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Abstract In the vascular system altered flow conditions,hsas separation and
flow-reversal zones play an important role in tieeelopment of arterial diseases
Nowadays computational biomechanics modeling It istithe research and de-
velopment stage. This chapter presents a numeraraputational methodology
for blood flow simulation using the Finite Elementthod outlining field equa-
tions and approaches for numerical solutions. Dué complexity of the vascu-
lar system simplifying assumptions for the mathétahtmodeling process are
made. Two applications of the developed tool tocdbe arterial hemodynamics
are presented, a flow simulation in the human whrattery bifurcation and a
search for an optimized geometry of an artificighéss graft.

1.1 Introduction

Nowadays, the use of computational techniquesuiid flynamics in the study of
physiological flows involving blood is an area ofténsive research [1-4]. The
mechanics of blood flow in arteries plays an imaottrole in the health of indi-
viduals and its study represents a central issutefvascular research. Arterial
diseases such as wall conditions may cause blawd disturbances leading to
clinical complications in areas of complex flowdikn coronary and carotid bifur-
cations or stenosed arteries. It is well estabtistteat once a mild stenosis is
formed in the artery, biomechanical parametersltiagufrom the blood flow and
stress distribution in the arterial wall contributefurther progression of the dis-
ease. Although blood flow is normally laminar, fieriodic unsteadiness or pulsa-
tile nature of the flow makes possible the transitio turbulence when the artery
diameter decreases and velocities increase. Aleigtanderstanding of local he-
modynamic environment, influence of wall modificats on flow patterns and
long-term adaptations of the vascular wall can haseful clinical applications,
especially in view of reconstruction and revasdmégion operations [5,6].

Flow visualization techniques and non-invasive roadimaging data acquisi-
tion such as computed tomography, angiography ametic resonance imaging,
make feasible to construct three dimensional mookldood vessels. Measuring
techniques such as Doppler ultrasound have impréwgrtovide accurate infor-
mation on the flow fields. Validated computatioffiaid dynamics (CFD) models
using data obtained by these currently availablasmeement techniques [7-9] can
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be very valuable in the early detection of vesa¢lesk and prediction of future
disease progression.

Hemodynamic finite element simulation studies haeen frequently used to
gain a better understanding of functional, diagonamtd therapeutic aspects of the
blood flow. Three different issues are necessamndusuch study defining the
following methodology:

1. Definition of suitable mathematical models - doethe complexity of the
vascular system, a preliminary analysis aiminghabducing suitable simplifying
assumptions in the mathematical modelling processetcessary. Obviously, dif-
ferent kinds of simplifications are suitable foffeient vascular problems;

2. Pre-processing of clinical data - the suitaldatiment of clinical data is cru-
cial for the definition of a real geometrical madelken from a patient. This as-
pect demands geometrical reconstruction algoritimasder to achieve simulation
in real vascular morphologies;

3. Development of appropriate numerical techniquélse geometrical com-
plexity of the vascular system suggests the usensfructured grids, in particular
for Finite Element Method (FEM), while the stronglgisteady nature of the prob-
lem demands effective time-advancing methods.

The arterial wall is a composite of three layerache containing different
amounts of elastin, collagen, vascular smooth meusells and extracellular ma-
trix. In diseased vessels which are often the stilgjkinterest, the arteries are less
compliant, wall motion is reduced and in most agprations the assumption of
rigid vessel flow is reasonable.

Blood consists of formed elements suspended im@Easn aqueous polymer
solution. About 45% volume consists of formed elateeand about 55% of plas-
ma. The majority of formed elements are red bloelts95%). In large and me-
dium size vessels, blood is usually modelled aswthinian liquid. However in
smaller vessels blood is a complex rheological mm&tshowing several non-
Newtonian properties, as shear-thinning or viscildly. The temperature and
the presence of pathological conditions may alsurdmite to non-Newtonian be-
haviour.

