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Abstract—Different Terrain Based Navigation systems for
underwater vehicles have already been presented, with experi-
mentally validated results and consistent performance. However,
these results are mostly based on the use of both high accuracy
inertial navigation systems and high quality sonars.

This article presents a study on Particle Filter algorithms
that cope with peculiarities of Terrain Based Navigation for
sensor limited systems. The focus is on the influence on several
parameters, namely the process noise, the measurement noise
and the number of the particles, and how these can improve the
obtained results. Based on the results obtained by simulation,
we present some conclusions relevant for the design of future
implementation of the algorithms.

I. INTRODUCTION

The problem of localization is one of the most fun-
damental tasks for the navigation of mobile robotics. For
outdoor ground-based mobile vehicles localization is generally
addressed by using GPS-related techniques. However, in GPS
denied environments, like underwater, different techniques
must be derived in order not to compromise the navigation
of the vehicles.

The traditional approach for the navigation systems of
Autonomous Underwater Vehicles (AUVs) is the combination
of both Acoustic Navigation with Dead-Reckoning. Acoustic
Navigation embraces a number of techniques that rely on
the computation of ranges or bearings to acoustic beacons,
with known and pre-defined positions. The main drawback of
Acoustic Navigation is the need for the deployment of the
acoustic beacons or, in alternative, the need for a support
vessel, which can be at times extremely inconvenient, or even
unfeasible for some applications.

In this context, the interest for Terrain Based Navigation
naturally arises. The main idea in Terrain Based Naviga-
tion (TBN) is to use information of the variability of the
terrain to bound the errors of the dead-reckoning systems,
thus overcoming the need of external aiding devices and,
in a sense, making navigation truly autonomous. Generally
speaking, TBN produces vehicle horizontal position estimates
xt by matching range measurements of the terrain against
an a priori Digital Terrain Map (DTM). In the last decades
there has been extensive research focused on TBN methods
for both manned and unmanned vehicles, like missiles and
jet-propulsion aircraft. For underwater environments, however,

the use of this technique is quite recent, mostly due to the
scarcity of DTMs of large areas.

Early correlation based terrain navigation strategies relied
on the evaluation of arbitrary matching functions across the
reference map, giving no statistically justified measure of
uncertainty in position estimates [1]. However, recent efforts
have been directed to the development of Bayesian Estimation
methods to tackle this problem, by implementing one of the
different realisations of the Bayesian Filter. Different Terrain
Based Navigation systems for underwater vehicles have been
presented, with experimentally validated results and consistent
performance, most notably in [2] and [3], among others.
However, these results rely on the use of both high-accuracy
inertial navigation systems (INS) and high-quality sonars such
as multibeam echosounders.

Building up on the results of Meduna [4], this article con-
siders the performance Terrain Based Navigation algorithms
for sensor limited systems - systems using lower-accuracy
inertial systems and low-performance sonar systems - thus
enabling its use on a broader range of vehicles. In particular,
we are focused on the different Particle-Filter alternatives that
can be used to implement TBN with a decent realtime perfor-
mance. Some preliminary findings in this subject are presented
that aim to illustrate the achievable performances of Bayesian
Terrain Based Navigation algorithms based on Particle Filters.
For this, a simulation framework was implemented responsible
for simulating vehicle sensor readings, including the IMU,
DVL and sonar measurements, as well as vehicle trajectory.
Since it was not possible to have access to suitable bathymetric
maps of an actual site, the maps under use were also artificially
generated.

The remainder of this article is organized as follows. On
Section II the general problem of Terrain Based Navigation is
introduced, and Section III introduces the concepts of Bayesian
Estimation. Then, in Section IV a brief description of the
Simulation Framework is provided, and Section V describes
the Particle Filter implemented. Finally, Section VI provides
the preliminary simulation results obtained under the proposed
methods and finally, in Section VII, we present the conclusions
of this study.

