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Numerical modelling of a gravity settler in dynamic conditions
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Abstract

An iterative numerical technique has been developed to simulate in detail the dynamics of a shallow-layer gravity settler. Currently
acknowledged models apply only to specific equipments at steady-state and laboratory scale [Jeelani SAK, Hartland S. The continuous
separation of liquid/liquid dispersions. Chem Eng Sci 1993;48(2):239–54]. To our knowledge, no study has ever addressed the dynamic
simulation of a gravity settler. In this paper a direct numerical technique is presented for computing the thickness and drop-size com-
position of the dispersion band formed in a shallow-layer settler under steady-state and transient conditions. This technique is an exten-
sion for the settler of the one used on the stirred vessel by Ribeiro [Ribeiro LM. Simulação Dinâmica de Sistemas Lı́quido–Lı́quido, Um
novo Algoritmo com Potencialidades de Aplicação em Controlo. PhD thesis, Universidade do Minho, Portugal; 1995].
� 2007 Elsevier Ltd. and Civil-Comp Ltd. All rights reserved.
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1. Introduction

The importance of separation of immiscible liquid–
liquid systems is well known in many industrial fields, such
as wastewater treatment and the crude oil industry [7].
Equipments like mixer–settler batteries are commonly used
for liquid–liquid extraction and mass transfer processes.
Due to the high complexity and cost of the direct experi-
mentation using such equipments, computer simulation
becomes very attractive. Algorithms for fast and reliable
simulation of single stirred vessels and extraction columns
have already been published by some of the present
authors, both for steady-state and dynamic conditions
[12,11,3–5,14,15].

In general, knowledge about the settler behaviour is
scarcer than knowledge about mixers and extraction col-
umns behaviour, both in steady and transient states. Exist-
ing models for the settler apply only to specific physical
equipments at laboratory scale [6]. More recently, an
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approach based on the population balance equation has
been presented [8,17].

In this paper we describe an algorithm able to simulate
transient states in a stirred vessel and gravity settler system
(Fig. 1). This approach has been developed from a tech-
nique used in the study of the wedge formed in a settler
under steady-state conditions [8]. The mathematical model
used in this study was proposed by Ruiz for the steady-
state operation of a settler with a wedge-shaped dispersion
band [16].
2. The mathematical model

To describe the dispersion band transient behaviour of
the settler, we adopted a drop population balance equation
proposed by Ruiz [16] for the dispersion band at steady-
state (Eq. (1)). It describes the drop-number density of
drops, f(v,x), with volume v at length co-ordinate x of
the settler, as a function of the number of drops entering
the elemental volume of the dispersion band per unit time,
F(x), the axial velocity of drops in the dispersion band,
U(x), and the drop–drop and drop–interface coalescence
rights reserved.
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Nomenclature

A(x) average projected area of drops at the active
interface (L2)

C(x, t) volume of dispersion coalescing with the active
interface (L3)

D(x, t) volume of dispersion draining with the passive
interface (L3)

f(v,x) drop-number density (L�3)
F(x) number of drops entering the elemental volume

(L�3)
F(x, t) velocity of the inlet dispersion (L T�1)
H(x) thickness of the dispersion band (L)
h thickness of the dispersion band (algorithm

notation) (L)
hct thickness of the dispersion band (algorithm

notation) (L)
ht thickness of the dispersion band (algorithm

notation) (L)
k constant defined by Eq. (5) (T�1)
M matrix data structure (algorithm notation)
T time (T)
U(x) axial velocity of the drops in the dispersion band

(L T�1)

V(x, t) volume of the dispersion band at position x (L3)
v,v 0 drop volume (L3)
w settler width (L)
X length co-ordinate of the settler (L)

Greek letters

a constant of Eq. (3) (L T�1)
b constant of Eq. (6) (L�2)
Dtlong time needed for the dispersion to reach each seg-

ment (algorithm notation) (T)
dv incremental volume (L3)
Dx small increment in the dispersion band (L)
g(x) volume fraction of dispersed phase (hold-up)

(dimensionless)
g*(x) surface fraction of dispersed phase (dimension-

less)
gM maximum volume-packing efficiency (dimen-

sionless)
k0 constant of Eq. (2)
k(v,v 0) drop–drop coalescence frequency (T�1)
k* drop–interface coalescence frequency (T�1)

Stirred Vessel Gravity Settler

Light Phase

Active Interface

Passive Interface
Heavy Phase

Dispersion

Fig. 1. Stirred vessel and gravity settler system. The dispersion flows into the settler from the vessel, forming a wedge or dispersion band. The drops in the
dispersion either coalesce with each other or with the active interface.
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frequencies, k(v,v 0) and k*(v), respectively. The auxiliary
variables g*(x) and A(x) represent, in that order, the sur-
face hold-up and the average projected area of drops at
the active interface

o

ox
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The drop–drop coalescence and the drop–interface fre-
quencies are not amenable to direct determination and
are inferred by experimental data [10]
kðv; v0Þ ¼ k0 v�1=3 þ v0�1=3
� �2

; ð2Þ
where k0 is a parameter which depends upon the physico-
chemical properties of the system.

