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A new algorithm is proposed for the semi-automatic segmentation of the near-end and the

far-end adventitia boundary of the common carotid artery in ultrasound images. It uses

the random sample consensus method to estimate the most significant cubic splines fitting

the edge map of a longitudinal section. The consensus of the geometric model (a spline)

is evaluated through a new gain function, which integrates the responses to different dis-

criminating features of the carotid boundary: the proximity of the geometric model to any

edge or to valley shaped edges; the consistency between the orientation of the normal to

the geometric model and the intensity gradient; and the distance to a rough estimate of the

lumen boundary.

A set of 50 longitudinal B-mode images of the common carotid and their manual seg-

mentations performed by two medical experts were used to assess the performance of the
Splines

RANSAC

method. The image set was taken from 25 different subjects, most of them having plaques

of different classes (class II to class IV), sizes and shapes.

The quantitative evaluation showed promising results, having detection errors similar to

the ones observed in manual segmentations for 95% of the far-end boundaries and 73% of

ries.

the case with other forms of diagnosis of arterial diseases, like
the near-end bounda

1. Introduction

Non-invasive ultrasound imaging of human arteries is a
widely used form of medical diagnosis of arterial diseases,
like atherosclerosis, a disease of blood vessels caused by the
formation of plaques inside the arteries. Atherosclerosis is
quantitatively evaluated by the intima-media thickness (IMT),

which measures the distance between the inner boundary of
the adventitia and the lumen, the region of the vessel where
the blood flows. The IMT of extracranial carotid arteries, which
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can be measured using B-mode imaging, provides an index of
individual atherosclerosis and is used for cardiovascular risk
assessment in clinical practice [1]. The diagnosis of atheroscle-
rosis is one of the most important medical examinations
for the prevention of cardiovascular events, like myocardial
infarction and stroke [2,3]. However, it requires the detection
of both the adventitia and the lumen boundaries. This is not
UP, 4200-465 Porto, Portugal. Tel.: +351 225081623.

the assessment of the carotid diameter waveform [4], where
only the detection of the adventitia boundaries are required.
Therefore, there is also an obvious interest in automatic

erved.
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lgorithms for the segmentation of the adventitia boundaries
n their own, in B-mode images of the carotid.

Since the carotid is a superficial artery, it is quite suited for
edical ultrasound imaging. B-mode images are user depen-

ent and have very poor quality due to some degrading factors
uch as [5,6]: speckle, echo shadows, attenuation, low con-
rast and movement artifacts. However, this technique has
ower cost and smaller risk to the patient, when compared
o alternative methods like X-ray angiography, intravascular
ltrasound, magnetic resonance imaging or computer tomog-
aphy [5,7].

Medical ultrasound images are a huge challenge to auto-
atic segmentation since they are extremely noisy and large

arts of the edges may be missing, producing gaps in organ
oundaries. The segmentation of the carotid artery has three
dditional difficulties. First, the carotid may appear with
evere and unpredictable bending along its major axis. Sec-
nd, scans may correspond to different regions of the carotid,
howing different anatomical structures. Third, the artery
umen may appear with occlusions caused by plaques. Due to
he variability of the carotid shape and the possible existence
f extensive occlusions, most of the known model-based seg-
entation techniques [8–11] are inadequate. This was one of

he reasons that motivated the search for a new segmentation
lgorithm.

In B-mode images, the carotid adventitia is characterized
y two almost parallel echogenic lines separated by a hypoe-
hogenic space, an intensity valley shaped edge known as the
double line’ pattern [12].

The bifurcation and the internal carotid artery (ICA) are
ore prone to atherosclerosis, due to stronger hemodynamic

tresses in the bifurcation and branching zones. Unfortu-
ately, it is difficult to visualize the ‘double line’ pattern at
hese locations. For these reasons, IMT measurements in B-

ode images are often made over the common carotid artery
CCA), both in clinical practice and in computerized meth-
ds [12]. In the first published attempts to detect the carotid
oundaries in ultrasound images [13–15], an initial manual
egmentation of the boundary was needed. The location of
he boundary was then refined, according to the local value
f a single image feature, like the echo intensity or the inten-
ity gradient. These approaches suffered from two important
eaknesses: the large manual intervention and the use of a

ingle image feature, which is not enough to correctly detect
he carotid boundaries in B-mode images.

More powerful approaches were proposed in [16,17]. A
ommon characteristic of these approaches is the use of
ynamic programming (DP) for the minimization of a global
ost function integrating multiple image features. These mod-
ls produce more robust segmentations, with less human
ntervention, specially in the case of [16]. In a later study [18],
he DP algorithm proposed in [16] showed better performance
hen compared with alternative approaches using the maxi-
um gradient [15] and a matched filter [19].
An improvement of [16] was proposed in [20] by embed-

ing DP in a multiscale scheme, to get a first rough estimate of

he carotid wall boundaries, and integrating an external force
n the cost function. This model was tested against a large
ata set with promising results and has the advantage of being
elatively fast. But it has several important drawbacks: its per-
b i o m e d i c i n e 1 0 1 ( 2 0 1 1 ) 94–106 95

formance is significantly affected by the presence of plaque
and other boundaries; frequently, human correction is needed
when the quality of the images is poor; computing the opti-
mal weights of the cost function requires an exhaustive search
and different weights have to be computed for each bound-
ary; DP implementations are not suited for embedding global
smoothness constraints.

Another family of algorithms [21–23] tried to apply para-
metric snakes [24] to the detection of the carotid boundaries.
However, these techniques do not seem to be the best choice
for the segmentation of the carotid wall. First, they usually
require a manual initialization in a close vicinity of the carotid
boundaries. Second, the propagation force is frequently based
on intensity gradients, making the snake very vulnerable to
false edges. Third, these snakes usually leak at wall gaps
where the gradient is too weak.

