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This paper proposes a new approach for the segmentation of both near-end and far-end intima-media
regions of the common carotid artery in ultrasound images. The method requires minimal user interac-
tion and is able to segment the near-end wall in arteries with large, hypoechogenic and irregular plaques,
issues usually not considered previously due to the increased segmentation difficulty.

The adventitia is detected by searching for the best fit of a cubic spline to edges having features com-
patible with the adventitia boundary. The algorithm uses a global smoothness constraint and integrates
discriminating features of the adventitia to reduce the attraction by other edges. Afterwards, using the
information of the adventitia location, the lumen boundary is detected by combining dynamic program-
ming, smooth intensity thresholding surfaces and geometric snakes. Smooth contours that correctly
adapt to the intima are produced, even in the presence of deep concavities. Moreover, unlike balloon-
based snakes, the propagation force does not depend on gradients and does not require a predefined
direction.

An extensive statistical evaluation is computed, using a set of 47 images from 24 different symptomatic
patients, including several classes, sizes and shapes of plaques. Bland–Altman plots of the mean intima-
media thickness, for manual segmentations of two medical experts, show a high intra-observer and inter-
observer agreement, with mean differences close to zero (mean between �0.10 mm and 0.18 mm) and
with the large majority of differences within the limits of agreement (standard deviation between
0.10 mm and 0.12 mm). Similar plots reveal a good agreement between the automatic and the manual
segmentations (mean between �0.07 mm and 0.11 mm and standard deviation between 0.11 mm and
0.12 mm).

� 2009 Elsevier B.V. All rights reserved.
1. Introduction sented in Fig. 1 as I1 and I3 at the far-end wall. The lumen corre-
Atherosclerosis is a disease of blood vessels caused by the for-
mation of plaques in artery walls. Its diagnosis is one of the most
important medical examinations for the prevention of cardiovas-
cular events, like myocardial infarction and stroke [1,2].

Plaque echogenicity and texture are classified in categories
from I to V, ranging from the homogeneous, uniformly anechogenic
(class I) plaque to the homogeneous, uniformly echogenic (class IV)
plaque. Mixed forms of plaques are heterogeneous and can be pre-
dominantly hypoechogenic (class II) or predominantly echogenic
(class III) plaques. Unclassified plaques are considered class V [3].

Atherosclerosis is diagnosed when there are large values of the
intima-media thickness (IMT), the distance between the innermost
boundaries of the intima and the adventitia of the artery, repre-
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sponds to echo zone Z4 and is the region where the blood flows.
The media region (echo zone Z2) is delimited by two almost paral-
lel echogenic lines (I2 and I3) separated by a hypoechogenic space,
an intensity valley shaped edge known as the ‘double line’ pattern.
The near-end wall has a similar structure, usually with lower
definition.

The IMT of extracranial carotid arteries, which can be measured
using B-mode ultrasound imaging, provides an index of individual
atherosclerosis. Although other measurements of the carotid artery
can be used to diagnose atherosclerosis [4,5], the IMT is the most
frequently used measure for cardiovascular risk assessment in clin-
ical practice [6]. The bifurcation and the internal carotid artery
(ICA) are more prone to atherosclerosis, due to stronger hemody-
namic stresses in the bifurcation and branching zones. Unfortu-
nately, it is difficult to visualize the ‘double line’ pattern at these
locations. For these reasons, IMT measurements in the common
carotid artery (CCA) have received special attention [7] in the
development of segmentation algorithms and in clinical practice.

http://dx.doi.org/10.1016/j.imavis.2009.09.017
mailto:rhr@isep.ipp.pt
http://www.sciencedirect.com/science/journal/02628856
http://www.elsevier.com/locate/imavis


Fig. 1. Intima-media complex in a B-mode image of the common carotid artery
(CCA). The lumen (zone Z4) is the region where the blood flows. The CCA wall is
formed by the intima (zone Z1), the media (zone Z2) and the adventitia (zone Z3)
regions. The boundaries between these four regions are represented by the lines I1,
I2 and I3.
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The measurement of the IMT is often limited to the far-end wall,
due to its better visibility in B-mode images. The segmentation of
the near-end wall is also important to applications like the recon-
struction of the 3D surface of the artery from 2D B-mode images
[8].

Ultrasound imaging has lower cost and smaller risk to the pa-
tient than alternative methods like X-ray angiography or intravas-
cular ultrasound [9]. However, B-mode images are a challenge to
automatic segmentation due to several degrading factors like
[9,10]: speckle [11–14]; echo shadows; movement artifacts; atten-
uations. The segmentation of diseased arteries brings additional
difficulties since there is no shape prior for plaques and the differ-
ences between the texture of the plaque and the texture of other
nearby tissues are not strong enough for texture-based segmenta-
tion [15].

Since the first published attempts to detect the carotid bound-
aries in ultrasound images [16–18], other more successful tech-
niques have been introduced [19–27]. A summary of the main
approaches is given in Table 1, whose structure is similar to the ta-
ble given in [27] for easier comparison. However, all these tech-
niques have important limitations: (a) large user interaction [16–
18,23,27]; (b) consideration of a single image feature [16–18]; (c)
performance significantly affected by the presence of large plaques
and other boundaries [19,20,22,23,21,25–27]; (d) estimation of
optimal weights of a cost function is needed for each boundary
[19,20,22]; (e) new training for new equipment settings is required
[19,20,22]; (f) do not include global smoothness constraints
[19,20,22,23]; (g) contour initialization has to be close to the caro-
tid boundaries [24,21,25,23,27]; (h) gradient-based snakes may
leak at boundary gaps and stop at false edges [24,21,25,23,27];
(i) near-end boundaries are not detected [24,21,25–27]. Therefore,
the problem of automatic segmentation of the carotid artery in B-
Table 1
Overview of CCA segmentation methods in longitudinal 2D B-mode images.

