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Abstract

Gaussian processes are a powerful, non-parametric tool
that can be be used in supervised learning, namely in re-
gression but also in classification problems. The main ad-
vantages of this method are the ability of GPs to provide
uncertainty estimates and to learn the noise and smoothness
parameters from training data. The aim of this short tuto-
rial is to provide the basic theoretical aspects of Gaussian
Processes, as well as a brief practical overview on imple-
mentation.

The main motivation of this work was to develop a new
approach to detect outliers on acoustic navigation algo-
rithms for Autonomous Underwater Vehicles, capable of ad-
justing to different operation scenarios, since this is a major
problem in the majority of Autonomous Underwater Vehi-
cles. In the last part of the tutorial, a brief insight on this
actual problem, and the solution proposed, that involves
Gaussian Processes as a predictor, and some background
subtraction techniques is described.

1. Introduction

In the machine learning context, supervised learning is
concerned with inferring the values of one or more outputs,
or response variables, for a given set of inputs that have
not yet been observed, or predictor variables [4]. These
predictions are based on the training samples of previously
solved cases. Depending on whether the output is contin-
uous or discrete, we talk about regression or classification
problems, respectively. Traditional approaches to solve this
kind of problem usually consist on parametric models, on
which the behaviour of data is described by a previously
defined model, and the parameters of this model are learned
from the training data. By adjusting these parameters, it is
possible to fit the model to the data. Once this is done, it
should be straightforward to use the model to and predict

the output if new inputs are provided. Both linear and non-
linear regression techniques have been extensively used for
this purpose, using different estimation techniques to fit the
data, namely several different flavours of the least-squares
algorithms, ridge regression, etc.

Despite all the advantages of these traditional regression
techniques, in all of them it is necessary to make assump-
tions about the the smoothness of our model. While incor-
porating prior knowledge in the model that correctly de-
scribes the evolution of the data we have can be of great
value, sometimes this information is just not available. And
using a model that does not correctly characterizes the data
is likely to lead to poor results.

A completely different approach is given by Gaussian
Processes, by neglecting the parametric model viewpoint
and instead define a prior probability distribution over all
possible functions directly [3]. This paper has a strong fo-
cus on introducing the use of Gaussian Process in regres-
sion, and is is organised as follows. In Section 2 the basic
principles of the Gaussian Processes are given. In section 3,
prediction with Gaussian Processes is derived, and learning
with Gaussian Processes is covered in section 4. In section
4 we describe the application and in section 5 the results ob-
tained. In the end we present some conclusions and future
work directions.

2. Gaussian Processes

Gaussian Processes (GPs) are powerful non-parametric
technique with explicit uncertainty models, that finds its
used mainly in regression and classification problems. The
reason because they are non-parametric is because instead
of trying to fit the parameters of a selected basis functions,
instead GPs rather try to infer how all the measured data is
correlated.

A GP is, by definition, a collection of random variables
with the property that the joint distribution of any of its sub-
set is joint Gaussian distribution. At this point, it is impor-
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tant to make a clear distinction between a Gaussian distri-
bution and a Gaussian process.

A Gaussian distribution is a continuous probability dis-
tribution, informally known as the "bell shape curve", and
fully specified by a mean and a covariance: x v N (µ, σ).
Moreover, a uni-variate Gaussian distribution can be de-
fined by the function:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (1)

Gaussian Processess, on the other can, can be though of
a generalization of the Gaussian probability distribution to
infinitely many variables. A Gaussian process is a Gaussian
random function, and is fully specified by a mean function
m(x) and covariance function k(x, x′):

f(x) v GP(m(x), k(x, x′) (2)

It is clear then the correspondence between GPs and
Gaussian distributions. The representation given by (2)
means that "the function f is distributed as a GP with mean
function m and covariance function k" [13]. To define an
individual GP, one needs to choose a form for the mean
function, m(x), and for the covariance function k(x, x′).

In most applications there is no prior knowledge about
the mean functon, m(x) of a given Gaussian Process. By
simplicity, and because GPs are, by definition, a linear com-
bination of random variables with Normal Distribution, this
is commonly assumed to be zero [3]. If there is, however,
enough information about the process we are modelling
such that the mean function should be explicitly different
than zero, this can be done in a very trivial way, without
loss of the results presented below.

