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Abstract

The problem of path following for autonomous vehicles under

adversarial behaviour is considered. The objective is to keep the

cross-track error to the reference path inside a given tolerance

interval. The adversarial behaviour models system uncertainty and

unknown or poorly estimated bounded disturbances to ensure that

the concept of weakly invariant set is used, i.e., the set of states

that the vehicle may enter while ensuring that the cross-track error

will never exceed the tolerance interval. Two modes of operation

are then considered: when the vehicle is inside the invariant set,

the objective is to stay inside it while minimizing a combination of

the actuation effort and cross-track error; otherwise, the objective

becomes to reach the invariant set in minimum time. Each mode

corresponds to a different optimal control problem which is dealt

independently; thus, there is one different control law for each mode.

The control laws are synthesized using a dynamic programming

approach. Simulation results with a full nonlinear dynamical model

illustrate the performance and robustness of the control strategy.
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1. Introduction

Operations with autonomous vehicles often entail the fol-
lowing of prescribed paths such as roads, aerial corridors
or simple concatenations of way-points. The main charac-
teristic of path following control relies on its independence
with respect to time, as opposed to trajectory tracking
problems, where the desired position is a function of the
time variable. This time independence provides additional
freedom which can be explored to provide a control strat-
egy with increased robustness.

The path following problem has been studied for
wheeled mobile robots (see [1] and [2] for early approaches),
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under-actuated marine vehicles (see [3] for instance) and
aerial vehicles (see [4] for instance). The existing ap-
proaches to path following vary on the degree of complexity
of the considered system model. In general, the vehicle
longitudinal speed (surge) is considered constant. In [4],
the authors assume an essentially kinematic model, with
no sideslip and with first-order linear dynamics for yaw
rate. Approaches accounting lateral speed can also be
found (see [3], [5] and [6] for examples on marine vehicles).
However, determination of an accurate dynamic model for
the lateral dynamics may be a difficult task. In [6], the
authors describe an approach to add some robustness with
respect to model uncertainty for underwater vehicles. In
[7], the authors disregard the dynamics of lateral speed and
model it as a bounded disturbance. The approaches may
also differ on whether the path curvature must be known
or not. In [7], the authors develop a controller that may
follow arbitrary paths (with bounded curvature) without a
priori knowledge of the curvature profile.

Most path following approaches seek perfect follow-
ing of the reference path. However, in some cases, that
objective may be impractical or simply unnecessary. For
instance, autonomous underwater vehicles have strong lim-
itations in what concerns the estimation of their exact
position. Given that uncertainty, it does not make sense
to be very stringent in what concerns following a path that
the vehicle cannot determine very accurately. Moreover,
the disturbances may also be able to prevent stabilization
at the origin, as will be verified here. Finally, if the control
system is implemented in a computer-based platform, lim-
itations due to the finite sampling rate and discretization
of the actuator commands make stabilization to a single
point (in the Lyapunov sense, e.g., [8]) an impossible task.
Therefore, the designer of the control system may seek a
more relaxed objective: to keep the vehicle inside a given
tube around the reference path. In [7], the authors derive
a control law with guaranteed bounded error and conver-
gence. However, the performance of the proposed control
law is not discussed.

Several other control strategies can be found in the
literature, including for the integrated path following and
obstacle avoidance problem (see also [9]–[11] and refer-
ences therein). However, the authors are not aware of any
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work describing a practical procedure for the implementa-
tion of optimal closed loop path-following controllers with
provable bounded error.

This paper presents a methodology for the automated
design of robust and practically optimal path following
controllers with guaranteed bounded error for paths with
bounded curvature. The methodology is based on the
numerical solution of the dynamic programming equations
[12], [13]. It is well known that the dynamic program-
ming principle provides a sufficient condition for global
optimality. When numerical methods are used, the de-
rived controllers are optimal up to the accuracy allowed by
the discrete nature of the computation (this is designated
here as practical optimality). In what concerns robust-
ness, bounded environmental disturbances and model un-
certainty are accounted for in the design stage as adversar-
ial inputs with worst case behaviour (min-max approach).
For that purpose, the problem is formulated in the frame-
work of deterministic differential games [14], [15]. This
approach leads to more conservative results than stochastic
approaches (e.g., the LQG problem).