II. PROBLEM STATEMENT

A basic state-space model for an INS-based AUV system,
expressed in terms of vehicle state variables, vehicle observa-
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tions and state transitions, can usually be stated as:

xt+1 = xt + ut + vt (1a)
zt = H(xt) + wt (1b)

Equation (1a) represents the state update model, where xt,
is the state vector, assumed to be Markovian, ut contains the
position updates as calculated from the INS and vt represents
the noise associated to the updates, usually dominated by the
INS drift error. The system measurement equation is given by
(1b), where zt refers to the observation vector, H(xt) is the
non-linear map function, and wt the stochastic measurement
error.

x = [xN xE xD φ θ ψ]T (2)

For the course of the work here presented, the state variable
xt is supposed to be 6-dimensional, and composed by both
position and orientation of the vehicle, as in (2). Additionally, it
is assumed that for navigation purposes, the vehicle is equipped
with both a MEMS based INS, capable of measuring both
translational accelerations and angular rotation, and a Doppler
Velocity Log (DVL) so that the velocity of the vehicle can
directly measured. Sometimes, the bias of odometry sensors
in also included the state vectors [4].

In the framework of TBN, both the measurements and
the map altitudes refer to the total sea depth at the current
vehicle position. The total altitudes, or terrain elevations, are
usually observed with respect to the mean sea level (MSL), and
computed as the sum of the AUV depth given by a pressure
sensor, and the AUV altitude above the see floor, given by a
sonar.

III. BAYESIAN ESTIMATION

Despite the early correlation based TBN strategies, which
relied solely on the performance of matching functions across
the reference map, Bayesian Filters are now the primary choice
for the design of TBN filters. Not only the bayesian approach
allows for the fusion of information from multiple sensors,
but it also provides a statistical measure of the uncertainty in
position estimates produced.

TBN can be implemented using any realization of the
Bayesian Filter, including both parametric filters like the
Kalman Filter (KF), and non-parametric approaches, like the
Particle Filter (PF). However, due to the high non-linearities
H(xt) present in the model of the system (1b), non-parametric
filters like the Particle Filter (PF) or the Point Mass Filter
(PMF) are usually preferred, due to their ability to represent
strong non-linearities more accurately [5]. Moreover, these
filters do not require for the matching function to be Gaussian
shaped, making them more appropriate in situations where
only a few terrain height measurements are available.

Under first-order Markov assumptions, the recursive form
of the Bayes Filter is given by equations (3) and (4).
p(xk|zk-1, uk) represents the prior, p(xk|zk, uk) is the pos-
terior, and α is just a normalizing factor, so that the integral
sums up to one. ut explicitly represents the dependency of
the system state to the changes in vehicle state measured

Fig. 1: Simulation of a Particle Filter for Terrain Based
Navigation algorithm.

by odometry sensors. Furthermore, previous knowledge of
the model is incorporated by the term p(xk|zk-1, uk), and
the likelihood, p(zk|xk), represents the measurement model.
Calculation or approximation of these terms are the essences
of the Bayesian filtering and inference.

p(xk|zk-1, uk) =

∫
p(xk|xk-1, uk)p(xk-1|zk-1, uk-1)dxk-1

(3)
p(xk|zk, uk) = αp(zk|xk)p(xk|zk-1, uk) (4)

The Particle Filter (PF) is a numerical approximation to the
Bayesian Filter for non-linear and non-Gaussian systems that
uses a large number of hypothetical samples of the state vector
to estimate its probability distribution. It can be demonstrated
that, under certain conditions, the posterior density can be
approximated as in (5) [6]. Ns is the total number of samples,
and wik is the normalized weight associated with particle
i at time instant k. These weights are obtained using the
measurement model, p(zk|xk).

p(xk|zk) ≈
Ns∑
i=1

wikδ(xk − xik) (5)

Resampling is a crucial step in PF algorithms, as it is the
process on which low probability particles are replaced by oth-
ers with higher probability, thus increasing the concentration
of particles in regions of the state-space with higher likelihood.
This study starting-point is the Sampling Importance Re-
Sampling (SIR) filter, sometimes also referred to as Bayesian
Bootstrap Filter. Although one of the most common and
simple, it has already been demonstrated in [4] that this type
of PF algorithm is able to cope with all the constraints existent
in TBN for sensor-limited underwater vehicles with satisfying
results.