The covariance function, k(x, x′), can be in general any
function that takes any two arguments, such that k(x, x′)
generates a nonnegative definitive covariance matrix K. By
choosing the covariance function, one is implicitly making
underlying assumptions about certain aspects of the process
being modelled, such as smoothness, periodicity, stationar-
ity, among others. Obviously there are great set of possible
covariance functions, but one that is most frequently used is
the squared exponential covariance function:

k(x, x′) = σ2
fexp(−

1

2l2
|x− x′|2) (3)

This covariance function is also sometimes referred to as
Radial Basis Function. It is easy to see that for equation 3
the covariance between any two inputs is really close to one
if the inputs are close to each other, and decreases exponen-
tially as the distance between the inputs increases. Here,
σf and l are what we call the hyperparameters, mainly due
to the resemblance to the hyperparameters of a Neural Net-
work. In most cases, the choice of parameters can signifi-
cantly influence the performance of the GP. It can be shown

that using the squared exponential as a covariance function
is equivalent to regression using infinitely many Gaussian
shaped basis functions placed everywhere, and not just the
training points [16].

The output of the Gaussian process model is a normal
distribution, expressed in terms of mean and variance. The
mean value represents the most likely output and the vari-
ance can be interpreted as the measure of its confidence.

3. Prediction with Gaussian Processes
Prediction problems are most of the time related with

events occurring in a time-series . A typical example of
a prediction problem can be stated in the following man-
ner: given some observations {y1, y2, . . . , yN} of a de-
pendent variable, subject to noise, at certain time-instants
{x1, x2, . . . , xN}, what is our best estimate of the depen-
dent variable at a new time-instant xN+1? In the Gaus-
sian Process framework, the inputs would be the vector
X = {x1, x2, . . . , xN}, and the test points would be the
vector X∗, composed by all the points we want to predict
and, in this case, only xN+1.

If we are ready to make assumptions about the under-
lying model of the observed values follow, this problem is
usually tackled by using traditional linear regression meth-
ods. However, if no assumptions are taken related to the dis-
tributions of the observations, then Gaussian Processes are
likely to be a better choice when comparing to their para-
metric counterpart ones.

Lets consider we are in present of a set of observations
y, on which each element is a sample from a Gaussian Dis-
tribution, representing the real value of the observation af-
fected by some independent Gaussian noise ε with variance
σn. We can then think on the observations as being the sum
of a function plus an additive gaussian noise:

y = f(x) + ε (4)

Given this, the objective is now to predict f∗, expected
value given the test input x∗. Recalling that a Gaussian Pro-
cess is a set of random variables which have a consistent
Gaussian distribution with mean zero, we can represent our
problem as:

[
y
y∗

]
v N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (5)

Here, the different K matrix are built using any function
k(x, x′) able to perform as a covariance function. In par-
ticular, as we are in the presence of observations corrupted
with noise, the covariance between any two observations is
given by:

cov(yp, yq) = k(xp, xq) + σ2
nδpq (6)
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In equation 6 δpq is the Kronecker delta, which is a func-
tion of two variables equal to 1 if and only if both its inputs
are equal, and 0 otherwise. By combining (3) and (6) we are
now ready to build For the vector of inputs x, the covariance
of the associated observations is given by equation 7 and by
combinnit should be noted that the diagonal elements of K
is σ2

f + σ2
n

cov(y) = K(X,X) + σ2
nI (7)

The prediction step consists in estimating the mean value
and the variance for y∗. Considering equation 5, it is obvi-
ous that want is desired is to estimate the conditional dis-
tribution of y∗ given y. An interesting result is that Re-
member that y and y∗ are jointly Gaussian random vectors,
then the conditional distribution of y∗ given y is given by
equation (8). For the simplicity of the notation, in (9) and
(10), we used k = K(x, x∗), CN = K(X,X) + σ2

nI and
k∗∗ = K(X∗, X∗).

y∗|y v N (f̄∗, cov(f∗)) (8)

f̄∗ = kT∗ C
−
N1y (9)

cov(f∗) = k∗∗ − kT∗ C−1N k∗ (10)

The mean value of the prediction, f̄∗ in equation (9),
gives us the our best estimate for y∗, and is also known as
the matrix of regression coefficients. The variance, cov(f∗),
is the Schur complement, and is an indication of the un-
certainty of our estimation. An important conclusion from
these results is that the mean prediction f̄∗ is a linear com-
bination of the observations y. Another aspect to underline
is that the variance, cov(f∗) does not depend on the obser-
vations, but only in the inputs.