Methodology Year UI MC NE LIMT CV N

DP [19] 1994 Low No Yes No 4.7 44
DP [20] 1997 Low Yes Yes Yes 1.2 69
Multiscale DP [22] 2000 Low Yes Yes Yes 2.0 50
Edge-tracking [23] 2001 High Yes Yes No – 24
Snakes [25] 2002 Low Yes No Yes – 32
Gradient based [26] 2005 Low Yes No No 5.4 50
Snakes [27] 2007 High Yes No No 19.1 100

DP: dynamic programming; UI: user interaction; MC: manual correction allowed;
NE: segmentation of the near-end wall; LIMT: supports plaques of large IMT
(>1.5 mm); CV: maximum coefficient of variation (Eq. 7) for the mean IMT in the
CCA; N: number of subjects.
mode images remains open and manual segmentation is still a
common procedure in clinical practice.

We introduce a new method for the segmentation of the intima-
media region in ultrasound images, which combines splines (for
the adventitia detection), dynamic programming (DP), smooth
intensity thresholding surfaces [28] and a successful geometric ac-
tive contour model [29,30] known for its accuracy, flexibility and
robustness. Our method presents several attractive features, in
particular: it is robust to speckle and irregular contrast; it includes
a global smoothness constraint; the initialization of the active con-
tour is automatic; unlike balloon-based snakes, the propagation
force of the active contour does not depend on gradients and does
not require a predefined direction; several image features are used
in the segmentation; no training is required; human interaction is
minimal; it is able to segment both near-end and far-end carotid
walls; it supports plaques of different sizes, shapes and classes.

Next section describes the materials and methods. It starts by
presenting the image data set (Section 2.1) and a description of
the manual segmentation (Section 2.2). Section 2.3 gives a brief
description of the method used for the detection of the adventitia
innermost boundary. A new method for the detection of the lumen
boundary, based on dynamic programming, is introduced in Sec-
tion 2.4. Section 2.5 describes how a hybrid geometric snake and
a smooth thresholding surface are used to smooth and improve
the location of the lumen boundaries detected by the DP algorithm.
The parameter settings are discussed in Section 2.6. Section 2.7
presents the evaluation methodologies. Results are shown in Sec-
tion 3 and discussed in Section 4. Finally, some conclusions and
topics for future work are given in Section 5.
2. Materials and methods

2.1. The image dataset

A set of 47 longitudinal B-mode images of the CCA was acquired
with a Philips HDI 5000 ultrasound system and recorded with 256
gray levels. The resolution was normalized to 0.09 mm, a common
value used in clinical practice.

The image set was taken from 24 different symptomatic pa-
tients, with several classes (classes II–IV), sizes and shapes of pla-
ques. An image was selected if the medical doctor was able to
make at least a rough outline of the intima-media region bound-
aries, in the B-mode image, without any complementary informa-
tion like power-Doppler imaging. The sample includes cases with
boundary gaps, where the location of the boundary had to be
inferred.

2.2. Manual segmentation

All images were manually segmented by two medical experts, A
and B, and twice by one of the experts (A), at two moments sepa-
rated by a period of one year. The manual segmentations consisted
in the delineation of the innermost boundaries of the adventitia
and the intima, at the near-end and far-end carotid walls. They
were performed using software developed in Matlab and saved
for later comparison between each other and with the automatic
segmentation.

Hereafter, the manual segmentations of expert A and expert B
and the automatic segmentations will be referred to as MA1,
MA2, MB1 and A, respectively.

2.3. Detection of the carotid adventitia

The approach proposed in [8] is used to automatically detect the
carotid adventitia. The geometry of the adventitia contour is mod-
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eled by a cubic spline with five control points. The method looks
for the best smooth path in longitudinal B-mode images, according
to the following gain function:

G ¼ 1
2m

Xm

k¼1

½g1ðPkÞ þ g2ðPkÞ�g3ðPkÞg4ðPkÞ ð1Þ

where m is the number of Pk points of the digital spline and
gjðPkÞ; 1 6 j 6 4, is a fuzzy function representing the contribution
of feature j at point Pk. This function integrates four different dis-
criminating features: the proximity of the geometric model to any
edge ðg1Þ or to valley shaped edge ðg2Þ pixels; the consistency be-
tween the orientation of the normal to the geometric model and
the intensity gradient ðg3Þ; and the distance to a rough estimate
of the lumen boundary ðg4Þ.

The search for the best fit of the cubic spline is implemented in
an efficient way through a random sample consensus (RANSAC)
algorithm [31]. This algorithm allows the estimation of model
parameters from a data set containing a large number of outliers.
It works by repeatedly extracting a random sample from the data
set, with the minimum sample size required to determine the
model parameters. The consensus of the model is then evaluated
on the remaining population and the model with the best consen-
sus is selected. In our case, the consensus is measured by Eq. (1).

The approach starts by estimating the lumen medial axis from
two or three points specified by the user. The estimated lumen axis
is used to determine a rectangular region of interest (ROI). It is also
used, together with the triangle thresholding algorithm [32], to ob-
tain a rough estimate of the lumen region.

