A schematic representation
of the ANN learning algorithm is given in Fig. 1.

3.1 Learning variables and encoding

The supervised learning process of the ANN based on a
genetic algorithm uses the weights of synapses and the bias
of neural nodes of hidden and output layers as design
variables. Thus, the learning variables are the weights of
synapses linking the input layer nodes to hidden layer
nodes wj(.,p, the weights of synapses linking hidden layer
nodes to output layer nodes wg,f) and the bias in nodes of
hidden and output layers, bél) and b;{z)’ respectively.

A binary code is used to encode the domain values for
the learning variables. The number of digits of each
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variable can be different. The bounds of interval domain of
learning variables influence the sensitivity of sigmoid
activation functions and must be controlled. Their influence
is similar to the one for scaling parameters 7" and 7' at
hidden and output layers, respectively.

3.2 Fitness function

The proposed optimisation problem formulation is based
on the minimisation of the mean relative error defined in
Eq. (6). Thus in the evolutionary search it is intended to
maximise a global fitness function FI/7 and the optimisation
problem is defined as follows

Maximize FIT = K — [E(w“),w(z), b“),b(z)) + B(b“),b(z))}
(7)

where B(b(l), b(z)) is a regularization function associated to
mean quadratic biases of hidden and output layers and
defined as

B(b<1>,b<2>) - — (B“) +B(2))1/2 (8)
with

New [ 1 Nhid h
5 ES(0) .
and

NexP r Nout

B =3 | ()

m=1

(10)

dm

being bf{” and b,(f) the associated biases in the nodes of
hidden and output layers, respectively. Regularization
functions are used to accelerate the convergence of the
evolutionary process.

3.3 Genetic algorithm

Four main operators applied to the population support the
genetic algorithm (GA): selection, crossover, implicit muta-
tion and replacement of similar individuals as proposed by
Antonio et al. [14]. These operators are performed by an
elitist strategy that always preserves a core of best individuals
of the population that is transferred into the next generations.
The offspring group formed by the crossover operator will
make part of the population of the next generation. To avoid
the rising of local minima, a chromosome set in which genes
are generated randomly is introduced into the population. The
genetic algorithm performs as follows:

Step 1: Initialization. The initial population is randomly

generated.

Step 2:  Selection. This operator chooses the population part

that will be transferred into the next generation
after ranking based fitness of the actual population.
An elitist strategy where only the best chromo-
somes from the actual population will pass into the
next population is adopted. The operator selects the
progenitors: one from the best-fitted group (elite)
and another from the least fitted one. This selection
is done randomly with an equal probability for each
individual. Transfer of the whole population to an
intermediate step where they will join the offspring
determined by the Crossover operator.
Crossover. The offspring genetic material is obtained
using a modification of the “Parametrized Uniform
Crossover” technique proposed by Spears and
DelJong [15] and modified by Anténio and Davim
[16]. This is a multipoint combination technique
applied to the binary string of the selected chromo-
somes. The offspring gene is selected on a biased
way given a defined probability for choosing the
gene from the elite chromosome.
Replacement by similarity. A new ranking of the
enlarged population according to individual fitness is
implemented. Then, it follows Elimination of sol-
utions with similar genetic properties and subsequent
Substitution by new randomly generated individuals.
Substitution and new ranking updating is followed
by Elimination corresponding to the deletion of the
worst solutions. The exclusion of individuals with
low fitness and also the natural death of old
individuals are simulated by this operator. Now, the
dimension of the population is smaller than the
original one. The original size population will be
recovered after including a group of new solutions
obtained from the Mutation operator.
Implicit Mutation. To avoid the rising of local
minima, a chromosome group, where genes are
generated in a random way, is introduced into the
population. This operation is called implicit muta-
tion. The number of individuals in Implicit mutation
is an important GA parameter to keep the diversity
of the population in each generation. Experience
indicates that the advised number is located
between 20% and 35% of the population size.

Stopping criterion. The stopping criterion used in the
evolutionary process is based on the relative variation

of the mean fitness of a reference group during a
fixed number of generations and the feasibility of the
corresponding solutions. The size for the reference

group is predefined as referred by Antoénio et al. [14].

Step 3:

Step 4:

Step 5:

Step 6:

The flowchart of the ANN learning and testing proce-
dures coupled with the genetic algorithm is presented in
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Fig. 1. The operating conditions of the GA have been given
above and follow the model detailed in Antoénio et al. [14].

4 Training and testing the artificial neural network

This section presents the results of the learning procedure
of artificial neural network (ANN) and of the additional
testing phase. The experimental plan of tests was imple-
mented and the obtained 67 patterns of results are presented
in Table 2. Eighty percent of these results are used in the
learning procedure and the remaining results are used to test
the obtained optimal ANN topology.

To perform the data normalization it was used Oy ,,;,=0.1
and Oy ,,x=0.9 defined in Eq. (1) for the input and output
results, respectively. A code format of five digits was used
for binary encoding of weights in the synapses and biases
in hidden and output neurons. In the ANN learning
procedure based on genetic search and also in the testing
process it was considered a population of 15 individuals.
Five individuals form the elite group of the population that
will be transferred to next generation. In implicit mutation,
five individuals are inserted into the population to keep the
diversity at an acceptable level.