In [21], the leaking problem was avoided by discarding all
images with large boundary gaps. The authors also excluded
the images where the lumen boundary or the carotid wall
boundary could not be defined visually. The snake had to be
initialized manually and the intensity gradient was the only
image feature considered in the energy of the snake.

A more sophisticated external force was used in [22,23],
but it is also based on the intensity gradient, which means
the snake is still sensitive to local noise and to boundary gaps.
Only the far-end boundary is detected and the user just has
to specify the starting and the end points of the snake, signif-
icantly reducing human intervention. From an initial contour,
the snake finds the final location of the lumen boundary.
To detect the wall boundary, the snake is slightly displaced
downwards and a new search is done for the global mini-
mum of the snake’s energy. Some results were presented but
the work lacks a validation with statistical meaning. Despite
the previous attempts, there is still no standard procedure for
the automatic detection of the carotid boundaries in B-mode
images. Therefore, the usual approach is manual segmenta-
tion performed by a specialist (see, for instance, [25,26]), which
is time consuming and prone to subjectivity.

In this paper, a new method is introduced for the semi-
automatic segmentation of the near-end (NE) and the far-end
(FE) adventitia boundary in longitudinal B-mode images of the
CCA. The proposed method looks for the best smooth curves,
according to a new gain function. The smooth curve model
is a cubic spline and the search is made efficient by adapt-
ing the random sample consensus (RANSAC) algorithm [27] to
longitudinal sections of the carotid.

The proposed method presents several attractive features,
in particular: it is robust to speckle and irregular contrast;
it has the capability of adjusting to flexible tubular shapes;
it includes a global smoothness constraint; and the human
interaction is minimal. The outline of the paper is as follows.
Section 2 presents the dataset and describes the proposed
method, including the computation of the complete edge map
and the valley edge map using a new non-linear smoothing
filter. It also describes the detection of the carotid adventi-
tia in longitudinal sections of the CCA using RANSAC and
cubic splines. The parameter settings and illustrating results
are presented in Section 3. Results are discussed in Section
4. Conclusions and topics for future research are given in
Section 5.

dx.doi.org/10.1016/j.cmpb.2010.04.015
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2. Materials and methods

2.1. Dataset

A set of 50 longitudinal B-mode images of the CCA was
acquired with a Philips HDI 5000 ultrasound system and
recorded with 256 gray levels. Seven of these images include
a part of the internal carotid artery. The image pixel size was
normalized to 0.09 mm, a common value used in clinical prac-
tice. The parameter settings of the scanner were not kept the
same for every image since we aimed at achieving robustness
to different settings.

The image dataset was taken from 25 different symp-
tomatic subjects, 14 of which were males. Plaques of several
classes (class II to class IV), sizes and shapes were found

in 20 subjects. In order to minimize the correlation between
images, only isolated frames of different scans were recorded.
All images were manually segmented by two medical experts,
A and B. One year after, expert A repeated the manual segmen-

Fig. 1 – Main steps of the method: (a) block diagram; (b) input im
medial axis and the ROI (region inside the rectangle); (d) the abso
(g) estimated adventitia boundaries.
b i o m e d i c i n e 1 0 1 ( 2 0 1 1 ) 94–106

tation, in order to estimate the intra-observer error. Hereafter,
the manual segmentations of expert A and expert B and the
automatic segmentations will be referred to as MA1, MA2, MB1
and A, respectively.

The manual segmentation of each image consisted of the
delineation of the innermost boundaries of the adventitia and
the intima regions, at the NE and the FE carotid walls.

The selection of the dataset was based on the ability of
medical doctors to make at least a rough outline of the intima-
media region boundaries, in the B-mode image, without any
complementary information like power Doppler imaging. The
sample includes cases with boundary gaps, where the location
of the boundary had to be inferred.

2.2. Overview of the approach
The proposed approach is illustrated in the block diagram of
Fig. 1(a), showing the processing flow applied to the input
B-mode image of the CCA (Fig. 1(b)). The final result is an esti-
mate of the NE and FE adventitia boundaries (Fig. 1(g)). The

age; (c) points entered by the user, the interpolated lumen
lute values of SDL, |SDL|; (e) edge map; (f) valley edge map;

dx.doi.org/10.1016/j.cmpb.2010.04.015
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ser starts by defining at least two points close to the lumen
edial axis, one at each extremity of the longitudinal axis.

f the axis is significantly bended, then one or two additional
oints should be entered (Fig. 1(c)). This is the only human

nteraction required and it can be replaced by an automated
rocedure [28]. An estimate of the lumen axis is obtained by
ubic spline interpolation.

The region of interest (ROI) is chosen as the smallest rect-
ngular box containing all pixels within a distance dmax to
he interpolated lumen axis (Fig. 1(c)). This distance can be
stimated from the largest carotid found in a dataset.

The signed distance to the lumen boundaries (SDL) is the
istance map to the carotid lumen boundaries, having neg-
tive values inside the lumen region. Fig. 1(d) shows the
bsolute values of SDL, |SDL|, represented as an intensity map.
he SDL is determined from a rough estimate of the lumen
egion, which can be obtained by thresholding using the basic
riangle thresholding algorithm described in [29].

The edges inside the ROI are detected using a new non-
inear image filter, non-maximum suppression and hysteresis.
o reduce the error in the gradient direction at edges, the local
ominant gradient direction is estimated. It is used, together
ith SDL and dmax, to select the edges of interest that define

he final edge map (Fig. 1(e)). The valley edge map is a subset of
hat map containing the edges with a valley shaped intensity
rofile (Fig. 1(f)).