An edge map is computed using a new smoothing filter [8], non-
maxima suppression and hysteresis thresholding [33]. The
smoothing filter borrows concepts from robust statistics and the
total variation theory [34,35], showing an improved detection of
important edges when compared to previously published filters.
It also integrates an edge detector well adapted to ultrasound
images, known as the instantaneous coefficient of variation (ICOV)
[11,12]. The ICOV value at pixel ðx; yÞ is given by:

ICOVðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 krIðx; yÞk2 � 1

16 ðr
2Iðx; yÞÞ2

���
���

Iðx; yÞ þ 1
4r

2Iðx; yÞ
� �2

vuuuut ð2Þ

where Iðx; yÞ represents the image intensity at ðx; yÞ, rIðx; yÞ is the
intensity gradient at ðx; yÞ; krIðx; yÞk2 ¼ 0:5½kr�Iðx; yÞk2þ
krþIðx; yÞk2�, r�Iðx; yÞ ¼ ðIðx; yÞ � Iðx� 1; yÞ; Iðx; yÞ � Iðx; y� 1ÞÞ,
rþIðx; yÞ ¼ ðIðxþ 1; yÞ � Iðx; yÞ; Iðx; yþ 1Þ � Iðx; yÞÞ, r2Iðx; yÞ ¼ Iðxþ
1; yÞ þ Iðx� 1; yÞ þ Iðx; yþ 1Þ þ Iðx; y� 1Þ � 4Iðx; yÞ and kðu;vÞk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

is the norm of a vector ðu;vÞ.
Intensity gradient orientation errors are reduced by computing

the local dominant gradient direction.
To reduce the computational cost, edges that are incompatible

with the adventitia contours are removed before the RANSAC
search begins. An edge pixel is considered incompatible if the angle
between its local dominant gradient and the gradient of the dis-
tance map to the medial axis is too large (at least 30�). Edges whose
distance to the estimated lumen medial axis is too large (more
than 8 mm) are also removed.

Statistical analysis and some examples of the adventitia detec-
tion are presented in Section 3.

2.4. Estimation of the lumen boundary using DP

The location of the lumen boundary is essential for the determi-
nation of the IMT. However, hypoechogenic plaques may be very
difficult to detect, except for a thin and discontinuous path along
the boundary between the plaque and the lumen. Therefore, the
method proposed for the detection of the lumen boundary uses
DP to search for the best path. It assumes the carotid adventitia
was previously detected (using the approach described in Sec-
tion 2.3) and can be summarized as follows:

(1) Set Eallðx; yÞ ¼ 1 if ðx; yÞ is a local maximum of the ICOV in the
direction of rIðx; yÞ. Otherwise, Eallðx; yÞ ¼ 0. Eall is the edge
map with all edges (Fig. 2b), obtained as described in Sec-
tion 2.3 but without any constraint on the edge strength,
measured by the ICOV. This edge map is important because
some edges of the lumen boundary may be quite weak.

(2) Set Estrongðx; yÞ ¼ Eallðx; yÞ if ICOVðx; yÞ > T , where T is a
threshold automatically estimated with robust statistics
[8]. Otherwise, set Estrongðx; yÞ ¼ 0. Estrong is the edge map
with the strong edges (Fig. 2c).

(3) Set Eðx; yÞ ¼ Eallðx; yÞ if ðx; yÞ 2 X, where X is the inner region
delimited by the detected adventitia contours. Otherwise,
Eðx; yÞ ¼ 0.

(4) Set Eðx; yÞ ¼ 0 and Estrongðx; yÞ ¼ 0 if cðx; yÞP 90�, where c is
the angle betweenrIðx; yÞ andrDðx; yÞ and D is the distance
map to the lumen medial axis (Section 2.3). This step
removes the edges of E and Estrong that have a gradient point-
ing inwards the artery, which means they are incompatible
with the intima. Fig. 2d illustrates the result of this step
for Estrong.

(5) If Eðx; yÞ ¼ 1, compute ICOV�ðx; yÞ ¼ ICOVðx; yÞ=max
y

ðICOVðx; yÞÞ, the normalized ICOV at ðx; yÞ in the vertical
direction. ICOV� is computed separately for edges above
and below the lumen axis, for each abscissa. This procedure
gives a chance to the usually weaker lumen boundary edges
to compete with the adventitia edges. Otherwise, the DP
contour tends to be attracted toward the adventitia, where
the ICOV is much stronger.

(6) Set Eðx; yÞ ¼ 1 if Estrongðx; yÞ ¼ 1 and there are no other edges
in Estrong between ðx; yÞ and the lumen axis, in the vertical
direction (Fig. 2e and f). This is required because the carotid
adventitia is the best estimate of the lumen boundary when
the intima-media region is not visible. Set ICOV�ðx; yÞ ¼ 1 for
these edges.

(7) Using DP, look for the path in E, between the first and
the last columns of the ROI, that minimizes the cost
function

Ct ¼
XN

j¼1

wðxj; yjÞ ð3Þ

where wðxj; yjÞ ¼ 1� ICOV�ðxj; yjÞ if Eðxj; yjÞ ¼ 1 and wðxj; yjÞ ¼ 1
otherwise; N is the number of columns of the ROI.

In longitudinal sections of the carotid, there are two intima con-
tours, one above and the other below the lumen medial axis. Both
contours start at the first column and finish at the last column of
the edge map E. Therefore, the DP algorithm can be applied directly
to E, with independent searches made above and below the lumen
axis. Fig. 3 shows the lumen boundaries detected by the proposed
DP algorithm in two different images.