IV. SIMULATION FRAMEWORK

The framework developed for this initial study was imple-
mented in Matlab, as this is an excellent tool to analyse the
data. However, this is not compatible with a future implemen-
tation on the on-board computational unit of the AUVs. For the
course of this work some assumptions were made concerning
the vehicle and the sensors in use, always mimicking actual
devices.



Inspired by the vehicle MARES [7], we assume a vehicle
able to control horizontal and vertical motion independently,
and able to hover and maintain a constant depth. Moreover,
we assume only surge velocity and neglect sway velocity. As
for the navigation sensors, the assumptions are that the vehicle
is equipped with a 3-axis IMU, a pressure depth sensor and a
Doppler Velocity Logger (DVL). By mimicking existing sensor
available on the market, we consider that the DVL is able to
provide direct vehicle velocity measurements in all the 3 axis
of the vehicle, and the depth of the vehicle is given by the depth
sensor. Inspired by sensors like the Xsens MTI or the PNI
Trax, it was considered that the IMU is able to computed the
orientation of the vehicle. In fact, the aforementioned sensors
use advanced proprietary sensor fusion algorithms that use the
Earth’s magnetic field to stabilize Heading, but also keep track
of the biases affecting the different sensors, thereof bounding
the errors in a dramatic way.

This vehicle configuration is similar to the proposed in
several publications concerning TBN studies [4], [5] and the
set of sensors considered is, in a way, the standard for entry-
level modern commercial AUVs. These class of AUVs, usually
referred to as sensor-limited, and are characterized by the
poor performance of the navigation system, mainly as a result
of low-accuracy inertial sensors and simple low-information
range sensors.

The generation of suitable trajectories for the vehicles is a
3-stepped approach. First the navigation sensor measurements,
from both the IMU and the DVL are artificially generated.
Using the orientation estimates of the IMU, the the DVL output
values are then transformed from the sensor frame of reference
to the vehicle frame of reference; Finally the position of the
vehicle is obtained by suitable integration of the velocity of
the vehicle.

The trajectory obtained in this way is going to be the
ground truth for all the further calculations. However, in
the real world it is obvious that noise always affects sensor
readings in different ways. In this way, additive noise will also
be introduced to the simulated sensor measurements in a con-
venient way. In specific, the noise of DVL velocities vDV Lx and
vDV Ly , and the heading ψ were affected by first-order Markov
Processes, while to the remaining sensor measurements were
affected by Gaussian white noise.

A. Process Model

Considering the state-space model in (2), for this initial
assessment of the performance of the TBN algorithms, the
state vector will be xt = [xNk xEk xDk φk θk ψk]. The increase
of dimension of the state space, when comparing to the more
basic algorithms, is justified by the use of less accurate sensors,
that lead to the need of estimating not only the position, but
also the orientation of the vehicle. Inspired by the results
presented by Meduna in [4], the resulting process model is
then given by (6). Comparing both approaches, one can notice
that here the biases of gyroscopes are not included in the state
vector, as the IMU used already applies proprietary sensor
fusion algorithms responsible for tracking the biases of the
individual gyroscopes, accelerometers and magnetometers, and
subtract its effects to the output orientation values.

xk+1 = xk +



vNk dt
vEk dt
∆zk
∆φk
∆θk
∆ψk


+ rk (6)

In (6), the control elements ∆zk is given by the depth
pressure sensor, and ∆φk, ∆θk and ∆ψk are values provides
by the IMU. The vehicle velocities along the North and East
components of the frame of reference, vNk and vEk respec-
tively, are computed by using the local orientation matrix
R(φ(t), θ(t), ψ(t)) to transform the DVL velocities to the
appropriate frame of reference of the vehicle. As for the
process noise, rk is assumed that is normally distributed with
zero mean and standard deviation given by Σ (7).