For the steady flow case [10] showed that the nemdAnian effect is small
except for the peak shear stress and that forulsafile case the Newtonian effect
in the artery is small and negligible. Perktold armtworkers examined non-
Newtonian viscosity models in carotid artery bifation and although the Newto-
nian assumption yields no change in the esser¢ial ¢haracteristics they con-
cluded that predicted shear stress magnitude eesuntdifferences on the order of
10% as compared with Newtonian models [11].

A non-Newtonian viscosity model for simulating flowarteries is presented in
this chapter. Considering blood flow an incompigsshon-Newtonian flow and
neglecting body forces, the fluid flow is governag the incompressible Navier-
Stokes equations. There are two potential sourEemimerical instability in the
Galerkin finite element solution of these equatioFise first one is due to the nu-
merical treatment of the saddle-point problem aggrom the variational formu-
lation of the incompressible flow equations. Theosal difficulty is related to the
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discretization of the nonlinear convective termschtrequires the use of stabi-
lized finite element formulations to properly trdagh Reynolds number flows.
Some of the approaches for the numerical solutwagpresented in this study.

To demonstrate the application of the developeitefialement technique for
numerical simulations of blood flow in arteriesflaw simulation in the human
carotid artery bifurcation and a search for anroed geometry of an artificial
bypass graft is addressed here. In medical pradiigeass grafts are commonly
used as an alternative route around strongly séehos occluded arteries. When
the arterial flow is high, artificial grafts perforwell [2,12,13] and it has been
shown over the years that they provide durableltes8u [2] investigated the
complexity of blood flow in the complete model ofaial bypassHe found that
flow in the bypass graft is greatly dependent andhea reduction in the host ar-
tery. As the area reduction increases, higherssteacentration and larger recir-
culation zones are formed bringing out the posgibdf restenosis. Probst [14]
concluded that computing derivatives of the flodusion (and related quantities
like shear rate) with respect to viscosity could reweal the sensitivity of the op-
timal graft shape to the fluid model. So, optimiaatshould be applied to the en-
tire framework, which would enable to actually cangthe optimal shape. In the
present work a multi-objective optimization frametis presented. A genetic al-
gorithm coupled with the developed finite elemerdtimodology for blood flow
simulation is considered in order to reach optigralft geometries. Numerical re-
sults show the benefits of shape optimization ihiedng design improvements
before a bypass surgery, minimizing recirculationes and flow stagnation.

1.2 Governing equations

A number of important phenomena in fluid mechardos described by the Na-
vier-Stokes equations. They are a statement oflyinamical effect of the exter-
nally applied forces and the internal forces dupréssure and viscosity of the flu-
id. The time dependent flow of a viscous incompldedluid is governed by the
momentum and mass conservation equations, the Nato&es equations given
as:

ou
—+u.0u |=0¢ +f
p[at ] °

Ou=0

@)

whereu and ¢ are the velocity and the stress fielgs,the blood density antl

the volume force per unit mass of fluid. The conmgmas of the stress tensor are
defined by the Stokes’ law:

6 =-pl +2ue(u) (2
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wherep is the pressuré,the unit tensory the dynamical viscosity ang(u) the

strain rate tensor. Neglecting body forces, corat@m of mass and momentum
equations (1) become:

p(g—:j + u.Duj =-0p+ x0u

Ou=0

®3)

This equation system (Eg. (3)) can be solved ferwiblocity and the pressure
given appropriate boundary and initial conditiohsthis study the biochemical
and mechanical interactions between blood and lastissue are neglected. The
innermost lining of the arterial wall in contacttlvithe blood is a layer of firmly
attached endothelial cells and it appears to bsoregble to assume no slip at the
interface with the rigid vessel wall; at the flowteance Dirichelet boundary con-
ditions for all points are considered prescribihg time dependent valuey, for

the velocity on the portiof  of the boundary:
u(x,t)=up(xt), x0Orp (4)

At an outflow boundaryl\, the condition describing surface traction fdnce
is assumed. This can be described mathematicalllgdogondition:

—0&: + ﬂ+ai n=h 1ij=123 onl (5)
p” H aXJ 0X; ! ) T N

i
where n; are the components of the outward pointing unitaeat the outflow
boundary.