A geometric term could have been included in Eq. (3) in or-
der to smooth the estimated contours. This was not done be-
cause a strong geometric term would often be necessary to
overcome strong values of the ICOV at undesired edges, lead-
ing to bypasses of the contour through tissue regions at sec-
tions of the lumen boundary with high curvature caused by
plaque formation. Besides, the roughness of the detected con-
tours can easily be eliminated through an independent
smoothing using a geometric snake, as described in the next
subsection.



Fig. 2. (a) ROI from a B-mode image of a longitudinal section; (b) edge map Eall , with all edges (strong and weak); (c) edge map Estrong, containing only strong edges; (d) Estrong

after removing all edges with a gradient direction incompatible with the intima; (e) edges of Estrong that are ‘visible’ from the interpolated lumen axis (red curve); (f) final
version of edge map E.

Fig. 3. Lumen boundaries detected with DP in two different images.

1 There is a piecewise smooth version of the Chan–Vese active contour [30] but i
proved to be of little utility in this type of images due to its computational complexity
and its tendency to stop at local minima of the functional.
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2.5. Smoothing and improving the detected lumen boundaries

The output of the DP algorithm often has irregularities caused
by noise or defective detections of the carotid boundaries. More-
over, the DP approach cannot correctly detect deep concavities
nor sharp saliences, as the one in the left part of the upper lumen
boundary in Fig. 3b. However, it is possible to significantly reduce
these location errors through a region-based active contour, which
also produces smoother curves. For this purpose, we introduce a
hybrid version of the Chan–Vese piecewise constant segmentation
model [29,30] that is better suited to B-mode ultrasound images.

The Chan–Vese geometric snake is a successful active contour
due to its potential, flexibility and accuracy. It is a region-based
model embedded in a level set framework [36,37] that does not de-
pend on gradients, which makes it robust to the initial position of
the active contour and to small gaps in the boundaries. Moreover,
it has the ability to automatically detect inner contours, its topolog-
ical changes are treated in a natural way and the direction of its evo-
lution in space is automatically determined from the image data.

The Chan–Vese active contour is a particular case of the more
general image segmentation variational model of Mumford and
Shah [38]. It assumes a two-phase piecewise constant image and
is described by the functional

Fðc1; c2;CÞ ¼ l � LengthðCÞ þ k1

Z
insideðCÞ

½u0ðx; yÞ � c1�2dxdy

þ k2

Z
outsideðCÞ

½u0ðx; yÞ � c2�2dxdy ð4Þ

where l; k1 and k2 are positive parameters, u0 : X! R represents
the input image, c1 and c2 are, respectively, the averages of u0 in-
side and outside the region boundaries represented by C. In [29],
a level set formulation was introduced for Eq. (4), where the ac-
tive contour, C, is represented as the zero level set of an implicit
function.

The major difficulty in the application of this active contour to
B-mode images of the carotid is their non-piecewise constant nat-
ure. However, this problem can be solved by introducing some
modifications to the Chan–Vese model.1

In the Chan–Vese model, the values of c1 and c2 are estimated,
in each iteration, by minimizing the mean square distance between
the gray-scale image and the binary image produced by the seg-
mentation. Therefore, c1 and c2 can be viewed as functions of an
intensity threshold that is updated as the active contour evolves
in space.

We propose a hybrid Chan–Vese active contour that is not only
faster than the original model but also better suited for piecewise
smooth images. The intensity threshold estimate of the Chan–Vese
model is replaced by a thresholding surface, keeping the other
attractive properties. Basically, this algorithm consists of two
stages:

(1) An optimal smooth thresholding surface, Toptðx; yÞ, is inter-
polated from the intensities at the edges along the bound-
aries produced by the DP algorithm. This is done only
once, before the initialization of the active contour.

(2) The image is then processed by a modified version of the
t
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Chan–Vese two-phase piecewise constant active contour,
where c1 and c2 are determined as functions of Toptðx; yÞ,
such that the intensity threshold at each pixel is given by
the thresholding surface.

In the hybrid model, we set c1ðx; yÞ ¼ 2Toptðx; yÞ and c2ðx; yÞ ¼ 0,
to keep the intensity threshold as the mean of c1 and c2. Unlike the
Chan–Vese model, the active contour is not used to estimate the
intensity threshold since the values of c1 and c2 in Eq. (4) are not
updated during the evolution of the contour. The active contour
is used only to smooth and to improve the position accuracy of
the estimated boundaries.

2.5.1. Thresholding surface
Inspired by the Yanowitz’ algorithm [28], a new method was

devised to estimate the thresholding surface, Toptðx; yÞ, by interpo-
lating the image intensities at edge pixels, where good local
thresholds are expected to be found. The interpolation surface is
obtained by solving the Laplace’s equation

@2u
@x2 þ

@2u
@y2 ¼ 0 ð5Þ

for the thresholding surface, u.
Eq. (5) is computed in two steps. First, an approximate solution

is obtained with a fast algorithm that propagates the intensity val-
ues at the interpolating pixels to the rest of the image. Second, the
Laplace’s equation is solved with the following numerical scheme:

unþ1ðx;yÞ¼0:25½unðxþ1;yÞþunðx�1;yÞþunðx;yþ1Þþunðx;y�1Þ�
unþ1ðx;yÞ¼ bunþ1ðx;yÞþð1�bÞunðx;yÞ; n¼0;1;2; . . .

ð6Þ

where unðx; yÞ is the value of the thresholding surface at pixel ðx; yÞ
and at iteration n; b ¼ 1:5 and the initial solution, u0, is the surface
in the first step.

The second equality in Eq. (6) introduces over-relaxation [39] to
speed up the convergence. The iterations are stopped when the rel-
ative intensity difference for every pixel is less than 1% between
two consecutive iterations.