Σ =


σ2
vx 0 0 0 0 0
0 σ2

vy 0 0 0 0

0 0 σ2
z 0 0 0

0 0 0 σ2
φ 0 0

0 0 0 0 σ2
θ 0

0 0 0 0 0 σ2
ψ

 (7)

B. Observation Model

Observation Models for Terrain Based Navigation are usu-
ally one of two kinds: ray-tracing based or projection based
models. Ray tracing models are known to be more accurate
but they are computationally very expensive and, because of
that, not adequate for online processing. For this reason, the
projection based models are preferred.

As the name might suggest, projection-based observation
models consist on projecting the measured ranges r given
by a sonar, into the 3-dimensional space and according to
the vehicle orientation. From this three-dimensional position
it is possible to extract a projected depth or terrain height,
y, which is then compared with the expected terrain height
for that specific location, ĥ(xN , xE), as given by a digital
map of the location. The observation model used on the
remaining of this work is given by (8). As the gridded map only
contains elevations of the terrain at specific points, h(xN , xE)
implements a billinear interpolation of the 4 nearest neighbours
and includes a term to account for the uncertainties introduced
by the terrain model and the interpolation process.

p(zk|xk) = α exp

[
−1

2

M∑
i=1

βi(yi − ĥi)2
]

(8)

where α is a weighting factor, and β is a term to account for
the effect of modelling errors that during map registration, and
errors present in the projection model. Similar measurements
models have also commonly used in related areas [8], [9]. A
more detailed derivation of this model can be found in [10].



V. PARTICLE FILTER

There has been a growing interest on the use of non-
parametric filters for Terrain Based Navigation in underwater
vehicles. The interest on these filters, in particular on Particle
Filters and Point Mass Filters arises due to their ability to
better track strong non-linearities, as the ones present on TBN
problems, when compared to traditional linear filters. Both PFs
and PMFs have been successfully implemented for underwater
Terrain Based Navigation but it has been show that while the
PMF is more robust and accurate than the PF, the latter allows
higher dimensional search without the computational expense
of the PMF [3]. Because of this, Particle Filters have been
more extensively used, specially when dealing with state-space
models with higher dimensions. In this section, we provide
some insights on the theoretical background of the Particle
Filters used, but a thorough derivation can be found in [11],
[12], [13].

The Particle Filter is an approximation to the recursive
Bayes Filters. In specific, the objective is to use an approximate
form to solve for the integrals of the general Bayesian Filter
recursion, (3) and (4). The idea is to approximate these
equations by sampling a set of randomly chosen state particles
Xt = {x[1], x[2], . . . , x[M ]} from an appropriate distribution. If
this is the case, then the weighted set of of particles is enough
to approximate the system state, and a solution to the to the
Minimum Mean Square estimate of the state can be expressed
according to (9).

x̂k =

Ns∑
i=1

wikδ(xk − xik) (9)

Such a representation is approximate, but it is non-
parametric, and therefore can represent a much broader space
of distributions than, for example, Gaussians [14]. Moreover,
as the number of sampled particles Ns increases this approxi-
mation is guaranteed to converge to the true solution. In (9) δ
is the Dirac impulse function, and wik is the weight associated
to each particle such that

∑Ns

i=1 w
i
k = 1.

A. Resampling

A key aspect on Particle Filters is the resampling step. The
Resample step is in fact crucial in the Particle Filter algorithm,
as it allows replace particles with low importance weights
w

[m]
k , or low-probability samples, to be substituted by particles

with higher importance weights. In most resampling strategies
the number of samples is maintained constant. An interpreta-
tion of this, according to Thrun [14], is that the resampling
step is a probabilistic implementation of the Darwinian idea
of the survival of the fittest. There are different resampling
approaches and there is a lot of literature devoted to the
study of efficient resampling strategies. Different resampling
strategies have been proposed, like Multinomial resampling,
Stratified resampling, Systematic resampling among others.