The approach described in this work is independent of
the system model. However, to reduce the computational
burden, a simple kinematic model is considered. This is a
common simplified model for underactuated vehicles. The
impact of neglecting the dynamics for the angular and
lateral velocities is investigated with numerical simulations.
Moreover, the results described here can be seen as a first
benchmark for developments with more accurate models.

The paper is organized as follows. Section 2 presents
some background on the subject of dynamic programming.
Section 3 describes the system model. Section 4 formulates
the path following problem as an optimal control problem.
Section 5 describes the design of the optimal state feed-
back controller in the framework of dynamic programming.
Section 6, presents simulation results with a numerical
example. Finally, in section 7, some conclusions are drawn.

2. Background

Apart from some changes in notations, the material pre-
sented in this section can be found in [13] and [16]. Con-
sider the following cost functional:

J(t0, x0, a, b) = Ψ(x(tf )) +

∫ tf

t0

L(x(τ), a(τ), b)dτ (1)

subject to:

ẋ(t) = f(x(t), a(t), b(t)) (2)

x(t0) = x0 (3)

x(t) ∈ X (4)

where x0 ∈R
n is a given initial state; L(x, a, b) and Ψ(x) are

the running and terminal costs, respectively; (2) describes
the system dynamics, i.e., the system flow at state x(t)
when subject to inputs a(t) and b(t); a is drawn from
Ua, the space of measurable input sequences such that

a(t)∈Ua; likewise, b, the adversarial input, is drawn from
Ub, the space of measurable input sequences such that
b(t)∈Ub; X defines the state constraints.

The optimal control problem (OCP) is defined as fol-
lows:

sup
β∈Δb

inf
a∈Ua

J(t0, x0, a, β[a]) (5)

where Δb : Ua →Ub is the set of nonanticipating strategies
for the adversarial input b. Basically, this corresponds
to choosing, among all possible actions, the action for
which the maximum cost that can be imposed by the
adversarial is minimal (min–max). On the other hand, it
is assumed that the adversarial knows this strategy and
acts accordingly. For the general case, this is the only
way to ensure the minimization of the “losses” imposed
by the adversarial input. Note that the adversarial input
will be used to model the effect of disturbances and model
uncertainty.

Consider also the following variation of the OCP pre-
sented above where:

tf = min
t
x(t) ∈ T (6)

and T is a given target set. This version of the OCP has a
static solution, in the sense that it does not depends on t0.

The fundamental object of the dynamic programming
approach is the value function. By the same reasons dis-
cussed for (5), the value function corresponding to the
upper value of the differential game is considered:

V (t0, x0) = sup
β∈Δb

inf
a∈Ua

J(t0, x0, a, β[a]) (7)

The value function can also be defined in a constructive
form. This is done by the dynamic programming principle
(DPP). The DPP for deterministic discrete-time systems
is expressed as follows:

V (t, x) = inf
a∈Ua

sup
b∈Ub

{∫ Δ

0
L(yΔ(x, τ, a, b), a, b)dτ

+ V (t+Δ, yΔ(x,Δ, a, b))

}
, t < tf (8)

with terminal condition V (tf , x)=Ψ(x); yΔ(x, t, a, b) is the
state of the system at time t, starting from x(0)=x, when
subject to a constant inputs a and b during a period Δ.
For the static case, the DPP is simplified to

V (x) = inf
a∈Ua

sup
b∈Ub

{∫ Δ

0
L(yΔ(x, τ, a, b), a, b)dτ

+ V (yΔ(x,Δ, a, b))

}
, x �∈ T (9)

with boundary condition V (x) = Ψ(x), x ∈ T .
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Given a time-independent value function V (x), the
corresponding optimal control can be determined in state
feedback form in the following way:

f(x) ∈ arg min
a∈Ua

max
b∈Ub

{∫ Δ

0
L(yΔ(x, τ, a, b), a, b)dτ

+V (yΔ(x,Δ, a, b))

}
(10)

For a fully discrete implementation (i.e., discrete time
and discrete space), in general, yΔ(x,Δ, a, b) will not co-
incide with any grid node. Therefore, V (yΔ(x,Δ, a, b))
is computed by interpolation of the value function at the
neighbouring nodes of yΔ(x(t),Δ, a, b).