A study of best topology for ANN was carried out
considering the variation of the number of nodes in the hidden
layer. Using the mean relative error in learning and testing
phases the results for different number of hidden nodes are
compared and shown in Fig. 4. The best result was obtained

8,00

O Learning
B Testing

7,00

6,00

5,00

4,00

relative error (%)

3,00

2,00

1,00

0,00
4 5 6 7 8 9 10 11 12

number of hidden nodes

Fig. 4 Mean relative errors in learning and testing processes as
function of the number of nodes of the hidden layer
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considering a number of eight neurons for the hidden layer
that will be used in the next presentation and discussion.

4.1 ANN learning process

The first 54 patterns of values given in Table 2 are used in
the ANN training. The learning process implemented for
this ANN topology evolves along 30,000 generations. The
evolution processes for both components of fitness function
in Eq. (7), the absolute value of the mean relative error, and
the regularization term, are shown in Fig. 5.

The best result obtained for the mean relative error was
4.6%. The regularization term also reaches a minimum
value and its influence can be analyzed considering the
fitness function with and without regularization term.
Taking only the relative error in Eq. (7) it follows

FIT:KfE(w“),w(z),b“),b(z)) (11)

If the genetic search is performed using Eq. (11), different
values of mean relative error during the learning procedure
are observed. The differences in the mean relative error are
calculated as

AE(%) = (EB — E()) x 100 (12)

where Ep and E, are the mean relative errors obtained
considering the fitness function with and without regulariza-
tion term, respectively.

Figure 6 shows the influence of the regularization term
through the behaviour of the difference AE(%) along the
learning procedure based on genetic search. At the
beginning, the relative error is higher with regularization
term but after 10,000 generations the situation is reverted.

0,70

relative error

- - o - - regularization term

0,60

0,40

0,30

fitness components

0,20

0 5000 10000 15000 20000 25000 30000

generation

Fig. 5 Mean relative error and regularization term behaviours during
ANN learning process based on genetic search
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Applying the learning procedure with the complete
definition of fitness function given in Eq. (7) the ANN
optimal topology was obtained.

4.2 ANN testing process

The last 13 patterns of results of Table 2 were not included
in the ANN learning process and have been used to test and
validate the ANN with the optimal topology obtained after
learning procedure and with the complete definition of
fitness function in Eq. (7). These input testing values were
introduced in the optimal ANN and the simulated output
values are compared with the experimental ones. Figures 7,
8, and 9 show the experimental and the ANN simulated

0,500 0O experimental

MW simulated

0,450
0,400
0,350
0,300
0,250
0,200

chip thickness, e'

0,150
0,100

0,050

0,000

1 2 3 4 5 6 7 8 9 10 11 12 13

sample test

Fig. 7 Testing process of ANN with optimal topology: comparisons
for chip thickness, e’ (mm)

Fig. 8 Testing process of ANN with optimal topology: comparisons
for cutting force, Fc (N)

outputs for the testing group considering the interaction of
all parameters.

The mean relative error in this testing process is 5.5%,
which is considered a good agreement between the
experimental results and the simulated outputs given by
the optimal ANN topology. This percentage of mean
relative error corresponds to the combination of all results
presented in Figs. 7, 8, and 9 and is higher than the
obtained percentage at the end of the learning procedure
(4.6%) considering only the data set for learning.

The benefits of the regularization term in Eq. (7) are also
observed in the testing procedure when both ANNs
obtained after learning using fitness functions with and

60 O experimental
M simulated

50

40

30

feed force, Fa

20

10 A

1 2 3 4 5 6 7 8 9

sample test

Fig. 9 Testing process of ANN with optimal topology: comparisons
for feed force, Fa (N)

10 11 12 13
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without regularization term are compared. The mean
relative error obtained in testing procedure using the ANN
based on fitness function without regularization term as
defined in Eq. (11) is 6%, which is worse than the one with
regularization term (5.5%).

5 Conclusions

In this paper, an artificial neural network (ANN) aiming for
the efficient modelling of a set of machining conditions in
orthogonal cutting of PEEK composite materials is pre-
sented. The proposed ANN is based on input, hidden, and
output layers. The input parameters are cutting speed,
feedrate, type of insert of the tool, and type of workpiece
material. The output parameters are cutting force, feed
force, and the chip thickness after cutting. Two sigmoid
functions in hidden and output layers are used. The
supervised learning of the ANN is based on a genetic
algorithm with an elitist strategy. The mean relative error
between experimental and numerical results was used to
monitor the learning process.

To illustrate the computational methodology, a set of
experimental results is considered and the numerical results
obtained from supervised learning are presented. Then,
using a different set of experimental results, the obtained
solution for ANN is tested aiming to demonstrate the
performance of the learning process. An additional study on
the influence of the number of nodes in hidden layer for
mean relative error was carried out. This study advises an
ANN with eight nodes for the hidden layer.

The results obtained with the optimization process for
supervised learning show that genetic search is a good
option. The additional testing procedure proves that there is
a good agreement between experimental results and
simulated outputs obtained with the optimal ANN topology.
The use of a regularization term associated with the
minimization of biases in hidden and output layers induces
benefits during the learning procedure based on genetic
algorithm. The improvement associated with the regulari-
zation term in the optimal ANN topology was also
demonstrated with the testing procedure.

@ Springer
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