In what follows we will use the Minimum Variance Sample,
or Systematic Resampling. This algorithm presents a very
low complexity, when compared to others, and it was also
considered to be the one providing the most favourable sam-
pling scheme for Terrain Navigation applications [15]. This

algorithm uses a single random number to sample from and has
a minimal complexity, making it the preferential resampling
algorithm for numerous applications. The Minimum Variance
Sample is detailed on Algorithm 1.

Algorithm 1 Minimum Variance Sample algorithm

1: function LOWVARIANCERESAMPLE(Xt, Wt)
2: Xt = ∅
3: r = rand(0;N−1s )

4: c = w
[1]
t

5: i = 1
6: for m = 1 to Ns do
7: U = r + (m− 1).N−1s
8: while U > c do
9: i = i+ 1

10: c = c+ w
[i]
t

11: end while
12: add x[i]t to Xt
13: end for
14: return Xt
15: end function

B. SIR Filter

The particle filter formulation used to support this initial
study on Terrain Based Navigation is a Sampling Importance
Resampling (SIR) filter, also known as a Bayesian bootstrap
filter or condensation algorithm. This formulation, which is one
of the simplest ones, uses both the process model, p(xk+1|xk),
and the observation model, p(zk|xk), derived in previous
sections, to obtain an approximate solution for the Bayesian
recursion. Algorithm 2 details this formulation.

For every time step, the algorithm starts with a prediction
or time uptade step, where new predictions are generated
according to the proposal distribution, which in this case is the
process model. Then there is a measurement update step, on
which new weights for every particle are evaluated according
to the observation model. After weights normalization, the
resample step takes place if the effective number of samples,
and indicator of the degree of depletion, is below a given
threshold. As there is usually no prior knowledge on the
distribution of the particles once the algorithm is initiated,
p(x0), it is a common practice to sample new particles from
an uniform distribution covering the whole space. For the SIR
filter, resampling is done whenever the effective sample size,
Neff goes below a given threshold, usually between 0.5Ns
and 0.8Ns.

C. Regularized Particle Filter

Resampling is a very effective method to avoid the de-
generacy of the particle filter set, or sample depletion, which
happens whenever all but one of the importance weights are
close to zero. However, resampling is also known to introduce
the problem of loss of diversity among the particles, which in
some cases can lead to "particle collapse", when all particles
are just a copy of each other. This phenomenon is particularly
present when the noise of the dynamical system is low.

One obvious solution for stopping sample impoverishment
is to add some random-noise to each particle before propa-
gating it onto the next time step, a simple strategy proposed



Algorithm 2 The SIR Particle Filter algorithm

1: Initialization
2: for all m do
3: x

[m]
0 ≈ p(x0)

4: end for
5: for all k do
6: Prediction:
7: for all m do
8: x

[m]
k = p(xk+1|x[m]

k , rk)
9: end for

10: Measurement Update:
11: for all m do
12: w

[m]
k = p(zk|x[m]

k )w[m]

13: end for
14: Weight Normalization:
15: for all m do
16: w

[m]
k =

w
[m]
k∑Ns

j=1 w
[j]
k

17: end for
18: Resample:
19: Neff = 1∑Ns

m=1(w
[m]
k )2

20: if Neff < αNs then
21: RESAMPLE
22: end if
23: end for

in [16] and known as jittering. However, and because the
variance of the random noise introduced is freely determined
by the user, this becomes a very ad-hoc solution. A similar,
but slightly elaborate technique was introduced in [17], by
proposing the Regularized Particle Filter (RPF).