For analysis purposes, note that the limit of (10) as Δ
goes to 0 is

f(x) ∈ arg min
a∈Ua

max
b∈Ub

[∇V (x) · f(x, a, b) + L(x, a, b)] (11)

If V (x) is non-differentiable, ∇V (x) must be interpreted
as some form of generalized gradient [17].

3. System Model

Consider the following planar vehicle model:

ẋ = u cos(ψ)− v sin(ψ) + cx (12)

ẏ = u sin(ψ) + v cos(ψ) + cy (13)

ψ̇ = r (14)

where (x, y) describes the vehicle’s position with respect
to an earth fixed frame, ψ is the vehicle’s heading di-
rection, u and v are the longitudinal and lateral speeds,
r∈ [−rmax, rmax] is the vehicle’s angular velocity and
(cx, cy) models the effect of environmental disturbances
(such as constant winds and currents). For practical oper-
ation, u> ||(cx, cy)||∞ is assumed. In general, |u|� |v|.

Consider a frame with its origin at the nearest point
of the path with respect to the vehicle (i.e., with respect
to the origin of the vehicle’s body fixed frame). Assume
there is some disambiguation scheme in case of multiple
candidates. This frame (the Frenet frame) has a T axis
tangent to the path and a N axis normal to the path. The
orientation of the T axis with respect to the earth fixed
frame is ψt and the vehicle’s angle relative to the path is
defined as ψr =ψ−ψt (see Fig. 1). The cross-track error d
is the shortest distance between the vehicle and the path.
Thus, the cross-track error dynamics may be described by
the following model:

ḋ = u sin(ψr) + v cos(ψr) + cn (15)

ψ̇r = r − (u cos(ψr)− v sin(ψr) + ct)κ (16)

where cn =−cx sin(ψt)+ cy cos(ψt), ct = cx cos(ψt)+ cy
sin(ψt) and κ is the path’s curvature (for a straight path
κ=0) at the closest point (origin of the Frenet frame).

In the general case, it is reasonable to assume that u
is constant and that it may act as a system parameter.

Figure 1. Coordinate system (North–East–Down conven-
tion).

On the other hand, for vehicles with no lateral actuation
and no sideslip constraint (i.e., that may skid), the same
cannot be assumed for v. In these cases, the dynam-
ics of v may have a considerable impact in the system
performance. However, an accurate identification of the
system’s dynamic model may be an expensive task. In
what concerns the environmental disturbances, this task
is even more difficult, since the disturbances may vary
both temporally and spatially. To cope with this model
uncertainty and keep the system model simple, a bounded
virtual input cv is considered; this input may take values
in [−cv,max, cv,max] such that

cv,max ≥ ‖v(·) cos(ψr(·)) + cn(·)‖∞ (17)

Additionally, the following input is considered:

rv ∈ [−rv,max, rv,max] ∈ [−Ut,max/Rmin, Ut,max/Rmin]
(18)

where Ut,max is the maximum expected tangential velocity
(i.e., the projection of the vehicle’s velocity on the T
axis). This input models possible variations in the path’s
curvature, i.e., it models the assumption that the minimum
radius of curvature isRmin; it may also encompass the effect
of modelling errors for the r dynamics. At each instant
of time, cv and rv may take the worst-case values for the
current control objective. In the framework of differential
games [14], [15], these can be modelled as adversarial
inputs. Under the stated assumptions, the model becomes
as follows:

ẋ = f(x, a, b) =

⎧⎨
⎩u sin(ψr) + cv

r − rv
(19)

where x= [d ψr]
′, a= [r] and b= [cv rv]

′.
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4. Problem Formulation

Consider the path-following model (19). The control design
for this system is driven by a set of state constraints and by
the running cost for regular operation. Regular operation
means that the vehicle is respecting the state constraints.
The state constraints are the following:
• |d(t)| ≤ dmax, where dmax is the maximum acceptable
cross-track error.