For reasons that will be more clear ahead, we should also
at this point introduce the marginal likelihood, p(y|X). By
marginalization we mean that we are integrating over the
function values f . The marginal likelihood is then integral
of the likelihood times the prior:

p(y|X) =

∫
p(y|f,X)p(f |X) df (11)

It can be seen in [16] that under the Gaussian process
model, the prior is Gaussian, f |X v N (0,K), and the like-
lihood is also a Gaussian, y|f v N (f, σ2

nI). Using the log-
arithmic identify to simplify the calculations, the result of
the integration over f , the log marginal likelihood is:

logp(y|X) = −1

2
yTC−1N y − 1

2
log|CN | −

n

2
log2π (12)

This exact inference is possible because both the prior
and the likelihood are Gaussian, otherwise the integral in

(11) would likely be intractable. The three different terms
in (12) play different roles in the likelihood. The first one
is the only one involving the past observations y and, there-
fore, is the data-fit term. The second term, on the other
hand, depends only on the covariance matrix, and works in
an analogous way to the regularization terms in linear re-
gression, adding a penalty as the complexity increases. The
last term is only a normalizing constant, and doesn’t play a
very specific role in the marginalization of the likelihood. A
careful analysis of the effects of the hyperparameters in the
log marginal likelihood can be found in [16].

A small note about the computational aspects of com-
puting the log likelihood, as given by (12). In fact, there are
some complexity issues related with the inversion of CN ,
which depending on the size of the data points, might be
quite heavy. Moreover, if CN is an ill-conditioned matrix,
its inversion is not trivial. There is already some work de-
voted to solve this non-trivialities, and more details about
this issues can be found in [16], [6] and [17].

4. Learning the Hyperparameters
Given a covariance function, it is straightforward to

make predictions for new test points, as is only a matter of
algebraic matrix manipulation. However, in practical appli-
cations it is unlikely to know which covariance function to
use. Clearly, the reliability of our regression is then depen-
dent on how well we select the parameters that the selected
covariance function requires [17].

Let θ be the set of hyperparameters needed for a given
covariance function. In particular lets consider the case in
(13), where the squared (3) and (6) were combined to form a
squared exponential function for the prediction of noisy ob-
servations; then θ = {l, σf , σm}. The challenge now, and
assuming that the covariance function is adequate for the
data, is to choose a value for each of the hyperparameters,
the free parameters ruling a covariance function.

k(xp, xq) = σ2
fexp(−

1

2l2
(xp − xq)2) + σ2

nδpq (13)

For the covariance function in (13), l is the length-scale,
σf the signal noise and σn the noise variance. The length-
scale characterizes the distance in input space before the
function value can change significantly. Short length-scales
mean that the predictive variance can grow rapidly away
from the data points, and all the predictions are little cor-
related between each other. In the same way, we can think
about σf as the vertical lengthscale. The noise that affects
the process is supposed to be random, and so no correlation
between different inputs is expected, and so the term σn is
only present on the diagonals of the covariance matrix.

The trial-and-error approach for choosing the appropri-
ate values for each parameters is obviously not adequate.
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Figure 1. Example of the effect of optimizing the hyperparameters.
On both plots the same Gaussian Process regression was done, but
on the left ones the hyperparameters were not optimized, and on
the right one they were.

Besides the obvious problems of this random approach, the
covariance function can be as complex functions as needed
and, therefore, the number of hyperparameters can be larger.
What is needed is to find the set of parameters that optimize
the marginal likelihood.

Our maximum a posteriori estimate of θ occurs when the
marginal likelihood, now with the notation p(y|X, θ) to un-
derline we interested in the hyperparameters. The problem
of learning with Gaussian processes is exactly the problem
of learning them. Care should be taken, as the minimization
of p(y|X, θ) is a non-convex optimization task, so no guar-
antee of convergence is provided. To do such minimization
is usually achieved through some standard gradient based
technique, as long as the partial derivatives of the covari-
ance matrix with respect to each one of the parameters are
possible to get.