1.3 Finite element formulation

The finite element method is a mathematical teamifipr obtaining approximate

numerical solution of the physical phenomena sulgitial and boundary con-

ditions. Two different finite element models of tN&vier-Stokes equations are
considered in this chapter, the mixed model ang#malty finite element model.

1.3.1 Mixed finite element model

The mixed model is a natural formulation in whitle twveak forms of Eq. (3) are
used to construct the finite element method. Tlkeltiag finite element model is
termed the velocity-pressure model or mixed mobBelveloping a Galerkin for-
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mulation the weak forms of Eq. (3) results in tb#owing finite element equa-
tions:

Mu+C(u)u +Ku-QP =F ©)
-QTu=0
where the superpose dot represents a time demvationsiderindN andL the el-

ement interpolation functions for the velocity apbssure, the elements of the
matrices at the finite element level are defined as
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and the resulting equation system is:

oo ol ©

The above partitioned system (Eqg. (8)) with a subbmatrix could in principle
be solved in several ways. However, it can be aske@r which conditions it can
be safely solved. This problem results from theompressibility condition. In
simple terms, we want to obtain, in the linear spdcof all admissible solutions,

the velocity fieldu belonging to a subspadé1 OU , associated to the space of
incompressible deformations. This subspace is gagen

Ih:{uhDUh:Quh:O} ©)

The solution| h should then lie on the null space®fthat must be zero. The
numerical problem described above is eliminatecptmper choice for the finite
element spaces of the velocity and pressure figidsther words the evaluation of
the integrals for the stiffness matrix where velpeind pressure interpolations ap-
pear must satisfy the Babuska-Brezzi compatibiitydition the so called LBB
condition [15-17] that states velocity and presspaces can not be chosen arbi-
trarily and a link between them is necessary.

In this chapter the numerical procedure for thadient non-Newton inelastic
Navier-Stokes equations uses the Galerkin-finitemeint method with implicit
time discretization. Considering a 3D analysis Iedxal meshes often provide
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the best quality solution as errors due to numkdiflusion are reduced whenever
a good alignment between mesh edges and flow gdistén this work a spatial
discretization with isoparametric brick elementsl@fv order with trilinear ap-
proximation for the velocity components and elemeonistant pressure is adopt-
ed:

8
uex =Y N0y () and p(t)=Mp, () (10)

i=1

where u; andp, are the unknown element velocity node values amdptiessure

element center value, respectively. At each tirep 8ticard iteration is applied to
linearize the non-linear convection and diffusiemts; the method is based on a
pressure correction [11,18]. The essential stegheoflgorithm at a time or itera-
tion are:

1. Calculation of an auxiliary velocity field fromme equations of motion using
known pressure values from the previous time stgpevious iteration step;

2. Calculation of the pressure correction usingdacthmass matrix;

3. Pressure updating;

4. Calculation of the divergence free velocitydiel

5. Calculation of the apparent viscosity.

This method developed for obtaining a divergenee-frelocity field has been
based on Chorin’s method [19] and validated by otiuhors.

1.3.2 Penalty finite element model

The incompressibility constraint given &y =0 is difficult to implement due to

the zero divergence condition for the velocitydieThe incompressible problem
may be stated as a constrained minimization ohational. The penalty function
method, like the Lagrange multiplier method, allowgsto reformulate a problem
with constraints as one without constraints [15,173ing the penalty function
method proposed by Courant [20], the problem issficrmed into the minimiza-
tion of the unconstrained augmented functional:

(w) = ) +2 [ (& (u)) av 1)
\%

Considering the pseudo-constitutive relation foe tincompressibility con-
straint the second set of Eq. (3) is replaced by:

Ou=-p/A (12)
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where A is the penalty parameter. ¥ is too small compressibility and pressure
errors will occur and an excessively large valug mesult in numerical ill condi-
tioning; generally) is assigned ta\ = Bu being B a constant of order 1Gor

double precision calculations. The second set of(Bgis eliminated and the Na-
vier-Stokes equations become:

Mlj+(C+K+K)‘)J=F (13)

where K is the so-called penalty matrix:
KM=aQM Q! and M P =)QU Mijp=jeLiLj de (14)

Under such conditions the pressure is eliminated fisld variable since it can
be recovered by the approximation of Eq. (12)h# standard Galerkin formula-
tion is applied it is necessary to use compatilplaces for the velocity and the
pressure in order to satisfy the LBB stability citioth. This often excludes the use
of the equal order interpolation functions for béighds. In order to avoid oscilla-
tory results the numerical problem is eliminatedpbgper evaluation of the inte-
grals for the stiffness matrix where penalty tears calculated using a numerical
integration rule of an order less than that reguieintegrate them exactly. This
technique of under-integrating the penalty termkniswn in the literature as the
reduced integration.

1.3.3 Streamline upwind/Petrov Galerkin method

In a Galerkin formulation there is no doubt that thost difficult problem arises

because of the nonlinear convective term in Eq.I{8plood flow high Reynolds

numbers appear and loss of unicity of solution,rbgiginamical instabilities and

turbulence are caused by this apparently inno&nt.tThe numerical scheme re-
quires a stabilization technique in order to awmsdillations in the numerical solu-
tion. The most appropriate technique to solve thsblems is the Streamline
upwind/Petrov Galerkin method, SUPG-method [21,22je goal of this tech-

nique is the elimination of the instability problemf the Galerkin formulation by

introducing an artificial dissipation. The methodea modified velocity shape
functions,W , for the convective terms:

ON;
W= N+ Ksum“"u—"' (15)
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where Kg,pg denotes the upwind parameter that controls thtfaaf upwind

weighting. This parameter controls the amount afing weighting and is defined
on an element as:

kSUPG:%E (PE)FH, =123 (16)

a function ofu®and h® element velocity and length, respectively, and ghid

Peclet numbePe® . The SUPG-method produces a substantial increeaecura-
cy as stabilizing artificial diffusivity is addechly in the direction of the stream-
lines and crosswind diffusion effects are avoided.

The resulting system of nonlinear equations is atterized by a non-
symmetric matrix, and a special solver is adoptedrder to reduce the bandwidth
and the storage of the sparse system matrix; iitiaddhe Skyline method is used
to some improvement of the Gauss elimination.

1.3.4 Carotid bifurcation model

The numerical example presented here is a 3D fiowlation in the human ca-
rotid artery bifurcation. Figure 1.1 shows the getninal model described by
Perktold [11,18]. The Navier-Stokes equations atees! using the Finite Element
SUPG-method with implicit Euler backward differeader time derivatives and
Picard iteration for nonlinear terms.

The non-Newtonian property of blood is importanttie hemodynamic effect
and plays a significant role in vascular biology grathology. In this study the
viscosity is empirically obtained using Casson Ifw the shear stress relation.
ConsideringD,, the second invariant of the strain rate anble red cell concentra-
tion, the shear streggjiven by the generalized Casson relation is:

VT =k +k(9y2/ Dy (17)

and the apparent dynamic viscosity u(c,Dy), a function of the red cell concen-
tration,

u= zJET(k‘“ (2B | (18)

where parameteilg = 0.6125 and; = 0.174 were obtained fitting experimental
data, considering = 45% and plasma viscosity= 0.124 Pa s [11].

The computer simulation is carried out under pHgsjical pulsatile flow con-
ditions. The considered time dependent flow rateef@m in the common carotid
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and in the internal carotid arteries [11,23] isgerged in Figure 1.2. The time-
averaged flow rate in the common carotid is 5.5k ratid the mean common carot-
id inflow velocity is U = 169 mm/s. In this workeéhcommon carotid diameter
was taken equal to D = 6.2 mm (characteristic lenghe reference blood viscosi-
ty is ¢ = 0.0035 Pa @nd the mean reference Reynolds number equBkte

300.