• |ψr(t)| ≤π/2; this constraint enforces forward motion
along the path.

or, in a more compact form,

x(t) ∈ R ≡ [−dmax, dmax]× [−π/2, π/2] (20)

Whenever possible, the vehicle should follow the path
as closely as possible. On the other hand, for some in-
spection applications (e.g., when using a camera), it is
important to minimize the occurrence of fast changes in
the vehicle’s heading (i.e., high values of r). These re-
quirements lead to the following expression for the running
cost:

LIH(x, a, b) = d2 + ψ2
r +Krr

2 (21)

In practice, one cannot assume that the system will al-
ways meet the state constraints defined in (20): unforeseen
disturbances may drive the system outside R; the system
may start outsideR; finally, even if the system starts inside
R, there may be no trajectory inside R for all the desired
time horizon. The last point is central to this approach.
To meet the constraint (20) at all times, the system state
must be brought to the interior of the weakly invariant set
S. The weakly invariant set is defined in the sense of, e.g.,
[18]: the set of states from which the system is still able to
respect the state constraints afterwards.

Whenever the system state is outside S, the controller
must drive the system to the interior of S in minimal
time. Thus, the following state feedback control strategy
is defined:

a(x) =

⎧⎨
⎩fmt(x), x /∈ S
fS(x), x ∈ S

(22)

The strategy comprises two modes of operation, one
corresponding to “travelling into S (in minimal time)” and
the other to “staying inside S”. The control system selects
the appropriate feedback control law (fmt(x) and fS(x))
for each mode of operation.

5. Control Synthesis

5.1 A Specification of the Control Laws

To derive fS(x) and fmt(x), two value functions are defined:
1. VS(x), associated to the infinite horizon OCP defined

by (5) with t0 =−∞, tf =0, L(x, a, b) given by (21),
system dynamics given by (19) and state constraints
given by (20);

2. Vmt(x), associated to a minimal time to reach (MTTR)
OCP defined by (5) with t0 =0, tf = min{t : x(t)∈T },

L(x, a, b)= 1, system dynamics given by (19) and tar-
get set T ∈S.
The control laws fS(x) and fmt(x) are obtained by

applying the dynamic programming equation (10) to VS(x)
and Vmt(x), respectively.

Note that the general solution of the constrained infi-
nite horizon OCP leads to a time-dependent value function
VIH(t, x). However, it will be shown that the desired static
value function, VS(x), can be obtained from VIH(t, x).
Analysis of the optimally controlled system shows that the
trajectories always reach an equilibrium. This equilibrium
can be either of two types: stable, of the form

lim
t→∞(d(t), ψr(t)) = ±(de(Kr),− arcsin(cv,max/v)) (23)

where de(Kr) is some positive constant and the sign of
the expression depends on the initial conditions or a limit
cycle.

The type of equilibrium is strongly related to the
running cost. For lower values of Kr, the worst case
disturbance action will be to make the vehicle stay far from
the path; to compensate the disturbance, the vehicle must
point in the opposite direction, as given by (23). Note
that the vehicle cannot risk steering too much towards the
path because, that way, a change in the disturbance could
lead to an even bigger cross-track error (due to the need of
making a bigger turn in the opposite direction). For higher
values ofKr, the solution is a limit cycle. From the point of
view of the adversarial input, it will be profitable to induce
the limit cycle if the cost due to r compensates the loss
incurred by the passages through the origin; in that case,
the adversarial input will change consistently its value and
the controller will be forced to steer the vehicle constantly
to avoid leaving S. Finally, when no disturbance is present,
the controller stabilizes the system to the origin.

