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Motivation I

The ’smallest’ set of candidates of local minimizers ensuring the
optimal solution.

Pontryagin Maximum Principle (PMP) is a NCO. For normal
linear-convex problems, PMP is also sufficient.

In the normal linear-convex case, the NMP is not a sufficient
condition.
In [8], de Pinho and Vinter came up with the necessary
conditions of optimality in the ”Euler form” in terms of ”Joint”
adjoint inclusion.

These necessary conditions are not a maximum principle because
of the absence of Weierstrass Condition
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Motivation II

In [4], de Pinho et al. extended the work of de Pinho and Vinter
to state constrained problems

Such generalization remains a sufficient condition for the normal
linear-convex problems.

Quite recently in [3], Clarke and de Pinho derived a new
nonsmooth maximum principle in the vein of [8].

Lipschitz continuity of dynamics with respect to both state and
control is assumed.
Sufficiency of the nonsmooth maximum principle when applied
to normal linear-convex problems.
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Our Contribution

We obtain a NMP for state constrained problems in the vein of
[5].

We apply a ”strong version” of the results of Clarke and de Pinho
[3] to our problems.

Our result covers state constrained problems in two steps; first
the convex case is treated in the vein of [4] using techniques
based on [9] and then convexity is removed in vein of [5].

We add the Weierstrass conditions to adjoint inclusions using the
joint subdifferentials with respect to the state and the control.

Our Nonsmooth Maximum Principle (NMP) is a sufficient
condition for normal linear-convex problems.
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Problem Formulation

We consider the optimal control problem of our interest as

(P)



Minimize l(x(a),x(b))+
∫ b

a
L(t,x(t),u(t)) dt

subject to
ẋ(t) = f (t,x(t),u(t)) a.e. t ∈ [a,b]

h(t,x(t))≤ 0 for all t ∈ [a,b]

u(t) ∈ U(t) a.e. t ∈ [a,b]

(x(a),x(b)) ∈ E.

Here [a,b] is a fixed interval, the functions f : R×Rn×Rm→ Rn

describes the system dynamics, h : [a,b]×Rn→ R defines the
pathwise state constraint, L : [a,b]×Rn×Rm→ R is a scalar function
and U : [a,b]→ Rm is a multifunction.
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Basic Assumptions

We consider the following hypotheses throughout:

the functions L and f are L×B-measurable,

the multifunction t→ U(t) has L×B-measurable graph,

the set E is closed,

f is locally Lipschitz with respect to x and

l is locally Lipschitz.
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Notations

B represents the closed unit ball centered at the origin.

(x̄, ū) denotes the optimal solution of the problem under
consideration.

A function h : [a,b]→ Rp lies in W1,1([a,b];Rp) if and only if it
is absolutely continuous; in L1([a,b];Rp) iff it is integrable; and
in L∞([a,b];Rp) iff it is essentially bounded.

We say that the process (x̄, ū) is a strong local minimum if, for
some ε > 0, it minimizes the cost over admissible processes
(x,u) such that |x(t)− x̄(t)| ≤ ε for all t ∈ [a,b].

M H A Biswas PDEEC 2012 8/40



Motivation and Contribution
State Constrained OCPs: Convex and Nonconvex Cases

Mixed Constrained OCPs: Convex Case
Application of OC to Real Problems: HIV Model

Conclusion and Future Work
Bibliography

Auxiliary Results
Main Results
Sketch of the Proofs: Convex Case
Sketch of the Proofs: Non Convex Case

Reformulated Problem

We consider the following problem in absence of state constraints:

(S)



Minimize l(x(a),x(b))+
∫ b

a
L(t,x(t),u(t))dt

subject to
ẋ(t) = f (t,x(t),u(t)) a.e. t ∈ [a,b]
u(t) ∈ U(t) a.e. t ∈ [a,b]
(x(a),x(b)) ∈ E.

where all symbols and notations are same as in problem (P).
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Assumptions I

A1 There exist constants kφ
x and kφ

u such that for almost every
t ∈ [a,b] and every (xi,ui) (i = 1,2) such that

xi ∈ {x : |x− x̄(t)| ≤ ε}, ui ∈ U(t)

we have

|φ(t,x1,u1)−φ(t,x2,u2)| ≤ kφ
x |x1− x2|+ kφ

u|u1−u2|.