This equation contains information about an implicit
drop transport mechanism which is vital for building the
transient state model. Our algorithm uses this information
iteratively to perform integration over time and over space
(settler length).

Ruiz employed Gauss–Legendre quadrature for numer-
ically solving the volume integrals and the fourth-order
Adams–Moulton predictor–corrector method for the dif-
ferential equation. In our approach, the discretized form
of the population balance equation is solved by a first-
order finite difference method with careful control of vari-
able, infinitesimal-like, time and space integration steps.
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This computationally simpler approach works quite well,
and the algorithm’s predictions have been found [2] in
agreement with experimental results of Ruiz [16] for the
thickness of the wedge.

To describe the behaviour of the stirred-vessel, we
adopted, as Ribeiro [13], the mathematical model proposed
by Coulaloglou and Tavlarides [1].

The mass-transfer phenomenon is deliberately ignored.

Fig. 3. Dispersion band in transient state for the ith time step.
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3. The algorithm for the transient state

Our algorithm for the simulation of the transient state of
the mixer–settler system iteratively uses the steady-state
algorithm to integrate over the time variable, which is con-
sistent with a quasi-steady-state (thermodynamic reversibil-
ity) approximation. Starting from the steady-state, we may
change one of the operating variables of the vessel (hold-
up, flow rate or stirring speed) and simulate the changes
on the dispersion band of the settler over time (Fig. 4).

The numerical method works in two steps: space and
time integration. The integration over space dimension is
the same used by the steady-state algorithm. In this case,
the behaviour of the dispersion band is described by dis-
cretizing the balance equation. For the representation of
drop dimension, a logarithmical grid of volumes is
adopted. The wedge of the dispersion band is also divided
in elemental segments with length dx, width w (the physical
width of the settler) and height H(x), the height of the
wedge at co-ordinate x. Each one of these three-dimen-
sional segments is treated as a homogeneous cell within
which drop coalescence takes place. A constant axial veloc-
ity of the drops with an empirical longitudinal variation is
assumed in each cell.

Time integration is necessary in the transient algorithm
because changes take place along time in the dispersion
entering the settler.

The simulation runs as follows: when the vessel reaches
the steady-state for given values of certain operating vari-
ables (hold-up, flow rate or stirring speed) the initial wedge
is calculated by means of the above referred modified Ruiz
[16] steady-state algorithm (Fig. 2).

Next, one of the parameters is step-changed to a new
value on the vessel, and, for each time step, a new wedge
is calculated from the previous one, as follows: at the ith
time step, the dispersion flowing from the vessel to the set-
tler will cause a change in the dispersion band up to the
Stirred-Vessel Gravity Settler

x1 x2 x3 x4 x5 x6 x7 ....

Fig. 2. Dispersion band in steady-state.
position xi (Fig. 3). The segments with co-ordinate higher
than xi will not be affected, their properties remaining
therefore equal to the ones of the previous state. The sim-
ulation continues until a new steady-state of the vessel is
reached. The control of the time step takes care of the
validity of this assumption.

In the next section we describe the data structure used
on the implementation of the algorithm. Using this struc-
ture we can efficiently calculate the band thickness for each
time step.
3.1. Data structure

For each time step t, we calculate the band thickness (or
wedge height) hct(x), resulting from the composition of the
last k wedges for different time steps ht(x),ht�1(x),ht�2(x),
. . . ,ht�k(x), where k depends on the settler length and on
Simulate the
Stirred Vessel

Simulate the
Settler

End

Simulate for each time step
the stirred vessel-settler system

for the transient state until the
steady state is reached

N
Y

Fig. 4. The algorithm for the simulation of the transient state.



1,1 1,2 1,3 1,4 1,5
1,1 1,2 1,3 1,4 1,5
1,1 1,2 1,3 1,4 1,5
1,1 1,2 1,3 1,4 1,5
1,1 1,2 1,3 1,4 1,5

Fig. 5. First matrix M.