Taking that into account, the value function associated
to the constrained infinite horizon OCP will be of the
form VIH(t, x)=VS(x)+ ct, where c is associated to the
average cost at the equilibrium. Therefore, VS(x) can be
computed as for the static case by considering the running
cost L(x, a, b)=LIH(x, a, b)− c.

Given the exact VS(x), S could be determined by
simple inspection, i.e., S = {x : VS(x) �=∞}. However, due
to inevitable inaccuracies in the the numerical solution,
that is not possible. Instead, a discrete sub-approximation
of S is considered. This sub-approximation is computed by
simulation of the optimal trajectories associated to VS(x).
The optimal trajectory emanating from each grid node in
R is evaluated until it either reaches a neighbouring region
of the equilibrium or leaves R; if a trajectory leaves R, the
corresponding initial grid node is marked as not belonging
to S.

The minimum cross-track error imposed by the dis-
turbances can be computed by repeating the computa-
tion of S with decreasing values for the constraint on
d. For rv =0, this minimum can be easily derived by
analysis of the system trajectories: assume that the ve-
hicle is at an equilibrium, i.e., ψr =− arcsin(cv,max/u);
if the disturbance inverts its sign, then the cross-track
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error changes until a new equilibrium is reached (this
takes t=2arcsin(cv,max/u)/rmax); integration of the sys-
tem trajectory and centring around the origin results in
d= cv,max arcsin(cv,max/u)/rmax. At the first sight, this
minimum could seem a good candidate for the maximum
allowed cross-track error. However, sensor noise could eas-
ily make the system leave the corresponding invariant set
thus leading to the frequent execution of the more abrupt
and undesirable MTTR control law.

5.2 Numerical Scheme

The numerical scheme for the computation of value func-
tions is based on the iterative scheme from [19]. The value
function is computed at the nodes of a regular grid that
samples the desired region of the state space. On each
iteration, the algorithm computes (9) for each grid node.
In general, yΔ(x,Δ, a, b) will not coincide with any grid
node. Therefore, V (yΔ(x,Δ, a, b)) is computed by interpo-
lation of the values at the neighbouring nodes. The current
implementation uses bilinear interpolation.

In what concerns the solution of the ordinary
differential equations (ODE) for the computation of
yΔ(x(t),Δ, a, b), all computations were performed with
a fixed step fourth order Runge–Kutta scheme. The
algorithm also allows the choice of any of the variable
step ODE solvers from the GNU Scientific Library (GSL)
[20]. These can provide more accurate results, specially if
large time steps are considered, at the expense of higher
computation times. For systems of low dimension, as it is
the case, it is possible to compute these trajectories just
once and to store yΔ(x(t),Δ, a, b),∀(a, b) in memory, thus
avoiding repeating the computation in every iteration.
In fact, yΔ(x(t),Δ, a, b) is stored in terms of barycentric
coordinates with respect to the nodes used for the bilinear
interpolation. For a grid with N nodes, a system with M
possible input values and n state variables, the required
memory for this cache is the size of the floating point data
type (e.g., 8 bytes) multiplied by NM2n.

The algorithm was implemented as a multi-thread ap-
plication to take advantage of the now common multipro-
cessor systems with shared memory (e.g., the typical “dual
core” personal computers fall on this classification). This is
done by computing the value function for a different subset
of the grid on each thread. Except for eventual bottlenecks
on the memory bus, this algorithm scales linearly with the
number of processors.

Our implementation keeps in memory the data from
the current and previous iterations, which effectively du-
plicates the otherwise required memory to store the grid.
The objective of this is twofold:

1. To allow comparison of the results between iterations.
Define Ṽk as the approximation of the value function
at iteration k. Then, it is possible to establish different
stopping condition based on Ṽk − Ṽk−1.