At the inflow boundary fully developed time-depenti@elocity profiles are
prescribed. The profiles correspond to the pulseefeam in the common carotid
artery. At the rigid artery wall the no slip condit (u = 0) is applied. The condi-
tions describing vanishing normal and tangentiatdoof Eq. (5) cannot be ap-
plied simultaneously at both outflow boundariese Tlow simulation is carried
out in two steps. In the first calculation stepyeleped flow is assumed at the in-
ternal carotid outlet according to the prescribedetdependent flow division
shown in Figure 1.2 and the condition of zero swgfraction force is applied at
the external carotid outflow boundary. During tleeand calculation step, which
is the actual calculation step, the condition abzmurface traction force is applied
at the internal carotid outflow boundary, while the external carotid outflow
boundary the results for the velocity profiles frtime first step are used.

The flow characteristics in the carotid bifurcatiane presented. Figure 1.3
shows velocity field during the pulse ci¢fe at selected fractions of a periddp
= 0.05 (accelerated flowdtp = 0.1 (maximum flow rate) artp = 0.14 (deceler-
ated flow). At the entrance of the internal and ¢lxéernal carotid relatively high
axial velocities and steep velocity gradients carbserved near the divider wall.
The shifting of the mass flow to the divider wadbkults from the branching effect
and from the curvature effect. A zone of speciahbdynamic relevance is the
widened segment of the internal carotid, the cdrsithus. Time-dependent stag-
nated and reversed flow occurs along the outerssivall (the wall opposite the
divider wall). During systolic acceleratioft/tp = 0.05), only forward directed
flow occurs in the sinus. At the end of flow accet®on (peak systolétp = 0.10)
flow stagnation can be observed at the outer sivallnear the entrance to the in-
ternal carotid. During systolic deceleratig@fp = 0.14 where the inflow rate is the
same as dftp = 0.05) significant flow separation and reverseavfappear in the
sinus. The reversed flow occupies around 50 permktite sinus diameter in the
branching plane.

The numerical findings on flow separation neardahéer sinus wall agree with
previously published results. In further studies tarotid bifurcation flow field
will be investigated using parameters obtained fotimical observations.

1.4 Optimization of an artificial bypass gratft

Numerical simulations of blood flow in arteries das used to improve the under-
standing of vascular diseases searching efficreattinents and medical devices.
A framework for graft design optimization used ibypass surgery, which is per-
formed to restore blood flow in stenosed artergedescribed here. Coupling shape
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optimization to three-dimensional unsteady bloadvflsimulations poses several
key challenges, including high computational casteed to handle constraints,
and a need for automatic generation of parametenessel geometry. Instead,
the applicability of the optimization framework demonstrated considering a
two-dimensional steady flow simulation. An ideatizgraft/artery model is pa-
rameterized with a geometry allowing the analydighe influence of graft-to-
artery angle and diameter. Search for optimizedriaft bypass grafts has been
presented in the literature [12,14] always restddb one objective function. This
work represents the use of formal multi-objectiytimization algorithms for sur-
gery design.

1.4.1 Multi-objective optimization strategy

In shape optimization, the goal is to minimize dijeative function that typically
depends on a state vectgrover a domain of design vector The state vector and
the design parameters are coupled by a partiadrdiftial equation that can be
written in a generic form as

s(u,b)=0 (29)
This so-called state equation forms the consti&ittte minimization problem

Minimize ®(u,b)

subjectto s@b F ( (20)

Furthermore, the problem can be recast using tthecesl form of the objective
function

Minimize ®" (u(b),b) (21)

whereu(b) is the solution of Eq. (19). This form allows dapting the solution
of the state equation and the optimization problem.

A general multi-objective optimization seeks toioyte the components of a
vector-valued objective function mathematicallynfimlated as

Minimize F ()= (f,(b), f,®),....f 0))
q|ower <h < qupper, i=1,...n (22)

subject to
g)=<0, k=1,..,p

whereb = (by,...,b,) is the design vectob,°**" andb"*"*" represent the lower and
upper boundary of thith design variablé;, f;(b) is thejth objective function and
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ax(b) thekth constraint. Unlike single objective optimizatiapproaches, the solu-
tion to this problem is not a single point, buamfly of points known as the Pare-
to-optimal set. A Pareto optimal solution is defines one that is not dominated
by any other solution of the multi-objective optmaiion problem. Typically, there
are infinitely many Pareto optimal solutions fomalti-objective problem. Thus,
it is often necessary to incorporate user prefagfrior various objectives in order
to determine a single suitable solution.

