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Abstract—This study investigates a mathematical model of HIV
infections in terms of a set of ordinary differential equations
(ODEs) which describes the interactions between the CD4+T
cells in the human immune systems and the viruses. In this
work, we propose a modification of the model proposed by [5]
by imposing a state constraint in the dynamics. The aim is to
obtain a new optimal chemotherapeutic strategy where the state
constraints play a crucial role. We treat our problem numerically
and compare results with existing literature.

I. INTRODUCTION

More than 30 years after the first detection of the Acquired
Immune Deficiency Syndrome (AIDS) and its etiological agent
the Human Immunodeficiency Virus (HIV) in the early 1980s,
the global health of the whole populations in the world is still
under a great threat due to a mysterious and difficult unknown
mechanism of HIV infections in the human body. Of the 34.3
million people worldwide living with HIV infections today,
more than 24 million are in the developing world. A proper
treatment or complete cure from AIDS is yet far away from
the reality and even an anti-HIV vaccine is still a dream to
the biologists and physicists [1], [2].

Chemotherapy has been the only way of treatment for
HIV positive patients. It aims at killing or halting the virus
pathogen thus helping the body to fight against infections [8].
Several (more that 30 varieties of single and/or combined)
antiretroviral drugs for the chemotherapy treatments have been
approved by the US Food and Drug Administration (FDA)
since 1987s aiming at reducing the viral population and
improving the immune response. All these drugs cannot cure
the diseases completely; rather they can improve the lives of
HIV positive patients for a certain period depending on the
optimal chemotherapeutic drug dosage strategies. This brings
new hope to the treatment of the HIV infection in absence of
the HIV vaccine. In this work we explore new strategies for
such treatments using optimal control techniques as explained
next.

II. MATHEMATICAL MODEL

Several mathematical models describing the cell-virus inter-
actions have been developed just in the past few years and even
these are constantly being updated to improve the modeling
aspects. We refer readers to ([3], [5], [6], [7], [8], [9], [10]

and references therein) for more details about the background
and analysis of different models as well as the propagation of
diseases. The mathematical model of HIV we consider here is
a set of ordinary differential equations (ODEs) describing the
interactions between the CD4+T cells in the human immune
systems and the viruses.

A. Existing Model

The mathematical model we focus on represents the dynam-
ics of the cell-virus interactions. Here a crucial role is played
by CD4+T lymphocytes, commonly referred to as helper-
T-cells. These cells are the main target of the virus and the
command system in the defense against it. A command from
these cells activates CD8+T cells, shortly called killer-T-cells,
which then fight the virus by killing its main source of repro-
duction. An infected CD4+T cell can produce around 500
new viruses before its death and thus becomes a much more
important target to destroy then the virus itself [9]. When a free
HIV virus enters the body and attacks the uninfected CD4+T
cells, the cells become infected and go through a neutral stage
before becoming actively infected for a certain period. The
cells in this latent/interim stage, which cannot infect other
cells are called the latently infected. Thus the CD4+T cells are
classified into three classes: active/uninfected CD4+T cells,
whose concentration is represented by a variable TA(t), and
the other two types of infected CD4+T cells are latently
infected and actively infected cells with their concentrations
represented by TL(t) and TI(t) respectively. The concentration
of the free infectious virus is represented by V (t).

When modeling the chemotherapy treatment in a time
interval [ts, tf ], the rate of chemotherapy at each instant t
is denoted by u. So 0 ≤ u(t) ≤ 1. Taking into account
the chemotherapy the dynamics of the four populations can
be modeled as in [5] by the following system of ordinary
differential equations:

dTA
dt

=
s

1 + V (t)
− µTA

TA(t)

+rTA(t)
(
1− TA(t) + TL(t) + TI(t)

Tmax

)
− µiV (t)TA(t)

(1)
dTL
dt

= µiV (t)TA(t)− µTL
TL(t)− µcTL(t) (2)



TABLE I
PARAMETERS AND CONSTANTS USED IN HIV MODEL.