2. To eliminate potential data access conflicts between the
application threads. Note that each thread may have
to read data outside its own partition, namely near
the boundaries. To avoid conflicts, at each iteration

k, Ṽk is computed based only on the results from the
previous iteration (Ṽk−1).
For the MTTR problem, the nodes corresponding to

the target T are kept with zero value at all iterations
(they are not evaluated). For the computation of VS(x),
no target is defined; the state constraints are enforced by
setting Ṽ0 =0,∀x∈R and Ṽ0 =K∞,∀x /∈R, where K∞ is
a large constant such that V (x)<K∞,∀x∈S. Nodes with
the value K∞ are not evaluated.

5.3 Structure of the Solution

In what concerns the MTTR problem, the main issue
resides in the fact that the control function must be defined
for the unbounded domain R× [−π, π]. This could pose
a problem, since it is not possible to numerically compute
the value function for an unbounded domain. However, it
can be observed that the optimal control for |d|�u/rmax

is independent of d: if the vehicle is very far from the path,
the optimal action is to turn such that the vehicle becomes
perpendicular to the path and then travel that way until it
reaches a certain distance of the target, i.e., until |d| ≤ dπ/2
where dπ/2 is some positive constant. Moreover, analysis
of (11) shows that the control must be of bang–bang type.
Thus, the optimal control for |d|>dπ/2 is given by the
following expression:

r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, |ψr| = π/2

sign(d)rmax, |ψr| > π/2

−sign(d)rmax, |ψr| < π/2

(24)

where ψr is assumed to be normalized to the interval
[−π, π].

Assuming that the target is the origin, the vehicle will
have to leave the perpendicular direction at

dπ/2 = (u+ cv,maxπ/2)/rmax (25)

This is the minimum radius of curvature, u/rmax, expanded
to account the drift imposed by the worst case disturbance.

Further analysis shows that the analytical solution
can also be obtained for |d| ≤ dπ/2. The solution is also
of bang–bang type, with two switching surfaces. The
switching surface for |ψr| ≤π/2 is defined by the following
expression:

d = −sign(ψr)
u

rmax
((1− cos(ψr)) + cv,max|ψr|) (26)

In this case, ψr is normalized to the interval [−π/2, 3π/2];
the switching surface for the remaining range of ψr can be
defined as in (26) by considering ψ′

r =ψr −π instead of ψr.
It must be remarked that this analytical solution as-

sumes that the target is the origin. In the current problem,
the desired target is the set S. In this case, it is much
harder or even impossible to find the exact analytical so-
lution. However, (24) will still be valid for some threshold
that can be inspected from the numerical solution and (25)
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can be used as a guideline for defining the computational
space. Moreover, this analysis shows that the optimal
control for the MTTR problem must be either −rmax or
rmax except for those singularities where Vmt(x) reaches a
minimum with respect to ψr (on those cases, the optimal
control is set to 0).

6. Numerical Example

6.1 Model Data

The following model data is assumed: constant surge
u=1m/s, maximum angular velocity rmax =0.26 rad s−1,
cv,max =0.25m s−1 and rv =0 rad s−1 (straight line follow-
ing). The maximum cross-track error is assumed to be 2m;
therefore, R= [−2, 2]× [−π

2 ,
π
2 ]. These parameters were

chosen to mimic the motion of the autonomous underwa-
ter vehicle (AUV) described in [21] operating at constant
depth. Regulation of the roll and pitch angles is assumed
(e.g., by PID controllers). Under these assumptions, the
dynamics of the AUV may be approximated by the follow-
ing equations:

v̇ = −1.90v − 1.05v|v| − 0.11r + 0.004r|r|+ 0.57δr (27)

ṙ = −3.41v − 1.93v|v| − 4.56r − 1.93r|r| − 3.67δr (28)

These equations will be used to evaluate the impact of
neglecting the sway (v) and yaw (r) dynamics in the DP
controller (22). To accommodate both models, (19) and
(27) and (28), the output of the DP controller will be
denoted as rd. In what concerns model (19), r= rd; for
models (27) and (28), rd feeds the following regulator, thus
closing the loop:

δr = 0.166 arctan(25(rd − r)) (29)

To perform the local optimization of (9) and (10), dis-
crete inputs are assumed. In what concerns input rd, this
is in line with what happens in a digital implementation.
For the computation of VS(x) and fS(x), the set Ua is
composed of 31 equally spaced values ranging from −rmax

to rmax. For Vmt(x) and fmt(x), Ua = {−rmax, 0, rmax}. On
both cases, Ub = {−cv,max, cv,max}.