The segmentation block takes the SDL, the dominant gra-
ient direction map, the edge map and the valley edge map as

nputs, to estimate the NE and the FE adventitia boundaries
Fig. 1(g)) using RANSAC and cubic splines.

.3. Edge estimation

he main goal of the edge estimation step is to obtain a map
f pixels whose properties, such as edge magnitude, gradient
rientation and valley shaped intensity profile, are compatible
ith the adventitia boundaries. The estimation of edges can be
ivided into the following main steps: edge detection (Section
.3.1), estimation of the dominant gradient direction at edges
Section 2.3.2), selection of the edges of interest that define the
nal edge map (Section 2.3.3) and determination of the valley
dge map (Section 2.3.4).

.3.1. Edge detection
o obtain a low noise edge map and good edge localization,
new smoothing filter was conceived and applied to the ROI.
he proposed filter was inspired in Tauber’s anisotropic diffu-
ion model for ultrasound images [30], which takes advantage
f the instantaneous coefficient of variation (ICOV) edge detec-
or [31,32], since it performs better in images with speckle
han classical edge detectors, conceived for additive noise. The
COV value at pixel (i, j) is given by:

COV(x, y) =
√

|(1/2)||∇I(x, y)||2 − (1/16)(∇2I(x, y))2|
(I(x, y) + (1/4)∇2I(x, y))2

(1)
here I represents the image intensity, ||∇I(x, y)||2 =
.5[||∇−I(x, y)||2 + ||∇+I(x, y)||2], ∇−I(x, y) = (I(x, y) − I(x −
, y), I(x, y) − I(x, y − 1)), ∇+I(x, y) = (I(x + 1, y) − I(x, y), I(x, y +
b i o m e d i c i n e 1 0 1 ( 2 0 1 1 ) 94–106 97

1) − I(x, y)), ∇2I(x, y) = I(x + 1, y) + I(x − 1, y) + I(x, y + 1) +
I(x, y − 1) − 4I(x, y) and ||(u, v)|| =

√
u2 + v2 is the norm of a

vector (u, v).
It is expected that most of the pixels will belong to

homogeneous regions and will have low ICOV values, whilst
boundaries will appear as outliers, with large ICOV values.
Therefore, Tauber’s filter uses robust statistics to decide where
diffusion should take place and where it should be inhibited.
The diffusion coefficient at pixel (x, y) and time t is a Tukey’s
function [33], given by

c(x, y; t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
1 −

(
ICOV(x, y; t)

�s(t)

)2
]2

ICOV < �s

0 ICOV ≥ �s

(2)

where �s = √
5�e and �e is the image edge scale, estimated

with tools from robust statistics based on the ICOV’s median
absolute deviation (MAD) [30,33]. It is computed as [30]

�e = CMAD
�

(ICOV) + med
�

(ICOV)

= Cmed
�

|ICOV − med
�

(ICOV)| + med
�

(ICOV) (3)

where med
�

(r) is the median of r over the image domain, �,

and C = 1.4826 is a constant.
Despite of its advantages, Tauber’s model has the drawback

of destroying some important anatomical boundaries when
they have low contrast at bright regions, where the ICOV is
weak. An example of this problem can be seen in Fig. 2(c),
where the weak valley edge pointed by the arrow inside the
circle was destroyed. To overcome this problem, we borrowed
concepts from the total variation theory [34,35] and embedded
the curvature information in a new model, given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂I(x, y; t)
∂t

= c(x, y; t)�(x, y; t)||∇I(x, y; t)||

I(x, y; 0) = I0(x, y)

∂I(x, y; t)
∂−→n = 0 ∀(x, y) ∈ ∂�

(4)

where c(x, y; t) is the Tukey’s function given by Eq. (2), ∇I is the
intensity gradient, I0 is the initial image, at time t = 0, ∂� is the
image boundary and −→n is the outward normal at the image
boundary. �(x, y) is the mean curvature, updated at each time
step, given by

�(x, y) = div

(
∇I(x, y)

||∇I(x, y)||

)
(5)

With this new model, the diffusion is inhibited not only
at places where the ICOV is high, as in Tauber’s model, but
also where the curvature is small, as is usually expected for
anatomical structures. On the other hand, the noise is strongly

smoothed out because it usually has high curvature and low
ICOV. As can be seen in Fig. 2(e), our filter produces well local-
ized edges and is also able to preserve important anatomical
boundaries that are destroyed by Tauber’s filter.

dx.doi.org/10.1016/j.cmpb.2010.04.015
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Fig. 2 – Edge maps produced by non-linear filtering: (a) a longitudinal section of a CCA and weak valley edges pointed by an
dge
age
arrow; (b) smoothed image obtained with Tauber’s filter; (c) e
smoothed image obtained with our filter; (e) edge map of im

The edge map is built from the smoothed ROI produced by
the new filter, using the ICOV to measure the edge strength
and non-maxima suppression and hysteresis [36] to select
the strongest edges. Hysteresis requires two thresholds for
the ICOV, T1 and T2 < T1. The first threshold is set to T1 = �e,
where �e is computed using Eq. (3) and the smoothed image
produced by the new non-linear filter. A good range for the
second threshold is T1/3 < T2 < T1/2 [36]. Therefore, it was set
to T2 = 0.4T1. Finally, the edge map is processed by morpho-
logical thinning [37], to make sure the contour edges are one
pixel thick.

2.3.2. Dominant gradient direction
In B-mode images, large errors are expected in the gradient
orientation due to noise and image artifacts. Gradient orien-
tation errors are reduced by computing the local dominant
gradient direction, at each pixel. Let ∇In

i,j
be the intensity gra-

dient at pixel (i, j), in iteration n, and ∇In−1
k

the gradient at the
k th pixel in the 8-neighborhood of (i, j), in iteration n − 1. We
compute ∇In

i,j
as the average of ∇In−1

k
, for k = 1, 2, . . . , 9, consid-

ering only the neighbors whose gradient makes an angle less
than 45◦ with the gradient at the central pixel, to avoid the
interference of close contours with very different orientations.