When A1 is imposed on f and/or L, then the Lipschitz constants
are denoted by kf

x, kf
u, kL

x and kL
u .
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Assumptions II

A2 The set valued function t→U(t) is closed valued and there exists
a constant c > 0 such that for almost every t ∈ [a,b] we have

|u(t)| ≤ c ∀u ∈ U(t).

A3 For all x such that |x(t)− x̄(t)| ≤ ε the function t→ h(t,x) is
continuous. Furthermore, there exists a constant kh > 0 such that
the function x→ h(t,x) is Lipschitz of rank kh for all t ∈ [a,b].

Our assumptions also assert that following conditions are satisfied:
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Assumptions III

|φ(t, x̄(t),u)−φ(t, x̄(t), ū(t))| ≤ kφ
u|u− ū(t)| for all u ∈ U(t) a.e. t

and there exists an integrable function k such that

|φ(t, x̄(t),u)| ≤ k(t) for all u ∈ U(t) a.e. t.

In the above φ is to be replaced by f and L.

The sets

f (t,x,U(t)) and L(t,x,U(t)) are compact for all x ∈ x̄(t)+ εB.
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Auxiliary Results

Theorem

(adaption of Theorem 3.1 in [3]) Let (x̄, ū) be a strong local minimum
for problem (S). If the basic assumptions are satisfied, f and L satisfy
A1 and U is closed valued, then there exist p ∈W1,1([a,b];Rn) and a
scalar λ0 ≥ 0 satisfying

(p(t),λ0) 6= 0 ∀ t ∈ [a,b],

(−ṗ(t),0) ∈ ∂C
x,u
[
〈p(t), f̄ (t)〉−λ0L̄(t)

]
−{0}×NC

U(t)(ū(t)) a.e.

∀u ∈ U(t), 〈p(t), f (t, x̄(t),u)〉−λ0L(t, x̄(t),u)≤ 〈p(t), f̄ (t)〉−λ0L̄(t) a.e.

(p(a),−p(b)) ∈ NL
E(x̄(a), x̄(b))+λ0∂l(x̄(a), x̄(b)).

(1)

where f̄ (t) and L̄(t) represent the function evaluated at (t, x̄(t), ū(t)).
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Main Result: Convex Case

We now impose the following convexity assumption on the
“velocity set” for problem (P):

[C] The velocity set {(v, l) = (f (t,x,u),L(t,x,u)), u ∈ U(t)} is
convex for all (t,x) ∈ [a,b]×Rn.

Introduce the following subdifferential

∂̄xh(t,x) := co {limξi : ξi ∈ ∇xh(ti,xi),(ti,xi)→ (t,x)}. (2)
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Main Result: Convex Case

Theorem

Let (x̄, ū) be a strong local minimum for problem (P). Suppose that f
and L satisfy A1, and that assumptions A2 and C hold and h satisfies
A3, then there exist p ∈W1,1([a,b];Rn), γ ∈ L1([a,b];R), a measure
µ ∈ C⊕([a,b];R), and a scalar λ0 ≥ 0 satisfying

µ{[a,b]}+ ||p||∞ +λ0 > 0,
(−ṗ(t),0) ∈ ∂C

x,u
[
〈q(t), f̄ (t)〉−λ0L̄(t)

]
−{0}×NC

U(t)(ū(t)) a.e.

∀ u ∈ U(t), 〈q(t), f (t, x̄(t),u)〉−λ0L(t, x̄(t),u)≤ 〈q(t), f̄ (t)〉−λ0L̄(t) a.e.

(p(a),−q(b)) ∈ NL
E(x̄(a), x̄(b))+λ0∂l(x̄(a), x̄(b)),

γ(t) ∈ ∂̄h(t, x̄(t)) µ-a.e.,

supp{µ} ⊂ {t ∈ [a,b] : h(t, x̄(t)) = 0} ,
M H A Biswas PDEEC 2012 15/40
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Main Result: Convex Case

where

q(t) =

{
p(t)+

∫
[a,t) γ(s)µ(ds) t ∈ [a,b)

p(t)+
∫
[a,b] γ(s)µ(ds) t = b.

(3)
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Main Result: Non Convex Case

We derive a NMP for nonconvex case of the problem (P).

Convexity assumption [C] is removed.