Genetic algorithms are well suited to multi-objeetoptimization problems as
they are fundamentally based on biological procesgdch are inherently multi-
objective.

1.4.2 Genetic search

A genetic algorithm (GA) is a stochastic searchhuodtbased on evolution and
genetics exploiting the concept of survival of fiteest. For a given problem or
design domain there exists a multitude of posssoletions that form a solution
space. In a genetic algorithm, a highly effectigarsh of the solution space is per-
formed, allowing a population of strings represegtpossible design vectors to
evolve through basic genetic operators. The goshese operators is to progres-
sively reduce the space design driving the prorgesmore promising regions.

Multi-objective genetic algorithms (MOGASs) weredfirsuggested by Schaffer
[24]. Since then several algorithms have been mepmn the basis of an evolu-
tionary process searching for Pareto optimal sohsti MOGAs have been suc-
cessfully applied to solve various kinds of mulijective problems as they are
not as much affected by nonlinearities and complgpective functions as mathe-
matical programming algorithms.

One MOGA strategy consists of transferring multjeztives to a single objec-
tive by a weighted sum approach. The weighted swthad for multi-objective
optimization problems continues to be used extehgimot only to provide multi-
ple solution points by varying the weights consifiie but also to provide a single
solution point that reflects preferences presumaidgrporated in the selection of
a single set of weights. Using the weighted sumhoekto solve the optimization
problem given in Eq. (22) entails selecting scavaightsw; and minimizing the
following composite objective function:

F'b)= > wfj(b) (23)

j=1m

If all of the weights are positive, as assumedhis study, then minimizing Eg.
(23) provides a sufficient condition for Pareto iotlity, which means that its
minimum is always Pareto optimal [25]. The weiggtiior an individual objective
can be determined by either fixed weights or randesights. A strategy of ran-
domly assigning weights is used to search for aimomn solution through di-
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verse directions [26,27]. To provide decision makaith flexible and diversified
solutions, this study adopts random weights catedléy using

I’.
w; = !

= j=1,..m 24
Loy, : @4)

wherer; is a random positive integer.

The genetic algorithm scheme searching for optsoéitions is based on four
operators supported by an elitist strategy thaagbdapreserves a core of best indi-
viduals of the population whose genetic materiataasferred into the next gener-
ations [28,29]. A new population of solution§'As generated from the previous
P' using the genetic operators: Selection, Crossdwetation and Deletion.

The optimization scheme includes the following step
Coding: the design variables expressed by real eusnare converted to binary
numbers, forming a string, and each binary strinigoked as an individual;
Initializing: the individuals which consist of anitial population P are produced
randomly within each allowable interval;

Evaluation: the fitness of each individual is ewéd using the objective function
given in Eq. (23), and individuals are ranked adoay to their fithess value;
Selection: definition of the elite group that ind&s individuals highly fitted. Se-
lection of the progenitors is the mechanism thdinds the process in which the
chromosomes are mated before applying crossovéresn. We apply a procedure
that randomly chooses one parent from the besdfigroup (elite) and another
from the least fitted one. Transfer of the wholgulation P to an intermediate
step where they will join the offspring determirtgdthe crossover operator;
Crossover: One offspring per each pair of selegaaents is considered in the
present work. The value of each gene in the offigpchromosome coincides with
the value of the same gene in one of the paremsmding on a given probability.
The new individuals created by crossover will jthe original population.
Mutation: the implemented mutation is characteribgdchanging a set of bits of
the binary string corresponding to one variableaafandomly selected chromo-
some from the elite group making possible the diation of previously un-
mapped space design regions and guaranteeingvbisity of the generated pop-
ulation.