Since the edge detection depends on the gradient orien-
tation, a small fraction of the edges in iteration zero may
disappear and new ones may arise as the gradient orienta-
tion changes along iterations. Nevertheless, that edge map is
a good estimate of the final edge map and it can be used as a
representative sample of the edge population. Therefore, we

use its edge pixels as a reference to evaluate the stability of
the gradient orientation.

In the evaluation of the stopping criterion, the edge points
whose gradient orientation does not stabilize along iterations

Fig. 3 – Typical intensity profile of a valley edge, where: I is
the intensity, e is the location of the edge, de is the distance
from the edge in the direction of its intensity gradient,
∇I(e), a is the location of the lower peak, b is the location of
the higher peak, and L is the maximum distance of search.
map of image (b) showing erosion of weak valley edges; (d)
(d) showing a better preservation of weak valley edges.

should be considered outliers. Let ˛ be the random variable
representing the angle change in the gradient orientation
between consecutive iterations, at each edge of the initial edge
map. It is known, from robust statistics, that �˛ = CMAD(˛) +
med(˛) gives a good estimate of the threshold at which the
outliers start to appear [30]. To get a robust estimate of the
threshold, � ∗̨, above which no inliers are expected, we appeal
to Tukey’s error norm and set � ∗̨ = √

5�˛ [33]. Iterations are
stopped when the value of ˛ is less than a small angle, �, for
all inliers. In other words, they are stopped when � ∗̨ < �. We
set � = 0.1◦, to guarantee a good stability to all inliers.

2.3.3. Edge selection
In order to reduce the computational cost and the chances of
the automatic contour being attracted to other edges, the final
edge map (Fig. 1(e)) only keeps the edges that are compatible
with the adventitia boundaries. The selection of these edges
is based on their gradient orientation, their distance to the
lumen axis and their SDL value.

Since the adventitia region is brighter than the intima-
media region, all edges with gradient pointing to the interior
of the artery should be neglected. Let �(i, j) be the angle, at a
given pixel, (i, j), between the intensity gradient and the gra-
dient of the distance map to the estimated medial axis. Being
�max the threshold above which the probability of finding an
edge of the carotid adventitia is virtually zero, all edge pixels
for which �(i, j) > �max can be removed from the edge map.

All edges in the ROI whose distance to the lumen axis is
larger than a certain threshold, dmax, or such that SDLmin <

SDL < SDLmax are also removed from the edge map.
The determination of �max, dmax and the two SDL thresh-

olds will be discussed in Section 3.1.

2.3.4. Valley edge map
One of the discriminating features of the carotid adventitia is
its valley-shaped intensity profile (Fig. 3), called ‘double line’
pattern [12].

The valley edge map (Fig. 1(f)) is a subset of the edge
map (Fig. 1(e)) obtained after the edge selection described
above. The determination of the valley edge map begins with
a search, up to a certain distance, L, for the first local intensity
maximum (Fig. 3) in both directions along the line defined by

each edge point, e, and the corresponding intensity gradient,
∇I(e). The intensity profile of a valley edge has two inten-
sity peaks, at locations a and b, being one of these usually
lower. Due to noise, other edges can also have a double peak

dx.doi.org/10.1016/j.cmpb.2010.04.015
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Fig. 4 – Boundary sampling: upper part of the edge map of Fig. 1(e), showing a sample of abscissas (green lines) above the
lumen axis (cian curve), the corresponding edges (blue points), two bad splines (dashed red curves) and the best spline
(
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ntensity profile, but their lower peak will be weak. There-
ore, all profiles with only one peak or a weak lower peak
hould not be classified as valley edges. To detect the strong
ower peaks, an approach similar to the edge detection scheme
escribed at the end of Section 2.3.1 can be used. Using hys-
eresis and assuming that A is a random variable representing
he amplitude of the lower peak, the high threshold can be
et to TA = CMAD(A) + med(A) and the low threshold to 0.4TA.
owever, experimentation showed that using only the lower

hreshold is better because it captures more valley edges with-
ut a significant increase in noise. Therefore, an edge pixel is
lassified as a valley edge if A > 0.4TA.

.4. Segmentation of the adventitia using RANSAC

he proposed method for the segmentation of the adventi-
ia boundary is based on a RANSAC search of the best fit of a
iven contour model according to a specified cost function.
he RANSAC algorithm allows for the estimation of model
arameters from a data set containing a large number of out-

iers. It works by repeatedly extracting a random sample, with
he minimum number of data points required to determine
he model parameters. The consensus of the model is then
valuated for the rest of the population and the model with the
est consensus is selected. The process is terminated when
here is a high confidence in having drawn at least one good
ample.

The method proposed in this paper assumes a cubic spline
38] as a model for the adventitia boundary because, unlike
ther splines, it gives smooth curves, it is relatively easy
o implement and it offers a stable behavior. Moreover, the
esults showed that it is able to adequately follow the CCA
dventitia in longitudinal sections. A specialized gain function
s used to evaluate the spline consensus. Samples of image
bscissas are drawn and used to generate the samples of spline
ontrol points (sets of edge pixels with different abscissas)
eeded to determine the spline parameters. The search for
he best fit stops when the number of drawn samples exceeds
n automatically determined threshold. A detailed discussion
f these issues will be presented next.

.4.1. Sample generation and the adventitia model
he sample generation uses a priori knowledge of the distribu-
ion of the inliers. In longitudinal sections of the CCA, samples
ust have different abscissas. Therefore, a set of n different

bscissas is randomly drawn and used to determine n vertical
ines above and below the lumen axis, separately, as illustrated
in Fig. 4. Good abscissas are those for which the corresponding
vertical line contains a good point, that is an edge point of the
carotid boundary.