The problem of loss of diversity arises due to the fact that
in the resampling stage, samples are drawn from a discrete
distribution rather than a continuous one [13]. By sampling
new particles from a continuous approximation of the posterior
density p(xk|zk), the RPF introduces the necessary diversity
of the particle set. The continuous approximation of p(xk|zk)
is obtained according to (10), where K(.) is a multivariate
kernel estimator.

p(xk|zk) ≈
Ns∑
i=1

wikK(xk − xik) (10)

Under certain conditions, when the all particles are equally
weighted, it can be shown that the Epanechnikov kernel, in
(11), is the optimal choice with respect to the mean integrated
square error of the density estimation [17]. For the general
case, these will lead to a suboptimal filter, but still valid. In
(11) cd refers to the volume of the unit sphere with dimension
d.

K(x) =

{
(2cd)

−1(d+ 2)(1− x′x), if x′x < 0.

0, otherwise.
(11)

Using a kernel estimator to approximate the posterior
requires minimal changes to Algorithm 2. According to what
was stated above, the RPF only needs an additional step so that
after resampling, some extra noise is added to the samples,

according to (12), where H is the smooth parameter, or
bandwidth, Dk is the Cholesky factorization of the covariance
matrix of the particles before resampling, and ε is generated
from the Epanechnikov Kernel.

xik+1 = xik+1 +HDkε (12)

Generating from the Epanechnikov Kernel means consists
on generating from

√
d+ 4

√
β(d/2, 2)Td, where β follows

a beta distribution with parameters and Td is uniformly dis-
tributed over the unit sphere of Rd [18]. H is computed
according a generalization of the Scott’s rule of thumb for
general multivariate distributions, H = n

−1
d+4 [19].

VI. SIMULATION RESULTS

Even though several authors presented valid contributions
in the field of Terrain Based Navigation, there hasn’t been
much working concerning the tuning of the filters. The purpose
of the simulation results presented in this section is to under-
stand how the variation of some parameters of the Particle
Filter influences the final result in terms of the accuracy of
the estimation. The number of particles, the process noise and
the sensor noise are obviously the parameters deserving more
attention. Additionally, we also study the influence of sampling
from a continuous approximation of the posterior density, by
using a Regularized Particle Filter.

The performance of the algorithms in terms of processing
time is of uttermost importance, as we are interested on
running the filter in real-time. Therefore, the first limitation
imposed to our system will be on the time it takes for every
iteration of the filter to process. This constitutes and indirect
upper bound on the computational complexity involved. For
this reason, we are primarily interested in the simpler versions
of the Particle Filter, like the previously describer SIR Filter,
or the Regularized Particle Filter.

The processing power available for the onboard compu-
tational systems of AUVs, like the MARES, is likely to be
lower than what was used on the simulations. On the other
hand the simulation framework was build on MATLAB, which
adds extra complexity to the whole system. Consequently it is
assumed that results obtained in simulation are comparable
what could be achieved in a mission scenario. Additionally,
for the subsequent simulations, it is assumed that the initial
pose of the vehicle is known with some accuracy, and we are
only interested on the tracking of the vehicle.

A. Number of Particles

The number of particles of a Particle Filter has always
been a design choice critical to the overall performance and
convergence of the filter. It is empirically known that a large
number of particles usually means better accuracy of the filter,
and this is due to a more efficient covering of the whole sample
space. This is specially true when there is no prior information
of the position of the vehicle and global localization is needed.
However, when the filter is only tracking the vehicle, as
in the case here considered, the number of particles needs
decreases dramatically. By using the Kullback-Leibler metric,
Fox demonstrated in [20], that filters with a small number of
samples track a vehicle in a very satisfactory way.



In our simulations we incremented the number of particles
from 250 to up to 6000 and compared the errors in position to
the true position. The upper bound on the number of particles,
6000, corresponds the the maximum number of particles able
to be processed between the arrival of 2 measurements of the
DVL, that we considered to occur every 5 seconds. The lower
bound, on the other hand, corresponds to the minimum number
of particles needed to have a consistent convergence of the
filter to the true position.