It must be remarked that the method is completely
general and these parameters can be easily modified.

6.2 Computation of the Value Functions

All computations were performed on a Intel Core 2 Duo
T7250 based system with 2GB of 667MHz DDR2 RAM.
The numerical solver used two threads of computation
(half of the data for each thread). The executable was
generated using the GNU C compiler optimizations for the
core2 family of processors.

For the computation of VS(x) and S, a 161× 601
grid was used to sample R. The time-step was 10ms.
The computation of VS(x) took 143 s of wall clock time
(WCT) and 264 s of cumulative CPU time (CCT). Figure 2
represents S as derived from VS(x).

Figure 2. Maximal invariant set for |d(t)|< 2. Vertical axis
is for state d, in metres, and horizontal axis is for state ψr,
in degrees.

Figure 3. Minimal value of d for constrained operation.
The invariant set collapses to the empty set if a lower value
is chosen as a constraint for d. Vertical axis is for state d,
in metres, and horizontal axis is for state ψr, in degrees.

For the considered numerical data, the minimal as-
sured cross-track error, when departing from the origin, is
approximately 0.26m (see Fig. 3). Therefore, the consid-
ered 2m give a good margin of tolerance.

For the computation of Vmt(x), the computational
domain for the d state variable was set as [−20, 20]. This
is much more than needed but it was chosen this way to
clearly show that, above a certain value of |d|, the optimal
control is independent of d. The target set was defined as
square of 3× 3 grid nodes centred at the origin. Note that
the vehicle is just required to reach some set in the interior
of the invariant set. For a grid of 161× 121 and time-step of
100ms, the WCT was 1 s WCT and the CCT was 2 s. The
image of the minimal time control law, computed at the
grid nodes using (10), is represented on Fig. 4. Inspection
of Fig. 4 shows that for |d|> 5.4 the optimal control is in
fact independent of d. Therefore, in this case, dπ/2 =5.4.
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Figure 4. Control law to reach T in minimum time. Verti-
cal axis is for state x, in metres, and horizontal axis is for
state ψr, in degrees. For instance, if d> 5.4 and |ψr|< 90
then fmt(x)= rmax.

Figure 5. Evolution of d(t) (metres) and rd(t) (deg s−1)
with Kr =1000. The results at 100Hz are similar to those
obtained at 10Hz. Horizontal axis is time in seconds. (A)
10Hz control rate and (B) 1Hz control rate.

6.3 Simulation Results

The simulation results concern only the operation inside
S since this will be the most frequent mode of operation.
The value function VS(x) was computed for two different
values of Kr. With Kr =1000, the cost function strongly
penalizes the actuation effort. With Kr =0, the cost
function penalizes only the distance to the origin (see (21)).
Three different control rates were considered: 100, 10 and
1Hz. Figures 5 and 6 show the evolution of the cross-track
error, and the corresponding input rd(t) for the kinematic
model (19). Little or no difference is observed between
the 100 and 10Hz control rate (and therefore only the
10Hz case is represented). For the 1Hz sampling rate,
the adversarial controller concludes that it may maximize
the accumulated running cost by alternating cv between
−cv,max and cv,max at key points. This shows that at 1Hz

Figure 6. Evolution of d(t) (metres) and rd(t) (deg s
−1) for

the kinematic model withKr =0. The control rate is 10Hz
(similar performance is observed at 100Hz). Horizontal
axis is time in seconds.

Figure 7. Evolution of d(t) (metres) and rd(t) (deg s
−1) for

the AUV dynamical model with Kr =0. Horizontal axis
is time in seconds. (A) 100Hz control rate and (B) 10Hz
control rate.

control rate, the controller already departs from its ideal
behaviour. Therefore, in what follows, only the 100 and
10Hz control rates are considered.