2,1 1,2 1,3 1,4 1,5
1,1 2,2 1,3 1,4 1,5
1,1 1,2 2,3 1,4 1,5
1,1 1,2 1,3 2,4 1,5
1,1 1,2 1,3 1,4 2,5

Fig. 6. Matrix M at the 2nd time step.

2,1 1,2 1,3 1,4 3,5
3,1 2,2 1,3 1,4 1,5
1,1 3,2 2,3 1,4 1,5
1,1 1,2 3,3 2,4 1,5
1,1 1,2 1,3 3,4 2,5

Fig. 7. Matrix M at the 3rd time step.

2,1 6,2 1,3 4,4 3,5
3,1 2,2 6,3 1,4 4,5
4,1 3,2 2,3 6,4 1,5
5,1 4,2 3,3 2,4 6,5
6,1 5,2 4,3 3,4 2,5

Fig. 8. Matrix M at the 6th time step.
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the velocity of the drops, U(x), corresponding to the esti-
mated maximum number of time steps needed to reach
the last segment of the wedge.

To implement the method we use a matrix data structure
(Mi,j, 1 6 i 6 n_lin, 1 6 j 6 n_col) where n_lin is its number
of lines, and n_col its number of columns. The value of
n_lin is equal to k (see further down). The number of col-
umns, n_col, is equal to the number of points for which
we calculate the wedge height. Thus, the value hct(x) is
stored as Mi,j, where i = (tmodn_lin) and j = x. We are
assuming a segment length of 1 cm, which implies j = x.
Otherwise we would have j = integer part of [x/segment
length]. For example, if we are writing the band thickness
each 1 cm (segment length) until 100 cm, we have
n_col = 100, n_lin = 100 + constant (for example 110)
and hc(tmod 110)(x). We use this constant because the num-
ber of segments reached in each time step depends on
U(x) and, when this velocity is in average lower then
1 cm/s, more time then 100 s is needed to reach the last seg-
ment of the band thickness. Therefore, we need to use more
lines of the matrix. We can calculate n_lin = the integer
part of [average U(xl)/x100 + 1], l = 1,2, . . . , 100.

Each sequence of height values corresponding to the
wedge height h(x) obtained from the settler routine
(Fig. 4) is obliquely written in the matrix starting at line
i. For example, in the hypothetical situation where the axial
velocity U(x) is constant and equal to 1 cm/s the wedge
h(x) would be written on a diagonal. When the writing of
the wedge reaches the last line of the matrix M, it continues
from the beginning of the matrix reusing the top lines as
shown below. At each time step the line i of the matrix have
the values of the wedge height for the space discretization
used.

3.2. Description of the wedge height calculation

We have described above the data structure that con-
tains the wedge height values. These values are placed on
the matrix as follows (we assume once more, for simplicity
of explanation, that we have a maximum length of the dis-
persion band of 100 cm and the value of the space integra-
tion step is 1 cm):

• Initially, all the lines of the matrix M are equal and filled
with the heights corresponding to the first wedge calcu-
lated (h1(x) corresponding to the initial steady-state).

• For each time step t > 1, the new value for position (i, j)
of the matrix M is determined as follows:
– Dtlong: this variable represents the time needed for the

dispersion to reach each segment. At the beginning of
the simulation its value is zero.

– For each segment [x � 1,x] (x = 1,2, . . . , 100) of the
wedge we calculate the value of ht(x). This value is
placed in the i, j position of the matrix.

– Dtlong = Dtlong + 1/U(x): the variable is updated
according to the axial velocity estimated for the
segment;
– i = the integer part of [(Dtlong + t) mod n_lin];
– j = x.
On the following tables we describe the process using a
simplified matrix M with only five lines and five columns,
assuming a constant axial velocity equal to 1 cm/s. In each
time step Dtlong is incremented by 1 unit. We are assuming
that the dispersion moves 1 cm/s and each segment is 1 cm
long. The first matrix shows M (Fig. 5) after the first time
step, when all the lines of the matrix are filled with the val-
ues of the steady-state wedge.

In the second time step, the wedge h2(x) (bold) is written
on the diagonal of the matrix M and hc2(x) (the first line in
Fig. 6) is written to the wedge height output file.

In the third time step the wedge h3(x) is written on the
diagonal of the matrix M shown in bold in Fig. 7. When
the diagonal reaches the last line of M, the writing contin-
ues at the top. Thus, the last value calculated falls on the
first line. After that the hc3(x) (the second line) is written
to the output file.