Fig. 2: Simulated Trajectories with different numbers of parti-
cles. The filter clearly improves position estimates even when
the number of particles is small.

In Figure 2 the trajectories for several simulations of a SIR
PF are depicted, where only the number of particles was varied.
It is clear that the filter provides better position estimates that
traditional INS-based solutions. However, the filter is unable
to closely track the true position of the vehicle.

The results obtained in terms RMS of distance to the
true trajectory are depicted on Figure 3. As expected, the
more accurate tracking of the true position happens when
the filter is using an higher number of particles. However,
comparing the final position of all the simulations, and the
average RMS distance to the true trajectory, it is possible to
verify that increasing the number of particles is not necessarily
reflected on the performance of the filter. By comparing the
average RMS of the error position between the filter using
3000 particles, and the filter using 6000 particles, the results
are fairly similar. Considering that by choosing 3000 particles
we are saving half of the processing power, we consider this to
be the best option. In this specific situation, trading processing
power for an higher number of particles is not a particularly
efficient trade-off, as the increase in accuracy doesn’t pay off.
Consequently, and for the subsequent simulations, we set the
number of particles to 3000.

As it can be seen on Figure 4, the states concerning the
position of the vehicle, xN , xE and xD are considered to
be satisfactorily estimated; it can be seen the filter is able to
overcome the effect of noisy control inputs. However, the same
doesn’t happen for the roll, pitch and yaw of the vehicle, and
the estimated values for these states present a non negligible
deviation from the ground truth. This is specially noticeable
for the heading of the vehicle, and this is likely to be the
cause for growing position errors visible at the final part of
the simulation.

Fig. 3: RMS Error in Position when comparing with the true
position of the vehicle, for simulations with different number
of particles.

Fig. 4: Evolution of the different state variables along the time.
The true simulated state is depicted on green, traditional INS
estimates are on blue, and the particle filter estimates are in
red.

B. Process Noise and Measurement Noise

The process noise and measurement noise are of paramount
importance in the particle filter. In fact, if the process noise
is small, or in extreme cases zero, the particle set will rapidly
collapse [21]; on the other hand, it is also known that increas-
ing the noise levels, so that so that they appear larger than
are in reality, is a common trick to improve the performance.
Increasing the noise level in the process model is supposed to
increases the support of the sampled particles, while increasing
the noise level in the observation model implies that the
particles whose weights are smaller are more likely to be
resampled [22]. To study the influence of both process and
measurement noise on the performance, we performed various
simulations while only changing this two sources of noise.

Increasing the measurement noise causes the particles with
low weights to take more time to be replaced with newer
particles. What this means is that when tracking a vehicle,
the filter will have a slower response when trying to compen-
sate for disturbances. From our experience when varying the
measurement noise, we observed only small variations of the
estimated variables, but this behaviour is likely to be caused
by the inherent stochastic nature of the filter. Furthermore,
we prefer to keep the measurement noise to levels similar
to the ones introduced by the actual sensor, and then fine-
tune the performance of the filter by changing on the βi



parameter that is present in (8). While βi is identified with
the covariance of the errors of the map and the errors of
measurement, it’s value will also considerably affect p(zk|xk).
Moreover, we are confident that using βi to weight more the
ranges corresponding to more central beams of the sonar, and
at the same time weighting less the more distant beams will
yield improved results.

Our simulations confirmed that the level of process noise
needs to be high so the tracking is successful, and this is
depicted in Figure 5. This is particularly important if the noise
that corrupts the sensor readings is significant. During our
simulations we realized that the filter could successfully track
the position of a vehicle if the disturbances present were small.
However, when disturbing the sensor readings with random-
walk like noise, then the process noise needs to be at higher
levels. For our simulations, we concluded having the affecting
the estimated states xEk and xDk with noise with magnitudes
comparable to the corresponding inputs provides good results.
High levels of process noise however, cause the cloud of
propagated particles to widespread, which can have negative
results; if the particles spread over a too wide area in the space,
then too many particles will have, so care should be taken
to avoid this situation. Maybe due to this, when the process
noise is high, the estimated trajectory tends to be much less
smooth as the estimated position tends to bounce around the
true position.