Fig. 4 illustrates the search for the NE adventitia. A spline is
built from each sample of n edge points with different abscis-
sas. Usually there are several edge points for each abscissa.
The algorithm evaluates all the splines fitted to the samples
of n edge points for each sample of n abscissas and selects
the best spline according to a predefined criterion. A similar
procedure is used for the segmentation of the FE adventitia.
Setting n = 5 corresponds to the use of 4 cubic polynomials
which is enough to give some flexibility to the model without
compromising its robustness to noise.

The determination of the spline parameters relies on the
orientation of the intensity gradient at the end points, requir-
ing a good degree of confidence in the gradient orientation
at each edge point. This confidence is achieved through the
estimation of the local dominant direction of the gradient, as
described in Section 2.3.2.

2.4.2. Model consensus
The consensus of the fitted spline is measured by a gain
function integrating the response to several discriminating
features of the carotid boundaries.

One good discriminating feature is the valley shaped edge
property, already explored in previous works on the segmen-
tation of the CCA [16,18]. However, these valley edges are
often missing in large extensions of the CCA adventitia and
can also be found in other anatomical structures surrounding
the CCA, frequently having lower edge strength than other
boundaries. Thus, a good model should be supported by addi-
tional features. First, it should look for any type of edges,
giving more emphasis to valley edges and edges closer to
the detected lumen boundary. Second, a larger absolute value
of the SDL (signed distance to the lumen boundary) should
receive a stronger penalty, in order to reduce the influence of
other anatomical boundaries. However, due to the eventual
presence of plaque, this penalty should have a slower growth
for positive distances (those outside the lumen). Third, there
should be a good orientation consistency between the nor-
mal to the carotid adventitia model and the intensity gradient.
These observations led to a gain function that integrates the

responses to the following features:

1. distance of the carotid adventitia model to any edge points,
de;

dx.doi.org/10.1016/j.cmpb.2010.04.015


s i n
100 c o m p u t e r m e t h o d s a n d p r o g r a m

2. distance to valley edge points, dve;
3. angle, �, between the orientation of the normal to the

adventitia model and the intensity gradient;
4. signed distance to the lumen boundary, SDL.

The way these features are integrated into the gain func-
tion should reflect the probability of each adventitia model
point belonging to the carotid boundary. Bearing in mind that
the valley edge property is not always present, an adventi-
tia model point, Pk, has a high probability of belonging to the
carotid boundary if it is close to a valley edge or a step edge, and

it has an intensity gradient orientation similar to the orienta-
tion of the normal to the adventitia model and it falls inside
the expected distance limits to the lumen boundaries. More-
over, the chance of each adventitia model point being a good
candidate should increase as each feature becomes stronger,
reaching the maximum at the best fit. The best adventitia
model should be the one with the highest global score for the
set of all its points.

Taking all this into consideration, the following gain func-
tion was defined:

G = 1
2m

m∑
k=1

[g1(Pk) + g2(Pk)] g3(Pk)g4(Pk) (6)

where m is the number of Pk points of the digital spline and
gj(Pk), 1 ≤ j ≤ 4, are fuzzy functions representing the contribu-
tion of feature j at Pk.

In Eq. (6), g1(Pk) = f (de(Pk)), g2(Pk) = f (dve(Pk)) and g3(Pk) =
f (�(Pk)), where f (z) is the Tukey’s function, given in Eq. (7), with
scale � = �d for features de and dve and scale � = �� for �.

f (z) =

⎧⎪⎨
⎪⎩

[
1 −

(
z

�

)2
]2

z < �

0 z ≥ �

(7)

The scale, �, of each fuzzy function represents the threshold
of the corresponding feature above which adventitia boundary
pixels are no longer expected to be found.

Function g4 gives preference to curves that are closer to
the lumen boundary and a larger tolerance to those outside
the lumen. This is expressed as

g4(Pk) =
{

f −(−SDL(Pk)) SDL(Pk) < 0

f +(SDL(Pk)) SDL(Pk) ≥ 0
(8)

where f −(z) and f +(z) are given by Eq. (7), with scales � = �−

and � = �+, respectively.
The shapes of these fuzzy functions are inspired in Tukey’s

function for several reasons: (a) its success in the field of robust
statistics [30]; (b) the existence of a robust estimator, based on
the MAD statistic, for the scale of the fuzzy function; (c) its
computational lightness.

The gain function has values in the range [0, 1], where unity

means a perfect fit. Its score reflects the percentage of good
points along the path of the adventitia model and may be
viewed as an estimate of the probability of drawing a good
abscissa.
b i o m e d i c i n e 1 0 1 ( 2 0 1 1 ) 94–106

The evaluation of the spline consensus has a significant
contribution to the total computational effort of the RANSAC
algorithm. Therefore, two bail-out tests are used to alleviate
this burden. The first one rejects any sample of n abscissas not
well spread along the columns of the image, in order to guar-
antee a good support for the spline model. This restriction can
be introduced in a very efficient way by excluding the image
column corresponding to the last drawn abscissa and all its
neighbor columns, up to a specified distance, 	, before draw-
ing another abscissa. To get a good spreading of the abscissas
in each sample, 	 = (m − 1)/(2(n + 1)) was chosen, where n is
the size of the sample and m is the number of columns in
the image. So, if n = 5 (4 polynomials) then 	 = (m − 1)/12.
The second bail-out test rejects any sample of n points if the
angle, �, between the gradient intensity and the spline normal
is larger than a threshold �� at any point of the sample. The
value of �� will be discussed in Section 3.1. The spline consen-
sus is computed only for samples that are not rejected by the
bail-out tests.