Replace the subdifferential ∂̄xh by a more refined subdifferential
∂>x h defined by

∂
>
x h(t,x) := co {ξ :∃(ti,xi)

h−→ (t,x) : h(ti,xi)> 0 ∀i, ∇xh(ti,xi)→ ξ}.
(4)
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Main Result: Non Convex Case

Theorem

Let (x̄, ū) be a strong local minimum for problem (P). Assume that f
and L satisfy A1, h satisfies A3 and that A2 as well as the basic
assumptions are satisfied. Then there exist an absolutely continuous
function p, integrable functions ξ and γ, a non-negative measure
µ ∈ C⊕([a,b];R), and a scalar λ0 ≥ 0 such that conditions (i)–(vi) of
Theorem 2 hold with ∂>x h as in (4) replacing ∂̄xh and where q is as
defined in (3).
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A Refinement of Theorem 3

(x̄, ū) to be a weak local minimum instead of a strong local
minimum.

Our results in Theorem 3 have been extended to cover with a
W1,1 local minimum for problem (P) following the approach in
[10].

Theorem

Let (x̄, ū) be merely a W1,1 local minimum for problem (P). Then the
conclusions of Theorem 3 hold.
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The Convex Case

We validate the Theorem 2 to the following problem

(Q)



Minimize l(x(b))
subject to

ẋ(t) = f (t,x(t),u(t)) a.e. t ∈ [a,b]
u(t) ∈ U(t) a.e. t ∈ [a,b]

h(t,x(t)) ≤ 0 for all t ∈ [a,b]
(x(a),x(b)) ∈ {xa}×Eb.

Problem (Q) is a special case of (P) in which E = {xa}×Eb and
l(xa,xb) = l(xb).
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Sequence of Problems

Penalize state-constraint violation.
Define the following problem for each i ∈ N:

(Qi)


Minimize l(x(b))+ i

∫ b

a
h+(t,x(t)) dt

subject to
ẋ(t) = f (t,x(t),u(t)) a.e. t ∈ [a,b]

(x(a),x(b)) ∈ {xa}×Eb,

where h+(t,x) := max{0,h(t,x)}. This differs from (Q) by
shifting the state constraint into the objective function.
Following the approach in [9], we assume that penalization is
effective, i.e., we suppose the interim hypothesis

[IH] lim
i→∞

inf{Qi}= inf{Q}.
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Application of Ekeland’s theorem
Let W denote the set of measurable functions
u : [a,b]→ Rm, u(t) ∈ U(t) a.e. for which there exists an absolutely
continuous function x such that ẋ(t) = f (t,x(t),u(t)), for almost every
t ∈ [a,b], x(t) ∈ x̄(t)+ εB for all t ∈ [a,b], x(a) = xa and x(b) ∈ Eb.
We provide W with the metric ∆(u,v) :=‖ u− v ‖L1 and define
Ji : W→ R using the arc x mentioned above:

Ji(u) := l(x(b))+ i
∫ b

a
h+(t,x(t))dt.

Then (W,∆) is a complete metric space in which the functional
Ji : W→ R is continuous. Moreover, problem (Qi) above is closely
related to the abstract problem

(Ri)

{
Minimize Ji(u)
subject to u ∈W.

M H A Biswas PDEEC 2012 22/40
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Study of perturbed problem

Clearly (ū, x̄(b)) is admissible for (Ri), with
Ji(ū) = l(x̄(b)) = inf Q since for all t ∈ [a,b], h+(t, x̄(t)) = 0 .
Let εi = Ji(ū)− inf Qi.
We have εi ≥ 0 and, taking into account [IH], εi→ 0. Ekeland’s
variational principle (see [10]) applies. It asserts the existence of
ui ∈W such that

‖ ui− ū ‖L1≤
√

εi (5)

and ui minimizes over W the perturbed cost functional

u 7→ Ji(u)+
√

εi ‖ ui− ū ‖L1 . (6)

Let xi be the trajectory corresponding to ui.
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Optimality conditions for the perturbed problem

Ekeland’s Theorem shows that the process (xi,ui) solves the
following optimal control problem:

(Di)



Minimize l(x(b))+ i
∫ b

a
h+(t,x(t))dt+

√
εi

∫ b

a
|u(t)−ui(t)| dt

subject to
ẋ(t) = f (t,x(t),u(t)) a.e. t ∈ [a,b]
u(t) ∈ U(t) a.e. t ∈ [a,b]
x(t) ∈ x̄(t)+ εB for all t ∈ [a,b]
x(a) = xa

x(b) ∈ Eb.