∂

∂θk
p(y|X, θ) =

1

2
tr(C−1N

∂CN

∂θk
) +

1

2
yTC−1N

∂CN

θk
C−1N y

(14)
Equation (14) shows the analytical formulation to com-

pute the different partial derivatives of the log marginal like-
lihood. Because of its simplicity, the Gradient Descent is a
common technique to find the set of near-optimal hyperpa-
rameters that maximize the log likelihood. By iteratively
combining this with the standard gradient descent method,
synthesized by equation (15), until convergence given that
the learning rate is appropriate.

θk = θk + w
∂

∂θk
p(y|X, θ) (15)

Alternatives to the maximum likelihood estimation of
the parameters, that was just described, is to use a cross-
validation (CV), or generalized cross-validation algorithm.
However, some previous works show that this approach is

Figure 3. LBL acoustic positioning system schematic diagram

rather difficult whenever there is a large number of param-
eters to estimate [17]. More information about CV tech-
niques to estimate values for the hyperparameters can be
found in detail in [16].

5. Application

The Ocean Systems Group (OSG), a study group within
the Robotics unit of INESC TEC, has its main research ef-
forts directed toward the development of small-sized au-
tonomous robotic vehicles, both in underwater as on the
surface. Currently, the main challenge for this kind of vehi-
cles, and one of the main research-areas, is related with the
improvement of the navigation algorithms that allow the ve-
hicles to localize themselves within the environment.

While for the vehicles navigating on the surface can rely
on the highly accurate GPS systems available, such is not
possible for vehicles that move underwater, as GPS signals
are not available in those environments. Therefore the ma-
jority of the Autonomous Underwater Vehicles (AUVs) rely
on acoustic navitation algorithms and, in particular, on long
baseline (LBL) acoustic positioning systems.

For this systems, prior to any mission, the vehicle is in-
formed about the actual global coordinates of the the bea-
cons that constitute the acoustic network used. Then, in
order to know its exact localization at any given time, it has
to interrogate each beacon, sending an acoustic signal with
a specific frequency and waiting for the beacon reply. By
timing this acoustic events, it is then possible to compute
the actual distance of a given vehicle to each of the two
beacons and, therefore, its real-time global coordinates.

The algorithm used to estimate distances d1 and d2 , as
can be seen on figure 3, assumes that the AUV positions
remains stationary between the interrogation of the beacon
and the reception of the correspondent answer. It is also
considered that the depths the AUV reaches while in mis-
sion are constant and quite small relative to the distances
to both beacons and, thereby, we can assume only motion
in the horizontal plane. The measures available are highly
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Figure 2. Example of range measurements acquired to a pair of buoys during a mission. In green we can see the measurements classified
by an expert as good ones, while the ones in blue are classified as spurious and caused by reflections.

irregular and noisy, and require filtering. The technique cur-
rently in use by the OSG vehicles is based on a Kalman Fil-
ter (KF). The KF plays has a very important role in the esti-
mation process, as not only it allows the elimination of spu-
rious data measurements, but also to fuse navigation data
coming from different sensors. An example of range mea-
surements acquired during a standard mission can be seen
in figure 2.

The filtering of the measures is done by evaluating the
covariance of the error associated with the measurements as
and comparing it to the design parameter γ. Even though
this method achieves some reasonable results, is not very
flexible as it relies solely on a single parameters, and doesn’t
allow to adapt to the different varying environmental condi-
tions, such as temperature and salinity of the water, and that
have a great affect in the measures. As a consequence, γ
as to be wide enough, but this causes spurious messages
to be accepted as if they were not spurious. In opposition
to direct range measurements, these spurious measures are
mostly caused by reflections of the acoustic signals both in
the bottom of the sea, or in the surface.

The main motivation for this work came from a paper
from Bingham and Seering [2], where both direct mea-
surements and reflections were modelled, but in an off-line
post processing environment. By using an Expectation-
Maximization algorithm and a proper modelling of both the
range, and the reflection, some very interesting results.

For this work, the objective was to filter the range mea-
surements using some techniques used in background sub-
traction, a widely used approach for detecting moving ob-

jects from static cameras. After a careful review of some of
the techniques used, it was decided to use a Running Gaus-
sian average to online validate the range measurements.
This model is based on ideally fitting a Gaussian probability
density function on the last n pixels. In order to avoid fitting
from scratch at each new frame time, a running average is
computed instead [12].