To further reduce the computational effort, a digital spline
is used in the consensus evaluation because: it is easily
obtained by rounding the real-valued spline at each abscissa;
no interpolation is needed; and it is enough to find a good
estimate of the best spline fit.

2.4.3. Stopping criterion
The minimum number of samples, k, that should be inspected
can be determined by adding a few standard-deviations, �, to
the expected number of samples, 
, necessary to get a good
sample [39], that is:

k > 
 + N� = ω−n + N

√
1 − ωn

ωn
(9)

where N is the number of standard-deviations added to the
mean, n is the size of the sample and ω is the proportion of
inliers in the data set.

The proportion of inliers is set to ω = P (‘good abscissa’), a
probability that is estimated by the gain function. After the
processing of each sample of n abscissas, ω is updated as the
highest value found for the gain function, up to that moment.
The procedure is terminated when the number, k, of drawn
samples of abscissas exceeds the number given by the second
member of Eq. (9).

3. Results

3.1. Parameter setting

Since the algorithm depends on a large number of param-
eters, it would not be possible to evaluate the final output
of the method for all parameter combinations. Therefore,
parameters were either estimated automatically (�e, TA, etc.)
or through experimental tests related to the particular result
desired for each parameter. For instance, the ROI size should
be as small as possible but large enough to contain the carotid

region. Another example is the estimation of �max (Section
2.3.3) discussed below.

The non-linear smoothing filter (Eq. (4)) was discretized
with the numerical scheme proposed in [40]. Two parameters

dx.doi.org/10.1016/j.cmpb.2010.04.015
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ig. 5 – Longitudinal B-scans of the CCA and the correspond
ontrol points.

f this scheme are the image grid size, h, which was normal-
zed to one, and the time step, 	t, that was set to 0.25 in order
o obtain a good convergence speed without loosing numeri-
al stability. The value of the edge scale, �e (Eq. (3)), as well as
he slope of the corresponding curve, decrease monotonously
ith an increasing number of iterations. The change in �e

s proportional to the amount of smoothing generated by
he previous iteration. Therefore, iterations are stopped when
he rate of change of �e falls below 5 × 10−4, after which the
moothing increases very slowly.

The value of N, in Eq. (9), has to give a high confidence
n finding a good sample. In literature related to RANSAC (e.g.,
39,41]) it is common to select 1/N2 ≈ 0.05, which gives N ≈ 4.5.
herefore, N = 5 was chosen.

In the used dataset, the distance from a carotid adventitia
oint to the lumen medial axis is less than 70 pixels. In order
o keep some of the image data outside the carotid bound-
ries, we set dmax = 90 pixels. This gives a good safety margin
or new images. It also minimizes the influence of the bound-
ry conditions of Eq. (4) over the carotid region during image
moothing.
The value of � (Section 2.3.3) was computed in the neigh-
orhood of the manually traced carotid boundaries, along each

mage column, for the edge point closest to these boundaries.
ome values of � are outliers, corresponding to noise edges or

ig. 6 – Top: Successful adventitia detections. Bottom: Adventitia
anually traced ones (MA1) are in green.
aded versions with the best computed splines and their

belonging to other contours that appear in the same neigh-
borhood. Nevertheless, it was observed that � < 30◦ in at least
99% of the cases, which means that �max = 30◦ is an adequate
value.

The parameter SDLmin represents the threshold of SDL
below which no edge pixel of the carotid adventitia is expected
to be found. It was observed that SDL > −6.4 in every image
of the dataset. Therefore, we set SDLmin = −7 and �− =
−SDLmin = 7. On the other hand, parameters SDLmax and �+

represent the threshold of SDL above which no edge pixel of
the adventitia is expect to be found. A natural value for this
threshold is dmax, leading to SDLmax = �+ = dmax.

The width measurement of the valley edges in the dataset
showed that L = 10 is enough for valley edges belonging to the
adventitia.

To estimate the values of �d and �� , the values of de and �

(Section 2.4.2) were computed for each point of the adventi-
tias manually traced by one of the experts (MA1). Parameter
� was computed from the image gradient map, obtained with
the local dominant gradient direction filter. Parameter de was
computed from the edge map, described in Section 2.3.3.

Parameters �d and �� are scales of Tukey’s functions. Therefore,
they can be computed as �d = √

5 [CMAD(de) + med(de)] and
�� = √

5 [CMAD(�) + med(�)], respectively, which gives �� ≈ 11◦

and �d ≈ 4.

misdetections. The detected contours are in red and the

dx.doi.org/10.1016/j.cmpb.2010.04.015
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adve

Dmean values for automatic detections, except for misdetec-
tion cases, corresponding to the largest values of Dmean. Fig. 8
(top) gives the cumulative distribution of Dmean, showing the
percentage of images for which this statistic falls below a

Table 1 – Dmean statistics for the detected NE and FE
adventitia.

Dmean (mm)

Lower
quartile

Median Upper
quartile

(MA1,A) NE 0.13 0.19 0.29
FE 0.10 0.14 0.19

(MA2,A) NE 0.12 0.16 0.29
FE 0.08 0.13 0.18

(MB1,A) NE 0.10 0.15 0.29
FE 0.10 0.14 0.20

(MA1,MA2) NE 0.09 0.13 0.20
FE 0.09 0.11 0.15
Fig. 7 – Dmean statistics for the detected

One parameter of the bail-out tests used in the RANSAC
algorithm was also determined from the dataset. This param-
eter is the limit for the angle, �, between the intensity gradient
and the normal to the adventitia model at the sample points.
Its value is given by the threshold �� , also used in the gain
function as already discussed above.