Since εi→ 0 (by [IH]) it follows from (5) that ui→ ū strongly. Apply
Theorem 1 to each (Di), rewriting the conditions and taking the limits
as in [4] we get the required conclusions.
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The ’minimax’ problem

We consider the following ’minimax’ optimal control problem

(R̃)


Minimize l̃(x(a),x(b),maxt∈[a,b] h(t,x(t)))
over x ∈W1,1 and measurable functions u satisfying
ẋ(t) = f (t,x(t),u(t)) a.e. t ∈ [a,b]
u(t) ∈ U(t) a.e. t ∈ [a,b]
(x(a),x(b)) ∈ Ea×Rn.

A4 The integrable function l̃ is Lipschitz continuous on a
neighbourhood of

(x̄(a), x̄(b), max
t∈[a,b]

h(t, x̄(t)))

and l̃ is monotone in the z variable, in the sense that z′ ≥ z
implies l̃(y,x,z′)≥ l̃(y,x,z), for all (y,x) ∈ Rn×Rn.
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Apply Ekeland’s theorem for sequence of problems

We consider the set

V := {(x,u,e) : (x,u) satisfies ẋ(t) = f (t,x(t),u(t)),
u(t) ∈ U(t) a.e., e ∈ Rn,(x(a),e) ∈ E and ‖x− x̄‖L∞ ≤ ε}

and let dV : V×V→ R be a function defined by

dV((x,u,e),(x′,u′,e′)) = |x(a)− x′(a)|+ |e− e′|+
∫ b

a
|u(t)−u′(t)|dt

M H A Biswas PDEEC 2012 26/40
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The Convex Case

The problem

The problem of interest is

(P′)



Minimize l(x(a),x(b))
subject to
ẋ(t) = f (t,x(t),u(t)) a.e. t ∈ [a,b]

h(t,x(t))≤ 0 for all t ∈ [a,b]

(x(t),u(t)) ∈ S(t) a.e. t ∈ [a,b]

(x(a),x(b)) ∈ E.

where we define

S(t) := {(x,u) : (t,x,u) ∈ S} for all t ∈ [a,b].

and for some ε > 0

Sε
∗(t) = {(x,u) ∈ S(t) : |x− x̄(t)| ≤ ε} .
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The Convex Case

Assumptions I

We assume that a function φ(t,x,u) satisfies [Lε
∗] if:

[Lε
∗] There exist constants kφ

x and kφ
u such that for almost every

t ∈ [a,b] and every (xi,ui) ∈ Sε
∗(t) (i = 1,2) we have

|φ(t,x1,u1)−φ(t,x2,u2)| ≤ kφ
x |x1− x2|+ kφ

u|u1−u2|.

For S(t) we consider the following bounded slope condition:
[BSε

∗] There exists a constant kS such that for almost every
t ∈ [a,b] the following condition holds

(x,u) ∈ Sε
∗(t), (α,β) ∈ NP

S(t)(x,u) =⇒ |α| ≤ kS|β|.
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The Convex Case

Assumptions II

[CSε
∗] The set Sε

∗(t) is closed and there exists an integrable
function c such that for almost every t ∈ [a,b] the following holds

Sε
∗(t) is closed and (x,u) ∈ Sε

∗(t) =⇒ |(x,u)| ≤ c(t).

[C’] The velocity set {v ∈ Rn : v = f (t,x,u), u ∈ S(t,x)} is convex
for all t ∈ [a,b].

[H1] For all x ∈ x̄(t)+ εB the function t→ h(t,x) is continuous and
there exists a scalar kh > 0 such that the function x→ h(t,x) is
Lipschitz of rank kh for all t ∈ [a,b].