In the intensity propagation step, the Euclidean distance map to
the interpolating pixels is computed with a fast algorithm [40].
Then, the other pixels are ordered in a list by ascending value of
the computed distance and processed in that order. At each pixel
in the list, the intensity threshold is computed as a weighted aver-
age of the thresholds found for its 8-neighbors with smaller dis-
tance to the interpolating pixels. The weights are inversely
proportional to the distances of the central pixel to the selected
neighbors. This solution is not very smooth but it can be computed
quickly, reducing the total computational effort when used to ini-
tialize the numerical scheme for the Laplace’s equation.

2.5.2. Important details of the active contour
The implicit function of the hybrid Chan–Vese model is initial-

ized as a signed distance function for which the zero level sets are
the curves produced by the DP algorithm. Since these curves are al-
ready close to the real lumen boundaries, the number of iterations
is reduced.
Fig. 4. Inhibiting the detection of new holes and leakages in the Chan–Vese model: (a) in
holes or leakages; (c) result when the detection of new holes is inhibited; (d) result const
contour.
To further reduce the computational effort, the processing is
limited to the smallest rectangular box containing both adventitia
contours.

The Chan–Vese model spontaneously detects the interior of ob-
jects in an image, as the holes illustrated in Fig. 4b. While this is
desirable in most cases, it should be avoided in our case so that
other independent dark regions are not classified as lumen. The
detection of new regions is avoided if the implicit function be-
comes unable to generate new isolated zero level sets. A fast and
simple way to achieve this goal is to inhibit a sign change in the
implicit function at any pixel for which there is no 8-neighbor with
the same new sign. In other words, the implicit function is allowed
to change sign only at pixels in the vicinity of the active contour.
An example of the effect introduced by this constraint is presented
in Fig. 4c.

Since the adventitia is detected before the intima, the evolution
of the active contour is constrained to the region delimited by the
adventitia, inhibiting any contour leakage at wall sections with
weak echo or no echo at all. This constraint is implemented by set-
ting the intensities of the pixels outside the carotid to the highest
value of the image gray scale. Fig. 4 shows an example of a contour
leakage, through the carotid wall, which is stopped by this
constraint.

In some cases, the active contour may also leak through the lu-
men boundary produced by the DP algorithm, at places where
boundary edges are missing. One way to reduce this risk is to com-
pute the thresholding surface under the constraint that it drops to
zero at some reasonable distance, d, from the carotid. This results
in lower values of the thresholding surface outside the detected lu-
men boundary. Other possibilities are: (i) to apply a smoothing fil-
ter to the intensity profile along the contour produced by the DP
algorithm and (ii) to propagate the smallest of the intensities at
consecutive edges of the DP contour to the pixels along the contour
that are between those edges. In practice, the first solution gave
the best results. To keep some safety margin from the carotid wall,
d was set to 3rd, where rd ¼ 4 pixels is a parameter used in the
algorithm described in Section 2.3 [8] and defined as the maximum
expected distance between a carotid adventitia edge and the fitted
spline. Fig. 5 shows the thresholding surfaces with and without the
additional constraint, for the image presented in Fig. 4.

Two examples of the final contour are presented in Fig. 6. The
second example shows the significant improvement in the location
of the left part of the upper lumen boundary, capturing the plaque
concavities that could not be detected by the DP algorithm alone
(see also Fig. 3). In both cases, the ground truth is also displayed.
2.6. Parameter settings

There are several parameters to be defined in the Chan–Vese
two-phase piecewise constant active contour. With the exception
of parameter l, which determines the elastic strength of the con-
tour, all the others were set as suggested in [29,30]. Equal impor-
tance is given to both phases in the image by choosing
k1 ¼ k2 ¼ 1. Eq. (4) was solved with the semi-implicit numerical
scheme proposed in [29,30], using a time step Dt ¼ 0:1Dx and set-
itial active contour; (b) segmentation result without inhibiting the detection of new
raining the evolution of the active contour to the region inside the carotid adventitia



Fig. 5. Thresholding surfaces computed for the image of Fig. 4: (a) without the constraint of dropping to zero at distance 3rd from the carotid and (b) with the referred
constraint.

Fig. 6. Ground truth (green) and the lumen boundaries obtained with the hybrid Chan–Vese model (red) from the contours displayed in Fig. 3.
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ting Dx ¼ Dy ¼ 1, where ðDx;DyÞ represents the image grid size.
This numerical scheme was iterated until the maximum distance
covered by the active contour became less than 0:01Dx, between
two consecutive iterations. In other words, iterations were termi-
nated when the active contour evolution virtually stopped.

Parameter l can also be seen as a scale parameter, in the sense
that the size of the smallest objects detected by the active contour
is proportional to the value of l. Therefore, this parameter was de-
fined as a function of the scale of the segmented lumen, measured
by the length, L, of the lumen boundary produced by the DP algo-
rithm. In longitudinal sections, L is the perimeter of the region
delimited by the two estimated contours (one above and the other
below the medial axis). The scale parameter was set as
l ¼ qL� 2552, where q ¼ 10�4 was empirically determined as a
compromise between a satisfactory level of smoothing and the
fidelity to the data. The factor 2552, also used in [29,30], is neces-
sary to keep unity consistence in the level set equation, since the
image intensities are represented in the range {0, . . . ,255}.
2.7. Evaluation methodology

Several statistics and statistical analysis were used to evaluate
the results. In each image, their computation was based on the ver-
tical distance between contours at every abscissa that is common
to manual and automatic contours.