3.2. Segmentation examples

Examples of well detected carotid adventitias are presented
in Fig. 5, including a case of successful segmentation in
the presence of graphical markings placed during the image
acquisition (Fig. 5(g) and (h)). The last two B-scans have large
plaques. The values of the gain function for the splines above
(Ga) and below (Gb) the lumen are: Ga ≈ 74.3% and Gb ≈ 81.6%
for Fig. 5(b); Ga ≈ 60.6% and Gb ≈ 69.7% for Fig. 5(d); Ga ≈ 62.0%
and Gb ≈ 63.9% for Fig. 5(f); Ga ≈ 49.1% and Gb ≈ 50.7% for
Fig. 5(h).

Fig. 6 (top) shows some other examples of successful
detections, including three cases with visible large plaques
(Fig. 6(a),(b) and (d) (top)). The results are compared with man-
ual contours (MA1). Typical misdetections are given in Fig. 6
(bottom), corresponding to cases where the visibility of the
adventitia is quite bad or where its echo is weaker than the
echo of other similar boundaries.

3.3. Statistical analysis

Since the quality of the results depends on the quality of the
image set, the best way to evaluate the algorithm is by compar-
ing the automatic contours with the manual contours traced
by medical experts. The statistical evaluation was based on the
vertical distances between manual and automatic contours
along the longitudinal direction.

The following statistics allow a global evaluation of the
inter-method and the inter-observer agreement. Dmean mea-
sures the mean vertical distance between two different
contours (manual or automatic) for the same boundary.

CDmean and CDREmean represent, respectively, the mean of
the absolute differences and the mean of the relative abso-
lute differences, along the longitudinal axis, between different
measures of the carotid diameter. To compute CDREmean, the
ntitia: (a) NE boundary; (b) FE boundary.

absolute differences between different diameter measures are
divided by the largest manual estimate of the corresponding
diameter and averaged for each image. The carotid diameter
was computed as the vertical distance between the NE and the
FE adventitia contours.

Figs. 7, 8 (top) and Table 1 show the distribution of the
Dmean statistics. These distributions can be used to assess
the inter-method and the inter-observer agreement. In Fig. 7,
the box whiskers were set to the smallest and the largest
values, while the three vertical lines of the boxes repre-
sent the first quartile, the median and the third quartile of
the data. Fig. 7 and Table 1 show that, for FE boundaries,
0.09 mm ≤ median(Dmean) ≤ 0.11 mm for manual detections
and 0.13 mm ≤ median(Dmean) ≤ 0.14 mm for automatic ones.
For NE boundaries, 0.11 mm ≤ median(Dmean) ≤ 0.13 mm for
manual detections and 0.15 mm ≤ median(Dmean) ≤ 0.19 mm
for automatic ones. There is a slightly larger dispersion of
(MA1,MB1) NE 0.07 0.11 0.17
FE 0.07 0.09 0.13

(MA2,MB1) NE 0.08 0.12 0.16
FE 0.08 0.11 0.14

dx.doi.org/10.1016/j.cmpb.2010.04.015
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ig. 8 – Top: Dmean cumulative distribution for the detected a
istributions for the estimated carotid diameter: (a) CDmean;

iven value. The cumulative distribution curves of the Dmean

or manual and automatic contours differ less than one pixel
0.09 mm) in approximately 73% of the NE boundaries and in
pproximately 95% of the FE boundaries.

As shown in Fig. 8 (bottom), CDmean curves for automatic
etections differ from the manual versions less than two pix-
ls (0.18 mm) in approximately 70% of the images. For this
ercentage, the CDREmean cumulative distribution curves for
anual and automatic segmentations differ less than 2.5%.
Bland–Altman plots [42] and the estimated mean diameter

f the carotid, DIAMmean, were also used to assess the agree-
ent between methods and between observers. Figs. 7 and 8

top) show that some of the automatic detections can be
een as outliers, since they correspond to misdetections and
ave a much larger value of Dmean than most of the other
etections. In order to reduce the influence of these out-

iers, the Bland–Altman plots were computed only for the
est 75% automatic detections of both NE and FE bound-
ries. Fig. 9 shows these plots for the differences between
IAMmean values of two given methods against their aver-

ge, as well as the limits of agreement in the form Mean ±
SD mm, where SD is the standard deviation. The results show
hat −0.13 mm ≤ Mean ≤ 0.14 mm for manual contours and
.09 mm ≤ Mean ≤ 0.23 mm for the automatic detections. The
titia: (a) NE boundary; (b) FE boundary. Bottom: Cumulative
DREmean.

worst limits for [Mean − 2SD,Mean + 2SD] mm are [−0.49, 0.58]
for manual contours and [−0.31, 0.58] for automatic ones.

The method was implemented in Matlab, on a PC equipped
with an Intel Core 2 Duo processor at 2.13 GHz and a 2 GB RAM.
The median CPU time per image spent in the main tasks of the
adventitia detection was: 2.8 s in the image smoothing; 9.9 s in
the estimation of the dominant gradient direction; 4.8 s in the
RANSAC search. The median total time was 28.5 s.

4. Discussion

Fig. 7, Table 1 and Fig. 8 (top) show that different manual trac-
ings of a given carotid boundary can differ more that 1 mm in
some of the images, which is an evidence of the difficulty that
an expert has in locating these contours. This is due to the poor
definition and ambiguity of the true location of the adventitia
contours. It should also be mentioned that several images in
the dataset include a large part of the internal carotid, a region
that is more difficult to segment than the CCA.
The good detection of the FE adventitia in Fig. 5(f) illus-
trates the robustness of the algorithm to the presence of large
plaques. The value of the gain function obtained for the lower
spline (Section 3.2) is an example of an underestimated proba-
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whe
Fig. 9 – Bland–Altman plots of DIAMmean,

bility of a good abscissa due to the influence of a thick plaque.
In this case, the plaque region pushes the lumen boundary
away from the adventitia boundary, reducing the value of the
SDL factor (g4) in the gain function. A consequence of this
underestimation is an increase in the number of samples anal-
ysed by the RANSAC algorithm, which means an increased
confidence on the fitted adventitia model, at the cost of some
additional computational effort. However, the quality of the
segmentation is not affected. The increase in Dmean for the
automatic FE adventitia is less than 0.24 pixels (0.0216 mm)
when compared to manual tracings. A large valley structure
is also visible at the upper boundary of the plaque, but this
feature has a much stronger presence along the lower wall
boundary.