[H2] For almost every t ∈ [a,b] the following condition holds: for all
u ∈ S(t, x̄(t)) and all sequence xn→ x̄(t) there exists a sequence
un ∈ S(t,xn) such that un→ u.
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The Convex Case

Main Results

Theorem

Let (x̄, ū) be a strong local minimum for problem (P′). Assume that
the basic hypotheses, [C’], [H1], [H2], [BSε

∗] and [CSε
∗] hold and that

f satisfies [Lε
∗]. Then there exist p ∈W1,1([a,b];Rn), γ ∈ L1([a,b];R),

a measure µ ∈ C⊕([a,b];R), and a scalar λ0 ≥ 0 such that

µ{[a,b]}+ ||p||∞ +λ0 > 0,
(−ṗ(t),0) ∈ ∂C

x,u〈q(t), f (t, x̄(t), ū(t))〉−NC
S(t)(x̄(t), ū(t)) a.e.,

(x̄(t),u) ∈ S(t) =⇒ 〈q(t), f (t, x̄(t),u)〉 ≤ 〈q(t), f (t, x̄(t), ū(t))〉 a.e.,

(p(a),−q(b)) ∈ NL
E(x̄(a), x̄(b))+λ0∂l(x̄(a), x̄(b)),

γ(t) ∈ ∂̄h(t, x̄(t)) µ-a.e.,

supp{µ} ⊂ {t ∈ [a,b] : h(t, x̄(t)) = 0} ,
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Mathematical Model of HIV
Proposed Model

Existing Model of HIV

We consider the HIV model as in [7]

dTA

dt
=

s
1+V(t)

−µTATA(t)+ rTA(t)
(

1− TA(t)+TL(t)+TI(t)
Tmax

)
−µiV(t)TA(t),

dTL

dt
= µiV(t)TA(t)−µTLTL(t)−µcTL(t),

dTI

dt
= µcTL(t)−µTI TI(t),

dV
dt

= (1−u(t))NµTI TI(t)−µiV(t)TA(t)−µVV(t),
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Mathematical Model of HIV
Proposed Model

Objective function

The objective is

Minimize J(u) =
∫ tf

ts

(
−TA(t)+

1
2

Bu2(t)
)

dt

subject to
the dynamics (i)– (iv) defined in the model.

where B > 0 denotes the weight parameter.
with the initial conditions

TA(0) = TA0, TL(0) = 0, TI(0) = 0, and V(0) = V0,

for the case of infection by free virus, or

TA(0) = TA0, TL(0) = TL0, TI(0) = TI0, and V(0) = V0,

for the case of infections by both free virus and infected cells.
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Mathematical Model of HIV
Proposed Model

Proposed Model of HIV

Our proposed HIV model

dTA

dt
=

s
1+V(t)

−µTATA(t)+ rTA(t)
(

1− TA(t)+TL(t)+TI(t)
Tmax

)
−µiV(t)TA(t),

dTL

dt
= µiV(t)TA(t)−µTLTL(t)−µcTL(t),

dTI

dt
= µcTL(t)−µTI TI(t),

dV
dt

= (1−u(t))NµTI TI(t)−µiV(t)TA(t)−µVV(t),

TA(t)≥ T̃,

Here T̃ is a lower bound belonging to R.
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Mathematical Model of HIV
Proposed Model

Objective functional

Our objective functional

Minimize J(u) =−TA(tf )+
∫ tf

ts
Bu(t)dt

with the initial conditions

TA(0) = TA0, TL(0) = TL0, TI(0) = TI0, and V(0) = V0,
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Mathematical Model of HIV
Proposed Model

The Challenge

Proposed model may be difficult due to nonlinearity of the
dynamics and the presence of state constraints.

New chemotherapeutic strategy for the HIV infections.

Analytical solution for optimal chemotherapy and then compare
the result by numerical illustration.
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Conclusion and Future Works

1 Final refinements of our developed results,
2 Try to derive new MPs for OCPs with mixed constraints for

nonconvex case,
3 Study the feasibility of imposing state constraints on the HIV

model,
4 Analytical optimality conditions of our proposed HIV model and

compare the results with numerical simulations.
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Thank You for Attentions.

Questions?

M H A Biswas PDEEC 2012 40/40


	Motivation and Contribution
	Motivation
	Contribution

	State Constrained OCPs: Convex and Nonconvex Cases
	Auxiliary Results
	Main Results
	Sketch of the Proofs: Convex Case
	Sketch of the Proofs: Non Convex Case

	Mixed Constrained OCPs: Convex Case 
	The Convex Case

	Application of OC to Real Problems: HIV Model
	Mathematical Model of HIV
	Proposed Model

	Conclusion and Future Work
	Bibliography