Deletion: After mutation, new ranking of the enkaggpopulation according to
their fitness. Then, it follows the deletion of thverst solutions with low fitness
simulating the natural death of weak and old irdlingls. The original size popula-
tion is recovered and the new populatidit B obtained:; the evolutionary process
will continue until the stopping criterion is reach

Termination: checking the termination conditionitlis satisfied, the GA is termi-
nated. Otherwise, the process returns to step tieiec

To fully automate the shape optimization procedtine, following sub-steps
are linked in our framework: model generation, ni@ghmulti-objective function
evaluation (flow simulation and post processing] data transfer into the GA so
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that the optimization procedure does not requine wser intervention. Figure 1.4
shows the sub-steps of the optimization procedline. boxes and arrows in Fig-
ure 1.4 form a loop that repeats until stoppintecia are satisfied.

1.4.3 Optimized graft example

Search for an optimized geometry of an idealizédri bypass system with fully
occluded host artery is addressed here. This shpf@ization problem requires
an efficient and accurate solver for steady flomudation. The Navier-Stokes
equations are solved using the previously descrgmetlty finite element model.
The non-Newtonian behaviour of the blood is desatilnsing Casson law given
by Eq. (18).

The objective functions need to be carefully choserapture the physics of
the underlying problem. Regarding the choice ofadué objective functions for
the graft optimization problem, several differeppeoaches have been pursued in
the literature [2,12,14]. The most frequently cdesed quantities in the context of
blood flow are based on either shear stress argtatient or the flow rate. Many
authors choose to minimize the integral of the seghahear rate over the entire
simulated domairQQ(b) . This integral is also called dissipation intedratause it
measures the dissipation of energy due to viscifeste, expressed in terms of
the rate of strain tensor,

2

R (25)

2Jop)
The minimization of this function is related to lcefficiency. Flow efficiency
can equivalently be measured by computing the maxinpressure variation in

the domain. In this project we chose to optimizeftbw efficiency by minimizing
the pressure variation quantified as:

d1(b) =Ap :| Pmax ~ pmin| (26)

The second chosen objective function is relatethéominimization of reversed
flow and residence times along the arterial bysssem. For each idealized by-

pass graft geometry simulation, a domam (b) has been identified indicating

where reversed flow and residence times are enbarfden, to minimize resi-
dence times is equivalent to maximize the longitativelocity u, in that critical

domain. The following objective function is congide for the minimization prob-
lem investigated in this work,

da(0) == D" uy 27)

Q" (b)
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The artery is simulated using a fixed diameter tab&0 mm. Design parame-
ters are considered for the coupled graft presgrdirsinusoidal geometry. The
graft mesh does not maintain the same width altg/ole length. At the centre
line of the graft, nodes move in the radial direstpreserving their distance to the
deforming centreline. The graft is properly coneelcto the artery always in the
same region but the graft diameter will vary. Do¢he sinusoidal shape, the graft
artery junction is always larger than the widthheg graft center line.

The developed computer program modelled blood flowrtery and graft us-
ing 2261 nodes and 2024 four-node linear elements ftwo-dimensional finite
element approximation. Figure 1.5 presents the gégnand finite element mesh
considered for the idealized arterial bypass systenulation with the flow pro-
ceeding from left to right. The boundary conditidasthe flow field are parabolic
inlet velocity corresponding to a Reynolds numixad to 300, no-slip boundary
conditions including the graft and a parallel floandition at the outlet.

For the optimization problem the graft/artery radiameter varies from 0.6 to
1.2, the height of the sinus curve varies fromd@@® mm and a circular anasto-
mosis is set accordingly. Only symmetric geometriese considered since re-
moving the symmetry constrain does not have a meffect [30]. So asymmetry
is not requisite for the design of the bypass utidergiven flow conditions.