Misdetections of the carotid adventitia, like those pre-
sented in Fig. 6 (bottom), may occur if there are other
boundaries that are stronger than the adventitia boundaries
and have similar properties, specially when the adventitia is
badly defined over a large fraction of its length. Fig. 6a (top)
and Fig. 6a (bottom) show two similar images where the com-
petition between the correct boundary and the incorrect one
is very tight, leading to a good detection in the first case and to
a misdetection in the second one. Although this type of error
does not often occur, it is important due to inter-subject vari-

ability and it suggests that more information should be added
to the cost function, as discussed below.

The results for the manual contours presented in Table 1
(0.09 mm ≤ median(Dmean) ≤ 0.11 mm for FE and 0.11 mm ≤
re SD represents the standard deviation.

median(Dmean) ≤ 0.13 mm for NE) show that experienced med-
ical doctors have more difficulty in determining the correct
location of the NE adventitia. This is caused by the poorer
visibility of NE boundaries, a well known limitation of this
image modality that explains the preference for the FE wall
in clinical practice, when it comes to the IMT measure-
ment. As in the case of manual tracings, the performance
of the proposed algorithm is worse at the NE boundary
(0.13 mm ≤ median(Dmean) ≤ 0.14 mm for FE and 0.15 mm ≤
median(Dmean) ≤ 0.19 mm for NE). This difference in the per-
formance is also evident in Fig. 8 (top), where the cumulative
distribution of the Dmean statistic for manual and automatic
contours differ less than one pixel (0.09 mm) in approximately
73% of NE boundaries and in approximately 95% of FE ones.
Despite a slightly larger dispersion of Dmean values for auto-
matic detections (except for misdetections), our algorithm can
correctly detect most of the adventitia boundaries, specially
in the FE case. Since FE boundaries are the most frequently
used in clinical practice, these results suggest that, if the
lumen-intima boundary is also detected, the proposed algo-
rithm could be of great utility for IMT measurements.

Since the estimates of the carotid diameter integrate the
errors in the two boundaries, the behavior of CDmean and
CDRE should be close but inferior to the one observed for
mean

NE boundaries. This is confirmed in Fig. 8 (bottom), where the
difference between automatic and manual curves becomes
significant (CDmean > 0.18 mm and CDREmean > 2.5%) after the
70 percentile.
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The Bland–Altman plots of DIAMmean (Fig. 9) indicate a good
greement between the automatic and the manual estimates
f the mean carotid diameter. The range of mean differ-
nces for automatic detections (−0.13 mm ≤ Mean ≤ 0.14 mm)
s consistent with the range of mean differences obtained for
he automatic detections (0.09 mm ≤ Mean ≤ 0.23 mm). The
greement between manual and automatic measures is also
onfirmed by the analysis of the worst limits of agreement
[−0.49, 0.58] mm for manual detections and [−0.31, 0.58] mm
or automatic ones).

The proposed approach shows promising results and has
he potential to further reduce the segmentation errors since

ore information about the artery can be introduced in the
ost function. For instance, false edges can be penalized by
nalysing the image intensity profile and the spatial distribu-
ion of edges found between pairs of edges that are candidates
o adventitia edges. This would improve the discrimination
etween the adventitia boundaries and other boundaries in
he image, giving better detection results for both NE and
E boundaries and avoiding errors like the one illustrated in
ig. 6a (bottom).

. Conclusions

new algorithm has been introduced for the automatic
egmentation of the NE and the FE adventitia boundary in
ongitudinal B-mode images of the CCA. This algorithm looks
or the best smooth global path in the image, according to a
ovel gain function which integrates the response to several
iscriminating features of the carotid adventitia. Our imple-
entation of the RANSAC algorithm makes the search for

he best path more efficient than its usual implementation.
ubic splines with five control points proved to be good geo-
etric model priors for the carotid adventitia, in longitudinal

ections of the CCA. Misdetections were caused by the attrac-
ion of the spline to other boundaries with stronger edges, not
ecause the model was inadequate.

Several examples and quantitative evaluations showed
hat the proposed approach is robust to highly degrading
actors, like heavy noise, graphical markings placed during
cquisition, missing data and occlusions of the lumen region
y plaque, producing estimates of the adventitia boundaries
omparable to the contours manually traced by two medical
xperts. A good performance was observed for the segmenta-
ion of the FE adventitia, which is the most frequently used in
linical practice for IMT measurements. As in the detection by
edical experts, the automatic detection of the NE adventi-

ia was not so good, mainly due to the usual poor visibility of
his boundary in B-mode images of the carotid, although the
resence of other anatomical boundaries may also contribute
o misdetections.

Some interesting issues deserve to be pursued in the future.
he algorithm could be completely automated by making an
utomatic detection of the lumen axis using an approach
ike the one proposed in [28]. Another issue is the quan-

itative evaluation of the proposed non-linear smoothing
lter and its quantitative comparison with alternative filters.
inally, adventitia segmentation errors could be reduced by
dding more information to the cost function, like informa-
i o m e d i c i n e 1 0 1 ( 2 0 1 1 ) 94–106 105

tion derived from the image intensity profile and the spatial
distribution of edges between NE and FE adventitia bound-
aries.
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