µt = (1− ρ)µt−1 + ρXt (16)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt) (17)

Following the paper by Stauffer and Grimson, who pro-
posed some changes to the traditional running Gaussian ap-
proaches, the running averages mean and covariance are up-
dated according to (16) and (17). Xt is the new observation
to be validated and ρ = N (Xt|µk, σk). A matched is de-
fined whenever an observation is within 2.5 standard devia-
tion of a distribution.

The range measurements are expected to vary through-
out time, as the distance from the AUV to both beacons
also varies according to the motion of the vehicle. In that
sense, the mean of running Gaussian should also vary in the
same way. To tackle this problem, what we propose is to
predict the next range measurement, based on the past mea-
surements taken as correct. To such prediction one can use
whether a linear regression, or a Gaussian Process regres-
sion. Given the scope of this paper, which pretends to be a
tutorial on the use of Gaussian Processes, in the next section
results will be presented comparing both this approaches
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Figure 4. Linear Regression: results

Figure 5. GP Regression: results

6. Results

In this section we will present the results that compare a
standard linear regression, with a GP regression. All these
results are comparable, in the sense that all of them relate to
the same data, acquired during a mission performed in Au-
gusto 2011, in the Douro River. The linear regression algo-
rithms were implemented by the author, but for the regres-
sion with the Gaussian Processes, the framework developed
for Matlab by Carl Edward Rasmussen and Christopher K.
I. Williams, and freely available on the Internet was used.

On figure 4 we can see the result of the linear regression,
for the basis are {1, x, x2}, a regression using a quadratic
function. Even though at a coarse level the regression is able
to correctly follow actual ranges, we can see that specially
at the inflexion points there is a lot of noise predictions, that
don’t match the actual behaviour of the vehicle.

On figure 5 we have the correspondent Gaussian Process
based regression. Here in this case, it is also possible to un-
derstand that the regression predictions follow closely the
actual range measures. A careful look will in fact realize
that in this case, there is less noisy predictions in the inflex-
ion points, with the regression fitting more closely to the
data. This regression was made using a squared exponential
function as in eq. (13) with the following hyperparameters:

Figure 6. GP Regression: detail with improved parameters. It is
possible to note some outliers being rejected.

l = 50, σf = 10 and σn = 1;
As for the linear regression, there is not much to be im-

proved, in the the regression with the Gaussian Process, we
can still try to vary the hyperparameters, as described in the
previous sections. In fact, the framework under used pro-
vides the methods necessary to obtain the derivatives of the
log marginal likelihood, that would be of great help.

However, and despite some effort, the parameters
couldn’t be optimized, due to the lack of convergence. Re-
calling from the previous chapters, the minimization of the
log marginal likelihood is not a convex optimization, and
therefore the gradient descent methods that were used, with
a large set of learning rates, are not guaranteed to succeed,
as indeed happened. On the other side, and due to the in-
trinsic and very dynamic nature of the problem, where the
vehicle in question is always moving with different attitudes
towards each of the buoys, is is probably very difficult that
the optimal parameters are the same throughout the whole
mission. Instead, it is more likely that this parameters keep
varying, and so, the gradient descent algorithm doesn’t con-
verge.

Even though, a simple trial and error approach lead to a
small improve in the prediction, with its output more im-
mune to spurious measures. With the hyperparameters set
to l = 50, σf = 10 and σn = 5, where one can note the
change on the signal noise from 1 to 5, we can achieve better
results. With the detailed view, in figure 6 we can confirm
that some outliers are being ignored.

7. Conclusion and Future Work

In this paper the regression with Gaussian Processes is
covered. It was demonstrated that it can be a quite effective
method if there is some prior knowledge about the covari-
ance of the measures. In fact, this is of utmost importance,
as choosing a wrong covariance function can lead to poor
performance.

A note as well for the possibility that Gaussian pro-
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cess have for classification problems, where the approach
is pretty similar as for prediction problems. The main dif-
ferences are related with the fact that in classification prob-
lems, and due to the fact that an activation function is used,
the integration of the prior times the posterior that leads to
the likelihood is in fact intractable. So approximations al-
gorithms must be employed, like the Laplace approximation
or the Expectation Propagation.

To conclude, even though Gaussian Processes are, in a
sense, close to some ARMA models or even the Kalman
Filter, they provide a very efficient way to adapt to the data
in a non-parametric way. Given that we choose the ade-
quate mean function and covariance function, the problem
of learning with Gaussian processes is exactly the problem
of learning the hyperparameters of the covariance function.
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