The search space is not known in absolute termssandlations of 100 ran-
dom possible graft designs have been conductedder do get an indication of
the objective space distribution. Figure 1.6 presessults for maximum pressure
variation in the whole domaim)(b) and for the longitudinal velocity in the criti-

cal domain Q (b) where reversed flow and residence times are enbarides
optimal solutions in the decision spae in general denoted as the Pareto set and
its image in the objective space as Pareto froasuRs shown in Figure 1.6 allow
identifying the likely presence of a Pareto framtthe design problem. The shape
optimization will allow at least a 20% decreasetmpressure variation.

Since objective values are distributed in differemtges normalizing objective
values by the fittest in the generation beforewleéyhted-sum operation has been
proposed [31]. For the optimization example, EQ) (2ecomes:

t1(b) , ,, 02(0)
01(b)  d5(b)

F(b)=w (28)

where qﬁ and ¢*2 are the fittest values fop, and ¢, , respectively, in the genera-

tion. The weight parameters; andw, are random values calculated as in Eq.
(24). The fitness function to be maximized by th& i& then defined as:

FIT=A-F (b)-P (29)

beingA a positive integer to ensure positiveness Rralvalue to penalize design
vectors that do not conform with constraints. Asoanpromise between computer
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time and population diversity, parameters for teaejic algorithm were taken as
Noop = 12 andNe = 5 for the population and elite group size, retigely. The
number of bits in binary codifying for the desigariables wadNy; = 5. Optimal
bypass geometries were obtained setting the maximumber of generations as
200. One optimal graft with design parameters gagmgraft diameter of 11.7 mm
and height 18.7 mm is discussed here. The simulategitudinal velocity values
for the optimal graft solution are given in Figute/. The longitudinal velocity
distribution along bypass and host artery can ladyaad in three parts. In the first
part the flow is still undisturbed and therefore trelocity is quite uniform. In the
second part the flow is within the graft area whigxe velocity raises as the flow
moves along the graft. In the third part the flensufficiently far from the graft
and therefore it exhibits a uniform distributiort the exit of the graft after the ar-
tery-graft junction, the velocity values variatinrather smoothit is interesting
to notice that although the abrupt connection betwartery and graft induces
large velocity variations, the observable revetsevfis quite small. Long resi-
dence times usually observable immediately aftertdle of the distal anastomosis
are quite undetectable.

An optimal shape for idealized bypass graft geoynetrs obtained using a ge-
netic search built around a developed finite elensaiver and adding routines
evaluating objective functions. The solution extsbihe benefits of numerical
shape optimization in achieving grafts inducing Bngmadient hemodynamic
flows and minimizing reversed flow and residenceets.

1.5 Concluding remarks

A computational finite element model for simulatibigod flow in arteries is pre-
sented. Blood flow is described by the incomprdesiavier-Stokes equations
and the simulation is carried out under steady@ndatile conditions. The accu-
racy and efficiency of the blood simulation is &sstonsidering two examples. In
the first example the finite element method is ugedimulate blood flow in a ca-
rotid artery bifurcation. Calculations of the fldield for the carotid artery are in
good agreement with those reported previously eliterature. The model was
able to simulate complex flowatterns in the carotid sinus like time-dependent
stagnation and reversed flow along the outer simalswhere flow separation oc-
curs throughout the systolic deceleration phase.

The second example represents a step towards gawgla formal optimiza-
tion procedure for surgery design. An optimal shégean idealized bypass is
proposed. A major limitation of this study is theewf cylindrical models whereas
parameterizations of patient specific models presigmificant challenges. Future
work should also consider the influence of compliamalls and the effect of un-
certainties in simulation parameters. Robust og@tion that accounts for uncer-
tainties could identify solutions that are lesss##re to small changes in design
parameters, thus allowing a hospital surgical imy@etation.

Further studies will consider experimental datdemted in clinical practice.
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Fig. 1.1 Carotid artery bifurcation model
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t/tp=0.05
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Fig. 1.3 Axial flow velocity profiles at the symmetry pladering the pulse cicltp, at selected
fractions of a periodt/tp = 0.05 (accelerated flow}jtp = 0.1 (maximum flow rate) and/tp =
0.14 (decelerated flow)
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