Note that input cv is always chosen using (10) in these
simulations. Therefore these results represent worst case
scenarios (under the model assumptions). For instance, a
change of 0.5m s−1 in the water velocity in a single control
cycle implies a very turbulent environment.

The same control laws are employed for the simula-
tion of the AUV dynamical model defined by (15), (16),
(27)–(29). With Kr =1000, no noticeable differences are
observed. This is because the controller does not demand
large variations for rd (compare the graphs of rd(t) on
Fig. 5(a) and Fig. 6). With Kr =0 and a control rate of
100Hz, the controller is still able to replicate the behaviour
of the kinematic model (see Fig. 7(a)). With a 10Hz con-
trol rate, the controller seems to be on the verge of being
able to replicate the behaviour of the kinematic model (see
Fig. 7(b)).

Finally, the performance of the system when subject
to measurement noise is analysed. This measurement
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Figure 8. Evolution of d(t) (metres) and rd(t) (deg s
−1) for

the kinematic model withKr =1000. Measurement noise is
drawn from the uniform distribution [−0.25, 0.25]× [−3, 3]
(metres × degrees). Horizontal axis is time in seconds. (A)
100Hz control rate and (B) 10Hz control rate.

Figure 9. Evolution of d(t) (metres) and rd(t) (deg s
−1) for

the kinematic model with Kr =0. Measurement noise is
drawn from the uniform distribution [−0.25, 0.25]× [−3, 3]
(metres × degrees). The control rate is 10Hz (similar
performance is observed at 100Hz). Horizontal axis is time
in seconds.

noise is always present even if only due to sensor quan-
tization. The considered measurement noise is drawn
from the uniform probability distribution on the interval
[−0.25, 0.25]× [−3, 3]. ForKr =1000, the controller is able
to compensate the noise by demanding higher values for
rd (Fig. 8). For Kr =0, the controller drives the system to
regions where the adversarial finds it profitable to change
its input, leading to a limit-cycle (Fig. 9); not surprisingly,
in this case the AUV dynamic model performs even worse,
due to the increased demands on the r dynamics. How-
ever, in every case the required maximum cross-track error
is never exceed. A less pessimistic scenario was consid-
ered, assuming a constant disturbance of 0.25m s−1. In
that scenario, the closed loop system does not amplify the
measurement noise. However, the input rd(t) consist of
high frequency chattering between the maximum and min-
imum allowed values. Similar results are obtained for the
AUV model. In the absence of the limit-cycle, the AUV

dynamics seem to be well approximated by the kinematic
model.

The numerical results for this nonlinear system show
what is well known for linear systems: emphasis on error
control (higher penalization of deviations from the origin)
leads to a system more sensitive to measurement errors
and requiring higher control rates.

7. Conclusion

The numerical experiments show that the proposed ap-
proach provides an efficient solution for the considered
problem. The control design is based on a simple kine-
matic model; this model is characterized by two easy to
determine parameters (vehicle nominal velocity and maxi-
mum angular velocity). This way, dependencies on hard to
determine model parameters are avoided and the computa-
tion time is kept small. It was shown, on a realistic scenario
with worst case disturbances, that the derived controller
was able to keep the cross-track error under the required
tolerance even when the full dynamics of the vehicle were
considered and the system was subject to measurement
errors.

The controller can be automatically synthesized with
respect to different model parameters and optimization
criteria in few minutes, using common computers. The
computing requirements for the real time execution of the
controllers in the target system are much less demanding
and are feasible for most current computational platforms.
The main requirement is the extra storage space for the
table of optimal controls; the actual computation consists
of a bilinear interpolation at each control cycle.

The considered model assumes constant vehicle veloc-
ity. Operation at different cruise speeds can be tackled by
generating a different controller (22) for each desired speed.
Obviously, this leads to increased storage requirements in
the target system.

As future work, the authors plan to investigate what
can be gained by considering the full dynamical model in
the computation of the value functions.
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