Parameters/
Constants Definitions of the parameters and constants Values

µTA
natural death rate of uninfected T cell 0.02 d−1

µTL
natural death rate of latently infected T cell 0.02 d−1

µTI
natural death rate of actively infected T cell 0.24 d−1

µV natural death rate of free virus population 2.4 d−1

µi rate T cells become infected by free virus 2.4 × 10−5 d−1

µc rate TL cells convert to actively infected 3 × 10−3 d−1

r growth rate for the T cell population 0.03 d−1

N number of free virus produced by TI cell 1200

Tmax maximum T cell population level 1.5 × 103 mm−3

s source term for uninfected T cells
where s is the parameter in the term

s

1 + V
10 d−1 mm−3

dTI
dt

= µcTL(t)− µTI
TI(t) (3)

dV

dt
= (1− u(t))NµTI

TI(t)− µiV (t)TA(t)− µV V (t), (4)

with the initial conditions

TA(0) = TA0, TL(0) = TL0, TI(0) = TI0, V (0) = V0 (5)

for the case of infections by both free virus and infected cells.
Here the control u, the rate of chemotherapy, is assumed to

be a measurable function defined on the fixed interval [ts, tf ],
with the restriction that 0 ≤ u(t) ≤ 1, ∀t ∈ [ts, tf ].

The aim is to find the control strategy so that the amount
of uninfected cells TA at the end of treatment is maximized
while minimizing the side effects of the treatment. Thus the
objective functional is chosen to be

Minimize J(u) =

∫ tf

ts

(
− TA(t) +

1

2
Bu2(t)

)
dt (6)

where B > 0 denotes a weight parameter. The details,
explanations and analysis of the model can be found in [5]. We
provide the definitions of the parameters and their clinically
approved values in Table I.

B. Extended Model

The existing HIV models including [5] have been treated in
absence of state constraints. Our intention here is to find a new
solution of the model in [5] imposing some state constraints in
the data. We see that the CD4+T cells count is very crucial
for the treatments of HIV infections. The number of CD4+T
cells 200/mm3 indicates the severity of the disease [4]. Our
idea behind imposing the state constraints is to guarantee that
the uninfected CD4+T cells count TA should not go below a
certain lower bound, for example 200/mm3, during the entire
treatment. If the TA cells count goes below the certain level,
the concerned person is assumed to be seriously infected by
the HIV resulting in an AIDS patient. We modify the model
proposed by [5] imposing a state constraint on the uninfected
CD4+T cell populations TA(t) in addition to the dynamics
(1)–(4):

TA(t) ≥ T̃ (7)

where T̃ is a lower bound belonging to R.

III. RESULT DISCUSSION AND CONCLUSION

We solve our proposed model numerically. All our dynamics
have been written in ’MATLAB’ codes and solved by the ’Gen-
eral Pseudospectral Optimization Software (GPOPS)’. For the
convenient of comparing the results, we run the program tak-
ing both ’without state constraint’ and ’with state constraint’
into account, but the same cost as in (6). All initial values and
the parameters presented in the Table I are considered same
as in [5]. We initiate a chemotherapeutic schedules for a 200
days schemes. We obtain the optimal chemotherapy schedules
without state constraint for TA(0) = 900, TL(0) = 0.05,
TI(0) = 0.5, V (0) = 0.001 and B = 30 and the objective
functional for the cost in (6) is −1.9764466394E+05. In the
state constrained case, we obtain the optimal chemotherapy
schedules for TA(0) = 900, TL(0) = 0.05, TI(0) = 0.5,
V (0) = 0.001, B = 30 and T̃ = 200 and the objective
functional for the cost in (6) is −1.9764466848E+05 which is
less than the other case. We omit the graphical representation
here due to the page restriction.

The results we present here are preliminary ones. After
analyzing these preliminary results obtained from the objective
functional (6) in two different cases, it can be concluded that
imposing state constraint on the uninfected CD4+T cells has
less significant impact than our expectation because of the
increasing behavior of the uninfected CD4+T cell trajectory.
In spite of that, we see from the cost that our state constrained
model gives better result compared to that of without state
constraint. Finally this preliminary study suggests that our
model is less appropriate to illustrate the impact of state
constraints more effectively. We hope to study the impact of
state constraints using a related model.
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