Some of the statistics are: (a) Dmax, the maximum vertical dis-
tance between corresponding contours obtained from two differ-
ent segmentations, e.g., between the automatic contour (A) and a
homologous manual contour; (b) Dmean, the mean vertical distance
between homologous contours obtained from two different seg-
mentations; (c) IMTmin; IMTmean and IMTmax, the minimum, mean
and maximum IMT of each segmented intima-media region,
respectively.

To estimate the inter-method (manual versus automatic), the
intra-observer and the inter-observer errors, defined as
se ¼ sd=

ffiffiffi
2
p

[19], two other statistics were computed: the pooled
mean, x, and the standard deviation, sd, of the differences in
IMTmin; IMTmean and IMTmax measures between two given manual
segmentations or between a manual segmentation and the auto-
matic one. The coefficient of variation, CV, for IMTmin; IMTmean

and IMTmax was also computed, as [19]

CV ¼ 100
se
x

% ð7Þ

Box plots, linear regression analysis and Bland–Altman plots
[41] were used to assess the agreement between methods and be-
tween observers.
3. Results

3.1. Segmentation examples

Some examples of good and defective automatic detections of
the lumen boundary are presented in Figs. 7 and 8, respectively,
along with the corresponding MA1 segmentations, for comparison.

Figs. 9 and 10 show examples of the intima-media region and
the corresponding boundaries automatically detected, using the
proposed algorithm for the lumen boundaries and the algorithm
described in Section 2.3 for the carotid adventitia.

3.2. Statistical analysis

An automatic detection of a boundary was considered to be suc-
cessful if Dmax < 1 mm between the automatic contour and any of
the corresponding manual versions. In the tested set of 47 B-mode
images of the CCA, 81 out of the 94 adventitia boundaries were
successfully detected, giving a success rate of 86.2%. Fig. 11 shows
the distribution of the Dmax statistic for the subset of adventitia
contours with Dmax < 1 mm.

Since the automatic detection of the intima depends on the
location of the automatically detected adventitia, the Dmax and
Dmean statistics for the intima were computed only for the subset
of 81 intima-media complexes with successful detection of the
adventitia. Successful detections of the intima boundary were ob-
tained in 66 out of the referred 81 intima-media complexes, corre-
sponding to a success rate of 81.5%. The distribution of Dmax and



Fig. 7. Examples of good automatic detections of the lumen boundaries (red curves) along with the corresponding MA1 segmentations (green curves).

Fig. 8. Examples of defective automatic detections of the lumen boundaries (red curves) along with the corresponding MA1 segmentations (green curves).

Fig. 9. Automatic detections (red curves) of the intima-media boundaries, along with the corresponding manual (MA1) segmentations (green curves).

Fig. 10. Automatic and manual segmentations of the intima-media regions: green areas – only detected in the manual segmentation (MA1); red areas – only detected in the
automatic segmentation; beige areas – detected by the manual and the automatic segmentation.
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Fig. 11. Dmax statistics for the adventitia detections with Dmax < 1 mm: (a) near-end boundary and (b) far-end boundary.
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Table 2
Comparison between manual and automatic measures of the IMT at near-end (NE)
and far-end (FE) boundaries.

IMTmin IMTmean IMTmax

se CV se CV se CV

(MB1,A) NE 0.15 21.3 0.09 8.7 0.13 9.0
FE 0.13 25.0 0.08 7.7 0.16 10.3

(MA2,A) NE 0.12 16.9 0.09 8.6 0.13 9.1
FE 0.12 21.9 0.09 8.4 0.15 9.3

(MA2,MB1) NE 0.08 10.2 0.08 7.4 0.14 9.7
FE 0.09 15.4 0.07 6.9 0.11 6.9

(MA1,A) NE 0.11 18.0 0.09 9.1 0.12 8.7
FE 0.13 26.7 0.08 8.3 0.15 9.9

(MA1,MB1) NE 0.10 15.5 0.10 10.9 0.13 10.0
FE 0.10 18.4 0.06 6.5 0.09 6.2

(MA1,MA2) NE 0.09 12.2 0.09 8.7 0.12 9.0
FE 0.11 18.7 0.07 7.2 0.11 7.0

se: in ter-observer, intra-observer and inter-method error in mm; CV: coefficient of
variation in percentage (Eq. (7)).
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Dmean for the intima detections with Dmax < 1 mm can be found in
Figs. 12 and 13.

The rest of the statistical analysis presented in this section eval-
uates the intra-observer, inter-observer and inter-method errors,
the correlation strength with varying IMT and the degree of agree-
ment between the methods. This evaluation is computed only for
the 66 intima boundaries successfully detected by the automatic
method.

Table 2 shows the inter-method (manual versus automatic), the
intra-observer and the inter-observer errors, as well as the coeffi-
cient of variation, CV, for IMTmin; IMTmean and IMTmax, defined in
Section 2.7.

Fig. 14 shows the correlation coefficient, r, the regression lines
and the corresponding equations, yðxÞ, for the mean IMT, showing
very high correlation coefficients ð0:973 6 r 6 0:978Þ between the
automatic segmentations and the manual ones. Moreover, these
values are similar to those obtained when comparing different
manual segmentations ð0:977 6 r 6 0:981Þ and all regression lines
are close to the line of equality.

Fig. 15 shows the Bland–Altman plots of the differences be-
tween the mean IMT of two given segmentations against their
average. The standard deviation is represented by SD and the limits
of agreement, in the form mean� 2SD mm, are: 0:03� 0:22 be-
tween MB1 and A, �0:07� 0:24 between MA2 and A,
�0:10� 0:20 between MA2 and MB1, 0:11� 0:24 between MA1
and A, 0:08� 0:24 between MA1 and MB1, 0:18� 0:24 between
MA1 and MA2.