Jumping to the sixth time step, the algorithm writes the
wedge h6(x) (bold) on the diagonal of the matrix M (Fig. 8)
and finalizes the step writing hc6(x) to the output file. In the
next time step t the writing restarts on the first line of the
matrix M.
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4. Results

As explained above, the transient algorithm starts from
one steady-state and arrives to another steady-state. We
have applied the simulation algorithm on data from two
sources. First, using experimental data provided by Ruiz
[16], second, using data obtained by direct observation of
a settler in our laboratory [9].

With respect to the first set of data, the mixer was rect-
angular, 20 cm long, 20 cm wide and 29 cm high. A Benco
Model agitator was used. The impeller was a 10.2 cm diam-
eter curved-blade turbine with six blades and width 1/8 of
the diameter. The dispersion left the mixer through a 19 cm
wide overflow channel. The settler was a rectangular box of
100 cm long, 20 cm wide and 20 cm high. The settler com-
prised a narrow chamber, 0.6 cm wide, to receive the enter-
ing dispersion. This compartment had a horizontal slot,
located 13.5 cm above the base of the settler, with dimen-
sions 19 cm · 0.9 cm, to distribute the dispersion.

The organic phase used consisted of 10% by volume LIX
64N and Chevron ion exchange solvent and the aqueous
phase was 0.25 molar sodium sulfate solution (Table 1)
[16].
Table 1
Physical properties of the liquid phases (25 �C) – first set of data

Density
(g/cm3)

Viscosity
(cps)

Surface tension
(dyne/cm)

0.25 M NaSO4 1.029 1.16 26.8–27.2
10% LIX 64 N

Chevron
0.813 1.94 56.4–58.2

Table 2
Physical properties of the liquid phases (25 �C) – second set of data

Density
(g/cm3)

Viscosity
(cps)

Surface tension
(dyne/cm)

Na2SO4 0.25 M 1.06 0.912 35.6
Kerosene 0.79 1.01 29.4
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Fig. 9. Each curve represents the simulated band thickness for the transient st
(the highest curve) at time zero, and for the following 2000 s.
Regarding the second set of data the mixer was a rectan-
gular box of 10 l capacity and the settler was a rectangular
box with 105 cm in length, 20 cm in height and 20 cm in
width. The phases were mixed by means of a Rushton
impeller, 10 cm diameter, with six flat vertical blades. The
flow rates of both phases entering the mixer were directly
measured in the pumps after appropriate calibration. The
dispersion left the mixer through a 2 · 15 cm slot. A baffle
inside the settler allowed the dispersion to enter the settler
area with minimum mixer interface.

The aqueous phase was 0.25 molar sodium sulfate solu-
tion and the organic phase was kerosene [10], without sol-
ute in the system (Table 2).

The parameters k* and k0 of the mathematical model
(Eq. (2)) were adjusted to the experimental data in the
two sets of experiments [16,9,10].

In both cases we proceeded as follows. For given pairs
of experiments, we compared the results obtained for the
band thickness. In the first case we also compared the aver-
age volume of the drops (with respect to the second set of
data, we have no values to compare). For each pair, one set
of conditions corresponds to the start of the dynamic sim-
ulation and the other one to the final state.

4.1. First set of data

In Fig. 9 we can see the results obtained for the follow-
ing pair of conditions: at start, an organic flow rate of 1.2 l/
min and a hold-up of 0.5 and at the final state an organic
flow rate of 0.88 l/min and a hold-up of 0.37 (a change of
�26%). The stirring speed is constant at 360 rpm. The fig-
ure shows the evolution of the shape of the dispersion band
over time, as calculated by our algorithm, starting from
one steady state (the highest curve), and reaching a second
steady-state, after 2000 s. The decrease in the organic feed
flow rate and, consequently, also in the hold-up causes a
significant shortening of the wedge, as expected.

In Fig. 10 we can see a close agreement between the
starting and final steady-states results obtained by us and
by Ruiz [16]. The comparison of results obtained for other
pairs of experiments showed also this good agreement.
e Transient Simulation

53 57 61 65 69 73 77 81 85 89 93 97
m)

ate at successive points in time (every 100 s), starting from the steady-state
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Fig. 10. Each curve represents the simulated band thickness for a steady state obtained by our algorithm. The dots represent the simulated values obtained
by Ruiz under the same conditions.
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Fig. 12. Each curve represents the simulated band thickness for a steady state obtained by our algorithm. The dots represent the experimental values
obtained on our laboratory at the same conditions.
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Fig. 11. Each curve represents the simulated average volume of drops for a steady-state obtained by our algorithm. The dots represent the simulated
values obtained by Ruiz under the same conditions.
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The average volume of drops predicted by the model is
presented in Fig. 11. The lowest curve represents the first
steady-state and the highest represents the second steady-
state. The dots represent the simulated values obtained
by Ruiz [16] (we only have information of data up to
60 cm). We observe a close agreement between the starting
and final steady-states results obtained by us and by Ruiz
for average volume of drops.