Fig. 5: Effect of diferent levels of process noise in the filter,
comparing with true trajectory and traditional INS-estimated
trajectory

When comparing a traditional INS based navigation with
a Particle Filter approach here proposed, it can be concluded
that the latter produces much more accurate results in terms
of tracking a position of a vehicle with sensor limited sensors.
As can be seen in Figure 6, the error in the final position
when calculated with traditional INS integration methods was
of around 65 meters, and when using a Particle Filter this error
decreased to almost 20 meters.

At this point a closer look to the estimated variables
concerning the attitude of the vehicle, namely roll, pitch and
yaw is needed. While we are satisfied with the estimated
state variables concerning the roll and pitch movements of the
vehicle, the same doesn’t happen with the heading estimate,
and it most likely happens because yaw is more subject to
noise than the other two. This inability to accurately track the
heading of the vehicle happened throughout the simulations,
even though a higher process noise seems to improve the

results. If one is only interested in position corrections, the
Particle Filter approach here proposed can be considered
satisfying. However, if there is a need for an accurate estimate
of the heading of the vehicle, then other methods must be
sought.

Fig. 6: RMS Error in position along the time: comparison
between Particle Filter and traditional INS integration.

C. Regularized Particle Filter

As stated before, high levels of process noise are desirable,
but if the process noise is too high this can cause some sort
of degeneracy. To overcome this issue, we tried applying a
Regularized Particle Filter to the TBN problem. The idea
behind it was to be able to be able reduce the process noise
while maintaining a satisfactory tracking performance. We also
intended to verify if the resampling strategy of the RPF could
help on improving the tracking accuracy of the heading of the
vehicle, ψ.

Despite the popularity of this kind of Particle Filter, the
only improvements in the simulations we performed were
obtained only when the number of particles was small, but we
were unable to determine if this was caused by the intrinsically
stochastic nature of the process, or by the regularization factor
introduced. When increasing the number of particles to a
number allows for a close tracking of the position of the
vehicle, the benefits of using such filter were negligible. This is
presumably caused by the levels of noise present in the system,
and required to be high as stated in previously.

VII. CONCLUSIONS

In this article we discussed how the different parameters
of a particle filter can influence the result of a Terrain Based
Navigation algorithm. We started with a SIR Particle Filter,
and independently varied the number of particles, the process
noise and the measurement noise in order to understand the
influence of this parameters on the filter.

Increasing the number of particles improves the overall
performance of the filter, but only up to some point. Our sim-
ulations suggest that there is no interest on having a very large
set of particles, as this is not translated into better estimates.
There is a trade-off between available processing power and
size of the particle set and, under the conditions of our study,
we found that increasing the number of particles above 3000
doesn’t improve the obtained results. The measurement noise
was one of the parameters under study, but in this case we



couldn’t observe any significant improvement even by varying
it over a wide range of values. On the other hand, we concluded
that some of the terms of p(zk|xk) can have an important
role on the fine-tune of the filter, specially when the process
noise is high. The process noise was in fact the parameter that
changed the behaviour of the filter in a more dramatic way. If
the process noise is small enough, the filter is dominated by
the noisy inputs, but if its magnitude is high enough, than the
filter is able to compensate this deviations.

While the particle filters under study were very effective
on tracking the true position of a vehicle when subject to non-
linear behaviours, tracking the heading of the vehicle was not
so successful. If a complete solution for the navigation problem
is required, including the full pose of the vehicle, than different
strategies must be found. Considering this, a natural extension
to this work is the use of a Rao-Blackwellized particle filter
applied to Terrain Based Navigation for underwater sensor-
limited AUVs.
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