The estimated median computing time is 0.0470 s for the DP
algorithm, 18.5 s for the Chan–Vese algorithm and 18.9 s for the
whole intima segmentation procedure. The median computing
time required to segment the adventitia is 28.5 s. The computa-
tions were done using Matlab on a computer equipped with an In-
tel Core 2 Duo processor at 2.13 GHz.
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Fig. 12. Dmax statistics for the intima detections with Dmax <
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Fig. 13. Dmean statistics for the intima detections with Dmax <
4. Discussion

The main purpose of this work was the development of a robust
method that is able to segment the carotid walls in B-mode images
of the CCA, even in the presence of plaques of different sizes,
shapes and classes. It should be able to segment not only the far-
end wall but also the near-end wall in arteries with large, hypoe-
chogenic and irregular plaques, situations not addressed previ-
ously due to the increased segmentation difficulty. It should also
require minimal user interaction and independence of equipment
settings. Therefore, manual corrections of computer generated
contours were not considered, although they could be easily intro-
duced to further improve the results. A slightly larger dispersion of
the automatic measures was observed when compared to manual
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1 mm: (a) near-end boundary and (b) far-end boundary.
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Fig. 14. Regression analysis of the mean IMT for the automatic and the manual segmentations.
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Fig. 15. Bland–Altman plots of the mean IMT for the automatic and the manual segmentations, where SD represents the standard deviation.
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ones, specially for images of poor quality and for near-end walls.
However, as discussed below, the statistical analysis showed
promising results.

For the adventitia, the distribution of Dmax (Fig. 11) leads to
three main observations. First, the values of Dmax and their variabil-
ity are larger for near-end boundaries, which is in agreement with
the lower visibility of these boundaries and the greater difficulty of
their detection by both the medical experts and the computer. Sec-
ond, Dmax tends to be higher when one of the compared contours is
automatic, although the difference is small in general and very
small for far-end boundaries. In at least 75% of the near-end cases,
Dmax < 0:4 mm when comparing two manual adventitia contours
while Dmax < 0:51 mm when one of the compared contours is auto-
matic. Considering the same percentile for the far-end adventitia
boundaries, Dmax < 0:40 mm for pairs of manual contours and
Dmax < 0:43 mm for the other pairs. Third, some automatic detec-
tions are too far away from the manual versions. In some of these
cases, the distances between different manual contours are also
high, probably due to a poor quality of the images. However, there
are false automatic detections of the adventitia boundaries in
13.8% of the cases.

For the intima, the detection results (Figs. 12 and 13) are also
worse at the near-end intima boundary than at the far-end one.
The larger values of Dmax for the intima, when compared to the
adventitia, are a consequence of the poorer visibility of the intima
boundaries. In fact, the intima region is often much darker and has
less contrast than the adventitia, leading to a larger uncertainty in
the intima location. This also explains why the percentage of false
automatic detections is higher for the intima (18.5%) than for the
adventitia.

Analyzing Dmax and Dmean by quartiles, the intima automatic
detection is quite good within the lower quartile ðDmax

< 0:27 mm and Dmean < 0:08 mmÞ, due to the well defined con-
tours, while the results in the upper quartile reflect a worse accu-
racy ðDmax < 0:94 mm and Dmean < 0:4 mmÞ caused by a greater
ambiguity of the contour location.

The larger variability for IMTmin (values of se and CV in Table 2)
than for IMTmean and IMTmax can be explained by the poor defini-
tion of the intima boundaries at some very thin intima-media re-
gions. The corresponding inter-method variability is higher
because, when there are gaps in intima boundaries close to the
adventitia, the expert can infer the correct location of the intima
while the automatic procedure just looks for the closest compati-
ble edges. Compared to IMTmin, the inter-method variability for
IMTmean and IMTmax is more important to the diagnosis of athero-
sclerosis and it is only slightly larger than the homologous variabil-
ity of manual segmentations.

The regression analysis for the mean IMT, presented in
Fig. 14, shows correlation coefficients between the automatic
and the manual segmentations ð0:973 6 r 6 0:978Þ similar to
the ones obtained between manual segmentations ð0:977 6 r 6
0:981Þ. The automatic segmentation of large plaques presents
a good correlation with the corresponding manual segmenta-
tions, in spite of the errors introduced by hypoechogenic pla-
ques. All regression lines are very close to the line of equality,
which means a strong agreement between the methods.

The Bland–Altman plots of the mean IMT (Fig. 15) for manual
segmentations show a high intra-observer and inter-observer
agreement, with mean differences close to zero ð�0:10 mm 6
mean 6 0:18 mmÞ, small values of the standard deviation
ð0:10 mm 6 SD 6 0:12 mmÞ and almost all differences within the
limits of agreement ð½mean� 2SD; meanþ 2SD�Þ. The plots indi-
cate a good agreement between the automatic and the manual seg-
mentations, with similar values of the mean differences
ð�0:07 mm 6 mean 6 0:11 mmÞ and of the standard deviation
ð0:11 mm 6 SD 6 0:12 mmÞ.
Although better results have been reported by others (e.g. [19]),
the direct comparison to previously published results is not easy
and can be misleading for three reasons. First, the image set is
not the same and the larger inter-observer and intra-observer er-
rors obtained in our statistical analysis suggest a poor quality of
the images. Second, as discussed below, most of the other works
have more limited application scope. Third, no manual correction
was applied in the present study.