4.2. Second set of data

In Fig. 12 we can see the results obtained for the follow-
ing pair of conditions: at start, a hold-up of 0.3 and an
organic flow rate of 1.09 l/min. At the final state, a hold-
up of 0.5 and an organic flow rate equal to 2.15 l/min.
The stirring speed is constant at 188 rpm.

This figure shows the initial and the final states of the
shape of the dispersion band as calculated by our algo-
rithm, starting from one steady state (the lowest curve),
and reaching a second steady-state, after 1000 s.

The increase in the hold-up causes a significant enlarge-
ment of the wedge, as expected.

5. Conclusions and future work

The results obtained with the developed simulation
model for the transient state of the mixer–settler were com-
pared with the values of Ruiz [16] and some experimental
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Fig. 13. The simulated band thickness for the transient state at successive points in time (every 100 s), when we decrease the hold-up to a 10th of its initial
value.
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results obtained in our laboratory [9]. The predicted values
for the wedge of the dispersion band compared every 10 cm
are in close agreement with the experimental data and
those of Ruiz as shown above in the previous section.

The new numerical algorithm here presented has the
advantage of adding little complexity for the calculations,
being an iterative application of the steady-state algorithm.
This algorithm and model seem to be satisfactory for small
step-changes. However, for large changes, further valida-
tion is needed. It must be noticed that Ruiz’s model was
developed for a settler that is fed through a slot, the height
of which defines the initial thickness of the dispersion band.
Fig. 13 shows the results of our algorithm for a large
change of the hold-up, reduced from 0.5 to 0.05.

Ruiz’s calculation of an initial velocity depending on the
initial thickness of the inlet slot of the settler of the disper-
sion band is also a limitation of her model. To overcome
these problems, we are currently working on a new
dynamic model using a kinetic formulation in which the
movement of the dispersion is modelled as caused by grav-
ity. We propose the following equation for the volume var-
iation over time:

oV ðx; tÞ
ot

¼ F ðx; tÞwDx

þ a
Hðx�DxÞ�HðxÞ

Dx

� �
� HðxÞ�HðxþDxÞ

Dx

� �� �

� oCðx; tÞ
ot

� oDðx; tÞ
ot

; ð3Þ

where w is the settler width, a is a parameter, F(x, t) is the
velocity of dispersion fed into the settler at point x and time
t, and H is the thickness of the dispersion band.

The rate of volume loss of the dispersion by coalescence
of drops with the active interface, oC(x, t)/ot is [16]:

oCðx; tÞ
ot

¼ wg�ðxÞk�ðvÞ
AðxÞ

f ðv; xÞ
F ðxÞ Dx � v: ð4Þ

The rate of volume loss of the dispersion by drainage with
the passive interface, oD(x, t)/ot, is

oDðx; tÞ
ot

¼ kV ðxÞ ð1� gðxÞÞ � ð1� gMÞ½ �; ð5Þ

where k is a constant, V the volume of the dispersion, g(x)
the hold-up and gM the volume-packing efficiency.
The thickness variation over time is thus given by

oHðx; tÞ
ot

¼ F ðx; tÞ þ ab
o

2Hðx; tÞ
ox2

� oCðx; tÞ
ot

� oDðx; tÞ
ot

ð6Þ

with b = 1/(wDx).
In this way, provision is made for a distributed feed,

which may help to explain in a more natural way the often
observed initial increase in wedge thickness. The detailed
explanation of this mathematical model will be given else-
where [2].
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Lı́quido–Lı́quido, PhD thesis, Universidade do Minho, Portugal,
2000.
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[13] Ribeiro LM. Simulação Dinâmica de Sistemas Lı́quido–Lı́quido, Um
novo Algoritmo com Potencialidades de Aplicação em Controlo.
PhD thesis, Universidade do Minho, Portugal; 1995.

[14] Ribeiro LM, Regueiras PFR, Guimarães MML, Cruz-Pinto JJC.
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