In the DP approach introduced in [19,20], the automatic mea-
surements presented a smaller variability than the manual ones,
with CV 6 4:7 and r P 0:95 for IMTmean. However, it is not clear
what was the treatment given to segmentation errors in [19] while
in [20] the results were influenced by the manual correction of
these errors. In both cases, a training procedure is required, making
the method dependent on the equipment settings. The same com-
ments are applicable to [22], where CV 6 2:0 and r ¼ 1:00 for
IMTmean. The basic idea behind this method is similar to [19,20],
although with some improvements like a multiscale approach
and the integration of the manual corrections in the DP cost
function.

Large user interaction is required in the edge-tracking method
in [23], in order to initialize the contour near the boundary. Only
healthy subjects were considered in the study, which means that
cases with plaques were not included. The results were influenced
by manual corrections of the segmentation errors and the IMT was
measured only at the far-end wall. The computer generated con-
tours were not compared to manual detections.

The gradient-based snake presented in [25] was tested only at
the far-end wall. The adventitia is detected after the intima, dis-
placing the snake downward about 0.05 cm. Therefore, it will prob-
ably fail to correctly detect the adventitia in images with large
plaques since, in these cases, there is a large chance of finding
other edges above the adventitia. No values were given for the
coefficient of variation or the coefficient of correlation.

In [26], CV 6 5:4 and r P 0:915 were obtained for IMTmean but
only the far-end wall and small IMT values ðIMT < 1:2 mmÞ were
considered. Initial user interaction is reduced, consisting in one
mouse click in the lumen at the left limit of the arterial region to
be segmented. The automatic segmentation is based on image gra-
dient and intensity information but very few details of the method
are given. Therefore, it is difficult to evaluate how it would behave
in the presence of large plaques. Moreover, the results were influ-
enced by manual corrections.

Some important findings were reported in [27,42], like the
improvement on results caused by image normalization and
speckle reduction. The results for IMTmean showed that CV 6 19:1
while a mean of �0.01 and a standard deviation of 0.12 were ob-
tained in the Bland–Altman plots. However, the image normaliza-
tion is performed manually. The method was not applied to near-
end walls. After the detection of the adventitia, the snake is dis-
placed up to 1.02 mm upwards, to detect the intima. On the other
hand, the snake is based on gradients and can be trapped by erro-
neous edges. Therefore, it has to be initialized as close as possible
to the boundary to be detected and it cannot be used in cases
where the IMT is larger than 1.4 mm, leaving out atherosclerotic
plaques. Finally, the results are influenced by manual corrections.

Our approach is based on DP. However, an intrinsic limitation of
the DP approach is its inability to capture deep concavities and
sharp saliences. Another limitation is the difficulty in integrating
global smoothing constraints, which could help improving the poor
response at very degraded parts of the lumen boundary. An alter-
native way to introduce some smoothing is to integrate a geomet-
ric term in the cost function, but this solution may cause
undesirable bypasses through the interior of tissue regions. The re-
sults showed that an independent geometric snake can produce
the desired smoothing and also capture deep concavities and sharp



624 R. Rocha et al. / Image and Vision Computing 28 (2010) 614–625
saliences of plaques. The main disadvantages of the geometric
snake are the computational effort and the risk of leakage of the ac-
tive contour. If the errors in the output of the DP algorithm are
small, a simple smoothing with a weighted smoothing spline
[43,44] should be enough and has the advantage of being faster
to compute.
5. Concluding remarks

A new method was proposed for the segmentation of both the
near-end and the far-end intima-media regions of the CCA in ultra-
sound images. The adventitia is detected by searching for the best
fit of a cubic spline to edges having features compatible with the
adventitia boundary. A global smoothness constraint and discrim-
inating features of the adventitia are used to reduce the attraction
by other edges. A smooth estimate of the lumen boundary is ob-
tained from the location of the detected adventitia, using dynamic
programming, smooth intensity thresholding surfaces and geomet-
ric snakes.

The method was subjected to statistical evaluation, using a set
of 47 images from 24 different symptomatic patients, including
several classes (II–IV), sizes and shapes of plaques. The results
showed that the proposed approach is able to produce segmenta-
tions with an accuracy comparable to the manual tracings of med-
ical experts, even for the near-end wall and for arteries with large,
hypoechogenic or irregular plaques, problems usually not consid-
ered in previous works.

Although manual correction could improve the results, it was
not used because one of the main objectives of this work was to re-
duce user interaction as much as possible.

Despite the promising results, the detection of the lumen
boundaries can fail in images with very poor quality, which are
common in clinical practice. In many cases, the whole plaque or
a significant part of it can only be detected with complementary
information, like power-Doppler imaging or other B-scans of the
same anatomical region taken from different angles. The medical
expert often uses this complementary information to infer the
approximate location of the carotid boundaries when they are dis-
continuous or difficult to detect. Therefore, the integration of this
type of complementary data may be necessary for the automatic
segmentation of severely degraded images, in order to reduce the
automatic detection error to levels comparable to the ones found
in manual tracings done by medical experts in current clinical
practice. Nevertheless, even without this complementary data,
we believe the performance of the algorithm can be improved by
relaxing the spline used in the adventitia detection and by using
contextual information, taken from the region between each edge
and the lumen, to improve the discrimination of edges. This is an
interesting topic for future research.

The results can also be improved by enhancing the quality and
the precision of the ultrasound images with techniques like pixel
compounding [45], if a sequence of images is available.

Another aim for future work is to extend the statistical analysis
to a larger set of images.
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